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K - N e a r e s t  N e i g h b o r
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Created in 1967 (Hart’67)

Issues
high computation costs
large storage requirement
negative effects of outliers
overlapping classes
low tolerance to noise



I n s t a n c e  S e l e c t i o n  P r o c e s s
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P r o t o t y p e  L e a r n i n g  S c h e m e s
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Instance Selection
Condensed Nearest Neighbor (Hart’68)
Minimal Consistent Set (Dasarathy’94)
Prototype  Selection with Clusters (Lopez’10)

Instance Abstraction
Chang & Modified Chang 
(Chang’74 and Bezdek’98)
Learning Vector 
Quantization (Kohonen’90)



T h e  T i m e  I s s u e
Hope for time complexity of O(n2) or less

(Wilson’00)
But…
CNN requires that for each new prototype added to the list, consistency 

must be checked.

Chang and Modified Chang algorithms have a consistency issue in that 
before a new prototype can be created via merging, consistency must 
be checked.

PSC has a three(3) step process :
1) clustering of the training set 
2) testing whether clusters are homogeneous or     

heterogeneous, and 
3) finding the border prototypes of heterogeneous clusters.
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T h e  I d e a  o f  C L I F F

Some ranges of values for attributes can be 
critical in selecting prototypes for each class

So we consider using techniques practiced in 
the field of Feature Subset Selection (FSS) for 
instance selection
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Support Based Bayesian Ranking 
(SBBR)

Assume that the target class is divided into one class 
as best and the other classes as rest

This makes it easy to find the attribute values which have a 
high probability of belonging to the current best class 
using Bayes theorem.

To avoid distraction by low frequency evidence, a 
support term is added.

Fayola PetersFayola Peters



C L I F F  C r i t e r i a

• Once ranked, the critical ranges for each 
attribute are extracted (those with the highest 
ranks) and used as the criterion for selecting 
instances from the current best class;

• Each criterion is made up of [attribute, value] 
pairs;

• Instances are selected using one pair at a 
time.

Fayola PetersFayola Peters



C L I F F  T i m e  C o m p l e x i t y

Time complexity for CLIFF can be considered in terms 
of

 ranking each value in each attribute, a O(m) operation where m 
represents attributes

 finding the criteria for each class, a O(m) + O(k) operation where k 
represents the class, 

 and selecting instances from each class using the criteria a O(n) 
operation where n represents the number of instances

Assuming that n > m > k this process yields a 
complexity of O(m) + O(m) + O(k) + O(n) which 
reduces to O(n)
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E x p e r i m e n t s

1. Is CLIFF Viable as a Prototype Learning 
Scheme?
 5 x 5 cross-validation

 K-nearest neighbor classifier; k = 1

2. Does CLIFF handle the presence of noise 
well?
 10% of target class  in training set is swapped 

randomly with any other class
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I d e a l  R e s u l t s  f o r  C L I F F

• Highest pds

• Lowest pfs

• Smallest size%

• Rank of 1
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R e s u l t s
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Quartile
Charts

PD

P
L
S

• CLEAN – without 
noise

• NOISY – with 
noise



R e s u l t s
• Clean – without 

noise

• Noisy – with noise
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PF

Significance
And
Size

25, 50 
and 75th

percentile



Fayola PetersFayola Peters

• CLEAN: CLIFF ranks as 
no.2 for pd with 
median of 93% and a 
pd that is 
indistinguishable.

• NOISY: Size remains 
the same and median 
pd and pf show small 
difference

D e r m a t o l o g y
R e s u l t s
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H e a r t  
R e s u l t s

• CLEAN: CLIFF wins for 
both pd and pf

• NOISY: Size decreases 
by 2%  and median pd 
and pf show small 
degradation
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M a m m o g r a p h y
R e s u l t s

• CLEAN: CLIFF wins for 
both pd and pf

• NOISY: Size increases 
by 1%  and median pd 
increases by 1% and pf
show small 
degradation



S u m m a r y  o f  R e s u l t s  

• CLIFF has competitive pds showing similar or 
better results for Heart and 
Mammography 
respectively. 

• CLIFF has the lowest pfs
most of the time

• Noise does not increase 
the size% substantially 
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E x p e r i m e n t  3

Can CLIFF reduce Brittleness
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Example of 
Brittleness
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Example of 
Brittleness
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Results for 
Brittleness
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Brittleness
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M o t i v a t i o n

Brittleness

(NAS’09)
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B r i t t l e n e s s a n d  P u b l i s h e d  M o d e l s

• Seheult’78

• Grove’80

• Evett’95

• Walsh’96
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W h a t  C a n  W e  D o  To  R e d u c e  
B r i t t l e n e s s I n  F o r e n s i c  M o d e l s ?
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Hint!
Move away from statistical 
models.
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Introducing

The CLIFF 
Avoidance Model

(CAM)



D a t a  S e t

Name Attributes Instances Classes

Clear Coat Paint 1151 185 37
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E x p e r i m e n t  1 :  C A M a s  a  
F o r e n s i c  M o d e l

• FastMap is used to create 4 dimensions

• Kmeans is used to create 4 data sets with 3, 5, 
10 and 20 clusters respectively

• CAM is benchmarked against 1-nearest 
neighbor classifier
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R e s u l t s
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• For all data sets 
except the one with 3 
clusters, pds and pfs
measures are ideal for 
both CAM and 1NN

• For data set with 3 
clusters there is a 
small degradation in 
the CAM pd result –
91% vs 1NN at 100%



E x p e r i m e n t  2 :  D o e s  C A M
R e d u c e  B r i t t l e n e s s ?  

• CLIFF is used to create prototypes

– Using the classified test set

– Distances of nearest unlike neighbor found for 
CAM and 1NN

– These are ranked according to position in 
population and plotted
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C o n c l u s i o n s

• We showed that CLIFF

– has a time complexity of O(n);

– reduces training sets to a range of 9 to 15%;

– has pd and p f results which compares favorably with 
1NN and other PLS in several standard data sets;

– does not significantly increase the number of 
instances selected in the presence of noise as 
compared with other PLS;

– reduces brittleness substantially in most data sets 
used.
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F u t u r e  Wo r k

• Using CLIFF with Other Classifiers

• Using CLIFF to Optimized Feature Subset 
Selection

• Comparing CAM to Other Forensic Models and 
Forensic Data Sets
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Q u e s t i o n s ?
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R e fe r e n c e s
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