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K-Nearest Neighbor

s*Created in 1967 (Hart’67)

*lssues
**high computation costs
*»large storage requirement
**negative effects of outliers
s*overlapping classes
**low tolerance to noise



Instance Selection Process

e Select:on Chosen
Training Instances Criteria Instances

Rejected
Instances




Prototype Learning Schemes

**Instance Selection
s*Condensed Nearest Neighbor (Hart’68)
s*Minimal Consistent Set (Dasarathy’94)
**Prototype Selection with Clusters (Lopez’10)

**Instance Abstraction
**Chang & Modified Chang
(Chang’74 and Bezdek’98)
s Learning Vector
Quantization (Kohonen’90)




&

N
*** Hope for time complexity of O(n?) or less 8
(Wilson’00)

** But...

** CNN requires that for each new prototype added to the list, consistency
must be checked.

The Time Issue :

> A

*¢ Chang and Modified Chang algorithms have a consistency issue in that
before a new prototype can be created via merging, consistency must
be checked.

+** PSC has a three(3) step process :
1) clustering of the training set
2) testing whether clusters are homogeneous or
heterogeneous, and
3) finding the border prototypes of heterogeneous clusters.
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The Idea of CLIFF

s*Some ranges of values for attributes can be
critical in selecting prototypes for each class

**So we consider using techniques practiced in
the field of Feature Subset Selection (FSS) for
instance selection



Support Based Bayesian Ranking
(SBBR)

s Assume that the target class is divided into one class
as best and the other classes as rest

** This makes it easy to find the attribute values which have a

high probability of belonging to the current best class
using Bayes theorem.

like(best|E)
FP(best|E) =
(best |E) like(best|E) + like(rest |E)

+»* To avoid distraction by low frequency evidence, a
support term is added.

like(best|E)>
Plbest|E) xsupport(best|E) = 1o BV T like(rest|E)



CLIFF Criteria

* Once ranked, the critical ranges for each
attribute are extracted (those with the highest
ranks) and used as the criterion for selecting
instances from the current best class;

* Each criterion is made up of [attribute, value]
pairs;

* [nstances are selected using one pair at a
time.



CLIFF Time Complexity

s Time complexity for CLIFF can be considered in terms
of

\/

** ranking each value in each attribute, a O(m) operation where m
represents attributes

¢ finding the criteria for each class, a O(m) + O(k) operation where k
represents the class,

¢ and selecting instances from each class using the criteria a O(n)
operation where n represents the number of instances

¢ Assuming that n > m > k this process yields a
complexity of O(m) + O(m) + O(k) + O(n) which
reduces to O(n)
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Experiments

1. Is CLIFF Viable as a Prototype Learning
Scheme?

\/

% 5 x5 cross-validation

\/

** K-nearest neighbor classifier; k =1

2. Does CLIFF handle the presence of noise
well?

\/

% 10% of target class in training set is swapped
randomly with any other class



ldeal Results for CLIFF

* Highest pds
* Lowest pfs
* Smallest size%

e Rank of 1
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R e S u I t S Clean Dermatology Results
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D e r m a t O I O g y Clean Dermatology Results
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H Clean Heart (Hungarian) Results
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Mammography

Clean Mammography Results

mm| PLS rank | size% | 25% 50% 75% | QI median Q3
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Summary of Results

* CLIFF has competitive pds showing similar or
better results for Heart and
Mammography
respectively.

e CLIFF has the lowest pfs
most of the time

e Noise does not increase
the size% substantially




Experiment 3

Can CLIFF reduce Bri#tleness

Brittleness 1s a measure of whether a solution (predicted target class) comes from a

region of similar solutions or from a region of dissimilar solutions. Or, looking at this

another way, how far would a test instance have to move before a different target class

1s predicted.
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After CLIFF
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Dermatology(dm)
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Heart Hungarian(hh)
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Mammography(mm)
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Motivation

Britleness

With the exception of nuclear DNA analysis, ...no forensic method has been rigor-

ously shown to have the capacity to consistently, and with a high degree of certainty,

demonstrate a connection between evidence and a specific individual or source. [36]

(NAS'09)



Brit¢leness and Published Models

e Seheult’78
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Brit¢leness and Published Models

e Seheult’78 Seheult Model
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Brit¢leness and Published Models
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Brit¢leness and Published Models

e Grove’80
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Brit¢leness and Published Models

F'IIITH

LR = —
Flgnf

I

e Evett’'95



Brit¢leness and Published Models

Evett Model
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Brit¢leness and Published Models

TLP[}P(E? F‘SF: SJ:}
PS5t f

e Walsh’96



Brit¢leness and Published Models
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What Can We Do To Reduce
Britt¢leness IN Forensic Models?

) it/

Move away from statistical
models.
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Experiment 1: G AM as a
Forensic Model

* FastMap is used to create 4 dimensions

* Kmeans is used to create 4 data sets with 3, 5,
10 and 20 clusters respectively

* CAM is benchmarked against 1-nearest
neighbor classifier



Results
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Experiment 2: Does LAM
Reduce Brittleness?

* CLIFF is used to create prototypes
— Using the classified test set

— Distances of nearest unlike neighbor found for
CAM and 1NN

— These are ranked according to position in
population and plotted
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5 Clusters
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10 Clusters
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Conclusions

e We showed that CLIFF

— has a time complexity of O(n);
— reduces training sets to a range of 9 to 15%j;

— has pd and p f results which compares favorably with
1NN and other PLS in several standard data sets;

— does not significantly increase the number of
instances selected in the presence of noise as
compared with other PLS;

— reduces brittleness substantially in most data sets
used.
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Future Work

e Using CLIFF with Other Classifiers
e Using CLIFF to Optimized Feature Subset
Selection

* Comparing CAM to Other Forensic Models and
Forensic Data Sets




Questions?
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