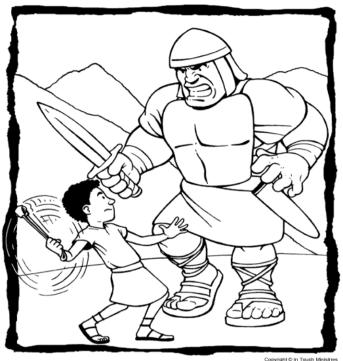
Instance-based Reasoning (Less is More!)



David & Goliath 1 Samuel 17:1-58

Fayola Peters Lane Department of Computer Science and Electrical Engineering, West Virginia University fpeters@mix.wvu.edu

WestVirginiaUniversity.

The Problem?

- Only a few instances matter...
- But why?

Outline

Previous research → Few instances matter

- Why? The Answer lies in the E(k) matrix
- Now we exploit instance space

Previous Research = Less is More!

- Chang 1974 Finding Prototypes for Nearest Neighbor Classifiers
- Kim 2011 Dealing with Noise in Defect Prediction
- Kocaguneli 2011 Exploiting the Essential Assumptions of ABE Estimation
- Kocaguneli 2010 When to use data from other projects for effort estimation
- Experiment: Independent Variable Mutation

4

Experiment: Bias/Variance

In the Beginning

 Chang 1974, realized that few instances matter

• His experimental results...

	Training (514 case		Test Set (120 cases)		
Classifiers	Recognition Rate (%)	Error Rate (%)	Recognition Rate (%)	Error Rate (%)	
The Nearest Neighbor Classifier Using 514 Initial Prototypes	100	,0	92.5	7,5	
The Nearest Neighbor Classifier Using 34 Final Prototypes	100	о	91.7	8.3	

Previous Research = Less is More!

- Chang 1974 Finding Prototypes for Nearest Neighbor Classifiers
- Kim 2011 Dealing with Noise in Defect Prediction
- Kocaguneli 2011 Exploiting the Essential Assumptions of ABE Estimation
- Kocaguneli 2010 When to use data from other projects for effort estimation
- Experiment: Independent Variable Mutation
- Experiment: Bias/Variance

Noise Reduction is Important

- Kim 2011, noise affects results in defect prediction
- Therefore eliminating noise improves results
- Table 4.The defect prediction performance (F-measure)after identifying and removing noisy instances (SWT)

Remove Noises ?	Noise Rate	Bayes Net	Naïve Bayes	SVM	Bagging
No	15%	0.781	0.305	0.594	0.841
	30%	0.777	0.308	0.339	0.781
	45%	0.249	0.374	0.353	0.350
Yes	15%	0.793	0.429	0.797	0.838
	30%	0.802	0.364	0.706	0.803
	45%	0.762	0.418	0.235	0.505

Previous Research = Less is More!

- Chang 1974 Finding Prototypes for Nearest Neighbor Classifiers
- Kim 2011 Dealing with Noise in Defect Prediction
- Kocaguneli 2011 Exploiting the Essential Assumptions of ABE Estimation
- Kocaguneli 2010 When to use data from other projects for effort estimation
- Experiment: Independent Variable Mutation
- Experiment: Bias/Variance

TEAK

- TEAK → Test Essential Assumption Knowledge
- TEAK's design
 - Select a prediction system.
 - Identify the predictor's essential assumption(s).
 - Recognize when those assumption(s) are violated.

- Remove those situations.
- Execute the modified prediction system.
- Conclusion only few instances matter.

TEAK Results

20 * LEAVE-ONE-OUT

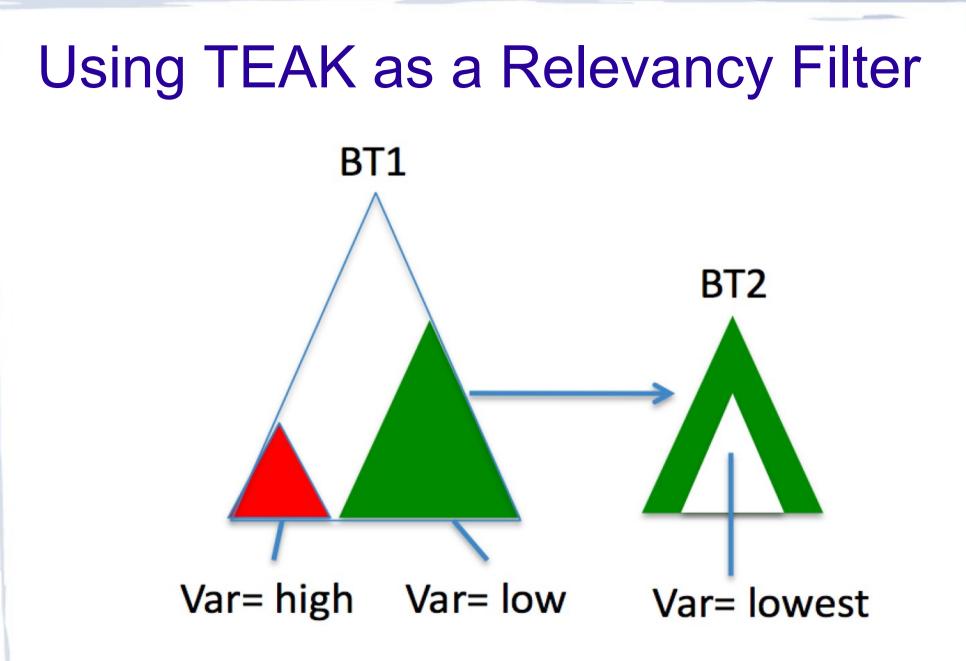
	TEAK	LR	NNet	Best(K)	k=1	k=16	k=2	k=4	k=8
MRE Cocomo81									
Cocomo81e Cocomo81o									
Nasa93 Nasa93c2									
Nasa93c5 Desharnais									
Sdr ISBSG-Banking									
Count	6	3	0	0	0	0	0	0	0
Pred(25) Cocomo81									
Cocomo81e Cocomo81o									
Nasa93 Nasa93c2									
Nasa93c5 Desharnais									
Sdr ISBSG-Banking									
Count	5	3	1	0	0	0	0	0	0
AR Cocomo81									
Cocomo81e Cocomo81o									
Nasa93 Nasa93c2									
Nasa93c5 Desharnais									
Sdr ISBSG-Banking		-							
<u>Count</u>	6	3	0	0	0	0	0	0	0

Previous Research = Less is More!

- Chang 1974 Finding Prototypes for Nearest Neighbor Classifiers
- Kim 2011 Dealing with Noise in Defect Prediction
- Kocaguneli 2011 Exploiting the Essential Assumptions of ABE Estimation
- Kocaguneli 2010 When to use data from other projects for effort estimation
- Experiment: Independent Variable Mutation
- Experiment: Bias/Variance

Cross Company

- Acceptable to use cross data sources once a relevancy filter is used
- Relevancy filter selects small subset relevant to current test case
- Removes training instances that create noise in the estimation process
- In theory, this leaves data that adheres to the principal of locality.



Result

Dataset	Method	Win	Tie	Loss
Coc810	within	13	7	0
Coc81e and Coc81s	cross	0	7	13
Coc81e	within	1	19	0
Coc81o and Coc81s	cross	0	19	1
Coc81s Coc81o and Coc81e	within cross	$\begin{array}{c} 0 \\ 0 \end{array}$	20 20	$\begin{array}{c} 0 \\ 0 \end{array}$

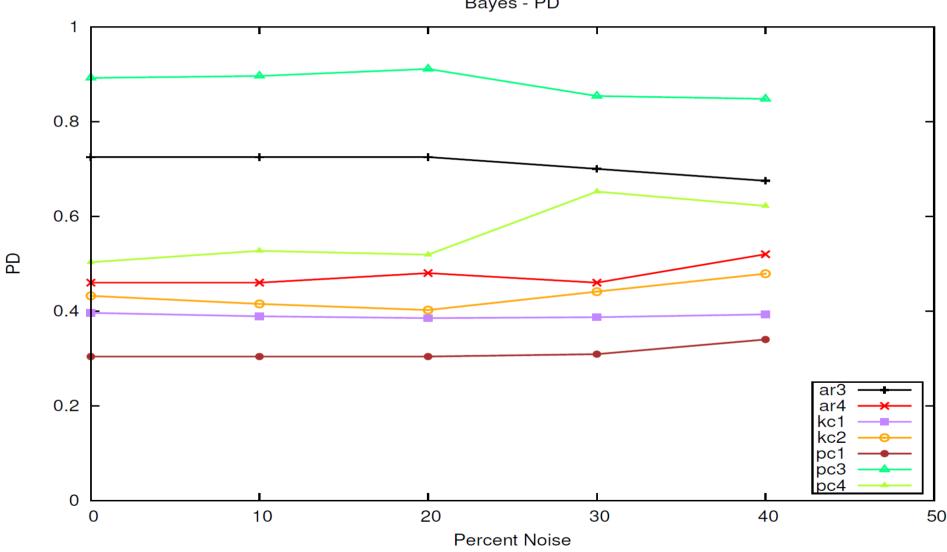
Previous Research = Less is More!

- Chang 1974 Finding Prototypes for Nearest Neighbor Classifiers
- Kim 2011 Dealing with Noise in Defect Prediction
- Kocaguneli 2011 Exploiting the Essential Assumptions of ABE Estimation
- Kocaguneli 2010 When to use data from other projects for effort estimation
- Experiment: Independent Variable Mutation

15

Experiment: Bias/Variance

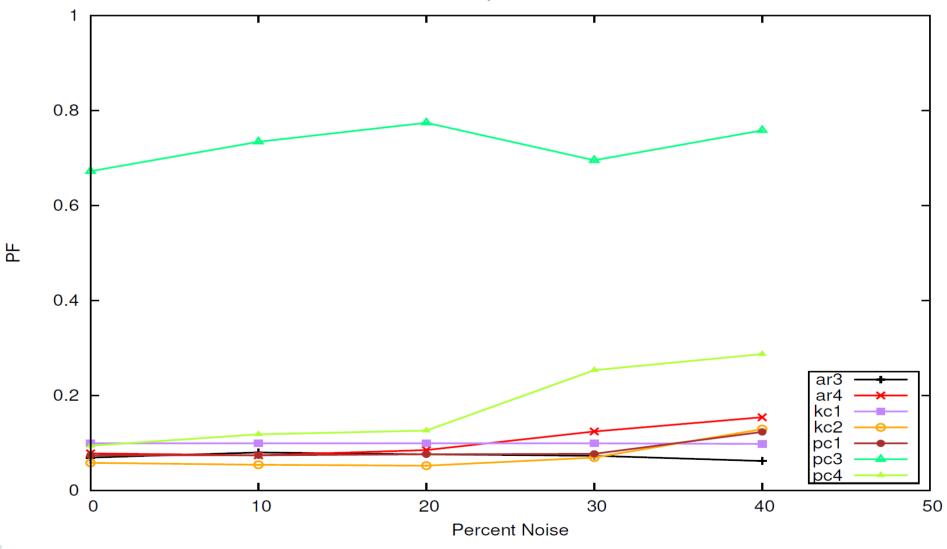
Independent Variable Mutation



Bayes - PD

Independent Variable Mutation

Bayes - PF



Previous Research = Less is More!

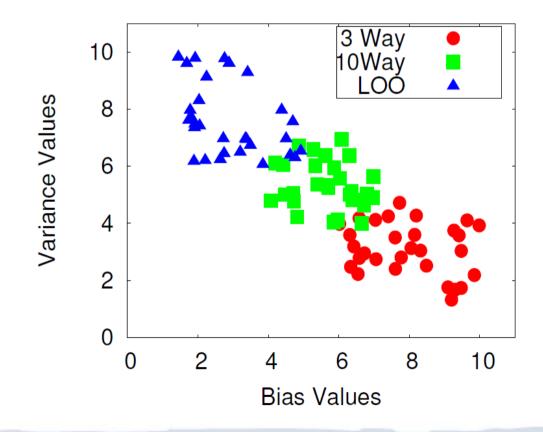
- Chang 1974 Finding Prototypes for Nearest Neighbor Classifiers
- Kim 2011 Dealing with Noise in Defect Prediction
- Kocaguneli 2011 Exploiting the Essential Assumptions of ABE Estimation
- Kocaguneli 2010 When to use data from other projects for effort estimation
- Experiment: Independent Variable Mutation
- Experiment: Bias/Variance

Bias/Variance

- Observations
 - According to theory higher number of smaller test sets, increase the variance and decrease the bias.
 - Extensive study showed that the theory does not hold for effort estimation datasets.
- Conclusion only few instances matter!

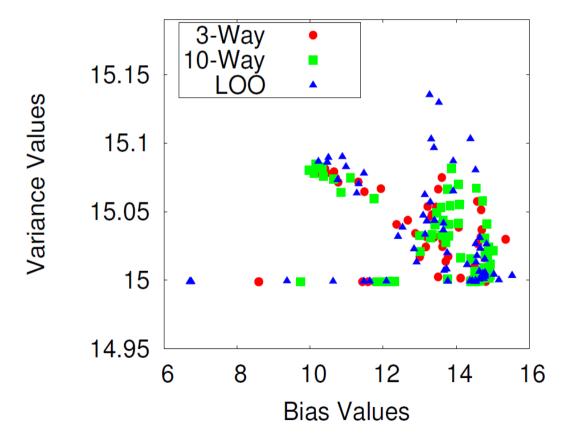
Bias/Variance

 A simple simulation for the "expected" case of B&V relation to testing strategies.



Bias/Variance

B&V values for cocomo81.



Outline

- Previous research = Less is More
- Why? The Answer lies in the E(k) matrix
- Now we exploit instance space

Effort Estimation and Active Learning

- Investigation of software effort dataset characteristics
- First application of active learning on software effort estimation
- Active-learning guidance system based on dataset characteristics
 - Reduction in data collection effort

The E(k) Matrix

Everyones k-th nearest matrix

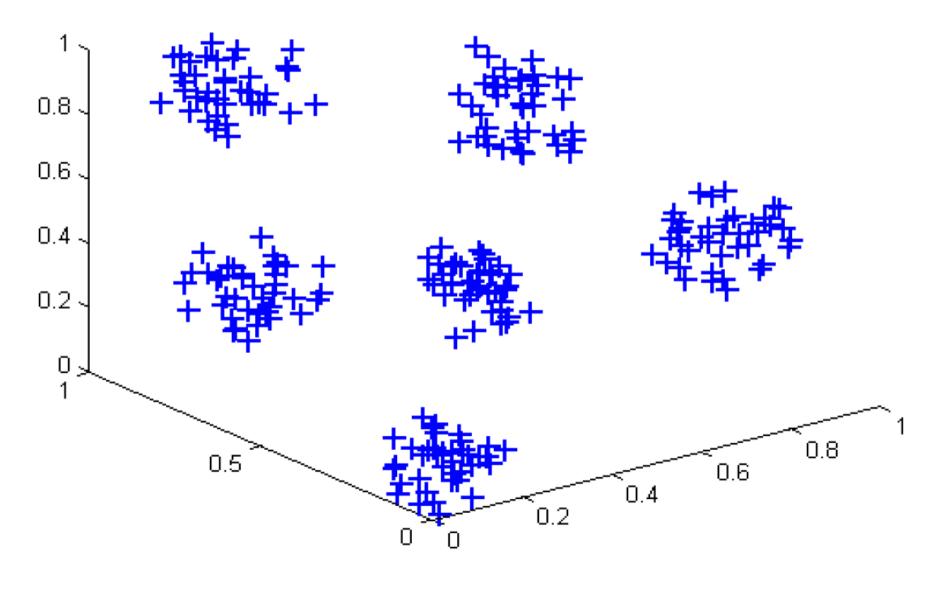
- The story...

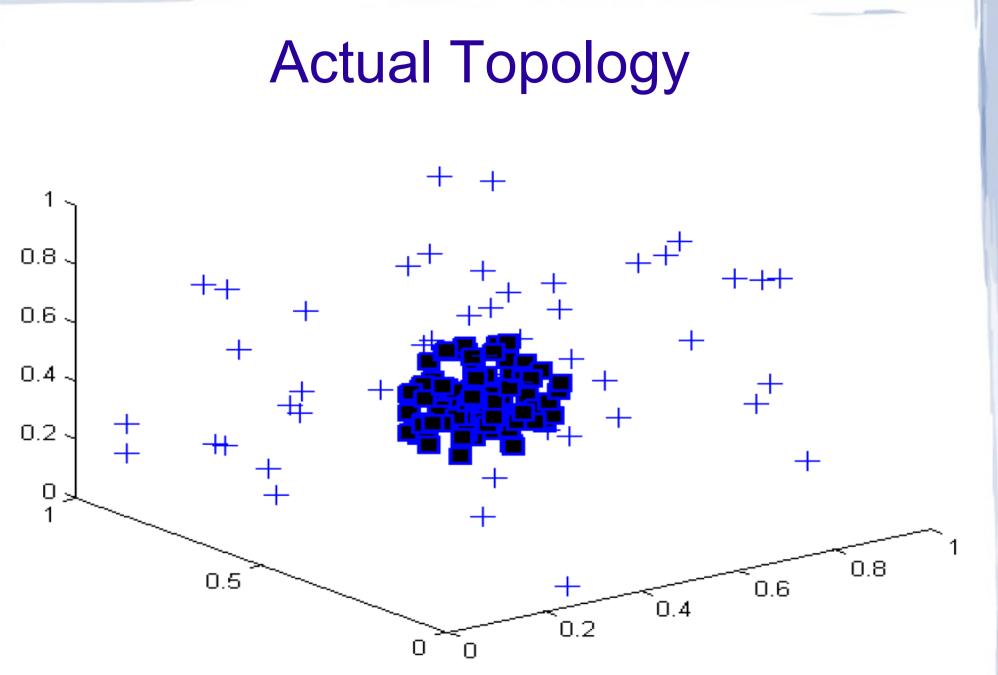
We were interested in the effect of injecting noise to the datasets in the context of ABE.

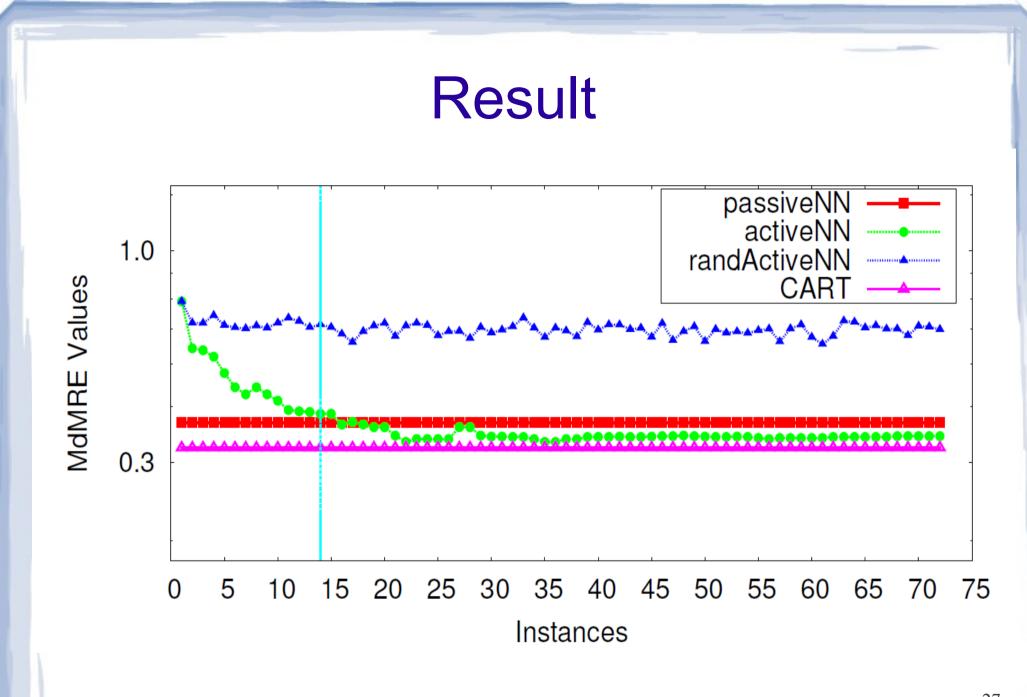
When noise was injected the ABE performances before and after noise injection were statistically the same.

Why? - maybe datasets had a different topology than predicted

Expected Topology







Outline

- Previous research = Less is More
- Why? The Answer lies in the E(k) matrix
- Now we exploit instance space

Exploiting Instance Space

- E(k) and guidance system
 - Find popularity of each instance
 - Use expert to label % of most popular

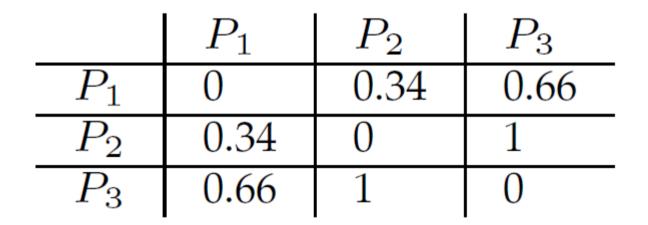
• CLIFF

- Select instances based on best ranked attribute values
- Immunizes against noise

Simple example

Project	KLOC	Effort
P_1	20	3
P_2	10	4
P_3	40	7

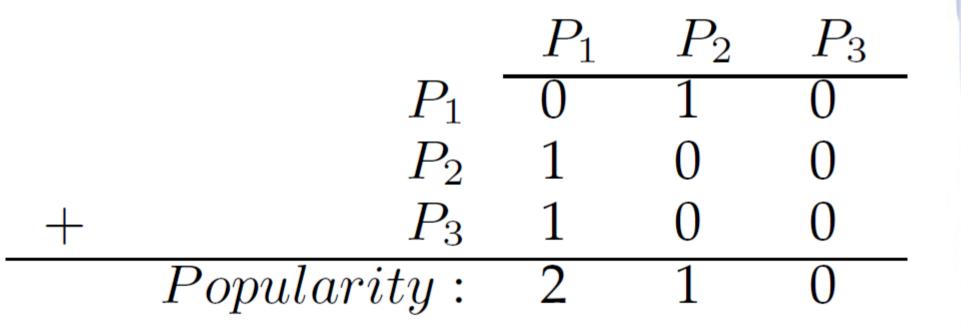
Step 1: Build distance matrix



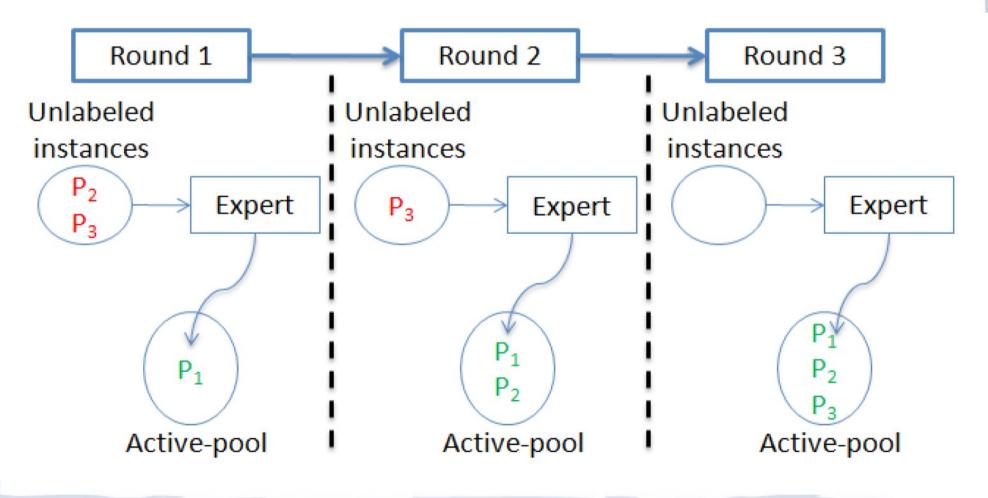
Step 2: Create E(k) Matrix

	P_1	P_2	P_3
P_1	na	1	2
P_2	1	na	2
P_3	1	2	na

Step 3: Calculate Popularity Index



Visualization of Process



Exploiting Instance Space

- E(k) and guidance system
 - Find popularity of each instance
 - Use expert to label % of most popular

• CLIFF

- Select instances based on best ranked attribute values
- Immunizes against noise

CLIFF – Immunizes Against Noise

• Simple example

#	forecast	temp	humidty	windy	play
1.	sunny	hot	high	FALSE	no
2.	sunny	hot	high	TRUE	no
3.	overcast	hot	high	FALSE	yes
4.	rainy	mild	high	FALSE	yes
5.	rainy	cool	normal	FALSE	yes
6.	rainy	cool	normal	TRUE	no
7.	overcast	cool	normal	TRUE	yes
8.	sunny	mild	high	FALSE	no
9.	sunny	cool	normal	FALSE	yes
10.	rainy	mild	normal	FALSE	yes
11.	sunny	mild	normal	TRUE	yes
12.	overcast	mild	high	TRUE	yes
13.	overcast	hot	normal	FALSE	yes
14.	rainy	mild	high	TRUE	no
	-				

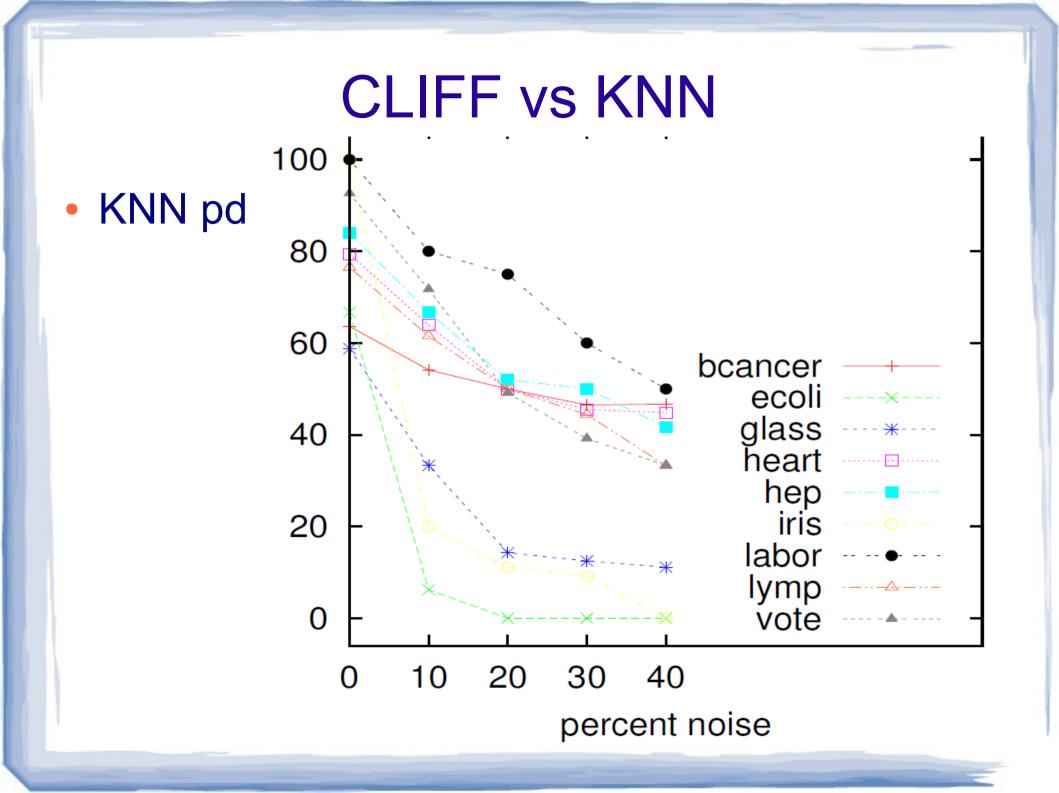
CLIFF – Immunizer Against Noise

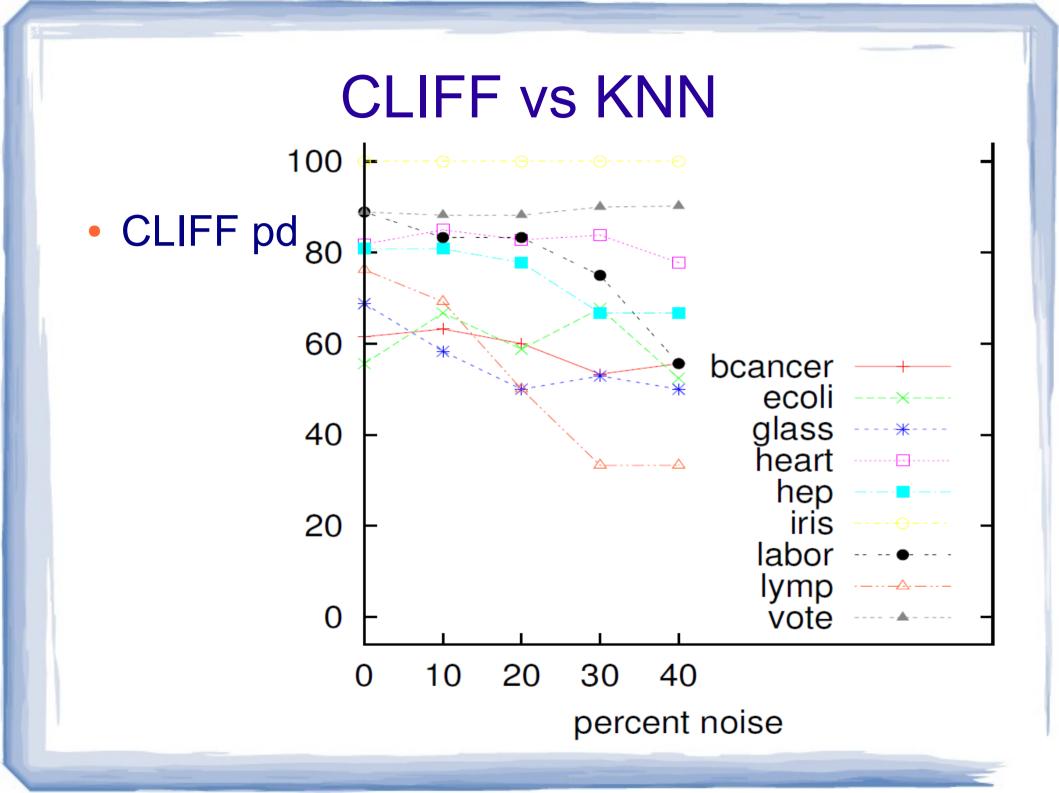
Step 1: Get Criteria

 $\{ \{ forecast, rainy \} \ \{ temp, mild \} \ \{ humidity, high \} \ \{ windy, FALSE \} \}$

Step 2: Apply Criteria

5.	rainy	cool	normal	FALSE FALSE FALSE	yes
	-		•	FALSE FALSE	-





Conclusions

- Since few instances matter...
 - Instead of adding to the list of algorithms

Questions?

References

Slide 4

(Chang 1974)

Chang, C L. "Finding Prototypes for Nearest Neighbor Classifiers." IEEE Trans on Computers C.11 (1974) : 1179-1185.

(Kim 2011)

Kim, S., Zhang, H., Wu, R., & Gong, L. (2011). Dealing with Noise in Defect Prediction. Changes.

(Kocaguneli 2011)

Ekrem Kocaguneli, Tim Menzies, Ayse Bener, Jacky W. Keung, "Exploiting the Essential Assumptions of Analogy-Based Effort Estimation," IEEE Transactions on Software Engineering, 02 Mar. 2011. IEEE computer Society Digital Library. IEEE Computer Society, < http://doi.ieeecomputersociety.org/10.1109/TSE.2011.27

(Kocaguneli 2010)

Ekrem Kocaguneli, Gregory Gay, Tim Menzies, Ye Yang, and Jacky W. Keung. 2010. When to use data from other projects for effort estimation. In Proceedings of the IEEE/ACM international conference on Automated software engineering (ASE '10). ACM, New York, NY, USA, 321-324. DOI=10.1145/1858996.1859061 http://doi.acm.org/10.1145/1858996.1859061