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The Problem?

● Only a few instances matter...
● But why?



 3

Outline

● Previous research →  Few instances matterPrevious research →  Few instances matter
● Why? - The Answer lies in the E(k) matrix
● Now - we exploit instance space
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Previous Research = Less is More!

● Chang 1974 – Finding Prototypes for 
Nearest Neighbor Classifiers

● Kim 2011 – Dealing with Noise in Defect 
Prediction

● Kocaguneli 2011 – Exploiting the Essential 
Assumptions of ABE Estimation

● Kocaguneli 2010 – When to use data from 
other projects for effort estimation

● Experiment: Independent Variable Mutation
● Experiment: Bias/Variance
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In the Beginning

● Chang 1974, realized that few instances 
matter

● His experimental results...
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Noise Reduction is Important

● Kim 2011, noise affects results in defect 
prediction

● Therefore eliminating noise improves results
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TEAK

● TEAK → Test Essential Assumption Knowledge
● TEAK's design

– Select a prediction system.

– Identify the predictor’s essential assumption(s).

– Recognize when those assumption(s) are violated.

– Remove those situations.

– Execute the modified prediction system.

● Conclusion – only few instances matter.
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TEAK Results
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Cross Company

● Acceptable to use cross data sources once a 
relevancy filter is used

● Relevancy filter selects small subset relevant 
to current test case

● Removes training instances that create noise 
in the estimation process

● In theory, this leaves data that adheres to the 
principal of locality.
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Using TEAK as a Relevancy Filter
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Result
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Independent Variable Mutation
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Independent Variable Mutation
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Bias/Variance

● Observations
– According to theory higher number of smaller 

test sets, increase the variance and 
decrease the bias.

– Extensive study showed that the theory does 
not hold for effort estimation datasets.

● Conclusion – only few instances matter!
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Bias/Variance

● A simple simulation for the “expected” case of 
B&V relation to testing strategies.
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Bias/Variance

● B&V values for cocomo81.
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Outline

● Previous research = Less is More
● Why? - The Answer lies in the E(k) matrixWhy? - The Answer lies in the E(k) matrix
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Effort Estimation and Active 
Learning

● Investigation of software effort dataset 
characteristics

● First application of active learning on software 
effort estimation

● Active-learning guidance system based on 
dataset characteristics

– Reduction in data collection effort
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The E(k) Matrix

● Everyones k-th nearest matrix

– The story...

We were interested in the effect of injecting noise to the 
datasets in the context of ABE. 

When noise was injected the ABE performances before and 
after noise injection were statistically the same.

Why? - maybe datasets had a different topology than 
predicted
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Expected Topology
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Actual Topology
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Result
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Outline
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Exploiting Instance Space

● E(k) and guidance 
system

– Find popularity of 
each instance

– Use expert to
label % of most 
popular

● CLIFF
– Select instances 

based on best 
ranked attribute 
values

– Immunizes 
against noise
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E(k) Matrix and Guidance System

● Simple example
●
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E(k) Matrix and Guidance System

● Step 1: Build distance matrix
●
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E(k) Matrix and Guidance System

● Step 2: Create E(k) Matrix
●
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E(k) Matrix and Guidance System

● Step 3: Calculate Popularity Index
●
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E(k) Matrix and Guidance System

● Visualization of Process
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Exploiting Instance Space

● E(k) and guidance 
system

– Find popularity of 
each instance

– Use expert to
label % of most 
popular

● CLIFF
– Select instances 

based on best 
ranked attribute 
values

– Immunizes 
against noise
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CLIFF – Immunizes Against Noise

● Simple example
●
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CLIFF – Immunizer Against Noise

● Step 1: Get Criteria

● Step 2: Apply Criteria
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CLIFF vs KNN

● KNN pd
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CLIFF vs KNN

● CLIFF pd
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Conclusions

● Since few instances 
matter...

– Instead of adding to 
the list of 
algorithms

Let's pay attention to the 
data
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Questions?
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