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The Problem?

● Only a few instances matter...
● But why?
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Outline

● Previous research = Less is MorePrevious research = Less is More
● Why? - The Answer lies in the E(k) matrix
● Now - we exploit instance space
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Previous Research = Less is More!

● TEAK
● Cross company
● Independent Variable Mutation
● Bias/Variance
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TEAK

● Test Essential Assumption Knowledge
● TEAK's design

● Select a prediction system.
● Identify the predictor’s essential assumption(s).
● Recognize when those assumption(s) are violated.
● Remove those situations.
● Execute the modified prediction system.

● Conclusion – only few instances matter.
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Cross Company

● Acceptable to use cross data sources once a 
relevancy filter is used

● Relevancy filter selects small subset relevant to 
current test case

● Removes training instances that create noise in 
the estimation process

● In theory, this leaves data that adheres to the 
principal of locality.
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Independent Variable Mutation
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Independent Variable Mutation
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Previous Research = Less is More!

● TEAC
● Cross company
● Independent Variable Mutation
● Bias/Variance
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Bias/Variance

● Observations
● According to theory higher number of smaller test 

sets, increase the variance and decrease the bias.
● Extensive study showed that the theory does not 

hold for effort estimation datasets.

● Conclusion – only few instances matter!
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Effort Estimation and Active 
Learning

● Investigation of software effort dataset 
characteristics

● First application of active learning on software 
effort estimation

● Active-learning guidance system based on 
dataset characteristics
● Reduction in data collection effort



WVU 15

The E(k) Matrix

● Everyones k-th nearest matrix
● The story...

We were interested in the effect of injecting noise to the 
datasets in the context of ABE. 

When noise was injected the ABE performances before and 
after noise injection were statistically the same.

Why? - maybe datasets had a different topology than predicted
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Expected Topology
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Actual Topology
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Outline

● Previous research = Less is More
● Why? - The Answer lies in the E(k) matrix
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Exploiting Instance Space

● E(k) and guidance system
● CLIFF
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E(k) Matrix and Guidance System

● Simple example
●
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E(k) Matrix and Guidance System

● Step 1: Build distance matrix
●
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E(k) Matrix and Guidance System

● Step 2: Create E(k) Matrix
●
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E(k) Matrix and Guidance System

● Step 3: Calculate Popularity Index
●
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E(k) Matrix and Guidance System

● Visualization of Process
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CLIFF – Immunizer Against Noise

● Simple example
●
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CLIFF – Immunizer Against Noise

● Step 1: Get Criteria

● Step 2: Apply Criteria
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CLIFF vs KNN

● KNN pd



WVU 28

CLIFF vs KNN

● CLIFF pd
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