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Abstract

Avoiding the Destruction of Data-Mining Utility in Privacy Preserving Data Publishing

Fayola Peters

The field of privacy preserving data publishing (PPDP) has become active in recent years in order
to first reduce and/or eliminate the possibility of the re-identification of individuals in a sensitive
data-set. Second, to reduce the probability that an attacker is able to link an individual to a sensitive
attribute in a published data-set. So far there is agreement on one issue in the PPDP field, that is,
the proposed privacy preserving methods are destructive to data mining algorithms. Therefore
this work presents a novel suppression algorithm for privacy (SAP) designed to not only preserve
privacy at an acceptable level, but also produce a sanitized data-set with a high level of utility.
Using 4 data-sets from the UCI repository, and the k-nearest neighbor algorithm to test utility levels
before and after the application of SAP, the results of this work demonstrate that SAP generates
a sanitized data-set yielding low levels of privacy breaches and statistically comparable utility
measures.
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Chapter 1

Introduction

The principal goal of privacy preserving data publishing (PPDP) is to ensure that the published
data can preserve individual privacy while remaining useful for workloads such as data mining.
However, in recent years there has been a growing concern about preserving the privacy of data-
sets to be published. In fact some organizations are wary of publishing their data for fear that
individuals in the data-set will be re-identified as is the case of former Massachusetts governor
William Weld, and [name] from and AOL data-set. This can happen by joining the published
data to voters lists of census data. Beyond, re-identification is sensitive attribute disclosure. This
is where an individual in a data set can be associated with a sensitive attribute. Consider the
example in Figure 1.1. Here the shaded column represent the sensitive attribute values while the
other columns represent the quasi identifiers (QID) and/or non sensitive attribute values. (Please
note that the name are only included for ease of explanation. Normally these are removed before
publication).

Name Job Sex Age Disease
Dawn Lawyer Female 39 Hepatitis
Jenny Teacher Female 23 HIV
John Nurse Male 41 HIV
Stan Mayor Male 56 Hepatitis

Figure 1.1: Patient Table before sanitization

So let us consider Jenny. In order for an attacker (Jenny’s boss Bill) to re-identify her in
the data-set, through casual investigation Bill can figure out that Jenny had a recent stay at the
hospital. Furthermore, once he figures out Jenny’s age, he will learn that Jenny is HIV positive.
Clearly, privacy breaches of this nature can lead, in Jenny’s case to being discriminated against.
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Name Job Sex Age Disease
Dawn Lawyer Female 35-40 Hepatitis
Jenny Teacher Female 20-25 HIV
Mary Teacher Female 20-25 Hepatitis
Joan Teacher Female 20-25 None
John Nurse Male 41 HIV
Stan Mayor Male 56 Hepatitis

Figure 1.2: Patient Table after sanitization

Other scenarios could involve identity theft, loans and health insurance coverage can be denied and
an individual can become a victim to financial fraud.

In this regard, the goal of the work is to introduce a SAP and algorithm designed to add uncer-
tainty to the point where if Bill only has access to the table in Figure 1.2 then he can only be 33%
sure that Jenny has HIV rather than 100% sure (Figure 1.1). In attempt to achieve this goal, this
research is guided by the following research questions:

• Can using SAP reduce the certainty level for re-identification and sensitive attribute disclo-
sure?

• Can SAP produce usable sanitized data-sets?

This paper is organized as follows: The next section briefly describes the state of the art and
offer definitions of privacy. In Section 3, the design and operation of SAP is explained. Section
4 reports on experimental procedure and results. Finally, the paper is concluded and future work
discussed in Section 5.
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Chapter 2

Related Work and Background

2.1 What is PPDP?

Similarly, researchers agree that PPDP involves the use of techniques to disguise the micro-data
records which contain information about specific individuals, while delivering a useful data-set for
analysis. This is indicated clearly by Fung [5], who noted that PPDP is a collection of methods
and tools for publishing data in a hostile environment so that the published data remains practically
useful while individual privacy is preserved. Along the same lines, Domingo et. al. [3] states:

Statistical disclosure control (also known as privacy-preserving data mining) of mi-
crodata is about releasing data-sets containing the answers of individual respondents
protected in such a way that: (i) the respondents corresponding to the released records
cannot be re-identified; (ii) the released data stay analytically useful.

Also, according to LeFevre [7], protecting individual privacy is an important problem in microdata
distribution and publishing. Anonymization algorithms typically aim to satisfy certain privacy
definitions with minimal impact on the quality of the resulting data.

2.2 Why is PPDP important?

The importance of PPDP can be answered with a question: What is data mining without data?

It is established that data mining is beneficial to many domains such as medical, security, credit
fraud and many others. Unfortunately, if the data-sets used in these data mining tasks include a
lot of sensitive individual data, the results can lead to privacy breaches. A popular example is the
re-identification of William Weld, the former Governor of the state of Massachusetts. Values in

3



quasi identifiers (QIDs) (discussed in Section 5) were linked to his record in a published medical
database. More recently, when AOL released the query logs of its users for the purpose of research,
Ms. Thelma Arnold was re-identified by the examination of query terms [5].

Such breaches lowers the confidence of data providers in publishing disguised data with the
expectation of no breaches. In the previous example AOL had no choice but to quickly remove
the data-set. So a drawback is that data holders are less likely to publish data for research and the
benefits of data mining are not realized in these domains.

2.3 What is considered a breach of privacy?

In order to realize privacy breaches, one needs to define what constitutes a privacy breach for a
particular data-set. There are different levels of privacy. Some levels are determined by individuals
in the data-set or by the creators of a privacy policy. An optimal result of a privacy model is
defined by Dalenius [2] where he states that access to published data should not enable the attacker
to learn anything extra about any target victim, compared to no access to the database, even with the
presence of any attacker’s background knowledge obtained from other sources [5]. Unfortunately,
achieving this ideal is impossible, and so, solutions have focused on trade-offs.

Fung [5], considers two categories of privacy models, 1) considers that a privacy threat occurs
when an attacker is able to link a record owner to a record in a published data table to a sensitive
attribute in a published data table, to the published data table itself. These are specified as, record
linkage, attribute linkage and table linkage respectively. 2) The published data should provide the
attacker with little additional information beyond the background knowledge.

Brickell [1], defines a privacy model called sensitive attribute disclosure which occurs when the
attacker or adversary learns information about an individual’s sensitive attributes. In other words,
it captures the gain in the adversaries knowledge due to his observations of the disguised data-set.
Also “Microdata privacy can be understood as prevention of membership disclosure” where the
attacker should not learn whether a particular individual is included in the database.

In 2007, Wang [13] put forward other definitions of privacy. The article explains:

There have been two types of privacy concerning data mining. The first type of privacy,
called output privacy, is that the data is minimally altered so that the mining result will
not disclose certain privacy. The second type of privacy, called input privacy, is that
the data is manipulated so that the mining result is not affected or minimally affected.

In this work, the focus is on two prevailing definitions of a privacy breach (these will be refered
to as scenario1 (S1) and scenario2 (S2) in the remainder of this paper):
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1. S1 - The ability of an attacker to re-identify an individual record in a data-set

2. S2 - The ability of an attacker to associate an individual to a sensitive attribute value.

2.4 What are the methods used to avoid privacy breaches?

The idea of disguising a data-set is known as anonymization. This is performed on the original
data-set to “satisfy a specified privacy requirement” [5] resulting in a modified data-set being pub-
lished. There are five general categories for anonymization, 1) generalization, 2) suppression, 3)
anatomization, 4) permutation and 5) perturbation. Most methods and tools created for preserving
privacy fall into one or more of these categories.

Before we expand on the above categories, we introduce some information about the structure
of the original data-sets:

D(Explicit-Identifier, Quasi-Identifier, Sensitive-Attributes, Non-Sensitive-Attributes),
where Explicit-Identifier is a set of attributes, such as name and social security number,
containing information that explicitly identifies record owners; Quasi-Identifier (QID)
is a set of attributes that could potentially identify record owners; Sensitive-Attributes
consists of sensitive person-specific information such as disease, salary, and disability
status; and Non-Sensitive-Attributes contains all attributes that do not fall into the
previous three categories [5].

2.4.1 Generalization and suppression

According to [5], generalization or suppression hides some details in QID. If attribute values are
numerical, generalization resembles discretization in that exact values are replaced by an interval
that covers the exact values. With categorical values, specific values are replaced by general ones,
for instance, date of birth, becomes month of birth, or pro f essional replaces engineer and lawyer.
Suppression replaces some values with a special value. This could be looked upon as blocking

where special values are replace by a question mark (?) [12].
k−anonimity is one of the methods which makes each record in the table be indistinguishable

with k-1 other records by suppression or generalization [9]. There are limitations with k-anonymity
including the fact that it does not hide whether a given individual is in the database, or that it does
not protect against attacks based on background knowledge [1]. To overcome these problems,
researchers have proposed many variations of k-anonymity [8, 9, 15].
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2.4.2 Anatomization and permutation

Anatomization and permutation both accomplish a similar task, that is, the de-association of the
relationship between the QID and the sensitive attributes. However, anatomization does it by
releasing “the data on QID and the data on the sensitive attribute in two separate tables...” with “one
common attribute, GroupID” [5]. On the other hand, permutation de-associates the relationship
between a QID and a numerical sensitive attribute. This is done by partitioning a set of data records
into groups and shuffling the sensitive values within each group [14].

2.4.3 Perturbation

A precise definition of perturbation is put forward by [5]:

The general idea is to replace the original data values with some synthetic data values,
so that the statistical information computed from the perturbed data does not differ
significantly from the statistical information computed from the original data.

It is important to note that the perturbed data records do not correspond to real world record
owners. Also, methods used for perturbation include, additive noise, data swapping and synthetic
data generation.

2.5 How are privacy preserving algorithms evaluated?

Three evaluation methods are outlined in [10]. These measures are 1) Information loss measures,
2) Disclosure risk measures and 3) Scores. According to [10], information loss measures are
designed to establish in which extent published data is still valid for carrying out the experiments
planned on the original data. They take into account the similarity between the original data set
and the protected one, as well as the differences between the results that would be obtained with
the original data set and the results that would be obtained from the disguised data-set. [10] further
explains that disclosure risk measures are used to evaluate the extent in which the protected data
ensures privacy and that scores, is a summary both information loss and disclosure risk, that is,
when these two measures are commensurate, it is possible just to combine them using the average.
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Chapter 3

SAP: Suppression Algorithm for Privacy

SAP is based on the concept of rule confusion [cite] where the where instances of a data-set which
adheres to a rule are sanitized while the others are kept as is [reasons]. To generate these rules SAP
uses ranking algorithm called BORE (best or rest) [6], that determines what values are most critical
for classification. Once these are found that values are suppressed (blocked) by replacing them with
question marks (?). Intuitively it is expected that by removing these values re-identification can be
significantly reduced while producing a useful sanitized data-set.

3.1 The BORE Algorithm

The core of SAP is to find for a particular attribute values more likely to be present for a particular
class. To find these values, SAP uses BORE. First we assume that the target class is divided
into one class as best and the other classes as rest [6]. This makes it easy to find the attribute
values which have a high probability of belonging to the current best class using Bayes theorem.
The theorem uses evidence E and a prior probability P(H) for hypothesis H ∈ {best, rest}, to
calculate a posteriori probability P(H|E) = P(E|H) × P(H) / P(E). When applying the theorem,
likelihoods are computed from observed frequencies, then normalized to create probabilities: this
normalization cancels out P(E) in Bayes theorem (see Equation 3.1).

Let likelihood = like

P(best|E) = like(best|E)
like(best|E)+ like(rest|E)

(3.1)

Unfortunately, one problem was found using the theorem. According to [6], Bayes theorem is a
poor ranking heuristic since it is distracted by low frequency evidence. To alleviate this problem the
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support measure was introduced. Its purpose was to increase as the frequency of a value increases
i.e. like(best|E) is a valid support measure hence Equation 3.2.

P(best|E)∗ support(best|E) = like(best|E)2

like(best|E)+ like(rest|E)
(3.2)

So in this work, each attribute value is ranked according to Equation 3.2. Once ranked, the
critical value for each attribute are extracted (those with the highest ranks) and used as a rule
for selecting the values of instances to be replaced with a question mark. The whole process is
repeated using a different class as best and all the others (including the previous best class) as rest.
When a rule for each class has been found the process ends. Figure 3.1 shows the pseudocode for
ranking each value of an attribute for an entire training data-set. The parameters include: a, the list
of attributes from the data-set; best, instances with the current best class; and rest, instances with
classes not including the best class.

freq = frequency
like = likelihood
pbest = Probability of value in best
prest = Probability of value in rest
begin initialize a, best, rest, list = /0

for all attributes in a do
for all values in attribute do

pbest = |best| / |data|
prest = |rest| / |data|
f req(value|best) = |valueinbest| / |best|
f req(value|rest) = |valueinrest| / |rest|
like(best|value) = f req(value|best) x pbest
like(rest|value) = f req(value|rest) x prest
likebr = like(best|value) + like(rest|value)
rank = like(best|value)2 / likebr
add [value, rank] to list

end for
end for
return list

Figure 3.1: Pseudo code for BORE

3.2 A simple example for SAP

For the data-set in Figure ??, we want to sanitize it by keeping the SAV and suppressing the QID.
By applying the BORE algorithm we generate the following rules which best represent the class.

[rules]
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We then replace these values with question marks. For the experiments in Section 4, we vary
the number of these that are replaced by 10, 20, and 30%.

The purpose of removing confusing prototypes is to reduce the misclassification rate by an
NNC. Figure ?? clearly features the basic algorithm used to accomplish this. Figure ?? shows the
general prototype reduction at each level of a data set. A few data sets such as Lymph and Audio
show a very small reduction from the original number of prototypes while others such as Breast
Cancer, Vote and Tic-Tac-Toe show a radical reduction to less than 10% of the original data set.
Please note that since MESO is order dependent, the reduction rate differs once the data set is
shuffled.
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Chapter 4

SAP Assessment

In Chapter 3, we discussed the design and operation of SAP with the help of a simple example.
In this chapter, we look at how SAP can be used to offer an impressive level of privacy while
maintaining comparable performance against the original data-sets based on the two scenarios
mentioned in Section 2.3. The classifier used in this work to test the utility of the sanitized data-set
is the k-NN classifier where k = 1 and the performance measures include accuracy (acc), precision
(prec), probability of detection (pd) and probability of false alarm (pf). The experiments in this
work will focus on how much information the atacker knows and how he can use that knowledge
to either re-identify an individual in a data-set or associate that individual with a sensitive attribute
value. We model the attacker’s knowledge as a query and use a random query generator in order
to give a general idea of the level of privacy offered by the sanitized data-set verses an unsanitized
data-set. The following sections will detail information about the data used in this study as well as
the experimental procedures used for S1 and S2.

4.1 Data Sets

Figure 4.1 lists the four(4) data sets used to assess SAP. The number of instances and attributes per
instance are shown for each data set, along with the number of distinct classes of instances. All of
these data sets were acquired from the UCI repository [4]. In terms of privacy, we will look at the
instances as individual records, the attributes as QIDs and the classes as sensitive attribute values.
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Data Set Instances Attributes Class
Breast Cancer 286 9 2
Heart (Cleveland) 303 13 5
Mamography 150 4 3
Vote 435 16 2

Figure 4.1: Data Set Characteristics

4.2 Experimental Method

Before moving forward it is important to note that SAP is used differently for each scenario. For
S1, to avoid the re-identification of an individual record, SAP is applied to the QIDs only, while
for S2, SAP is only applied on the SAV.

Now, for the experiments, first, we will evaluate SAP as a privacy-preserving algorithm and
measure S1 and S2 in a data-set before and after appling SAP. To accomplish this a random query
generator is implemented in order to model the knowledge of an attacker. The generator decides
what and how many QID values the attacker knows. Then produces a list of these queries making
sure that there are no duplicates. The number of queries produced is determined by a stopping
criteria which states that if the list of queries does not increase after n successive queries, then
output the current query list. The value n differs for each data-set.

Recall, that each query represents what an attacker knows about an individual, so once the
query list is generated, each query is used to determine the probabilty of finding that individ-
ual in the data-set. This is done by dividing 1 by the sum of the records that match the query.
Additionally, to measure S2 of a data-set, we find the probability of associating an individual
to each sensitive attribute value. For example, if a and b are the SAV of a data-set, then the
P(S2|a) = number of records matching query with SAV=a

sum of the records matching a query .
Next, to measure the utility of SAP the 1-NN classifier is used on the original data-set and

the sanitized versions of the data-set. This is done on the UCI data-sets in Figure 4.1 in cross-
validation experiments. SAP’s performance is measured using probability of detection (pd) and
probability of false alarm (pf) completed as follows [11]: By allowing A, B, C and D to represent
true negatives, false negatives, false positives and true positives respectfully, it then follows that
pd also known as recall, is the result of true positives divided by the sum of false negative and true
positives D / (B + D). While pf is the result of: C / (A + C). The pd and p f values range from 0 to
1. When there are no false alarms p f = 0 and at 100% detection, pd = 1.

The results were visualized using quartile charts as in [11]. To generate these charts the per-
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formance measures for the pds and p f s are sorted to get the median, lower and upper quartile of
numbers. For our quartile charts, the upper and lower quartiles are marked with black lines; the me-
dian is marked with a black dot; and the vertical bars are added to mark the 50% percentile value.
Figure 4.6 shows an example where the upper and lower quartiles are 39% and 59% respectively,
while the median is 49%.

Figure 4.2: Example of quartile chart used in this work.

Finally, the Mann-Whitney U test was used to test for statistical difference before using SAP
and after. These results are shown as rank values starting at one(1). The lower the rank value, the
better the performance. Please note that the same rank value, indicates no statistical difference.

The following sections describes two(2) experiments, one for each scenario, presents and dis-
cusses the results.

4.3 Experiment #1: For S1

The goal for both experiments is to see if data-sets privatized by SAP provide a reasonable level of
privacy while maintaining comparable performance measures after classification with the original
data-set. In this experiment, the QID’s are privatized while the SAV remains the same. This is
done in an effort to lower the probability of re-identifying and individual record in a data-set. This
part of the experiment follows the pseudo code in Figure 4.3.

Next, to see if SAP maintains utility, 1-NN is used. Here the performance of privatized data-
sets in predicting the target class is compare to the performance with the original data-set. To
accomplish this, our experiment design follows the pseudo code given in Figure ?? for the standard
data sets. From the original data-set, tests were built from 20% of the data, selected at random.
The models/prototypes were then learned from the remaining 80% of the data.

This procedure was repeated 5 times, randomizing the order of data in each data-set each time.
In the end CLIFF is tested and trained 25 times for each data set.
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data = {breastcancer, heart-c, mammography, vote}
p = {0.1 0.2 0.3} { each value in p creates a separate private data-set}
queries = Q(QIDs, QID values)
original-data = original data-set
private-data = SAP(original-data, p)
list of P(finding individual record) = list = /0

result = list for all private-data and the original-data

for all data do
get queries
for all p do

get private-data
end for
for all private-data and original-data do

for all queries do
P(finding individual record) = 1

sum of records that match query
Plist = list + P(finding individual record)

end for
end for
Dlist = Dlist + Plist

end for
All-Dlist = All-Dlist + Dlist
return All-Dlist

Figure 4.3: Pseudo code for Experiment #1

4.3.1 Results from Experiment #1

The results for this experiment and Experiment 2 (discussed in the following section) are shown
in Figure ?? to Figure ??. For each data-set, each figure shows the results for a clean data-set
(without noise) and a noisy data-set (with noise). For both the clean and noisy data-sets, the [pd,
pf] quartile charts, the percentage of the data-set used for training after using the PLS and the rank
values showing the significant difference between the PLS and KNN are presented.

Let us focus on the clean results for each data-set from Figure 4.1. First, we compare the CLIFF
results with those of the baseline KNN. As shown, despite using only 9% to 15% of the training
set, the pds and pfs results of CLIFF compares favorably with those of KNN showing similar or
better rank values in most cases. For example, the Mammography(mm) data set (Figure ??) ranks
as number one(1) for both the pd and pf results while KNN ranks at number three(3). In Figure ??,
the Liver(lv) data set exhibits statistically similar results for pd while for pf CLIFF has a much
better statistical performance than KNN. Figure ?? to Figure ?? also show encouraging results
for CLIFF as compared with KNN, however Figure ??, the Breast Cancer(bc) data set shows an
exception, with the pd and pf statistical results for KNN better than CLIFF.

Next, let us consider the results of the PLS. As compared with the other PLS, CLIFF does as
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well as or better than the others in all but one(1) case. However, although for the bc data set, CNN
present statistically better pd and pf results, it does so with 62% of the training data for median pd
and pf values of 55% and 39% respectively, while CLIFF only needed 11% of the training data for
median pd and pf values of 67% and 20% respectively.

So generally, CLIFF has markedly lower pfs than the other PLS and KNN, this is especially
true for the hh and ir data sets. Also the low pfs does not come at the cost of lower pds, infact,
CLIFF’s median pd results are competitive (sometimes even the best) of all the other PLS.
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Figure 4.4: Re-identification Levels for sanitized data sets
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Breast Cancer
SAP 25% 50% 75% Q1 median Q3

acc sap0 68 74 75 w
sap100 67 71 75 w
sap2— 66 70 72 w
sap3— 67 69 70 w

pd sap0 24 56 91 w
sap100 25 63 90 w
sap200 24 53 89 w
sap300 27 56 85 w

prec sap0 50 73 79 w
sap100 50 70 77 w
sap200 44 66 74 w
sap300 43 68 75 w

pf sap0 8 21 74 w
sap100 10 21 73 w
sap200 11 24 74 w
sap300 14 23 71 w

0 50 100

Heart
SAP 25% 50% 75% Q1 median Q3

acc sap0 71 75 78 w
sap100 72 77 79 w
sap200 70 75 80 w
sap3— 65 70 72 w

pd sap0 61 77 86 w
sap100 60 79 88 w
sap200 61 77 84 w
sap3— 53 65 83 w

prec sap0 70 76 82 w
sap100 71 77 82 w
sap200 68 77 82 w
sap3— 64 70 74 w

pf sap0 13 22 39 w
sap100 12 21 36 w
sap200 15 22 37 w
sap3— 17 28 46 w

0 50 100

Mammography
SAP 25% 50% 75% Q1 median Q3

acc sap0 60 60 63 w
sap100 60 61 63 w
sap200 59 61 63 w
sap300 57 59 63 w

pd sap0 19 28 96 w
sap100 20 29 96 w
sap200 19 45 95 w
sap300 19 53 95 w

prec sap0 58 63 79 w
sap100 58 63 79 w
sap200 58 63 77 w
sap300 58 63 76 w

pf sap0 4 10 80 w
sap100 4 8 79 w
sap200 5 12 80 w
sap300 4 16 79 w

0 50 100

Vote
SAP 25% 50% 75% Q1 median Q3

acc sap0 91 93 94 w
sap100 90 92 93 w
sap2— 85 89 91 w
sap3— 75 83 85 w

pd sap0 87 92 96 w
sap100 85 91 96 w
sap200 76 86 96 w
sap300 56 81 98 w

prec sap0 90 93 94 w
sap100 90 92 94 w
sap2— 86 90 94 w
sap3— 77 85 92 w

pf sap0 4 8 11 w
sap100 4 9 15 w
sap200 4 10 22 w
sap300 2 8 43 w

0 50 100

Figure 4.5: 1-NN classification results for scenario 1

4.4 Experiment #2: For S2

The goal here is to see if the CLIFF works well in the presence of noise. This is important because
according to [?]:

In the presence of class noise, ... there are two main problems that can occur. The first
is that very few instances will be removed from the training set because many instances
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are needed to maintain the noisy (and thus overly complex) decision boundaries. The
second problem is that generalization accuracy can suffer, especially if noisy instances
are retained while good instances are removed.

With that said, in this experiment we repeat Experiment 1, only this time noise is introduced to
training data by randomly changing the target class of 10% of the instances in the training data to
any other target class value. The the results here will indicate how well the 1NN classifier along
with the different PLS are able to predict the correct target class even if some of its training data is
faulty [?].

4.4.1 Results from Experiment 2

The noisy tables in Figure ?? to Figure ?? displays the results of Experiment 2. The first thing
to recognize is that compared to the clean tables, there is a general degradation of the pd and pf
results for each data set. However in some cases such as the pd results for bc the pds can degrade
by as little as 1%. The second thing to recognize is that while the sizes of the training data basically
remains the same for CLIFF (differences of no more that 2%) for all data sets, the other PLS display
a general increase in the training set sizes except for PSC whose training size decrease from 42%
to 40%.

4.5 Threats to Validity

4.5.1 Construct Validity

4.5.2 Internal Validity

4.5.3 Conclusion Validity

4.5.4 External Validity

Collectively, the results of the above experiments indicate that CLIFF may be effective in the field
of forensic interpretation where a very low false alarm rate p f is desired. Here, CLIFF can be used
to help lower the p f s of a forensic interpretation model. The results of Experiment 1 indicate this
possibility in the median p f results where CLIFF’s values ranges from 0 to 47 and are lower or the
same as the baseline (KNN) p f results.
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Figure 4.6: Sensitive attribute disclosure
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Breast Cancer
SAP 25% 50% 75% Q1 median Q3

acc sap0 67 74 78 w
sap100 67 72 77 w
sap200 67 71 77 w
sap300 65 72 75 w

pd sap0 27 53 92 w
sap100 24 47 91 w
sap200 25 47 92 w
sap300 23 41 90 w

prec sap0 57 67 76 w
sap100 50 67 76 w
sap200 60 69 75 w
sap300 55 69 76 w

pf sap0 7 17 73 w
sap100 8 19 75 w
sap200 7 19 71 w
sap300 10 17 73 w

0 50 100

Heart
SAP 25% 50% 75% Q1 median Q3

acc sap0 72 75 78 w
sap100 71 77 78 w
sap200 71 77 79 w
sap300 72 75 79 w

pd sap0 62 76 87 w
sap100 62 78 86 w
sap200 62 78 88 w
sap300 63 76 86 w

prec sap0 71 75 83 w
sap100 69 75 81 w
sap200 70 78 83 w
sap300 70 76 82 w

pf sap0 12 22 38 w
sap100 13 22 38 w
sap200 11 22 38 w
sap300 11 24 37 w

0 50 100

Mammography
SAP 25% 50% 75% Q1 median Q3

acc sap0 58 60 62 w
sap100 59 61 64 w
sap200 59 61 64 w
sap3++ 60 63 66 w

pd sap0 17 30 96 w
sap100 21 34 96 w
sap200 21 48 95 w
sap300 25 41 95 w

prec sap0 58 63 82 w
sap100 58 63 82 w
sap200 59 69 81 w
sap300 60 66 82 w

pf sap0 4 11 81 w
sap100 4 10 79 w
sap200 5 10 78 w
sap300 5 12 74 w

0 50 100

Vote
SAP 25% 50% 75% Q1 median Q3

acc sap0 90 92 95 w
sap100 90 92 95 w
sap200 90 92 94 w
sap300 91 92 95 w

pd sap0 88 92 96 w
sap100 88 92 95 w
sap200 88 93 96 w
sap300 88 92 96 w

prec sap0 89 93 96 w
sap100 89 93 96 w
sap200 88 93 95 w
sap300 89 94 96 w

pf sap0 4 8 11 w
sap100 4 8 11 w
sap200 4 7 12 w
sap300 3 8 11 w

0 50 100

Figure 4.7: 1-NN classification results for S2
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Chapter 5

Conclusions and Future Work

We have presented an overview of PPDP with regards to a single data-set. The importance of
reliable methods in PPDP is made clear, in that, if data providers have no confidence in the privacy
methods proposed, they will not publish data for the purpose of research. In that vein, these data
providers should be provided with not only, methods and tools to disguise their data before being
published, but also evaluation measures to help them decided how effective the chosen tool is and
whether or not they accept the level of privacy protection offered by the technique.
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Appendix A

Implementation of SAP and Support Code

A.1 SAP Functions

(defn get -queries [data -k num1]
(loop [pre nil terminator 0 result []]

(if (= terminator num1)
result
(recur result

(if (= pre result) (inc terminator) 0)
(let [myone (let [que (get-query data -k)]

(if (and (not (member? que result))
(= true

(query -worth
que
data -k)))

que
nil))

ans (if (= nil myone)
result
(conj result myone))]

ans)))))

Figure A.1: CODE: get-queries.clj
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(defn get -rules [D]
(let [br (my-best -rest D)]

(loop [br1 br result []]
(if (empty? br1)

result
(recur (rest br1)

(conj
result
(rank -vals D

(first (first br1)) (second (first br1)))))))))

Figure A.2: CODE: get-rules.clj

(defn sap -S1 [D p]
"For S1, where only the QIDs are suppressed"

(let [crits (get-rules D)
insts (mygroup D)
result (map #(suppress -instances %1 %2 p) crits insts)]

(matrix (apply concat result))))

(defn suppress -instances [crit inst p]
(let [i (last (trans inst))]
(loop [c (sort -by last crit) result []] ;change made for class only

(if (empty? c)
(trans (bind -rows (matrix result) (last (trans inst))))
(recur
(rest c)
(conj result (si-percent1 p (first (first c)) i)))))))

(defn si-percent1 [p c ilst]
(let [num1 (Math/ceil (* p (count ilst)))

n1 (sample (range (count ilst)) :size num1 :replacement false)
n (if (not= nil (nrow n1)) n1 (vector n1))]

(loop [x 0 i ilst result []]
(if (empty? i)

result
(recur
(inc x)
(rest i)
(conj result (if (member? x n) -10000 (first i))))))))

Figure A.3: CODE: sap-S1.clj
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(defn sap -S2 [D p]
"For S2, where only the SAV is suppressed"

(let [insts (mygroup D)
result (map #(si-percent p %) insts)]

(matrix (apply concat result))))

(defn si-percent [p inst]
(let [data (trans (butlast (trans inst)))

ilst (last (trans inst))
num1 (Math/ceil (* p (count ilst)))
n1 (sample (range (count ilst)) :size num1 :replacement false)
n (if (not= nil (nrow n1)) n1 (vector n1))]

(loop [x 0 i ilst result []]
(if (empty? i)

(bind -columns data (matrix result))
(recur
(inc x)
(rest i)
(conj result (if (member? x n) -10000 (first i))))))))

Figure A.4: CODE: sap-S2.clj
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A.2 k-Nearest Neighbor

(defn knn -classifier [one kn D distance]
(if (= (nrow D) 1) (last D)

(let [k-nearest (map
second
(take kn

(sort -by
first
(map #(vector (distance one %) %)

D))))
klass (if (= kn 1)

[(last (first k-nearest)) (last (first k-nearest))]
(last (Transpose k-nearest)))

classification (k-majority klass)]
classification)))

(defn knn [n k data distance n1]
(let [trainer (fn [data]

(matrix (filter #(not= -10000 (last %)) (sap data n1))))
tester (fn [one model]

(vector (last one)
(knn-classifier
(butlast one)
k
model
distance)))

klasses (fn []
(uc (to-vect (sel data :cols (- (ncol data) 1)))))]

(let [answer (nway -new n k data trainer tester distance)
ppp (to-vect

(trans
(apply
concat
(map #(abcd -stats

(first %)
(second %)
(klasses))

answer))))]
ppp)))

Figure A.5: CODE: knn.clj
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A.3 Experiment

(defn demo001worker [n k D distance]
(let [sap0 (knn10 n k D distance 0.0)

sap1 (knn10 n k D distance 0.1)
sap2 (knn10 n k D distance 0.2)
sap3 (knn10 n k D distance 0.3)]

(concat
["#data learner acc pd prec pf"]
(Transpose (vector (repeat (count (nth sap0 1)) 10)

(repeat (count (nth sap0 1)) 'sap0)
(to-vect (nth sap0 0))
(to-vect (nth sap0 1))
(to-vect (nth sap0 2))
(to-vect (nth sap0 3))))

(Transpose (vector (repeat (count (nth sap1 1)) 10)
(repeat (count (nth sap1 1)) 'sap1)
(to-vect (nth sap1 0))
(to-vect (nth sap1 1))
(to-vect (nth sap1 2))
(to-vect (nth sap1 3))))

(Transpose (vector (repeat (count (nth sap2 1)) 10)
(repeat (count (nth sap2 1)) 'sap2)
(to-vect (nth sap2 0))
(to-vect (nth sap2 1))
(to-vect (nth sap2 2))
(to-vect (nth sap2 3))))

(Transpose (vector (repeat (count (nth sap3 1)) 10)
(repeat (count (nth sap3 1)) 'sap3)
(to-vect (nth sap3 0))
(to-vect (nth sap3 1))
(to-vect (nth sap3 2))
(to-vect (nth sap3 3))))) ))

Figure A.6: CODE: experiment.clj
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