
Choosing Prototype Learning Schemes By
Exploring their Characteristics

Author:
Fayola PETERS

Supervisor:
Dr. Tim MENZIES

Word Count ≈ 2300
February 2, 2010



Abstract

Prototype Learning Schemes (PLSs) started appearing in order to alleviate the drawbacks of

nearest neighbour algorithms. Namely computation time, storage requirements and the effects of

outliers on the classification results. To that end all PLSs have endeavored to create or select a

good representation of training data which is a mere fraction of the size of the original training

data. In most of the literature this fraction is about 10%. With the plethora of PLSs represented in

the literature, the following research review realizes a two (2) step procedure which will aid a user

in determining which prototype learning scheme (PLS) is best suited for the dataset to be reduced.

1



1 Introduction

Since the creation of the Nearest Neighbour algorithm [CH67] in 1967, various prototype learn-

ing schemes (PLSs) have appeared to remedy the three (3) major drawbacks associated with the

algorithm and it’s variations. First, the high computation costs caused by the need for each test

sample to find the distance between it and each training sample. Second, the storage requirement

is large since the entire dataset needs to be stored in memory, and third, outliers can negatively

affect the accuracy of the classifer. To solve these issues, PLSs are used. Their main purpose is

to reduce a training set via various selection and/or creation methods to produce good prototypes.

Good here meaning that the prototypes are a representation of the original training dataset such

that they maintain comparable or increased classification accuracy of the classifier.

A review of the literature on prototype learning has yielded at least forty (40) PLSs each indi-

cating with experimental proof, that their particular design is comparable or better than the standard

schemes. With that said, the goal of this paper is not to add to the plethora of PLSs available for a

user to select from, nor is it to declare a champion from among the bunch. Not even Bezdek in his

exploration of 11 PLSs in 2001 attempted this task, “our study did not attempt to find a best 1-np

design, but rather, to explore the importance of the three characteristics of all 11 designs” [BK01].

Rather, the current study seeks a review of the literature of PLSs to gain knowledge of the impor-

tant characteristics popular amoung most PLSs, and establishing a procedure by which a user can

choose a PLS or create a hybrid PLS that best suits the data of which he/she has intimate knowl-

edge. Fortunately, previous work done by Bezdek [BK00,BK01] in which he categorises PLS into

3 areas namely 1) Selection vs Replacement 2) Pre supervised vs Post supervised designs and 3)

User-defined n versus algorithmically defined n, and work by Kim [KO03] where a comparative

study on the various creative PLSs was conducted, will make this task a less daunting one.

In attempt to achieve this goal, the remainder of this paper is organized as follows. First

some background introducing some of the desired characteristics of PLSs as a foundation for the

1



procedure. Next, keeping in mind Bezedk’s words, “not surprisingly, different [PLS] designs were

better for different data sets” [BK01], the procedure is created based on the user’s knowledge of

their data set and the users’ desired characteristics of a PLS. Finally, the conclusion for this work

is presented.

2 The Major Characteristics of Prototype Learning Schemes

With data set sizes and feature dimensions greatly increasing over the last thrity to forty years,

PLSs designed for nearest neighbour classifiers are essential. As a result, researchers have risen

to the challenge creating an impressive collection of PLSs. Each scheme unique in terms of the

methods used to create prototypes. For instance, various clustering methods such as k-means

and fuzzy c-means [BK00, BK01] have been used. Also search algorithms including tabu and

genetic algorithm based search have shown up in the literature [BK00, BK01]. Even evolutionary

algorithms [CHL05] and auto immune models [Gar08] show some success as prototype generators.

Fortunately, a few researchers organized the PLSs into distinct categories. The most popular of

these is Bezdek’s categories. He and his co-authors presented three (3) categories for PLS in

a 2000 paper titled, Some Notes on Twenty One (21) Nearest Prototype Classifiers. Not to be

left out, other authors, in distinguishing their PLSs from others in the literature, elaborate on the

characteristics which form the basis for their scheme. The following section explores Bezdek’s

three (3) categories for PLSs as well as other popular characteristics for PLSs which show up

constantly in the literature.

2.1 Bezdek’s Categories

Bezdek et al [BK00, BK01] claims that among the many characteristics of prototype extraction

methods for 1-np classifier design that can be discussed, they consider, 1) selection vs replacement,

2) pre-supervised vs post-supervised and 3) user defined n vs algorithmically defined n, all labelled

2



as C1, C2 and C3 respectively, as the most important.

The categories are defined as follows:

(C1) Selection versus replacement. That is, prototypes may be a subset made up of instances

of the training data. This is called selection. Examples of these are tabu and genetic algorithms, and

also the Minimal Consistent Set (MCS) by Dasarathy. Replacement occurs when new instances

are formed using the training data. Examples of this includes Chang’s 1974 method, Bezdek mod-

ified Changs algorithm (MCA), LVQ and its variations. According to the literature, the selection

method is best used in situations where the data is supervised and/or noisy. On the other hand this

researcher so far has found no specific criteria for using the replacement method.

(C2) Pre-supervised versus post-supervised designs.

Pre-supervised methods use the data and the class labels to locate the prototypes.

Post-supervised methods first find prototypes without regard to the training data la-

bels, and then assign a class label to (relabel) each prototype. Selection methods are

naturally pre-supervised, because each prototype is a data point and already has its

(presumably true) label [BK00, BK01].

(C3) User-defined n versus algorithmically defined n .

Most prototype generators require advance specification of n (e.g., classical clus-

tering and competitive learning methods). Some models have “adaptive” variants

where an initially specified n can increase or decrease, i.e., prototypes are added or

deleted during training under the guidance of a mathematical criterion of prototype

“quality”. A third group of methods do not specify n at all, instead obtaining it as an

output at the termination of training [BK00, BK01].

Looking at the above categories, it is clear that the goal of the paper [BK01] is to figure out

the best method in each category. From the experimental results, the authors concluded that re-

placement prototypes seem to produce better 1-nearest prototype designs than points selected from

3



the training data at a ratio of 2:1. Also that pre-supervision seems to find more useful prototypes

for 1-nearest prototype classifiers than post-supervision does at a ratio of 5:1. The experiments

further indicated that methods which “automatically” determine the best number of prototypes and

methods that are largely based on user specification and trials-and-error are equally likely to yield

good 1-nearest prototype classifiers [BK01].

2.2 Beyond Bezdek’s Categories

Although Bezdek’s claims that the categorgies outlined in his paper are the most important in

prototype learning schemes this research has uncovered other characteristics essential for a user in

deciding which PLS is best for their data set. These characteristics as listed as below:

• Order Independent vs Order Dependent Methods

• Consistent vs Non Consistent Methods

2.2.1 Order Independent vs Order Dependent Methods

In Devi’s et. al. [DM02] research titled, “An incremental prototype set building technique”, the

authors go out of their way to show readers that their prototype learning scheme was order inde-

pendent. Their argument against order dependent methods is stated below:

It is a well-known fact that Condensed Nearest Neighbour (CNN) is order depen-

dent. When it is applied to a particular data set, it gives a certain condensed prototype

set leading to a set of non-intersecting Vornoi regions. Now if the order of the data set

is changed, it will result in another set of non-intersecting Vornoi regions. If there are

n data points, by permuting this data set in n! ways, we can get n! different condensed

prototype sets [DM02].

4



The authors also highlight a major drawback of having n! prototype sets to choose from, i.e.

the computational cost of finding out which prototype set will give the optimal result.

In contrast, the order independent procedure outlined in the paper [DM02], indicates that points

collected in a misclassified set and a correctly classified set will be the same, but will only differ

in the order they appear if the order of the data set is changed.

Although Devi’s work casts a dark shadow over order dependent methods, there are some

domains where they can be advantagous. For instance in areas such as robotics and online learning

where previous experience (which is classified by a teacher) is used to classify future experiences

or decide what is the next best move to achieve a goal. A perfect example of this is MESO (Multi-

Element Self-Organizing tree) [KM07]. Kasten describes it as “...a perceptual memory system

designed to support online, incremental learning, and decision making in autonomic systems”.

Basically, prototypes generated here are cluster based and are called spheres. Each sphere contains

a collection of similar instances. Sphere membership is dictated by a grow function which manages

the size of the sphere. So, any new instance finds its closest sphere, if the distance is less than the

distance of the growth function then it gets added to the sphere otherwise a new sphere is created

with the instance. Organizing the data in this way is perfect when the size of the data set is

indefinite as they are in these domains.

2.2.2 Consistent vs Non Consistent Methods

In the literature and this work, consistent is used to mean that all (100% of) the original samples are

correctly classified by the prototype subset. Therefore non-consistent is anything less than 100%

classification accuracy. From the literature PLSs which guarantees a consistent result or have

levels of consistency (above 95%) produce competative nearest neighbour classifiers (NNC) with

high classification accuracy. However, before the reader firmly decides that consistent methods are

the only way to go, this researcher must admonish about a major limitation of this decision. The

problem is overfitting. Veenman, explains:

5



The problem is that perfect training performance by no means predicts the same

performance of the trained classifier on unseen objects. Given that the training data

is sampled similarly from the true distribution as the unseen objects, the cause of this

problem is twofold. First, the training data set contains an unknown amount of noise in

the features and class labels, so that the exact position of the training objects in feature

space is uncertain. Second, the training data may be an undersampling of the true data

distribution. Unfortunately, this is often the case, so that the model assumptions about

the data distribution are not justified [VR05].

3 Guide to Choosing A Prototype Learning Scheme

Along with the above information, a simple two (2) step procedure can be used to aid a user in

choosing a PLS best for the dataset to be reduced. First, the user needs to extrapulate certain infor-

mation about the data. For instance, the size of the dataset (see Figure 1), its feature dimensions,

whether it is supervised or unsupervised, an estimate of how noisy the data is, in other words how

much data is missing, and finally, what domain is the dataset collected from? Next, based on the

previous information, the user can now determine the desired characteristics of the prototype learn-

ing scheme for generating prototypes. To make clearer the use of the two step procedure stated

here, the following section details two (2) general cases as examples.

Sizes
Small � 5,000

Medium ≥ 5,000 and � 10,000
Large ≥ 10,000 and � 100,000
Huge � 100,000

Figure 1: Definition of Sizes Use in this Paper

6



3.1 Two (2) Example Cases Defined

The problems addressed in this work are as follows. Please note that for simplicity, all the data

in the cases described below are assumed to have no missing data. However, when applicable,

mention will be made about PLSs that handle data sets with missing data.

3.1.1 Case 1

A user wants to find a PLS that best suits a medium sized data set where the data is supervised

and has a high dimensionality. The user decides that a prototype learning scheme which uses a

selection strategy rather than a replacement strategy would be best. Other characteristics desired

by the user are stated below.

• Order Independent

• 100% Consistent

The above criteria filter out a short list of prototype learning schemes. These include Devi et.

al. [DM02], and to a lesser extent, Dasarathy et. al [Das94]. The algorithm proposed by Devi

and co-authors, guarantees consistency at 100% and painstakingly proves to the reader that their

work is order independent. The problem of a data set with high dimensionality is also addressed.

They admit that especially in data sets with high dimensionality, the boundaries of each class are

very diffcult to determine, so in order to partition a region of a class into simpler non-overlapping

regions, their algorithm incrementally adds prototypes to a representative prototype set until all

the training patterns are classified correctly using this set of representative prototypes [DM02].

Dasarathy’s work is also order independent, however, although it is possible, 100% consistency is

not guaranteed and no special mention is made about high-dimentional data sets.

7



3.1.2 Case 2

A user wants to find a PLS that best suits a huge sized data set where the data is supervised.

The user decides that a prototype learning scheme which uses a replacement strategy rather than

a selection strategy would be best. Also, since the users’ data set is huge, a scalable approach is

preferred.

A handful of PLSs stand out as suitable to fit the above criteria main because of the data set

size. However one of them leaves rooms for hybrid PLS creation. That is “Stratification for scaling

up evolutionary prototype selection” by Cano and his co-authors [CHL05]. This method leaves the

door open to any PLS the user would like to try beside the evolutionary prototype selection scheme

used in the paper. The key here is the stratification procedure which breaks the data set into subsets

called strata, maintaining the class distributions in each. Then the prototype learning scheme can

be applied to each strata.

4 Conclusions

The two (2) step procedure in this paper offers an effective stategy for choosing a PLS that best suits

a particular data set. The user armed with intimate knowledge of the data, can use this knowledge

along with a wish list of the characteristics of what they believe will lead to a prototype learning

scheme best suited to their data. To illustrate the procedure two (2) cases are presented.

8



References
[BK00] JC Bezdek and LI Kuncheva. Some notes on twenty one (21) nearest prototype clas-

sifiers. In Ferri, FJ and Inesta, JM and Amin, A and Pudil, P, editor, ADVANCES IN
PATTERN RECOGNITION, volume 1876 of LECTURE NOTES IN COMPUTER SCI-
ENCE, pages 1–16. 2000.

[BK01] JC Bezdek and LI Kuncheva. Nearest prototype classifier designs: An experimental
study. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 16(12):1445–1473,
DEC 2001.

[CH67] T. Cover and P. Hart. Nearest neighbor pattern classification. Information Theory, IEEE
Transactions on, 13(1):21–27, Jan 1967.

[CHL05] Jos Ramn Cano, Francisco Herrera, and Manuel Lozano. Stratification for scaling up
evolutionary prototype selection. Pattern Recognition Letters, 26(7):953 – 963, 2005.

[Das94] B.V. Dasarathy. Minimal consistent set (mcs) identification for optimal nearest neigh-
bor decision systems design. Systems, Man and Cybernetics, IEEE Transactions on,
24(3):511–517, Mar 1994.

[DM02] V. Susheela Devi and M. Narasimha Murty. An incremental prototype set building tech-
nique. Pattern Recognition, 35(2):505 – 513, 2002.

[Gar08] Utpal Garain. Prototype reduction using an artificial immune model. Pattern Anal.
Appl., 11(3-4):353–363, 2008.

[KM07] E.P. Kasten and P.K. McKinley. Meso: Supporting online decision making in auto-
nomic computing systems. Knowledge and Data Engineering, IEEE Transactions on,
19(4):485–499, April 2007.

[KO03] SW Kim and BJ Oommen. A brief taxonomy and ranking of creative prototype reduction
schemes. PATTERN ANALYSIS AND APPLICATIONS, 6(3):232–244, DEC 2003.

[VR05] CJ Veenman and MJT Reinders. The nearest subclass classifier: A compromise between
the nearest mean and nearest neighbor classifier. IEEE TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLIGENCE, 27(9):1417–1429, SEP 2005.


