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1 Introduction

Software engineers often face problems associated with
the balancing of competing constraints, trade-offs between
concerns and requirement imprecision. Perfect solutions are
often either impossible or impractical and the nature of the
problems often makes the definition of analytical algorithms
problematic.

Like other engineering disciplines, software engineering
is typically concerned with near optimal solutions or those
which fall within a specified acceptable tolerance. Soft-
ware engineering problems often lead to observations such
as those below:

“We need to balance competing constraints.”
“We have to cope with inconsistency.”
“Unfortunately there are many potential solutions.”
“There is no perfect answer...”
“...but I can distinguish good ones from bad.”

It is precisely these observations which make robust,
meta-heuristic, search-based optimization techniques read-
ily applicable. For the past twenty years, engineers from
the fields of mechanical, chemical, electrical and civil engi-
neering have been applying search–based techniques, such
as genetic algorithms, to arrive at optimal and near opti-
mal solutions to constrained problems within large search
spaces.

More recently, search–based techniques has started to
find application in software engineering problem domains.
This area of search–based software engineering has its ori-
gins in work on search–based testing, which began in the
mid 1990s. In the past four years the field has experienced
a rapid increase in activity; there are now over fifty univer-
sities and industrial research/practitioner groups working
on search–based software engineering, and the spectrum of
new results and application areas continues to grow rapidly.

Already, search-based solutions have been applied to
software engineering problems right through the develop-
ment life-cycle. For example, existing work has shown
the applicability of search-based approaches to, among
others, the ‘next release’ problem (requirements engineer-
ing) [2], project cost estimation [1, 6, 8, 9, 16], testing
[3, 5, 12, 20, 22, 23, 24, 25] automated re-modularisation
(software maintenance) [10, 13, 17, 18, 19, 21], transfor-
mation [11, 14, 26] and studies of software evolution [4].
An introductory overview of the field can be found in [15],
while a more detailed survey can be found in [7].

The tutorial will provide each participant with the ability
to exploit Search–Based Software Engineering (SBSE) the-
ory and techniques and to be able to apply them to a chosen
area of software engineering.

The objectives are that, having taken the tutorial, each
participant will be able to:

1. Have a working understanding of two key search tech-
niques: Genetic Algorithms and Hill Climbing.

2. Understand the three crucial ingredients; Representa-
tion, Fitness function and optimization technique.

3. Understand how to determine whether the application
of these techniques is effective.

4. Have an appreciation of some of the advanced topics in
SBSE: Convergence/Stopping criteria, Hybrid search
approaches, Search space reduction and Fitness land-
scape transformation.

Search-Based software Engineering is a fast growing
field. Growth in interest is fueled by the way in which
search techniques can be applied right across the life-cycle
and the speed with which the techniques can be mastered
and deployed to produce results.
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