
Getting Results from
Search–Based Approaches to Software Engineering

Mark Harman, Joachim Wegener,
Brunel University, DaimlerChrysler,

Uxbridge, Middlesex, Alt-Moabit 96a,
UB8 3PH, UK. D-10559 Berlin, Germany.

Mark.Harman@brunel.ac.uk Joachim.Wegener@DaimlerChrysler.com

1 Introduction

Software engineers often face problems associated with
the balancing of competing constraints, trade-offs between
concerns and requirement imprecision. Perfect solutions are
often either impossible or impractical and the nature of the
problems often makes the definition of analytical algorithms
problematic.

Like other engineering disciplines, software engineering
is typically concerned with near optimal solutions or those
which fall within a specified acceptable tolerance. Soft-
ware engineering problems often lead to observations such
as those below:

“We need to balance competing constraints.”
“We have to cope with inconsistency.”
“Unfortunately there are many potential solutions.”
“There is no perfect answer...”
“...but I can distinguish good ones from bad.”

It is precisely these observations which make robust,
meta-heuristic, search-based optimization techniques read-
ily applicable. For the past twenty years, engineers from
the fields of mechanical, chemical, electrical and civil engi-
neering have been applying search–based techniques, such
as genetic algorithms, to arrive at optimal and near opti-
mal solutions to constrained problems within large search
spaces.

More recently, search–based techniques has started to
find application in software engineering problem domains.
This area of search–based software engineering has its ori-
gins in work on search–based testing, which began in the
mid 1990s. In the past four years the field has experienced
a rapid increase in activity; there are now over fifty univer-
sities and industrial research/practitioner groups working
on search–based software engineering, and the spectrum of
new results and application areas continues to grow rapidly.

Already, search-based solutions have been applied to
software engineering problems right through the develop-
ment life-cycle. For example, existing work has shown
the applicability of search-based approaches to, among
others, the ‘next release’ problem (requirements engineer-
ing) [2], project cost estimation [1, 6, 8, 9, 16], testing
[3, 5, 12, 20, 22, 23, 24, 25] automated re-modularisation
(software maintenance) [10, 13, 17, 18, 19, 21], transfor-
mation [11, 14, 26] and studies of software evolution [4].
An introductory overview of the field can be found in [15],
while a more detailed survey can be found in [7].

The tutorial will provide each participant with the ability
to exploit Search–Based Software Engineering (SBSE) the-
ory and techniques and to be able to apply them to a chosen
area of software engineering.

The objectives are that, having taken the tutorial, each
participant will be able to:

1. Have a working understanding of two key search tech-
niques: Genetic Algorithms and Hill Climbing.

2. Understand the three crucial ingredients; Representa-
tion, Fitness function and optimization technique.

3. Understand how to determine whether the application
of these techniques is effective.

4. Have an appreciation of some of the advanced topics in
SBSE: Convergence/Stopping criteria, Hybrid search
approaches, Search space reduction and Fitness land-
scape transformation.

Search-Based software Engineering is a fast growing
field. Growth in interest is fueled by the way in which
search techniques can be applied right across the life-cycle
and the speed with which the techniques can be mastered
and deployed to produce results.

1
Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

References

[1] J. Aguilar-Ruiz, I. Ramos, J. C. Riquelme, and M. Toro.
An evolutionary approach to estimating software devel-
opment projects. Information and Software Technology,
43(14):875–882, Dec. 2001.

[2] A. Bagnall, V. Rayward-Smith, and I. Whittley. The next
release problem. Information and Software Technology,
43(14):883–890, Dec. 2001.

[3] A. Baresel, H. Sthamer, and M. Schmidt. Fitness func-
tion design to improve evolutionary structural testing. In
GECCO 2002: Proceedings of the Genetic and Evolution-
ary Computation Conference, pages 1329–1336, New York,
9-13 July 2002. Morgan Kaufmann Publishers.

[4] T. V. Belle and D. H. Ackley. Code factoring and the evo-
lution of evolvability. In GECCO 2002: Proceedings of the
Genetic and Evolutionary Computation Conference, pages
1383–1390, New York, 9-13 July 2002. Morgan Kaufmann
Publishers.

[5] L. Bottaci. Instrumenting programs with flag variables for
test data search by genetic algorithms. In GECCO 2002:
Proceedings of the Genetic and Evolutionary Computation
Conference, pages 1337–1342, New York, 9-13 July 2002.
Morgan Kaufmann Publishers.

[6] C. J. Burgess and M. Lefley. Can genetic programming
improve software effort estimation? A comparative evalu-
ation. Information and Software Technology, 43(14):863–
873, Dec. 2001.

[7] J. Clark, J. J. Dolado, M. Harman, R. M. Hierons, B. Jones,
M. Lumkin, B. Mitchell, S. Mancoridis, K. Rees, M. Roper,
and M. Shepperd. Reformulating software engineering as a
search problem. IEE Proceedings — Software, 150(3):161–
175, 2003.

[8] J. J. Dolado. A validation of the component-based method
for software size estimation. IEEE Transactions on Software
Engineering, 26(10):1006–1021, 2000.

[9] J. J. Dolado. On the problem of the software cost function.
Information and Software Technology, 43(1):61–72, 1 Jan.
2001.

[10] D. Doval, S. Mancoridis, and B. S. Mitchell. Automatic
clustering of software systems using a genetic algorithm.
In International Conference on Software Tools and Engi-
neering Practice (STEP’99), Pittsburgh, PA, 30 August - 2
September 1999.

[11] D. Fatiregun, M. Harman, and R. Hierons. Search based
transformations. In Genetic and Evolutionary Computation
– GECCO-2003, volume 2724 of LNCS, pages 2511–2512,
Chicago, 12-16 July 2003. Springer-Verlag.

[12] H.-G. Groß. A prediction system for evolutionary testability
applied to dynamic execution time. Information and Soft-
ware Technology, 43(14):855–862, Dec. 2001.

[13] M. Harman, R. Hierons, and M. Proctor. A new represen-
tation and crossover operator for search-based optimization
of software modularization. In GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference,
pages 1351–1358, New York, 9-13 July 2002. Morgan Kauf-
mann Publishers.

[14] M. Harman, L. Hu, R. M. Hierons, J. Wegener, H. Sthamer,
A. Baresel, and M. Roper. Testability transformation. IEEE
Transactions on Software Engineering, 30(1):3–16, Jan.
2004.

[15] M. Harman and B. F. Jones. Search based software engineer-
ing. Information and Software Technology, 43(14):833–839,
Dec. 2001.

[16] C. Kirsopp, M. Shepperd, and J. Hart. Search heuristics,
case-based reasoning and software project effort prediction.
In GECCO 2002: Proceedings of the Genetic and Evolu-
tionary Computation Conference, pages 1367–1374, New
York, 9-13 July 2002. Morgan Kaufmann Publishers.

[17] K. Mahdavi, M. Harman, and R. M. Hierons. A multiple
hill climbing approach to software module clustering. In
IEEE International Conference on Software Maintenance
(ICSM 2003), pages 315–324, Amsterdam, Netherlands,
Sept. 2003. IEEE Computer Society Press, Los Alamitos,
California, USA.

[18] S. Mancoridis, B. S. Mitchell, Y.-F. Chen, and E. R. Gansner.
Bunch: A clustering tool for the recovery and maintenance
of software system structures. In Proceedings; IEEE Inter-
national Conference on Software Maintenance, pages 50–
59. IEEE Computer Society Press, 1999.

[19] S. Mancoridis, B. S. Mitchell, C. Rorres, Y.-F. Chen, and
E. R. Gansner. Using automatic clustering to produce high-
level system organizations of source code. In International
Workshop on Program Comprehension (IWPC’98), pages
45–53, Ischia, Italy, 1998. IEEE Computer Society Press,
Los Alamitos, California, USA.

[20] C. Michael, G. McGraw, and M. Schatz. Generating soft-
ware test data by evolution. IEEE Transactions on Software
Engineering, (12):1085–1110, Dec. 2001.

[21] B. S. Mitchell and S. Mancoridis. Using heuristic search
techniques to extract design abstractions from source code.
In GECCO 2002: Proceedings of the Genetic and Evolu-
tionary Computation Conference, pages 1375–1382, New
York, 9-13 July 2002. Morgan Kaufmann Publishers.

[22] R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data gen-
eration using genetic algorithms. The Journal of Software
Testing, Verification and Reliability, 9:263–282, 1999.

[23] M. Roper. Cast with gas (genetic algorithms) - automatic test
data generation via. evolutionary computation. In IEE Col-
loquium on Computer Aided Software Testing Tools. IEE,
April 1996.

[24] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary
test environment for automatic structural testing. Infor-
mation and Software Technology Special Issue on Software
Engineering using Metaheuristic Innovative Algorithms,
43(14):841–854, 2001.

[25] J. Wegener and F. Mueller. A comparison of static analysis
and evolutionary testing for the verification of timing con-
straints. Real-Time Systems, 21(3):241–268, 2001.

[26] K. P. Williams. Evolutionary Algorithms for Automatic Par-
allelization. PhD thesis, University of Reading, UK, Depart-
ment of Computer Science, Sept. 1998.

2
Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

	footer1:

