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Data Mining 101

● Data mining = finding 
patterns in heaps of 
data

● Classification = Given 
data and a series of 
possible labels, 
gather evidence and 
assign a label to each 
piece of data. 
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Decision Tree Induction

● These algorithms greedily and recursively 
select the attribute that provides the most 
information gain. 

● This attribute is used to partition the data set 
into subsets around a particular value. 

● Stops when the leaf node in the tree only 
contains data with the proper class label. 
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Splitting the Data

● Split data based on the (attribute,value) pair 
that maximizes:

●

● I(T) is an impurity measure. This is usually 
entropy(C4.5) or gini(SMP):
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Climbing Mount Everest

● The success of data 
mining is its downfall.

● Fast, accurate results 
expected on huge 
data sets. 

● Parallelism of data 
and/or the algorithm.
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Paradigm A: Data Parallelism
● Given the large size of these data sets, 

gathering all of the data in a centralized location 
or in a single file is neither desirable nor always 
feasible because of the bandwidth and storage 
requirements.

● Also, data may be fragmented in order to 
address privacy and security constraints. 

● In these cases, there is a need for algorithms 
that can learn from fragmented data. 

● Two methods – horizontal, vertical
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Horizontal Fragmentation

● The entries are equally divided into a number of 
subsets equal to the number of different storage 
sites.

● The learner uses frequency counts to find the 
attribute that yields the most information gain to 
further partition the set of examples.

● Given: |E|= # examples in the data set T , |A|= 
#attributes, V= max(values per attribute), 
M=#sites, N=#classes, size(D)=#nodes in tree D

●  Time complexity = |E||A|size(D)
● Communication complexity = N|A|VMsize(D)
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Vertical Fragmentation

● Individual attributes or subsets of attributes, 
along with a list of (value, identifier) pairs for 
each are distributed to sites. 

● Can suffer from load imbalance and poor 
scalability.

● Given: |E|= # examples in the data set T , |A|= 
#attributes, V= max(values per attribute), 
M=#sites, N=#classes, size(D)=#nodes in tree 
D

●  Time complexity = |E||A|Msize(D)
● Comm. complexity = (|E|+N|A|V)M size(D)
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When Distributed Data Wins

● It would be possible to collect those fragments 
and reassemble them in a centralized location. 
So, why we should leave the data at distributed 
sites? 

● Privacy or security - learner must perform solely 
on statistical summaries.

● Distributed versions of algorithms compare 
favorably with the corresponding centralized 
technique whenever its communication cost is 
less than the cost of collecting all of the data in 
one place. 



 10

Paradigm B: Task Parallelism

● The construction of decision trees in parallel.
● Single process begins the construction process. 

When the #child nodes = #available 
processors, the nodes are split among them. 
Each processor then proceeds with the tree 
construction algorithm.

● Implementing parallel algorithms for decision 
tree classification is a difficult task for multiple 
reasons.
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Paradigm C (B.5?): Hybrid 
Parallelism

● Most parallel algorithm don’t practice strict task 
parallelism

● Instead – parallelized algorithm over split data. 
● Some (parallelized C4.5), switch between 

data/task parallelism when communication cost 
is too high.  

● Others always operate in both modes (SMP, 
INDUS).
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Algorithm: C4.5 Parallel

● Parallel implementation of Ross Quinlan’s C4.5 
decision tree algorithm. 

● Data parallelism at the beginning, task 
parallelism at the lower nodes of the tree.

● Horizontal fragmentation scheme. Uniform load 
balance is achieved by equally distributing data 
among the processors and using a breadth-first 
strategy to build the actual decision tree. When 
a process finished exploring it nodes, it sends a 
request for more nodes.
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● Each processor is responsible for building its 
own attribute lists and class list. 

● The continuous attribute lists are globally 
sorted. Each processor has a list of sorted 
values.

● Before evaluating the possible split points in 
their entries, the distributions must reflect the 
data entries assigned to the other processors.
– Discrete – store the data everywhere

– Continuous - the gain calculated based on the 
distributions before and after the split point.

● After evaluating all of the local data, the 
processors communicate among themselves in 
order to find the best split.
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● Horizontal data fragmentation as long as the 
#examples covered by the nodes > a pre-
defined threshold (when communication cost 
for building a node > cost of building it locally 
plus the cost of moving the set of examples 
between processors)

● When #data entries < threshold, they are 
evenly distributed among the processors. 
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Algorithm: SMP Tree Classifier

● SMP clusters = shared-memory nodes with a 
small number of processors (usually 2-8) 
connected together with a high-speed 
interconnect. 

● Two-tiered architecture where a combination of 
shared-memory and distributed-memory 
algorithms can be deployed. 

● The training dataset is horizontally fragmented 
across the SMP nodes so each node carries 
out tree construction using an equal subset of 
the overall data set.
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● Attribute lists are dynamically scheduled to take 
advantage of the parallel light-weight threads 

● One of these threads is designated as a master 
thread. Is responsible for processing the 
attribute lists as well as exchanging data and 
information between SMP nodes. 

● The numerical attribute lists are globally sorted 
such that the first node has the first portion of 
the data set

● When a tree node is split into its children, the 
local attribute lists are partitioned among those 
children. Thus, no communication costs are 
incurred due to the attribute lists as the tree is 
grown in each SMP node. 
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● Finding global best split causes synchronization
● The algorithm will proceed in a breadth-first 

manner, processing all of the leaf nodes before 
processing any of the new child nodes.

● Before finding the new best split point, attribute 
lists inserted into a queue shared by all of the 
threads running on the SMP node. This queue 
is used to schedule attribute lists to threads. 

● Each leaf node calculates and compares its 
split points with all of those along the leaf nodes

● SMP node 0 can compute the overall best split 
point for all attributes. It will broadcast this point 
to all of the SMP nodes.
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INDUS

● INDUS is a multi-agent system used for 
knowledge acquisition from data sources 

● Can deal with horizontal or vertical data, only 
needs statistical summaries of the data. 

● Designed to provide a unified query interface 
over a set of distributed, heterogeneous, and 
autonomous data sources as if the dataset 
were a table. 

● These queries are driven by an internal tree 
learner that uses them whenever a new node 
needs to be added to the tree.
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Summary

● We want to classify data. Decision tree 
classifiers are a good way to do it.

● We need to classify BIG data sets. 
● We can improve performance by parallelizing 

the data (horizontally or vertically) or the 
algorithm. Often both. 

● We looked at a few algorithms to do this.
● They all perform well, show a promising 

improvement over standard methods.
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Now you can climb the mountain!
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Questions? Comments?

● Paper: http://greggay.com/pdf/dsys1.pdf
● greg@greggay.com
● http://twitter.com/Greg4cr
● http://facebook.com/greg.gay

http://greggay.com/pdf/dsys1.pdf
mailto:greg@greggay.com
http://twitter.com/Greg4cr
http://facebook.com/greg.gay
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