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ABSTRACT
Background: Search-based Software Engineering (SBSE)
uses a variety of techniques such as evolutionary algorithms
or meta-heuristic searches but lacks a standard baseline method.
Aims: The KEYS2 algorithm meets the criteria of a base-
line. It is fast, stable, easy to understand, and presents
results that are competitive with standard techniques.
Method: KEYS2 operates on the theory that a small sub-
set of variables control the majority of the search space. It
uses a greedy search and a Bayesian ranking heuristic to fix
the values of these variables, which rapidly forces the search
towards stable high-scoring areas.
Results: KEYS2 is faster than standard techniques, presents
competitive results (assessed with a rank-sum test), and of-
fers stable solutions.
Conclusions: KEYS2 is a valid candidate to serve as a
baseline technique for SBSE research.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods; D.2.8 [Requirements/Specifications]:
Tools

Keywords
search-based software engineering, requirements optimiza-
tion, meta-heuristic search
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1. INTRODUCTION
Despite decades of research, testing, trials, and deliber-

ation from both industry and academia, many fundamen-
tal questions of the software engineering field remain unan-
swered. Given the scope of many of these issues (for ex-
ample, the entire space of programs developed in JAVA)
or the required balancing between competing factors (i.e.
the amount of money spent versus the completion of goals),
many of these questions are unanswerable. These are the
areas where search-based software engineering (SBSE) has
typically excelled.

Search-based software engineering is the practice of refor-
mulating typical software engineering issues as search prob-
lems, and applying meta-heuristic methods to find solutions.
For any problem that represents a set of competing - yet
equally important - factors, there will be no single perfect
solution. Instead, there are likely to be several near-optimal
solutions. In this implied space of trade-offs, meta-heuristic
search techniques are ideal for sifting through a number of
potential solutions for those that contain an ideal balancing
of factors.

Although the concept of applying search to software en-
gineering problems has existed for decades, the term SBSE
was coined and the field was formalized in 2001 [25]. Since
then, the SBSE research community has expanded rapidly.
SBSE research has been applied successfully to requirements
engineering [2,39,43], project cost estimation [7,10,33], test-
ing [4, 17, 40], software maintenance [23, 37], transforma-
tion [3, 13,24] and software evolution [6] (among others).

SBSE practitioners apply a variety of techniques, among
them: genetic and evolutionary algorithms [5,27], hill-climbers
[32, 34, 36], tabu search [20, 21], particle swarm optimiza-
tion [12, 31], and ant colony optimization [11]. Yet, there
exists no agreed-upon baseline technique. A number of these
approaches are common - simulated annealing and genetic
algorithms are heavily favored - and a ”random search” is
often used as a sanity measure, but there is no standard
method to use as a basis for comparison when new methods
are introduced.

In 1993, Robert Holte introduced the 1R classification al-
gorithm [28]. In comparison to many of the prevalent tech-
niques used at the time, such as the entropy-based C4.5
classifier, 1R was incredibly simple. The learning method
treated each attribute of a data set as a continuous range
(rather than as discrete intervals) and ranked them accord-
ing to the error rate. Although Holte did not set out with the
intention of defining a baseline for the data mining research
field, there are several factors that perfectly positioned 1R



for such a title:

• Simplicity: 1R is easy to understand, using error rate
as a judgment heuristic.
• Competitive Results: 1R produces results that are, on

average, within 5% of C4.5’s on the same data sets [28].
• Fast Runtimes: 1R is faster than more complex tech-

niques.
• Stable Results: The results produced by 1R are consis-

tent for the same data set over multiple trials.

A baseline technique for any field must have some level of
simplicity. The algorithm must be easy to comprehend and
easy to implement. A researcher’s time and effort must go
into the technique meant to surpass the baseline, not the
baseline itself. However, it is not enough to be simple -
”dumb” ideas will yield poor results. For a algorithm to
stand as a valid baseline, it must meet all four of these fac-
tors; the heuristic must be easy-to-understand, fast, stable,
and produce results that are competitive with state-of-the-
art techniques.

The PROMISE conference series (and, ultimately, the en-
tire academic world) seeks ”repeatable, improvable, maybe
even refutable, software engineering experiments.”1 It is not
enough that some techniques, such as simulated annealing
or random testing, reach near-ubiquity. The existence of a
valid baseline gives a common basis of comparison, facilitat-
ing the repeatability and improvement of a wide variety of
software engineering experiments. Just as the data mining
field has benefited from the use of 1R as a baseline [42], the
SBSE research field would benefit as well.

In this research, I propose the KEYS2 algorithm [19] as
a candidate baseline technique for SBSE problems. KEYS2
is based on a straightforward theory - if the behavior of
a model is controlled by a small number of key variables,
then ideal solutions can be quickly found by isolating those
variables and exploring the range of their values. In a case
study centered around the optimization of early life-cycle
requirements models, KEYS2 is demonstrated to fit all four
of the factors required from a baseline technique and to have
certain advantages over other potential baseline methods,
such as random search:

• KEYS2 is based on a simple theory; that is, the ex-
ploitation of a small set of important variables.
• KEYS2 produces results that are of higher quality than

a simulated annealer and are competitive with a ge-
netic algorithm (as assessed by a Mann-Whitney rank-
sum test with a 95% confidence interval).
• KEYS2 is faster than standard SBSE techniques, exe-

cuting almost four times faster than the genetic algo-
rithm on the most complex models.
• KEYS2 produces stable results, and has the ability to

produce partial solutions.

This work builds on previous optimization research with
the KEYS algorithm.

• The original KEYS algorithm is presented in [30].
• KEYS2 is presented and both it and KEYS2 are bench-

marked against a variety of search techniques, includ-
ing Simulated Annealing, in [19].

1Quoted from http://promisedata.org/?page_id=2

• The contributions of this paper include a new genetic
algorithm designed to optimize DDP models, new bench-
marking experiments, and an explicit focus on a SBSE
research context.

2. SEARCH-BASED SOFTWARE ENG.
Many of the problems inherent to the software engineering

field deal in the balancing of competing factors. Consider
these scenarios:

• Do you want to finish a project with money left in
the budget, or is it more important to deliver a robust
feature set?
• If the programmers are not meeting deadlines, you

could replace them with a new team. Would the ad-
ditional man-hours required for training and catch-up
be worth the possible benefits?
• If a longer design cycle would result in a shorter pro-

gramming period, will too many defects slip by unno-
ticed?

In many of these cases, there is no perfect solution. In
fact, there could be dozens of ”good” solutions. Instead of
finding some theoretical catch-all answer, software engineer-
ing problems are typically concerned with near-optimal so-
lutions. That is, the subset of solutions that fall within a
certain tolerance threshold. While it may be impossible or
impractical to attempt to find the single best solution, it is
certainly possible to compare two candidate solutions. This
comparison forms the basis of search-based software engi-
neering.

Search-based software engineering is a research field con-
cerned with the reformulation of standard software engi-
neering problems as search problems, and the application of
heuristic techniques to solve said problems. Because of this
implied trade-off space, meta-heuristic search-based meth-
ods are ideal for producing a set of near-optimal candidate
solutions.

According to Clark and Harman [22, 25], there are four
key properties that must be met before attempting to apply
a SBSE solution:

• A Large Search Space: If there are only a small number
of options to optimize, there is no need for a meta-
heuristic approach. This is rarely the case, as software
engineering typically deals in incredibly large search
spaces (for instance, the Eclipse project contains over
two million lines of code and 7500 classes).
• Low Computational Complexity: If the first property is

met, SBSE algorithms must sample a non-trivial pop-
ulation. Therefore, the computational complexity of
any evaluation method or fitness function has a major
impact on the execution time of the search algorithm.
• Approximate Continuity: Any search-based optimiza-

tion must rely on an objective function for guidance.
Some level of continuity will ensure that such guidance
is accurate.
• No Known Optimal Solutions: If an optimal solution

to a problem is already known, then there is no need
to apply search techniques.

The first and last properties are absolutely necessary for
any search-based software engineering solution to succeed.
The second and third should be met, but if they are not, it



may still be possible to formulate the problem as a search-
based one [3, 24].

2.1 Simulated Annealing
Simulated annealing (SA) [32, 36] is a sophisticated hill-

climbing search algorithm. Hill-climbing searches survey
the immediate neighborhood and ”climb” to higher-scoring
states, continuing until they reach a peak (that is, an optimal
area in the search space). Hill-climbers are prone to becom-
ing stuck in local maxima, returning a sub-optimal solution.
To avoid this, simulated annealing utilizes a technique from
its namesake. Annealing is a metallurgy technique where a
material is heated, then cooled. The heat causes the atoms
in the material to wander randomly through different en-
ergy states and the cooling process increases the chances of
finding a state with a lower energy than the starting posi-
tion. When assessing each neighbor, SA will jump to a sub-
optimal neighbor at a probability determined by the current
temperature. When that temperature is high, SA will jump
around the search space wildly. As it cools, the algorithm
will stabilize into what is, ideally, an optimal area of the
search space.

Simulated annealing and hill-climbers are widely used in
SBSE research for several reasons. They are simple to un-
derstand, easy to implement, and are typically very fast [34].
However, they have several known flaws. While the temper-
ature function helps to prevent the search from becoming
stuck in local maxima, it does not completely mitigate this
problem. In fact, past research has shown that the addi-
tional randomness in this search often leads to an unaccept-
able level of variance in the results [18,19]. Thus, one must
take caution when choosing a cooling strategy - cool too
quickly, and it is likely that the annealer will return a sub-
optimal solution.

This research uses a version of simulated annealing tuned
specifically for the DDP models (discussed in Section 3).
During each round, SA “picks” a neighboring set of miti-
gations. To calculate the configuration of this neighboring
solution, a function traverses the mitigation settings of the
current state and randomly flips those settings (at a 5%
chance). If the neighbor has a better score, SA will move to
it and set it as the current state. If no score improvement
is seen, the algorithm will decide whether or not to move
based on the following probability function:

prob(moving) = e
((score−neighborscore)∗ time

temp
)

(1)

temp =
(maxtime− time)

maxtime
(2)

If the value of the prob function is greater than some ran-
domly generated number, SA will move to that state regard-
less of its score. The algorithm will continue to operate until
the number of tries is exhausted (i.e. the temperature drops
to zero) or a score meets the threshold requirement.

2.2 Genetic Algorithms
Inspired by early experiments with the computational sim-

ulation of evolution [5,27], genetic algorithms (and the broader
field of evolutionary algorithms) have become one of the
most famous meta-heuristics used in the search-based soft-
ware engineering literature. Influenced by Darwin’s Theory
of Evolution, genetic algorithms take a group of candidate
solutions and mutate them over several generations - filter-

ing out bad ”genes” and promoting good ones. Genetic algo-
rithms rely on four major attributes: population, selection,
mutation, and crossover.

During each generation (that is, each step of the algo-
rithm), a population of solutions is considered. Each mem-
ber of the population is made up of a set of binary switches.
These switches are collectively known as the chromosomes,
the genetic makeup, of a particular solution state. Typically,
a potential solution must be carefully translated to this bi-
nary representation. However, as the models in this research
are naturally represented as a set of binary variables, no spe-
cial encoding of the model states is necessary. This has an
additional benefit of reducing the required setup and execu-
tion time. The GA can make use of the same fitness function
that the simulated annealer and KEYS2 use.

Because the initial population is unlikely to have the ”best”
solution, some form of diversity must be induced into the
population. This diversity is established by forming chil-
dren using the crossover and mutation operations. During
each generation, several ”good” solutions (as scored by a
predetermined fitness function) are chosen by the selection
mechanism to generate new children for the next generation.
The values of the binary settings in these children are de-
termined by the crossover mechanism, which combines chro-
mosome settings from each parent and inserts them into the
offspring with probability Pcrossover. A mutation mecha-
nism takes high-quality members of the current population
and moves them over to the next generation while instilling
small changes in their chromosomes. Mutation is necessary
to prevent the algorithm from being trapped in local max-
ima. To avoid the loss of good solutions, a certain number of
the best results will be copied to the next generation without
any sort of modification. This process is repeated with a new
population each round until a certain threshold (commonly
related to the performance score, number of generations, or
a set time period) has passed.

To summarize, a standard genetic algorithm follows this
framework:

• Evaluate each member of the population.
• Create a new populations using these scores along with

the crossover and mutation mechanisms.
• Discard the old population and repeat the process.
• Stop if time > maxtime (in number of generations or

some real-time threshold).

The genetic algorithm used in this research creates a pop-
ulation of size 100 each round, and selects all population
members that score within 10% of the top-scoring member
(as determined by the objective function defined in Section
3) to ”reproduce.” The chosen parents populate 40% of the
next population (15% through crossover, 20% through mu-
tation, and 5% are carried over unchanged). The remaining
60% of the population are randomly generated. These per-
centage values were chosen at the overall best values after
an exhaustive search across five models, incrementing each
factor by 5% each round. Each setting can be overridden by
the user. This genetic algorithm stops after the number of
past generations is equal to the number of variables in the
model being optimized.

2.3 KEYS2
The core premise of KEYS2 is that standard SBSE tech-

niques perform over-elaborate searches. Suppose that the



behavior of a large system is determined by a small number
of key variables. If so, then stable near-optimal solutions can
be quickly found by finding these keys and then exploring
the range of their values.

Within a model, there are chains of reasons linking select
inputs to the desired goals. Some of the links clash with
others. However, some of those clashes are not dependent on
other clashes. In the following chains of reasoning the clashes
are {e,¬e}, {g,¬g} & {j,¬j}; the independent clashes are
{e¬e}, & {g¬g},

a −→ b −→ c −→ d −→ e
input1 −→f −→ g −→ h −→ i −→ j −→ goal
input2 −→k → ¬g −→ l −→ m→ ¬j−→ goal

¬e

In order to optimize decision making about this model, we
must first decide about these independent clashes (these are
the keys). Returning to the above reasoning chains, any of
{a, b, ..q} are subject to discussion. However, most of this
model is completely irrelevant to the task of inputi ` goal.
For example, the {e,¬e} clash is irrelevant to the decision
making process as no reason uses e or ¬e. In the context
of reaching goal from inputi, the only important discussions
are the clashes {g,¬g, j,¬j}. Further, since {j,¬j} are de-
pendent on {g,¬g}, then the core decision must be about
variable g with two disputed values: true and false.

Fixing the value of these keys reduces the number of reach-
able states within the model. This is called the clumping
effect. Only a small fraction of the possible states are ac-
tually reachable. The effects of clumping can be quite dra-
matic. Without knowledge of these keys, the above example
model has 220 possible states. However, in the context of
inputi ` goal, that massive collection of states clumps to
the following two configurations: {input1, f, g, h, i, j, goal}
or {input2, k,¬g, l,m,¬j, goal}.

The KEYS algorithm finds these key variables using a
greedy search and a Bayesian ranking heuristic (called BORE).
If a model contains keys then, by definition, those variables
must appear in all solutions to that model. If model outputs
are scored by some objective function, then the key variables
are those with ranges that occur with very different frequen-
cies in the high and the low scoring model configurations.
Therefore, we need not waste time searching for the keys -
rather, we just need to keep frequency counts on how often
ranges appear in best or rest outputs.

The greedy search explores a space of M mitigations over
the course of N eras. Initially, the entire set of mitigations
is set randomly. During each era, one more mitigation is set
to Mi = Xj , Xj ∈ {true, false}. In the original version of
KEYS [30], the greedy search fixed the value of one variable
per era. KEYS2, fixes an increasing number of variables as
the search progresses. That is, KEYS2 fixes one variable in
the first era, two in the second era, three in the third era,
and so on

In KEYS2, each era e generates a set < input, score > as
follows:

1: MaxTries times repeat:

• Selected[1. . .(e − 1)] are settings from previous
eras.
• Guessed are randomly selected values for unfixed

mitigations.
• Input = selected ∪ guessed.

1. Procedure KEYS
2. while FIXED_MITIGATIONS != TOTAL_MITIGATIONS
3. for I:=1 to 100
4. SELECTED[1...(I-1)] = best decisions up to this step
5. GUESSED = random settings to the remaining mitigations
6. INPUT = SELECTED + GUESSED
7. SCORES= SCORE(INPUT)
8. end for
9. for J:=1 to NUM_MITIGATIONS_TO_SET
10. TOP_MITIGATION = BORE(SCORES)
11. SELECTED[FIXED_MITIGATIONS++] = TOP_MITIGATION
12. end for
13. end while
14. return SELECTED

Figure 1: Pseudocode for KEYS

• Call model to compute score = ddp(input);

2: The MaxTries scores are divided into β% “best” and
remainder become “rest”.

3: The inputmitigation values are then scored using BORE
(described below).

4: The top ranked mitigations are fixed and stored in
selected[e].

The search moves to era e + 1 and repeats steps 1,2,3,4.
This process stops when every mitigation has a fixed value.
The exact settings for MaxTries and β must be set via en-
gineering judgment. Past research has shown that, for DDP
model optimization, these should be set to MaxTries = 100
and β = 10 [30]. For full details, see Figure 1.

KEYS ranks mitigations using a support-based Bayesian
ranking measure called BORE. BORE [8] (short for “best
or rest”) divides numeric scores seen over K runs and stores
the top 10% in best and the remaining 90% scores in the set
rest (the best set is computed by studying the delta of each
score to the best score seen in any era). It then computes
the probability that a value is found in best using Bayes’
theorem. The theorem uses evidence E and a prior prob-
ability P (H) for hypothesis H ∈ {best, rest}, to calculate
a posteriori probability P (H|E) = P (E|H)P (H) / P (E).
When applying the theorem, likelihoods are computed from
observed frequencies. These likelihoods (called ”like” be-
low for space consideration) are then normalized to calcu-
late probabilities. This normalization cancels out P (E) in
Bayes’ theorem. For example, after K = 10, 000 runs are
divided into 1,000 best solutions and 9,000 rest, the value
mitigation31 = false might appear 10 times in the best so-
lutions, but only 5 times in the rest. Hence:

E = (mitigation31 = false)

P (best) = 1000/10000 = 0.1

P (rest) = 9000/10000 = 0.9

freq(E|best) = 10/1000 = 0.01

freq(E|rest) = 5/9000 = 0.00056

like(best|E) = freq(E|best) · P (best) = 0.001

like(rest|E) = freq(E|rest) · P (rest) = 0.000504

P (best|E) =
like(best|E)

like(best|E) + like(rest|E)
= 0.66 (3)

Previously [8], it has been found that Bayes’ theorem is a
poor ranking heuristic since it is easily distracted by low
frequency evidence. For example, note how the probability
of E belonging to the best class is moderately high even



though its support is very low; i.e. P (best|E) = 0.66 but
freq(E|best) = 0.01.

To avoid the problem of unreliable low frequency evidence,
Equation 3 is augmented with a support term. Support
should increase as the frequency of a value increases, i.e.
like(best|E) is a valid support measure. Hence, step 3 of the
greedy search ranks values via

P (best|E) ∗ support(best|E) =
like(best|E)2

like(best|E) + like(rest|E)
(4)

3. CASE STUDY: THE DEFECT DETECTION
AND PREVENTION MODEL

The Defect Detection and Prevention (DDP) requirements
modeling tool [9, 14]. is used to interactively document the
early life-cycle meetings conducted by ”Team X” at NASA’s
Jet Propulsion Laboratory (JPL).

At Team X meetings, groups of up to 30 experts from var-
ious fields (propulsion, engineering, communication, naviga-
tion, science, etc) meet for short periods of time to produce
a design document. This document may commit the current
project to certain design choices. For example, the experts
might choose solar power rather than nuclear power, or they
might decide to use some particular style of guidance soft-
ware. All subsequent work on the project is guided by the
initial design decisions made in these mission concept docu-
ments.

The DDP model allows for the representation of the goals,
risks, and risk-removing mitigations that belong to a specific
project. During a Team X meeting, users of DDP explore the
combinations of mitigations that will cost the least amount
of money while still allowing for the completion of a large
number of requirements. For example, here is a trivial DDP
model where mitigation1 costs $10,000 to apply and each
requirement is of equal value (100). Note that the mitigation
can remove 90% of the risk. Also, unless mitigated, the risk
will disable 10% to 99% of requirements one and two:

$10,000︷ ︸︸ ︷
mitigation1 →︸︷︷︸

0.9

risk1→

〈 0.1︷︸︸︷
→ (requirement1 = 100)
→︸︷︷︸
0.99

(requirement2 = 100)

(5)
The other numbers show the impact of mitigations on risks,
and the impact of risks on requirements. DDP propagates
a series of influences over two matrices: one for mitiga-
tions*risks and another for risks*requirements.

DDP uses the following ontology:

• Requirements (free text) describe the objectives and
constraints of the mission and its development process;
• Weights (numbers) of each requirement, reflecting their

relative importance;
• Risks (free text) are events that damage the comple-

tion of requirements;
• Mitigations: (free text) are actions that reduce risks;
• Costs: (numbers) reflect the cost associated with acti-

vating a mitigation;
• Mappings: directed, weighted edges between require-

ments, mitigations, and risks that capture the quanti-
tative relationships among them.
• Part-of relations: structure the collections of require-

ments, risks and mitigations;

1. Requirement goals:

• Spacecraft ground-based testing & flight problem
monitoring
• Spacecraft experiments with on-board Intelligent

Systems Health Management (ISHM)

2. Risks:

• Obstacles to spacecraft ground-based testing &
flight problem monitoring

– Customer has no, or insufficient, money avail-
able for my use

– Difficulty of building the models and design
tools

• ISHM Experiment is a failure (without necessarily
causing flight failure)
• Usability, User/Recipient-system interfaces unde-

fined
• V&V (certification path) untried and the scope is

unknown
• Obstacles to spacecraft experiments with on-

board ISHM
– Bug tracking / fixes / configuration manage-

ment issues, managing revisions and upgrades
(multi-center tech. development issue)

– Concern about my technology interfering
with in-flight mission

3. Mitigations:

• Mission-specific actions
– Spacecraft ground-based testing & flight

problem monitoring
– Become a team member on the operations

team
– Use Bugzilla and CVS

• Spacecraft experiments with on-board ISHM
– Become a team member on the operations

team
– Utilize ISHM expert’s experience and guid-

ance with certification of his technology

Figure 2: Sample DDP requirements, risks, and mit-
igations.

Model LOC Objectives Risks Mitigations
model1.c 55 3 2 2
model2.c 272 1 30 31
model3.c 72 3 2 3
model4.c 1241 50 31 58
model5.c 1427 32 70 99

Figure 3: Details of Five DDP Models.

To improve runtimes, a compiler stores a flattened form
of the DDP requirements tree in a function usable by any
program written in the C language. In the compiled form,
all computations are performed once and added as a con-
stant to each reference of the requirement. The topology of
the mitigation network is represented as terms in equations
within the model function, which is called each time that a
configuration of the entire model needs to be scored by a
fitness function. As the models grow more complex, so do
these equations. The largest real-world model used in this
research, which contains 99 mitigations, generates 1427 lines
of code. Figure 3 contains details on five publicly-available
DDP models.



When the model function is called, two values are returned
(the total cost of the selected mitigations and the number
of reachable requirements attained). These two values are
input into the following objective function in order to calcu-
late a fitness score for the current configuration of the model.
This objective function normalizes the cost and attainment
values into a single score that represents the Euclidean dis-
tance to a sweet spot of maximum requirement attainment
and minimum cost:

score =

√
cost

2
+ (attainment− 1)2 (6)

Here, x is a normalized value 0 ≤ x−min(x)
max(x)−min(x)

≤ 1.

Hence, scores ranges 0 ≤ score ≤
√

2 and lower scores are
better.

DDP is a valid choice for early life-cycle requirements op-
timization for three reasons:

• One potential drawback with ultra-lightweight mod-
els is that they are excessively lightweight and contain
no useful information. DDP models are demonstra-
bly useful for NASA, and clear project improvements
(such as savings in power and mass) have been seen
from DDP sessions at JPL. Cost savings of $100,000
have been seen in multiple sessions, and in at least two
sessions, they have exceeded $1 million [14].
• Numerous real-world requirements models have been

written in this format, and many projects are likely
to use these models in the future [16]. The DDP tool
can be used to document not just final decisions, but
also to review the rationale that led to those decisions.
Hence, it remains in use at JPL not only for its original
purpose (group decision support), but also as a design
rationale tool to document decisions.
• The DDP tool is representative of other requirements

modeling tools in widespread use. DDP is a set of
directed influences expressed in a rigid hierarchy and
controlled by a set of equations. At this level of ab-
straction, DDP is just another form of QOC [41] or a
variant of Mylopoulos’ soft goal graphs [38].

Like any interesting search-based software engineering prob-
lem, DDP models represent a space of competing factors. In
this case, the trade-off is between the budget of a project and
the attainment of goals. Using the four properties of SBSE
problems (as discussed in Section 2), it can be shown that
the optimization of DDP models is a valid application area
for SBSE techniques.

• Typical DDP models present a massive search space,
encompassing hundreds to thousands of possible com-
binations of mitigation settings. One collection of model
settings must comment on dozens of individual miti-
gations. In one known model, there are over 299

(mitigation valuesnumber of mitigations) possible com-
binations.
• With such a large number of combinations in the search

space, any candidate solution must execute in a short
time (to meet the second condition of a SBSE prob-
lems). As will be shown in Section 4.2, standard SBSE
techniques execute in one second or less, implying a
low computational complexity in the model assessment
method. Furthermore, past research [19] has demon-
strated that the proposed baseline method, KEYS2,
operates in low-order polynomial time (O(N2)).

• While DDP models do not represent a continuous search
space (any model with true/false statements is, by def-
inition, not continuous), this is not a problem. The
objective function used to score a DDP configuration
represents an approximately continuous trade-off be-
tween project costs and feature attainment. Therefore,
it provides the necessary guidance needed to meet the
third condition.
• Finally, DDP models have no known optimal solution.

In fact, any solution is dependent on the specific fea-
tures of the project being modeled. As such, a search
method must be employed in order to calculate some
set of near-optimal solutions.

By meeting all four of these conditions, the optimization
of these early life-cycle DDP models is a valid avenue for
search-base software engineering research.

4. EXPERIMENTS & RESULTS
While the ”simplicity”of the KEYS2 algorithm is arguably

subjective, the other three requirements of a baseline algo-
rithm can be assessed qualitatively. In order to demonstrate
that KEYS2 is a valid candidate for a baseline technique, it
must be experimentally shown to be:

• Results that are competitive with those of state-of-the-
art techniques.
• As fast as competing algorithms.
• A low level of variance in its results.

In the following experiments, three algorithms (KEYS2, a
simulated annealer, and a genetic algorithm) will be used to
optimize three of the five publicly-available DDP models2.
Note that:

• Models one and three are trivially small. They were
used to debug source code, but have been excluded
from the following experiments.
• Model 4 was previously discussed in detail [35]. Model

5 was optimized in [15].
• All five models were optimized by the original KEYS

algorithm in [30]. However, that paper presented no
comparison results.
• KEYS2 was benchmarked against a variety of algo-

rithms, including simulated annealing, on models 2,4,
and 5 in [19]. However, no results were reused. All
results presented in this paper are from new trials.

4.1 Result Quality
By definition, the purpose of a baseline is to provide a

starting goal. It should set some kind of bar that a newly-
developed technique must pass before it can be considered
for real-world use. However, while the goal of any exper-
iment will be to ”beat” the baseline score, that does not
mean that a baseline should be some sort of ”straw man.” A
baseline technique might not yield results that surpass the
state-of-the-art, but it should at least be competitive with
them.

In order to assess the overall result quality, each algorithm
was executed 1000 times per model. These results are plot-
ted in Figure 4. In each graph, the x-axis represents the ”at-
tainment” (the number of project objectives that were suc-
cessfully completed in the final configuration of the model).
2These models are available from the PROMISE repository
at http://promisedata.org/?cat=133
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Figure 4: Results of each algorithm for each model (1000 trials per algorithm/model pairing). The y-axis
shows cost (in thousands) and the x-axis shows attainment. Better solutions fall towards the bottom right of
each plot (low costs and high attainment) and are clumped tightly together (low variance).

The y-axis is the cost, in thousands, of the mitigations em-
ployed by that model configuration. Better results are those
that appear in the bottom-right corner. These are the con-
figurations resulting in a low cost and high attainment of
goals. It follows that the worst results are in the top-left,
the area of high cost and low attainment.

A visual inspection gives a very clear idea of the result
quality. The simulated annealing method can instantly be
eliminated from the comparison. Its results, for every model,
fall all over the graph. Very few of its conclusions result
in an ideal balance of the cost and attainment. Even if
some of its results are ideal, the massive level of variance
eliminates it from the competition. Both KEYS2 and the
genetic algorithm fare better, with the vast majority of their
results concentrated in the ideal low cost, high attainment
area.

To confirm this visual analysis, the distribution of values
for each algorithm and each model were compared using a
non-parametric rank-sum test (Mann-Whitney) with a 95%
confidence interval. Separate tests were completed for cost
and attainment for each of the three models. The wins, ties,
and losses were aggregated and are listed in Figure 5.

Algorithm Ties Wins Losses Score (wins-losses)
Genetic Algorithm 0 7 5 2

KEYS2 0 7 5 2
Simulated Annealing 0 4 8 -4

Figure 5: Win-loss-tie results from a Mann-Whitney
rank-sum test with a 95% confidence interval.

As expected, the wide range of results for simulated an-
nealing hurt its overall result quality. The algorithm lost
twice as often as it won in comparison tests. KEYS2 and
the genetic algorithm yielded the exact same number of wins
and losses. While they never tied, the fact that they traded
wins and losses at such equal parity shows that KEYS2 is
extremely competitive with the most commonly used SBSE
techniques.

4.2 Runtimes

For both researchers and industrial practitioners, time is
limited and expensive. By asking any of these individuals
to run a baseline algorithm for comparison purposes, we are
implicitly asking them to spend more time considering a
problem. Therefore, it is crucial that any baseline technique
be fast, even real-time if possible.

In order to compare execution times, each algorithm was
executed for each model 100 times. The total time for these
100 trials was recorded using the Unix time command, and
the ”real time”value was divided by 100 in order to calculate
the average execution time.

All three algorithms were executed under the same oper-
ating conditions on the same machine - a Dell XPS work-
station with a 2.40 GHz Intel Core2 Duo CPU and 2 GB of
memory running the Ubuntu 8.04 operating system.

Algorithm Model 2 Model 4 Model 5
simulated annealing 0.40967 0.94350 0.64050
genetic algorithm 0.00976 0.04625 0.09948

KEYS2 0.00430 0.01407 0.02695

Figure 6: Average runtimes for each algorithm on
each model, in seconds, averaged over 100 runs.

The results of this experiment can be seen in Figure 6.
The simulated annealer clearly experiences some difficulty
in optimizing these models. It takes orders of magnitude
more time to complete a single run than other algorithms.

The remaining two algorithms are incredibly fast, both
returning results in under a tenth of a second on average.
A closer look shows that KEYS2 is still much faster than
the genetic algorithm, completing each trial between 2.27 to
3.69 times faster than its competitor.

4.3 Stability
The results shown in Section 4.1 give some idea of the

variance in the performance of each of the compared tech-
niques. From a visual inspection of Figure 4, it is clear that
the annealer’s final values are unpredictable. Very few of



its results fall in the ideal bottom-right corner (where the
project leads pay a little to achieve a lot). The final score
values of both the genetic algorithm and KEYS2 fall in a
much smaller cluster. To gain a clearer view of the result
variance of each algorithm, we will examine the range of val-
ues output by each algorithm for the largest model (model
5 from Section 3).

quartiles
min med max
0 25% 50% 75% 100%

SA 163000 239025 248525 709025 1079000 .8.8.2.8
s

GA 162369 205525 215197 227525 312052 .6.5.2.6
s

KEYS2 154025 198025 211525 224525 305525 .4.0.6.4
s

Figure 7: Quartile charts of the final ”cost” results,
taken from 1000 executions of each algorithm on
model 5. Lines represent the full range of values,
with the dot representing the median.

quartiles
min med max
0 25% 50% 75% 100%

SA 46.3 201.1 207.4 217.0 255.2 .7.0.4.7
s

GA 226.4 239.5 241.3 242.4 249.9 .2.0.2.2
s

KEYS2 227.3 236.2 237.9 239.4 252.0 .1.2.5.1
s

Figure 8: Quartile charts of the final ”attainment”
results, taken from 1000 executions of each algo-
rithm on model 5. Lines represent the full range
of values, with the dot representing the median.

Figures 7 and 8 show quartile breakdowns of the value dis-
tributions for the cost and attainment results on model 5.
Simulated annealing reaches median values that are weaker
than, but not too far from, the other two algorithms. How-
ever, the full range of its results is much wider than that
of KEYS2 or the genetic algorithm. Simulated annealing
demonstrates an unacceptable level of variance. KEYS2 and
the GA yield similar results. The GA has a slightly tighter
range of results with a spread (75th quartile - 25th) of 22000
to 26500 for cost and 2.9 to 3.2 on attainment.

From this, it can be concluded that KEYS2 demonstrates
the consistency required of a baseline method. However,
its very design provides one additional degree of stability.
Recall that each round, KEYS2 seeks out the most impor-
tant variable and fixes its value. Thus, by providing a linear
ranking of model variables, KEYS2 could be stopped at any
point during its execution. Unlike the other two algorithms,
KEYS2 can provide partial results. Because it generates
100 random configurations at each stage of execution, the
variance of those partial decisions can be measured.

Figure 9 demonstrates the internal stability during one ex-
ecution of KEYS2 on model 5. At any stage, the spread (i.e.
the variance) of KEYS internal decisions can be measured.
It can clearly be seen that KEYS2 rapidly plateaus towards
stable, high-scoring results for both the cost and attainment
of goals. The ability to generate partial or complete solu-
tions, both with a low degree of variance, lend credence to
the use of KEYS2 as an experimental baseline.

5. DISCUSSION & CONCLUSIONS
Despite the extensive body of research that has been in-

vested in the search-based software engineering field over
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Figure 9: Median and spread of internal decisions
made by KEYS2 during one trial. X-axis shows
the number of rounds passed. “Median” shows the
50th percentile of the measured value seen in the
100 random configurations made during each round.
“Spread” shows the difference between the 75th and
50th percentile.

the past few years, there is still no agreed-upon basis for
comparison between the disparate research tracts. With
all of the different improvements to and implementations of
the ”standard” techniques, it has become difficult to achieve
the PROMISE community’s goal of ”repeatable, improvable,
maybe even refutable, software engineering experiments.”

For the further expansion of the body of knowledge, it is
necessary for the SBSE field to adopt some sort of baseline
technique. Just as data mining research has benefited from
Holte’s 1R algorithm [28], the SBSE community would ben-
efit from a common baseline. Such a technique would allow
comparisons between seemingly incomparable algorithms,
would more easily allow for the repetition and improvement
of existing experiments, and would give a performance goal
to be beaten by newly-developed methods.

However, not just any algorithm can be chosen as a base-
line. A baseline technique must meet several criteria:

• Simplicity: The method must be easily understood and
easily implemented. If not, researchers will waste cru-
cial time and brainpower that would be better spent
on their own ideas.
• Competitive Results: Although a baseline is meant to

be ”beaten,” is should not be a straw man. It must



yield results within the same neighborhood as the state-
of-the-art.
• Fast Runtimes: By asking a researcher to execute a

baseline algorithm, you are implicitly asking them to
devote more time to their experiments. Thus, an ideal
baseline technique should execute in an almost unno-
ticeable amount of time.
• Stable Results: A baseline technique must be reliable

and trustworthy. It must return results that fall within
a small range of fitness values.

It is not enough for a technique to meet one or two of these
criteria. A fast algorithm is pointless if its results are seem-
ingly random. Likewise, a simple method is not useful if
its results are poor. A baseline algorithm should be fast,
reliable, competitive, and be straight-forward to implement.

Out of the commonly-used approaches in the SBSE field,
random search is likely the closest to an agreed-upon base-
line. Random search is used by may researchers as a ”san-
ity check,” a de facto bar to beat with their algorithm of
choice [26]. However, random search is a weak approach.
Its very nature implies that it will eventually violate either
the second or third of the previously-specified properties of
a baseline. Although it may find an ideal solution in a short
amount of time, there is no way to ensure that it always will.
Because it picks inputs at random, there will be a massive
amount of variance in its final results (for a similar effect,
see the simulated annealing results in Sections 4.1 and 4.3).
There is some empirical evidence that, given enough time,
random testing will deliver predictable results [29]. How-
ever, such a time threshold will violate the second guideline,
that any baseline execute quickly. Many researchers seem
to have little confidence in random search, treating it as a
straw man. As Harman notes, ”It is something of a ’sanity
check’; in any optimization problem worthy of study, the
chosen technique should be able to convincingly outperform
random search. [26]” The use of random search is an ongo-
ing debate in the SBSE community [1]. I would suggest,
despite the popularity of random search, a stronger baseline
algorithm should be chosen.

The KEYS2 algorithm [19, 30] meets all of these criteria.
It is based on a straightforward theory, that a small number
of important variables control the vast majority of the search
space. A search that rapidly isolates these variables and fixes
their values will quickly plateau towards stable, optimal so-
lutions. In a case study centered around the DDP early life-
cycle requirements models [9,14], KEYS2 was demonstrated
to fulfill the other three requirements.

• In Section 4.1, it is shown that KEYS2 and a genetic
algorithm are statistically identical in terms of quality.
They yielded the same number of wins and losses in a
series of rank-sum tests.
• Section 4.2 shows that KEYS2 executes three or more

times faster than other SBSE techniques.
• Finally, Section 4.3 demonstrates that KEYS2 yields

stable results. KEYS2 can also output partial results,
and the variance and spread of these can be examined
as well.

Thus, KEYS2 is a candidate to serve as a baseline technique
for the SBSE field.

I am not presumptuous enough to insist that KEYS2 be
the absolute baseline or even that it is the best candidate.
However, it is crucially important to debate this topic. Even

amongst ”standard”techniques like simulated annealing, there
are thousands of slightly different implementations and tweaks.
Direct comparisons are almost impossible. For the goal of
open research to become possible, a simple (yet competi-
tive) technique should be adopted and made available to
the research community. Such a baseline is necessary for
the growth of this research field, and the PROMISE com-
munity is in an ideal position to promote its use.

6. REFERENCES
[1] A. Arcuri, M. Iqbal, and L. Briand. Formal analysis of

the effectiveness and predictability of random testing.
In ISSTA ’10: Proceedings of the 19th international
symposium on Software testing and analysis, pages
219–230, New York, NY, USA, 2010. ACM.

[2] A. Bagnall, V. Rayward-Smith, and I. Whittley. The
next release problem. Information and Software
Technology, 43(14), December 2001.

[3] A. Baresel, D. Wendell Binkley, M. Harman, and
B. Korel. Evolutionary testing in the presence of
loop-assigned flags: A testability transformation
approach. In International Symposium on Software
Testing and Analysis (ISSTA 2004), pages 108–118,
2004.

[4] A. Baresel, H. Sthamer, and M. Schmidt. Fitness
function design to improve evolutionary structural
testing. In GECCO ’02: Proceedings of the 4th Annual
conference on Genetic and evolutionary computation,
pages 1329–1336. Morgan Kaufmann Publishers, 2002.

[5] N. Aall Barricelli. Esempi numerici di processi di
evoluzione. Mehodos, pages 45–68, 1954.

[6] T. Van Belle and D. Ackley. Code factoring and the
evolution of evolvability. In GECCO ’02: Proceedings
of the 4th Annual conference on Genetic and
evolutionary computation, pages 1383–1390. Morgan
Kaufmann Publishers, 2002.

[7] C. Burgess and M. Lefley. Can genetic programming
improve software effort estimation? a comparitive
evaluation. Information and Software Technology,
43(14):863–873, 2001.

[8] R. Clark. Faster treatment learning, Computer
Science, Portland State University. Master’s thesis,
2005.

[9] S.L. Cornford, M.S. Feather, and K.A. Hicks. DDP a
tool for life-cycle risk management. In IEEE Aerospace
Conference, Big Sky, Montana, pages 441–451, March
2001.

[10] J. Dolado. On the problem of the software cost
function. Information and Software Technology,
43(1):61–72, 2001.

[11] M. Dorigo and L. Gambardella. Ant colony system: A
cooperative learning approach to the traveling
salesman problem. IEEE Transactions on
Evolutionary Computing, 1:53–66, 1997.

[12] R.C. Eberhart and J. Kennedy. A new optimizer using
particle swarm theory. In 6th International Symposium
on Micromachine Human Science, pages 39–43, 1995.

[13] D. Fatiregun, M. Harman, and R. Hierons. Evolving
transformation sequences using genetic algorithms. In
In 4th International Workshop on Source Code
Analysis and Manipulation (SCAM 04), pages 65–71,



Los Alamitos, CA, USA, 2004. IEEE Computer
Society Press.

[14] M. Feather, S. Cornford, K. Hicks, J. Kiper, and
T. Menzies. Application of a broad-spectrum
quantitative requirements model to early-lifecycle
decision making. IEEE Software, 2008. Available from
http://menzies.us/pdf/08ddp.pdf.

[15] M.S. Feather and T. Menzies. Converging on the
optimal attainment of requirements. In IEEE Joint
Conference On Requirements Engineering ICRE’02
and RE’02, 9-13th September, University of Essen,
Germany, 2002. Available from
http://menzies.us/pdf/02re02.pdf.

[16] M.S. Feather, S. Uckun, and K.A. Hicks. Technology
maturation of integrated system health management.
In Space Technology and Applications International
Forum (STAIF-2008) Albuquerque, USA, February
2008.

[17] M. Claudia Figueiredo, P. Emer, and S. Regina
Vergilio. GPTesT: A testing tool based on genetic
programming. In GECCO ’02: Proceedings of the 4th
Annual conference on Genetic and evolutionary
computation, pages 1343–1350. Morgan Kaufmann
Publishers, 2002.

[18] G. Gay, T. Menzies, M. Davies, and K. Gundy-Burlet.
Automatically finding the control variables for
complex system behavior. Accepted for Automated
Software Engg., 17(4), 2010.

[19] G. Gay, T. Menzies, O. Jalali, G. Mundy,
B. Gilkerson, M. Feather, and J. Kiper. Finding
robust solutions in requirements models. Automated
Software Engg., 17(1):87–116, 2010.

[20] F. Glover. Tabu search - part 1. ORSA Journal on
Computing, 1:190–206, 1989.

[21] F. Glover. Tabu search - part 2. ORSA Journal on
Computing, 2:4–32, 1990.

[22] M Harman and J. Clark. Metrics are fitness functions
too. In 10th International Software Metrics
Symposium (METRICS 2004), 2004), pages = 58–69,
location = Chicago, IL, USA, publisher = IEEE
Computer Society Press, address = Los Alamitos, CA,
USA,.

[23] M. Harman, R. Hierons, and M. Proctor. A new
representation and crossover operator for search-based
optimization of software modularization. In GECO
2002: Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1351–1358. Morgan
Kaufmann, July 2002.

[24] M. Harman, L. Hu, R. Mark Hierons, J. Wegener,
H. Sthamer, A. Baresel, and M. Roper. Testability
transformation. IEEE Transactions on Software
Engineering, 30(1):3–16, 2004.

[25] M. Harman and B.F. Jones. Search-based software
engineering. Journal of Information and Software
Technology, 43:833–839, December 2001.

[26] M. Harman and P. McMinn. A theoretical and
empirical study of search-based testing: Local, global,
and hybrid search. IEEE Trans. Softw. Eng.,
36(2):226–247, 2010.

[27] J. Holland. Adaptation in natural and artificial
systems. University of Michigan Press, Ann Arbor,
MI, USA, 1975.

[28] R.C. Holte. Very simple classification rules perform
well on most commonly used datasets. Machine
Learning, 11:63, 1993.

[29] Ciupa I., A. Pretschner, M. Oriol, A. Leitner, and
B. Meyer. On the number and nature of faults found
by random testing. Software Testing, Verification and
Reliability, 2009.

[30] O. Jalali, T. Menzies, and M. Feather. Optimizing
requirements decisions with keys. In Proceedings of the
PROMISE 2008 Workshop (ICSE), 2008. Available
from http://menzies.us/pdf/08keys.pdf.

[31] J. Kennedy and R.C. Eberhart. Particle swarm
optimization. In IEEE International Conference on
Neural Networks, pages 1942–1948, 1995.

[32] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

[33] C. Kirsopp, M. Shepperd, and J. Hart. Search
heuristics, case-based reasoning and software project
effort prediction. In GECCO ’02: Proceedings of the
4th Annual conference on Genetic and evolutionary
computation, pages 1367–1374. Morgan Kaufmann
Publishers, 2002.

[34] P. McMinn. Search-based software test data
generation: A survey. Software Testing, Verification
and Reliability, 14:105–156, 2004.

[35] T. Menzies, J. Kiper, and M. Feather. Improved
software engineering decision support through
automatic argument reduction tools. In
SEDECS’2003: the 2nd International Workshop on
Software Engineering Decision Support (part of
SEKE2003), June 2003. Available from
http://menzies.us/pdf/03star1.pdf.

[36] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth,
A.H. Teller, and E. Teller. Equation of state
calculations by fast computing machines. J. Chem.
Phys, 21:1087–1092, 1953.

[37] B. S. Mitchell and S. Mancoridis. Using heuristic
search techniques to extract design abstractions from
source code. In GECCO ’02: Proceedings of the 4th
Annual conference on Genetic and evolutionary
computation, pages 1375–1382. Morgan Kaufmann
Publishers, 2002.

[38] J. Mylopoulos, L. Cheng, and E. Yu. From
object-oriented to goal-oriented requirements analysis.
Communications of the ACM, 42(1):31–37, January
1999.

[39] A. Ngo-The and G. Ruhe. Optimized resource
allocation for software release planning. Software
Engineering, IEEE Transactions on, 35(1):109–123,
Jan.-Feb. 2009.

[40] S.L. Rhys, S. Poulding, and J.A. Clark. Using
automated search to generate test data for matlab. In
GECCO ’09: Proceedings of the 11th Annual
conference on Genetic and evolutionary computation,
pages 1697–1704, New York, NY, USA, 2009. ACM.

[41] S. Buckingham Shum and N. Hammond.
Argumentation-based design rationale: What use at
what cost? International Journal of Human-Computer
Studies, 40(4):603–652, 1994.

[42] I. H. Witten and E. Frank. Data mining. 2nd edition.
Morgan Kaufmann, Los Altos, US, 2005.



[43] Y. Zhang, M. Harman, and S.A. Mansouri. The
multi-objective next release problem. In In ACM
Genetic and Evolutionary Computation Conference
(GECCO 2007, page 11, 2007.

APPENDIX
Acquiring the Algorithms
In the spirit of the PROMISE conference series, all of the
algorithm implementations and data used in this research
are available for public use.

All five DDP models are available from the PROMISE
repository at http://www.promisedata.org/?cat=133.

KEYS2 can be downloaded from http://www.unbox.org/

wisp/var/greg/keys/2.6. The genetic algorithm can be
found at http://www.unbox.org/wisp/var/greg/genefreeze
and the simulated annealing is located at http://www.unbox.
org/wisp/tags/ddpExperiment.


