
How to Understand Complex Models

Gregory Gay1, Tim Menzies1, Misty Davies2, and Karen Gundy-Burlet2

1 West Virginia University, Morgantown, WV, USA
2 NASA Ames Research Center, Moffett Field, CA, USA

greg@greggay.com, tim@menzies.us,

misty.d.davies@nasa.gov,karen.gundy-burlet@nasa.gov

Abstract. Testing large-scale systems is expensive in terms of both time
and money. Running simulations early in the process is a proven method
of finding the design faults likely to lead to critical system failures, but
determining the exact cause of those errors is still time-consuming and
requires access to a limited number of domain experts. It is desirable to
find an automated method that explores the large number of combina-
tions and is able to isolate likely fault points.
Treatment learning is a subset of minimal contrast-set learning that,
rather than classifying data into distinct categories, focuses on finding
the unique factors that lead to a particular classification. That is, they
find the smallest change to the data that causes the largest change in the
class distribution. These treatments, when imposed, are able to identify
the factors most likely to cause a mission-critical failure. The goal of
this research is to comparatively assess treatment learning against state-
of-the-art numerical optimization techniques. To achieve this, this paper
benchmarks the TAR3 and TAR4.1 treatment learners against optimiza-
tion techniques across three complex systems, including two projects
from the Robust Software Engineering (RSE) group within the National
Aeronautics and Space Administration (NASA) Ames Research Center.
The results clearly show that treatment learning is both faster and more
accurate than traditional optimization methods.

1 Introduction

Large-scale industrial systems, often containing both hardware and software
components, are expensive to design and expensive to build. The cost of de-
sign failures decreases exponentially the earlier that these faults are discovered
in the design process [8]. Modeling and simulation of these large-scale systems
has become increasingly popular over the past decade as a proven method of find-
ing and eliminating potentially costly fault points before a complete prototype
is constructed.

However, simply simulating the behavior of a system is not enough. Knowing
that something fails in simulation is not the same as knowing why it failed. No
matter what domains a system falls into, there are a limited number of experts

1

2 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

and their time is even further limited. It is cost-prohibitive to ask those experts
to pour over gigabytes of simulation settings and outcomes. Therefore, it is
desirable to find methods of eliminating that bottleneck: methods that either
reduce the amount of data that experts need to examine or methods that can
identify the most obvious faults automatically.

For example, consider Monte Carlo Filtering as applied at NASA’s Robust
Software Engineering (RSE) group. The goal of this filtering is to determine
which inputs are most likely to determine some portion of the output distri-
butions. The output space is divided into ’good’ or ’bad’ partitions using some
mathematical function of the outputs–for example, a NASA scientist may be
most interested in data where the allowable dynamic pressure on the parachutes
is exceeded. For this kind of sensitivity analysis, the first step is to run a Monte
Carlo experiment sampling the input space, and the second step is to filter the
data into two partitions based on the output. In the first step, model inputs are
selected at random. In the second step, some sensitivity analysis is then used to
to predict the variables and ranges in the input space most likely to lead to one
of the partitions of the data. A detailed description of Monte Carlo Filtering in-
cluding a variety of examples and techniques for this type of sensitivity analysis
is located in [45].

The field of data mining uses techniques from statistics and artificial intel-
ligence to find small, yet relevant, patterns in large sets of data. The standard
practice in this field is to classify, to look at an object and make a guess at
what category it belongs to. As new evidence is examined, these guesses are
refined and improved. When testing a complex hardware system, you might try
to classify by guessing whether that particular simulation succeeded or failed.

Treatment learning [37] focuses on a different goal. It does not try to deter-
mine what is, it tries to determine what could be (and thus, enabling the practice
of Monte Carlo Filtering). Classifiers read a collection of data and collect statis-
tics that use that to place unseen data into a series of discrete categories (called
classes). Treatment learners work in reverse. They take the classification of a
piece of evidence (that is, the category that it belongs to) and try to reverse-
engineer the statistical evidence that led a classifier to assign the data to a
particular class. For instance, rather than deciding whether a simulation suc-
ceeded or failed, you might want to determine why it failed. Treatment learners
take that evidence and use it to produce a treatment—a small set of rules that,
if imposed, will change the expected classification distribution. By filtering the
data for entries that follow the rules set in the treatment, you should be able to
identify why a particular classification was reached.

Ultimately, classifiers will strive to increase the representational accuracy.
They will assess the data and grow a collection of statistical rules with the goal
of making more and more accurate categorizations. As a result, if the data is
complex, the decision tree output by the classifier will also be complex. Treat-
ment learning instead focuses on minimality: what is the smallest rule that can be
imposed to cause the largest change. Often, these rules are as simple as filtering
for the data where, say, the wind speed is between 25 and 45 knots.

UNDERSTANDING MODELS 3

To give a simplified example, consider the case of a rocket intended to place a
satellite into orbit. Any number of events could cause this rocket to fail - too long
or too short of a burning time, a faulty timing mechanism, or a crack in the outer
shell. A common scenario would be to run a series of simulations prior to any
actual launch. These system would take readings at regular intervals throughout
the simulation, noting factors such as the trajectory, external pressure, tem-
perature, etc. Along with these readings comes a classification, whether or not
the rocket is still functioning. After a number of simulation trials, a treatment
learner can be focused upon those trials with a ”rocket failed” classification. The
treatment learner will produce a rule set that states definitively the factors (tem-
perature too high, fuel level too low) that most often caused a mission-critical
failure.

Stated formally, treatment learning is a form of minimal contrast-set asso-
ciation rule learning. The treatments contrast undesirable situations with the
desirable ones (represented by weighted classes). Treatment learning, however,
is different from other contrast-set methods like STUCCO [6] because of its fo-
cus on minimal theories. Conceptually, a treatment learner explores all possible
subsets of the attribute ranges looking for good treatments. Such a search is
infeasible in practice so the art of treatment learning lies in quickly pruning
unpromising attribute ranges (i.e. ignoring those that, when applied, lead to a
class distribution where the target class is in the minority).

In an industrial setting like NASA, critical mission failures will cost thou-
sands, if not millions, of dollars. Therefore, it is absolutely crucial to identify
the conditions under which a design will fail as early as possible in the design
process, so that design changes may be made before any physical hardware is
constructed. Standard optimization techniques can provide insight into this prob-
lem, but many such algorithms rely on continuous variables (all of which must be
controllable by the simulator). They are ill-equipped to handle many real-world
situations where factors are either discrete or uncontrollable. Treatment learning
has no such restrictions.

While treatment learning (specifically the TAR3 algorithm [24,25,28,30]) has
been discussed in prior publications, these algorithms have never been bench-
marked against standard or state-of-the-art optimization algorithms in an in-
dustrial setting. This study utilizes the TAR3 and TAR4.1 treatment learners,
which operate similarly but score treatments in radically different manners, and
compares the quality of the produced treatments against the Simulated Anneal-
ing [31,39] and Quasi-Newton [21] optimization methods. Data used in this case
study comes from actual simulation trials of projects from NASA’s Robust Soft-
ware Engineering (RSE) group, as well as an advanced physics simulation of a
bicycle. Our goal is to show that, in this real-world industrial setting, treatment
learning offers a faster, higher-quality identification of the factors likely to cause
a critical mission failure than state-of-the-art optimization techniques.

The results of this study clearly demonstrate that:

– Treatment learners are orders of magnitude faster than standard methods.
– TAR3’s results are more precise than those from standard techniques.

4 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

– TAR4.1’s results demonstrate a higher recall, while maintaining a lower false
positive rate, than the standard techniques (the Quasi-Newton algorithm
also demonstrates a high recall, but at the notable cost of a higher rate of
false positives).

2 Data Background

NASA often uses high-fidelity physics simulations early in the design process
to verify that flight software will meet the mission requirements. The possible
inputs to the simulation can be design parameters like lift coefficients and center
of gravity positions; they may also be environmental parameters like the average
magnitudes and the standard deviations of wind gusts; they may be flags that
indicate the failure of a hardware component at some critical time; or they
may be any of a plethora of other parameters that specify the bounds on the
acceptable flight envelope. Errors in software design are much less expensive to
fix early in the design process, but the design space early in the process is very
large. To explore all of the parameter combinations exhaustively is infeasible.
However, a very large sampling of the configurations increases the chance that a
design error will be caught early, and it allows for the possibility of identifying
trends or anomalies within the data.

Manual inspection of these large datasets requires domain expertise, and
is likely to focus only on absolute compliance with requirements. For systems
this complex many different kinds of failures are possible. For aero-braking sce-
narios, for instance, representative failures include skipping out of the Earth’s
atmosphere instead of re-entering and parachutes failing to open. One common
heuristic for these analyses is to push the bounds of the flight envelope until be-
tween 10 and 30 percent of all of the attempted cases have failed in one way or
another—this kind of analysis allows you to find the margins of failure within the
system. In the probable event that failures are identified this early in the process,
it is a time-consuming task to determine the cause of those failures; the failures
may be associated with environmental factors (e.g. strong sustained wind gusts
overwhelm the control system), they may be associated with software errors in
the unit under test (e.g. the gains on the control system are set incorrectly for the
nominal case), or they may be associated with software errors in the simulation
used to perform the test (that is, a legacy environmental model in the simulation
uses different units than expected). A likely first step towards determining the
cause of any of the failures is to find the input parameters that the failures are
associated with. Even this first step is non-trivial—there are usually hundreds
of input parameters associated with each dataset, and those parameters were
chosen from thousands of input parameters to the actual simulation.

Two of the datasets used for this paper were generated using the Advanced
NASA Technology ARchitecture for Exploration Studies (ANTARES) [1] simu-
lation tool. The two datasets represent the Monte Carlo simulation trials done
for a re-entry study and for a launch abort study. The collected variables include
environmental parameters, internal simulation values (like random seeds), and

UNDERSTANDING MODELS 5

spacecraft state specifications—including both continuous and modal informa-
tion. Both of these datasets had many different possible failure types. The third
dataset referenced here was collected during a bicycle ride. The data comes from
a bicycle power meter that calculates the power output and collects the follow-
ing data at 60 Hz: distance traveled, heart rate, speed, wind speed, cadence,
elevation, hill slope, and temperature. The power calculation for this particular
meter could be very noisy and there was an open question about what measured
parameters were most associated with this noise.

Failures for the NASA datasets were defined for several phases of flight cor-
responding to reentry and launch abort scenarios. Some of the specific failure
types included missed landings, aerodynamic angles or body rates that exceeded
thresholds, excessively high velocity at impact, and dynamic pressures exceed-
ing tolerances for the parachutes. Any of these failures can lead to loss of life or
mission, and are considered unacceptable. In general use at NASA, this tool is
used to find the margins to failure from nominal launch conditions over all of
the mission-critical failures. In essence, the question is - which of the control-
lable input parameters need to be most-closely monitored in order to prevent
any of these unacceptable failures? Since each individual failure type has its own
complicated, usually non-smooth, function of the inputs, the composite of all of
the failures creates a non-trivial, almost certainly non-convex, hypersurface that
must be searched.

To decrease the amount of time necessary to isolate suspicious inputs, the
Robust Software Engineering (RSE) group at Ames utilizes a multi-step pro-
cess [24, 25, 30, 47] that includes targeting tests with n-factor combinatorial
test vectors and sorting the data into clusters with an unsupervised EM al-
gorithm [18] in order to find anomalies and to aid visualization. This tool is
known as Margins Analysis. A key component in the Margins Analysis is the
use of a treatment learner to tie behaviors in the dataset to their associated
variables and ranges. The treatment learner is used many times throughout the
analysis process. It first is used to find variables associated with the overall per-
formance; a penalty is built for each dataset that accounts for all failures and
often includes some continuous metric like a target miss distance. The treatment
learner is then used to find the parameters associated with each individual type
of failure; in practice there are 10’s to 100’s of different possible failure types
identified for each dataset. Finally, the treatment learner is used within a loop to
discover the variables associated with each unsupervised cluster. This analysis
aids the researcher in understanding the underlying structure of the dataset and
can uncover details in the dataset that lead to new requirements.

3 Data Mining and Treatment Learning

3.1 Data Mining

Data mining is a summarization technique that reduces large sets of examples
into small understandable patterns using a range of techniques taken from the
statistics and artificial intelligence fields [9,22,58]. One way to learn such patterns

6 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

is to split the whole example set into subsets based on some attribute value test.
The process then repeats recursively on the subsets. Each splitter value becomes
the root of a sub-tree. Splitting stops when either a subset gets so small that
further splitting is superfluous, or a subset is contains examples with only one
classification.

A good split decreases the percentage of different classifications in a subset.
Such a good split ensures that smaller subtrees will be generated since less further
splitting is required to sort out the subsets. Various schemes have been described
in the literature for finding good splits. For example, the C4.5 [42] and J4.8 [58]
decision tree algorithms uses an information theoretic measure (entropy) to find
its splits while the CART [10] decision tree learner uses another measure called
the GINA index.

Decision trees can be large and complex. The problem of explaining the
performance of these learners to end-users has been explored extensively in the
literature (see the review in [51]). Often, some post-processor is used to convert
an opaque model into a more understandable form:

– Towell and Shavlik generate refined rules from the internal data structures
of a neural network [53].

– Quinlan implemented a post-processor to C4.5 called C45rules that gener-
ates succinct rules from cumbersome decision tree branches via (a) a greedy
pruning algorithm followed by (b) duplicate removal then (c) exploring sub-
sets of the rules relating to the same class [42].

– The first version of our treatment learner (TAR1) was another post-processor
to C4.5 that searched for the smallest number of decisions in decision tree
branches that (a) pruned the most branches to undesired outcomes while
(b) retaining branches leading to desired outcomes [38].

Association rule learners such as APRIORI [43] find attributes that com-
monly occur together in a training set. In the association LHS → RHS, no
attribute can appear on both sides of the association; i.e. LHS ∩ RHS = ∅.
The rule LHS → RHS holds in the example set with confidence c if c% of the

examples that contain LHS also contain RHS; i.e. c = |LHS∪RHS|∗100
|LHS| . The rule

LHS → RHS has support s in the example set if s% of the examples contain

LHS ∪ RHS; i.e. s = |LHS∪RHS|∗100
|D| where |D| is the number of examples.

Association rule learners return rules with high confidence (e.g. c > 90%). The
search for associations is often culled via first rejecting associations with low
support. Association rule learners can be viewed as generalizations of decision
tree learning since the latter restrict the RHS of rules to just one special class
attribute while the former can add any number of attributes to the RHS.

An interesting variant of association rule learning is contrast set learning.
Instead of finding rules that describe the current situation, contrast set learners
like STUCCO [6] finds rules that differ meaningfully in their distribution across
groups. For example, in STUCCO, an analyst could ask ”what are the differences
between people with Ph.D. and bachelor degrees?”.

UNDERSTANDING MODELS 7

Another interesting variant is weighted class learning. Standard classifier al-
gorithms such as C4.5 or CART have no concept of a good or bad class. Such
learners therefore can’t filter their learned theories to emphasize the location of
the good classes or bad classes. Association rule learners such as MINWAL [11]
use weights assigned to each class to to focus the learning onto issues that are
of particular interest to some audience.

3.2 Treatment Learning

In terms of the above, treatment learning is a weighted contrast set learner that
finds rules that associate attribute values with changes to the class distribu-
tions. Menzies [38] elaborated the concept of treatment learning while trying to
explain the output of data miners to business users. In one domain, he found that
users never understood the large theories being generated using any of the above
techniques. In an extreme example of this, C4.5 was generating trees with 6000
nodes. The TAR1 prototype (discussed above) achieved some remarkable reduc-
tions in that space; specifically, it found constraints on just four variables that
pruned away all branches except those leading to the most preferred outcome.

The lesson of TAR1 was that, sometimes, a small minority of constraints can
control a much larger space of variables, TAR2 was an experiment in generating
tiny theories using this simplicity assumption; a small number of factors most
influence the outcome. This assumption has two consequences: (1) it implies that
the search for an effective model need not be too elaborate; (2) more importantly
(in terms of explanation) the generated theory is very small.

The details of treatment learning are discussed below. Before that, it is in-
sightful to ask just how general is this simplicity assumption of treatment learn-
ing? Empirically, we can state TAR2, TAR3 and TAR4 have been applied to
dozens of data sets and in all cases, the small rules generated by this method
have been sufficient to select for a large percentage of the preferred outcomes.
Other machine learning researchers have also discovered that simple schemes,
using only a subset of the available attributes, can generate effective theories.
For example, Holte [26] wrote a machine learner called 1R that was deliberately
restricted to learning theories using a single attribute. Surprisingly, he found
that learners that use many attributes perform only moderately better than the
simpler 1R solution. It should be noted that we don’t use the 1R technique -
our results show that many of the best treatments will require more than one
attribute (though, generally less than four).

In their work on learning simple theories, Kohavi and John [32] wrapped
their learners in a pre-processor that used a heuristic search to grow subsets
of the available attributes from a size of one. At each step in this growth, a
learner was used to assess the accuracy of the model learned from the current
subset. Subset growth was stopped when the addition of new attributes failed to
improve the accuracy. In their experiments, 83% (on average) of the attributes
in a domain could be ignored with only a minimal lose of accuracy. Again, our
learners do not use this technique - relevant feature selection with wrappers can
be prohibitively slow since each step of the heuristic search requires a call to the

8 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

learning algorithm. Under treatment learning’s simplicity assumption, such an
exhaustive search is needlessly complex.

3.3 Example Output

One reason to recommend treatment learning is that its theories are succinct and
easy to understand. Figure 1 shows the output of a classifier (the j48 tree learner
from the WEKA3 toolkit) as contrasted with the output of a treatment learner
(TAR3, as defined in a following section) in Figure 2 on housing data from the
city of Boston (a nontrivial dataset with over five hundred examples). The tree
output by the j48 classifier is detailed, but difficult to understand. A user must
follow the branches of the tree in order to derive conclusions. The treatment
given by TAR3 is much easier to understand. It only presents three important
pieces of information. First, it tells us the baseline class distribution. It then
shows the best treatment—the smallest constraint that most changes the class
distribution. In this case, the best houses had 6.7 to 9.78 rooms, and the optimal
parent-teacher ratio was 12.6 to 16. Finally, it shows the class distribution if that
treatment is applied.

These same treatments can be mapped graphically in a way that is even eas-
ier to understand. Figure 3 shows a two-variable treatment for a dataset that
represents the time series operation of a bicycle. Each variable or combination
of variables within the treatment is given a one or two-dimensional plot. All of
the possible values for the noted attributes are plotted, with different shapes to
indicate the class. The area inside of the rectangle is the data that the treat-
ment learner is trying to isolate. Lines are plotted around the minimum and
maximum values of the ranges given by the treatment. A single glance informs
the user that the area contained within these bold lines is the area of interest.
For example, the plot in Figure 3 shows the values for the attributes ”Hill Slope”
and ”Cadence” The treatment suggests limiting the values for this variable to
the area surrounded by these lines (about -14% to -1% for Hill Slope and 1.3 to
2.2 for Cadence). This output is easy to read and understand, especially when
compared to the complex tree output by a classifier (see Figure 1).

Cognitive scientists have demonstrated that humans are far more likely to use
simple models over more complex ones when making decisions [20]. The simpler
the output, the easier it is to implement and the more likely that designers will
make use of it. This is a key point. For treatment learning to make an effective
difference during the design phase of a project, it must produce output that can
be understood in a single glance.

3.4 BORE Classification

The raw datasets commonly produced by NASA simulations are not stamped
with a basic classification (such as ”failed” or ”succeeded”). Instead, each simu-
lation trial is assigned a score from a continuous distribution (as assigned by a

3 http://www.cs.waikato.ac.nz/ml/weka/

UNDERSTANDING MODELS 9

LSTAT <= 14.98
| RM <= 6.54

| | DIS <= 1.6102
| | | DIS <= 1.358: high (4.0/1.0)

| | | DIS > 1.358
| | | | LSTAT <= 12.67: low (2.0)
| | | | LSTAT > 12.67: medlow (2.0)

| | DIS > 1.6102
| | | TAX <= 222

| | | | CRIM <= 0.06888: medhigh (3.0)
| | | | CRIM > 0.06888: medlow (4.0)
| | | TAX > 222: medlow (199.0/9.0)

| RM > 6.54
| | RM <= 7.42

| | | DIS <= 1.8773: high (4.0/1.0)
| | | DIS > 1.8773

| | | | PTRATIO <= 19.2
| | | | | RM <= 7.007
| | | | | | LSTAT <= 5.39

| | | | | | | INDUS <= 6.41: medhigh (25.0/1.0)
| | | | | | | INDUS > 6.41: medlow (2.0)

| | | | | | LSTAT > 5.39
| | | | | | | DIS <= 3.9454
| | | | | | | | RM <= 6.861

| | | | | | | | | INDUS <= 7.87: medhigh (9.0)
| | | | | | | | | INDUS > 7.87: medlow (3.0/1.0)

| | | | | | | | RM > 6.861: medlow (3.0)
| | | | | | | DIS > 3.9454: medlow (14.0/1.0)

| | | | | RM > 7.007: medhigh (29.0)
| | | | PTRATIO > 19.2: medlow (11.0/1.0)
| | RM > 7.42

| | | PTRATIO <= 17.9: high (25.0/1.0)
| | | PTRATIO > 17.9

| | | | AGE <= 43.7: high (2.0)
| | | | AGE > 43.7: medhigh (3.0/1.0)
LSTAT > 14.98

| CRIM <= 0.63796
| | INDUS <= 25.65

| | | DIS <= 1.7984: low (5.0/1.0)
| | | DIS > 1.7984: medlow (37.0/2.0)

| | INDUS > 25.65: low (4.0)
| CRIM > 0.63796
| | RAD <= 4: low (13.0)

| | RAD > 4
| | | NOX <= 0.655

| | | | AGE <= 97.5
| | | | | DIS <= 2.2222: low (8.0)
| | | | | DIS > 2.2222: medlow (6.0/1.0)

| | | | AGE > 97.5: medlow (5.0)
| | | NOX > 0.655

| | | | CHAS = 0: low (80.0/8.0)
| | | | CHAS = 1

| | | | | DIS <= 1.7455: low (2.0)
| | | | | DIS > 1.7455: medlow (2.0)

Fig. 1. A decision tree generated by the WEKA’s j48 classifier

10 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

Baseline class distribution:

low:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [133 - 29%]
medlow:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [131 - 29%]

medhigh:~~~~~~~~~~~~~~~~~~~~~ [97 - 21%]
high:~~~~~~~~~~~~~~~~~~~~~ [94 - 21%]

Treatment:[PTRATIO=[12.6..16)
RM=[6.7..9.78)]

New class distribution:
low: [0 - 0%]

medlow: [0 - 0%]
medhigh: [1 - 3%]

high:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [38 - 97%]

Fig. 2. A textual treatment generated by the TAR3 learner.

Fig. 3. A graphical representation of a treatment generated by the TAR3 learner.

UNDERSTANDING MODELS 11

penalty function unique to each system being simulated). Therefore, before they
can be used by the treatment learner, these scores must be sorted into discrete
classes. We assign these classes using a process called BORE, short for best or
rest. BORE is a general classification scheme that - given data and a mathe-
matical function involving one or more attributes - categorizes a piece of data
as ”best” or ”rest” according to this function. Commonly, this is not a strict
binary split. For example, the scores might be sorted into four quartiles. The
top quartile (0.75 ∗MAX to MAX) will be classified as ”best,” while the other
three quartiles will be classified as rest1, rest2, rest3.

BORE maps the individual factors into a hypercube, which has one dimension
for each scored utility. It then normalizes instances scored on the N dimensions
from 0 for ”worst” to 1 for ”best.” The corner of the hypercube at 1,1,... is
the apex of the cube and represents the desired goal for the system. All of the
examples are scored by their normalized Euclidean distance to the apex.

For the purposes of this study, outputs were scored on only one dimension-
the scores assigned to each data instance by that system’s penalty function. For
each run i of the simulator, the n outputs Xi are normalized to the range 0...1
as follows:

Ni =
Xi − min(X)

max(X) − min(X)
. (1)

The Euclidean distance of N1, N2, ... to the ideal position of N1=1, N2=2, ... is
then computed and normalized to the range 0..1 as

Wi = 1 −
√

N2

1
+ N2

2
+ ...√

n
, (2)

where higher Wi (0 ≤ Wi ≤ 1) correspond to better runs. This means that the
Wi can only be improved by increasing all of the utilities. To determine the best
and rest values, all of the Wi scores were sorted according to a given threshold.
Those that fall above this threshold are classified as “best” and the remainder
as “rest” (or, in some cases, multiple divisions of ”rest”).

3.5 TAR3

TAR3 (and its predecessor TAR2 [37]) are based on two fundamental concepts—
lift and support. The lift of a treatment is the change that some decision makes
to a set of examples after imposing that decision. TAR3 is given a set of training
examples E. Each example e ∈ E contains a set of attributes, each with a specific
value (which have commonly been discretized into a series of ranges). These
attributes (and the range their values fall within are directly mapped to a specific
classification (stated formally - Ri, Rj , ... → C). The individual class symbols
C1, C2,... are ranked and sorted based on a utility score (U1 < U2 < ... < UC ,
where UC is the target class). Within dataset E, these classes occur at certain
frequencies (F1, F2,..., FC) where

∑

Fi = 1 (that is, each class occupies a fraction
of the overall dataset). A treatment T of size M is a conjunction of attribute
value ranges R1 ∧ R2... ∧ RM (these ranges are obtained by discretizing and

12 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

combining several of the original continuous attribute values). Some subset of
the dataset (e ⊆ E) is contained within the treatment; that is, if the treatment
is used to filter E, e ⊆ E is what will remain. In that subset, the classes occur at
frequencies f1, f2,..., fC . TAR3 seeks the smallest treatment T which induces the
biggest changes in the weighted sum of the utilities multiplied by the frequencies
of the classes. This score, the score of e ⊆ E where T has been imposed, is divided
by the score of the baseline (dataset E when no treatment has been applied).
Formally, the lift is defined as

lift =

∑

c Ucfc
∑

c UcFc

. (3)

The classes used for treatment learning are assigned a score U1 < U2 <
... < UC and the learner uses this to assess the class frequencies resulting from
applying a treatment by finding the subset of the inputs that falls within the
reduced treatment space. In normal operation, a treatment learner conducts
controller learning; that is, it finds a treatment which selects for better classes
and rejects worse classes. By reversing the scoring function, treatment learning
can also select for the worst classes and reject the better classes. This mode is
called monitor learning because it locates the one thing we should most watch
for.

Real-world datasets, especially those from hardware systems, contain some
noise —incorrect or misleading data caused by accidents and miscalculations. If
these noisy examples are perfectly correlated with failing examples, the treat-
ment may become overfitted. An overfitted model may come with a massive
lift score, but it does not accurately reflect the general conditions of the search
space. To avoid overfitting, learners need to adopt a threshold and reject all
treatments that fall on the wrong side of this threshold. We define this threshold
as the minimum best support.

Fig. 4. Probability distribution of indi-
vidual attribute scores.

Given the desired class, the best
support is the ratio of the frequency
of that class within the treatment sub-
set to the frequency of that class in
the overall dataset. To avoid over-
fitting, TAR3 rejects all treatments
with best support lower than a user-
defined minimum (usually 0.2). As a
result, the only treatments returned
by TAR3 will have both a high lift
and a high best support. This is also
the reason that TAR3 prefers smaller
treatments. The fewer rules adopted,
the more evidence that will exist sup-
porting those rules.

TAR3’s lift and support calcula-
tions can assess the effectiveness of

UNDERSTANDING MODELS 13

a treatment, but they are not what
generates the treatments themselves.
A naive treatment learner might at-
tempt to test all subsets of all ranges of all of the attributes. Because a dataset
of size N had 2N possible subsets, this type of brute force attempt is inefficient.
The art of a good treatment learner is in finding good heuristics for generating
candidate treatments.

The algorithm begins by discretizing every continuous attribute into smaller
ranges by sorting their values and dividing them into a set of equally-sized bins.
It then assumes the small-treatment effect; that is, it only builds treatments
up to a user-defined size. Past research [24, 25] has shown that this threshold
should be no higher than four attributes. Note that this is not hard scientific
fact, more of a rule of thumb - larger treatments are harder for humans to quickly
comprehend.

TAR3 will only build treatments from the discretized ranges with a high
heuristic value. It determines which ranges to use by first determining the lift
score of each attribute’s value ranges (that is, the score of the class distribution
obtained by filtering for the data instances that contain a value in that particular
range for that particular attribute). These individual scores are then sorted
and converted into a cumulative probability distribution, as seen in Figure 4.
TAR3 randomly selects values from this distribution, meaning that low-scoring
ranges are unlikely to be selected. To build a treatment, n (random from 1...max
treatment size) ranges are selected and combined. These treatments are then
scored and sorted. If no improvement is seen after a certain number of rounds,
TAR3 terminates and returns the top treatments.

3.6 TAR4.1

TAR3, while effective at generating informative treatments, is not a very efficient
algorithm. It stores all examples from the dataset in RAM and requires three
scans of the data in order to discretize, build theories, and rank the generated
treatments. The TAR4.1 treatment learner was designed to address these ineffi-
ciencies. Modeled after the SAWTOOTH [41] incremental Naive Bayes classifier,
TAR4.1’s scoring heuristic allows for an improved runtime, lower memory usage,
and a better ability to scale to large datasets.

Naive Bayes classifiers offer a relationship between fragments of evidence Ei,
a prior probability for a class P (H), and a posteriori probability P (H |E) defined
by

P (H |E) =
∏

i

P (Ei|H)
P (H)

P (E)
. (4)

For numeric features, a features mean µ and standard deviation σ are used in a
Gaussian probability function [57]:

f(x) = 1/(
√

2πσ)e−
(x−µ)2

2σ2 . (5)

14 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

TAR4.1 still requires two passes through the data, for discretization and for
building treatments. These two steps function in exactly the same manner as
the corresponding steps in the TAR3 learner. TAR4.1, however, eliminates the
final pass by building a scoring cache during the BORE classification stage. As
explained previously, examples are placed in a U -dimensional hypercube during
classification, with one dimension for each utility. Each example e ∈ E has a
normalized distance 0 ≤ Di ≤ 1 from an apex, an area where the best examples
reside. When BORE classifies examples into best and rest, that normalized dis-
tance is added as a score, called Di (the Euclidean distance from 0), to the down
table and a separate score, 1 − Di (or, the distance from the best), is entered
into the up table.

When treatments are scored by TAR4.1, the algorithm does a linear-time
table lookup instead of scanning the entire dataset. Each range Rj ∈ examplei

adds scores down i and upi to counters F (Rj |rest) and F (Rj |best). These coun-
ters are a summation of scores for a range Rj across the dataset, and represent
how often data examples containing that range appear in the best and rest. These
summations are then used to compute the following probability and likelihood
equations:

P (best) =

∑

i upi
∑

i upi +
∑

i down i

, (6)

P (rest) =

∑

i down i
∑

i upi +
∑

i down i

, (7)

P (Rj |best) =
F (Rj |best)

∑

i upi

, (8)

P (Rj |rest) =
F (Rj |rest)
∑

i down i

, (9)

L(best |Rk ∧ Rl ∧ ...) =
∏

x

P (Rx|best) ∗ P (best), (10)

L(rest |Rk ∧ Rl ∧ ...) =
∏

x

P (Rx|rest) ∗ P (rest). (11)

TAR4.1 finds the smallest treatment T that maximizes

P (best |T) =
L(best |T)

2

L(best |T) + L(rest |T)
. (12)

Note the squared term in the top of the equation, L(best |T)2. The standard
Naive Bayes design assumes independence between all attributes and keeps sin-
gleton counts. By not squaring that term, TAR4.1 adds redundant information,
which alters the generated probabilities. In effect, it produced treatments with
high scores, but without the support required by the TAR3 algorithm. By squar-
ing that term, the likelihood that a range appears in an area of top scores, those
treatments that lack support are pruned in favor of those that have both a good
score and support.

UNDERSTANDING MODELS 15

4 Optimization Techniques

Treatment learning is a relatively unexplored field, limiting the number of al-
gorithms that TAR3 and TAR4.1 can be benchmarked against. However, the
treatment problem is fundamentally an optimization [14] problem. The scor-
ing methods used are simply mathematical objective functions. Therefore, it
becomes possible to compare the treatment learning tools against the state-of-
the-art techniques used to address optimization problems.

When presented as an optimization problem, the objective function F for
TAR3 looks like:

maximize F (x) =

∑

c Ucfc(x)
∑

c UcFc

, (13)

where Uc, fc and Fc are defined as for Equation 3, and x is the attributes and
ranges for a suggested treatment. Similarly, the objective function for TAR4.1
is defined as

maximize F (x) =
L(apex |x)

2

L(apex |x) + L(base|x)
, (14)

where the likelihood functions L are the same as those given in Equation 12. For
both Equation 13 and Equation 14, x is the treatment—the attributes (discrete
values) and their ranges (both continuous and discrete values)—and the size of x
will vary based on the number of attributes that the algorithms choose for that
particular treatment. Note that since the algorithms used by TAR3 and TAR4.1
do not use gradients there is no requirement for either of the above F (x) to be
smooth, and, in practice, both objective functions are highly non-smooth.

Numerous researchers have warned of the difficulties associated with com-
paring radically different algorithms [23,27,56]. Both of these optimization tech-
niques - Simulated Annealing and a Quasi-Newton method - were chosen because
they are well-studied, powerful, and ubiquitous approaches that could easily use
the same objective functions as the TAR3 and TAR4.1 treatment learners (thus
rendering the results comparable). Furthermore, the algorithms that we use are
unconstrained (constrained algorithms work towards a pre-determined number of
possible solutions while unconstrained methods are allowed to adjust to the goal
space). Simulated Annealing has been used to optimize similar design models in
our own previous work [19].

Technically, any gradient-based approach (including the Quasi-Newton method
used in our experiments) is at a disadvantage when addressing these problems;
both the problem and the search space are both a mixture of discrete and con-
tinuous variables and the solution space is often locally discontinuous or highly
non-linear. Still, researchers often choose to use gradient-based optimization for
these problems because, while there is no expectation that they should work,
they often (against expectation) do work. When gradient-based methods per-
form well, they usually do so at a lower computational cost than standard sam-
pling methods (which require heuristics in order to avoid becoming stuck within
local minima). Quasi-Newton methods make local approximations to the func-
tion, and as a result, they don’t require that the function is locally smooth in

16 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

order to make their next guess. Furthermore, as they are constantly rebuilding
the Hessian matrix, they do not have the same tendency towards searching a
subspace of a high-dimensional space that Conjugate Gradient methods tend to
have. The particular Quasi-Newton method implemented here utilizes heuristics
for jumping away from discontinuities in the solution when those discontinuities
are discovered. Thus, of all gradient-based methods, this is the most applicable
for solving the optimization problem presented by these design simulations.

4.1 Simulated Annealing

Simulated Annealing (SA) is a classic stochastic search algorithm. It was first
described in 1953 [39] and refined in 1983 [31]. Fundamentally, SA is a hill
climber - it starts in a random location and travels to higher-scoring locations in
the immediate neighborhood. Standard hill climbers are prone to becoming stuck
in local maxima. To avoid this, Simulated Annealing borrows a heuristic from
its namesake, the metallurgy technique ”annealing.” In real-world annealing,
a material is rapidly heated, then cooled. The heat causes the atoms in the
material to rapidly jump around. However, as it cools, the atoms stabilize and
solidify - they transition from large jumps to small wiggles. Similarly, Simulated
Annealing will jump to sub-optimal solutions at a probability determined by the
current state of the temperature function. At first, it will rapidly jump around
the search space before finding stability.

The Simulated Annealing algorithm used in this experiment begins by mak-
ing an initial guess. This guess is a twelve number vector that approximates a four
variable treatment. The exact structure of this vector is {ATTRIBUTE,MIN,MAX}
repeated four times. The algorithm then tries to solve objective functions corre-
sponding to Equation 13 and Equation 14, except that, in this case x is limited
by the algorithm to the structure of the initial guess. Note that Simulated An-
nealing only requests that the objective functions be smooth in a limited region
near the final solution. We have no such guarantees for our problem, but in
practice this is a workable approximation.

The algorithm will continue to operate until a.) the number of tries is ex-
hausted, b.) improvement has not been seen for several rounds, or c.) a certain
temperature threshold (a function of the time) is met. The current worth will
then be compared to a minimum worth threshold and, if that value is not met,
the algorithm will reset. The number of possible resets can be limited, but was
not for this experiment.

4.2 Quasi-Newton Optimization

The data mining problem posed in this study requests some subset of the vari-
ables and then requests a range for those variables. The best solution to this
problem necessarily consists of a combination of integer and (likely nonlinear)
continuous values. What’s more, the search space is large: there are on the order
of hundreds of attributes and on the order of thousands of individual runs. To

UNDERSTANDING MODELS 17

complicate the problem further, the possible values for each attribute may them-
selves be continuous or discrete. As a final barrier to traditional optimization
techniques, the input variables may not be directly correlated with the output
class that is being chosen - either because the appropriate input variables were
not selected out of the thousands or (sometimes) tens of thousands of possi-
ble input variables or because of some non-determinism in the solution. These
factors cause the objective function to be highly non-smooth—there are likely
to be many discontinuities and there are no guarantees that the neighborhood
of the global solution will be discontinuity-free. Classically, this is the sort of
problem that must be solved by direct search optimization methods. However,
on a practical basis, optimization techniques derived by assuming that the op-
timization function is smooth tend to be much more efficient, and often work
better-than-expected by utilizing a wide array of numerical ”tricks” that work
to make the objective function act as if it were more smooth.

The particular optimization technique implemented for this work is a Quasi-
Newton method with a BFGS update [49]. This O(n2) method builds up Hessian
information as the iterations proceed, and the approximate Hessian is updated
with a rank-one matrix. This constant building of the curvature information
tends to avoid the subspace-searching problem that Conjugate Gradient meth-
ods can fall into for large problems like those solved within the RSE group. It also
avoids the uncertainty that comes with parameter tuning for trust-region meth-
ods like Levenberg-Marquardt. However, like all descent methods, the algorithm
assumes that the function it is optimizing is essentially continuous.

Mixed integer-nonlinear problems can be solved in several ways [21]. The
first such way is a combinatorial approach–solving all possible combinations and
choosing the combination that gives the best answer to the objective function.
For the types of problems solved in practice within the RSE group at NASA
Ames, the combinatorial approach is computationally intractable. One recent
example looked for the best 4 attribute treatment out of 128 attributes; the
solution of this problem would have required almost 11 million separate opti-
mizations. Even limiting the problem to choose the one best treatment would still
require 128 different optimizations. Instead, as suggested by Gill et al [21], we
introduced a new set of variables ni into the TAR3 objective function where each
variable was the percentage likelihood that the attribute i should be included in

the treatment. We then introduced the term
∑

i ni
2−1

into the objective func-
tion to further increase the likelihood of a single discrete choice being made by
the optimizer. The final form of this objective function is

minimize F (x) =
∑

i

1

ni
2

−∑

c Ucfc(x, ni, δx(ni))
∑

c UcFc

, (15)

where Uc and Fc are defined as for Equation 3. The vector x now takes the
form {ni,MIN,MAX, ...} where all of the components are continuous and is 3
times the number of attributes N in size. The variable fc is still the frequency
of the class within each subset, but each sum in fc is now modified by ni, the
percentage likelihood that the attribute i should be included in the treatment.

18 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

The threshold function δx determines whether a particular attribute has enough
of a percentage likelihood of being included in the treatment by comparing the
value of ni to a predetermined threshold. The initial values of ni are set to
the inverse of the number of attributes, 1/N . As the optimizer shrinks some

of the values of ni to maximize the
∑

i ni
2−1

term, some of the values of ni

become less than 1/(N + 1). When ni crosses this threshold, the δx function
removes the attribute from the rule. The optimizer must then choose between

increasing the
∑

i ni
2−1

term by choosing discrete values (this will also increase
the support term) at the cost of reducing the overall worth when attributes are
dropped from the rule. Note that Quasi-Newton BFGS methods have some small
advantage over some other gradient-based methods in this case because they are
making local smooth approximations to the curvature of the function. However,
the problem itself, as mentioned before, is inherently non-smooth. In fact, in this
case, the objective function can have cliffs even with respect to the continuous
ranges because the input to the objective function, the data, is also inherently
discrete. As a result, it is very likely that the optimizer will become stuck in
local equilibria and that the final solution will be highly dependent on the initial
conditions.

While it is possible that we could have improved the performance of any
gradient-based method by recasting the objective function to one that was more
smooth or (perhaps) by recasting the problem as a constrained minimization
problem, no such solution presented itself after a good-faith effort to discover
it. This is a common limitation of gradient-based methods. While this limita-
tion exists, it does not prevent researchers from trying to use gradient-based
optimization methods for non-smooth problems—when the problem is smooth
enough and the initial guess is close enough to the global minimum there can be
a significant performance increase over direct search methods like polytope or
simulated annealing. Treatment learning is, in essence, a direct search method.

5 Related Work

The work being performed here—choosing the inputs and ranges most likely to
lead to some output—can be thought of as a type of sensitivity analysis known
as Monte Carlo Filtering [44]. The heavy lifting in most sensitivity analyses of
this type is currently being done either with straight linear correlation between
the output class and the inputs, a method known as regional sensitivity analysis
(RSA) which relies heavily on standard statistical tests such as the Smirnov
two-sample test, or it is being done using some sort of regression analysis in
which the relationships between the inputs and the outputs are derived from
the data [4, 40, 46]. Linear correlations fail in models which are not smooth.
For large models, RSA tends to have a very low success rate [50]. Regression
analysis builds some sort of polynomial relationship by finding the correlation
coefficients between the inputs and outputs. These correlation coefficients are
then used to solve the original question—which inputs and their ranges most
affect the output—by looking at the magnitudes of the correlation coefficients

UNDERSTANDING MODELS 19

across the entire range. Regression analysis is computationally expensive and
tends to be limited to relatively small numbers of theoretically independent
inputs. RSA also tends to assume that relationships between the inputs and
outputs are smooth [40, 46].

The types of problems being solved in this paper are non-smooth and of high
dimensionality. To overcome the complications involved in finding the correlation
coefficients for this sort of problem, we choose in practice to ignore the corre-
lation coefficients altogether and use machine learning techniques that sample
the space and solve the original question directly. One example of another ex-
isting sensitivity analysis that uses machine learning is the identification of tool
faults in the semiconductor industry. Intel uses a technique similar in spirit to
the analysis used by NASA’s Robust Software Engineering (RSE) group to find
spatial fault patterns on silicon wafers [29]. While the overall goal and appear-
ance of Intel’s method is comparable to RSE’s, the details for every step of the
analysis are very different and they do not use treatment learning for their anal-
ysis [15,52,55]. The fact that parametric testing is being used across widespread
applications demonstrates its promise; the massive divergence in the individual
components of the technique is evidence that there is still significant research to
be done to streamline its use for real-world data.

Gay and Menzies recently conducted a similar treatment learning exercise
on NASA Jet Propulsion Lab projects [19]. These projects were encoded in the
Defect Detection & Prevention format [13, 17], which is a compiled model rep-
resenting the requirements of a module, the risks that could compromise those
requirements, and mitigations that can allay these risks. Their candidate solu-
tion, KEYS2, is based on the theory that a small number of important (”key”)
variables control the overall search space. The algorithm generates a large popu-
lation of treatments and uses a Bayesian ranking mechanism similar to that of the
TAR4.1 algorithm (presented later in this paper) to score these treatments. Each
round, the top-scoring treatments are used to fix model attributes to specific
values. They benchmarked KEYS2 against Simulated Annealing, MaxWalkSat,
and an A* search and found that their treatment learner proposed solutions that
completed a higher number of requirements on a lower budget than the other
optimization techniques. Additionally, KEYS2 executed the largest models in a
fraction of the time that it took for other algorithms.

6 Experiment

Ten Monte Carlo Filtering analyses were run for three different datasets, using
five different methods: TAR3, TAR4.1, Simulated Annealing with the TAR3
objective function, Simulated Annealing with the TAR4.1 objective function,
and a Quasi-Newton BFGS method with a modified version of TAR3’s scoring
function. As discussed earlier, two of the datasets come from actual analyses
performed within the RSE group at NASA Ames. The data in these two sets
were gathered during Monte Carlo runs using a high-fidelity physics simulation.
One of these datasets represents reentry simulations while the other dataset

20 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

represents launch abort simulations. The first dataset contains 191 runs worth
of 52 different attributes. The second dataset contains 1000 runs worth of 249
attributes. The data from these two projects had complicated penalty functions
based on all of the flight requirements—these requirements include metrics like
bounds on miss distances, fuel consumption, and the stress on the parachutes.
Data with the highest penalty function values are said to have ‘failed’ and data
with the lowest penalty function values are considered to be the ‘best’ data.
Note that, because of the complicated penalty function, the ‘failed’ data items
are likely to have exceeded the allowed values on more than one requirement.
An analysis like this gives an overall view of the safest flight conditions given
all of the different possible individual mission-critical failures. While the RSE
group will often go on to look at individual failure types, the purpose of this
experiment was to search for the factors leading to any type of mission-critical
failure.

To demonstrate the broad applicability of the technique, we also ran a Monte
Carlo Filtering analysis on some data obtained during a bicycle ride. The soft-
ware that generated the data gave a particularly noisy power measurement. The
penalty function used in this dataset evaluated each point in real-time as an
individual trial and penalized each run by the noise in the power measurement.
The goal was to see which of the other measured parameters was most likely
to correspond with the noisy power measurement. This dataset contained 4435
runs over 11 attributes.

7 Results

During each trial, several statistics were collected in order to assess the treat-
ments output by that algorithm. Let {A, B, C, and D} denote the true negatives,
false negatives, false positives, and true positives. From these measures, we can
compute certain standard formulas.

recall = probability of detection =
D

B + D
(16)

probability of false alarm =
C

A + C
(17)

precision =
D

D + C
(18)

For recall and precision, higher values are better. For the probability of false
alarm, lower values are desired. Those performance measures, along with the
runtime (which should be minimized) were collected for each individual run of
each algorithm, then the averages, medians, and standard deviations were saved
for each trial. After ten repeats, those statistics were combined and used to
create quartile charts. The results for each of our algorithms were combined and
ranked using the Mann-Whitney rank-sum test [33].

UNDERSTANDING MODELS 21

These quartile charts, sorted by the Mann-Whitney ranks, can be seen in
Figure 5, Figure 6, and Figure 7. Note that SA-T3 and SA-T4 refer to the
two variants of Simulated Annealing, using the TAR3 and TAR4.1 objective
functions respectively. Where used, QN refers to the Quasi-Newton gradient-
based method. Also note that only the median values from each individual run
were used in the combined results. In each quartile chart, the horizontal lines
show the 25 to 75 percentile range, and the black dot represents the median point.
The ranks come from the Mann-Whitney rank-sum test at a 95% confidence level.
Each rank, from one to five, is statistically different and better than the following
rank. If two algorithms have the same rank, their results are not statistically
different.

After looking at the results from all three datasets, a clear ranking emerges
for each of the collected performance statistics (assessed by the Mann-Whitney
test). These rankings are (from best to worst, with parentheses denoting a tie):

– Runtimes: TAR4.1, TAR3, QN, (SA-T4, SA-T3)
– Recall: (TAR4.1, QN), SA-T4, TAR3, SA-T3
– Probability of False Alarm: TAR3, SA-T3, TAR4.1, SA-T4, QN
– Precision: TAR3, SA-T3, TAR4.1, (SA-T4, QN)

While these rankings do not show a single ”winner,” they do present a clear
victory for the two treatment learning techniques. Either TAR3 or TAR4.1 is
ranked at the top in every category, and neither of them are ranked worst in
any category. TAR4.1 ties with the Quasi-Newton method in the recall category
when one considers the statistical ranking; however, TAR4.1 does tend to show
a higher median value.

The Simulated Annealer acted in accordance with its objective function.
When using the TAR3 objective function, it tends towards high precision and
low recall. Likewise, when using the TAR4.1 objective function, Simulated An-
nealing returns treatments with higher recall and low precision. In both cases, it
performed more weakly than its treatment learner counterpart. Both the weaker
results and slower runtime can be explained by the very design of Simulated
Annealing: because it makes a single initial guess and mutates it, it is unable
to try as many combinations as TAR3 or TAR4.1. It must keep trying to make
its guess better, and only resets after certain timers expire. It keeps resetting
until a certain score threshold is met, which is why it is slower than the other
algorithms. If its initial guess is particularly poor, it will never be able to mutate
it into something that scores highly. Thus, it will reset until it is able to find a
good mutation.

Quasi-Newton performs very well on recall, even tying with TAR4.1 in the
rank-sum test. However, it also has the worst probability of selecting false posi-
tives. In fact, its false positive rate exceeds its true positive rate on the bicycle
dataset. Quasi-Newton is extremely imprecise, it tries to suggest treatments that
contain most of the data rather than making any attempt to fit the treatment
to the data. As with Simulated Annealing, Quasi-Newton returns results that
are highly dependent on the initial conditions. This is because the data has a

22 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

Metric Project 1

Runtime (seconds)

Rank Program Median

1 TAR4.1 0.13
2 TAR3 0.31
3 QN 6
4 SA-T4 15
4 SA-T3 16

Recall

Rank Program Median Quartiles

1 TAR4.1 59 .2.1.8.2 t

1 QN 36 .1.5.5.1 t

2 SA-T4 25 .0.0.0.0 t

3 TAR3 22 .9.0.8.9 t

4 SA-T3 20 .4.0.1.4 t

0 50 100

P(False Alarm)

Rank Program Median Quartiles

1 TAR3 1 .9.3.6.9t

2 SA-T3 9 .8.5.6.8 t

3 TAR4.1 25 .4.4.6.4 t

4 QN 34 .3.5.4.3 t

4 SA-T4 71 .3.0.9.3 t

0 50 100

Precision

Rank Program Median Quartiles

1 TAR3 90 .8.0.9.8 t

2 TAR4.1 44 .3.8.5.3 t

2 SA-T3 42 .0.8.3.0 t

3 QN 24 .5.1.9.5 t

3 SA-T4 11 .2.5.1.2 t

0 50 100

Fig. 5. Results on several criterion, sorted by Mann-Whitney rank, for the RSE Project
1. In each quartile chart, the horizontal lines (if any) show the 25 to 75 percentile
range, and the black dot represents the median point. Quartiles are obtained from
summarizing data over ten repeats. Row i is ranked higher than row i− 1 if their value
distributions are statistically different (Mann-Whitney 95% confidence level) and the
median of row i is better than row i + 1. For recall and precision, higher values are
better. For the probability of false alarm, lower values are desired.

UNDERSTANDING MODELS 23

Metric Project 2

Runtime (seconds)

Rank Program Median

1 TAR4.1 0.1
2 TAR3 0.2
3 QN 3.3
4 SA-T3 2.5
5 SA-T4 3.1

Recall

Rank Program Median Quartiles

1 TAR4.1 48 .9.0.9.9 t

1 QN 44 .1.8.2.1 t

2 SA-T4 27 .3.1.9.3 t

3 TAR3 23 .9.1.9.9 t

4 SA-T3 19 .8.2.8.8 t

0 50 100

P(False Alarm)

Rank Program Median Quartiles

1 SA-T3 3 .5.8.7.5 t

2 TAR3 6 .6.4.9.6 t

3 SA-T4 23 .2.2.9.2 t

3 TAR4.1 28 .0.0.3.0 t

4 QN 40 .4.9.3.4 t

0 50 100

Precision

Rank Program Median Quartiles

1 TAR3 58 .9.0.9.9 t

1 SA-T3 53 .8.5.5.8 t

2 TAR4 37 .1.9.5.1 t

3 SA-T4 25 .6.5.8.6 t

3 QN 25 .8.7.4.8 t

0 50 100

Fig. 6. Results on several criterion, sorted by Mann-Whitney rank, for RSE Project 2.
In each quartile chart, the horizontal lines (if any) show the 25 to 75 percentile range,
and the black dot represents the median point. Quartiles are obtained by summarizing
data over ten repeats. Row i is ranked higher than row i− 1 if their value distributions
are statistically different (Mann-Whitney 95% confidence level) and the median of row
i is better than row i + 1. For recall and precision, higher values are better. For the
probability of false alarm, lower values are desired.

24 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

Metric Bicycle

Runtime (seconds)

Rank Program Median

1 TAR4.1 0.18
2 TAR3 0.23
3 QN 8.3
4 SA-T4 158.1
4 SA-T3 398.5

Recall

Rank Program Median Quartiles

1 TAR4.1 40 .7.7.5.7 t

1 QN 30 .4.5.2.4 t

2 SA-T4 24 .0.2.6.0 t

3 TAR3 21 .4.6.6.4 t

4 SA-T3 19 .2.5.8.2 t

0 50 100

P(False Alarm)

Rank Program Median Quartiles

1 TAR3 6 .9.7.0.9 t

2 SA-T3 11 .1.5.0.1 t

3 SA-T4 22 .1.9.9.1 t

4 TAR4.1 31 .2.6.1.2 t

5 QN 33 .4.9.4.4 t

0 50 100

Precision

Rank Program Median Quartiles

1 TAR3 54 .0.2.5.0 t

2 SA-T3 32 .2.9.9.2 t

3 TAR4 30 .1.8.7.1 t

4 SA-T4 23 .2.6.2.2 t

4 QN 22 .0.3.9.0 t

0 50 100

Fig. 7. Results on several criterion, sorted by Mann-Whitney rank, for the bicycle
dataset. In each quartile chart, the horizontal lines (if any) show the 25 to 75 per-
centile range, and the black dot represents the median point. Quartiles represent data
summarized over ten repeats. Row i is ranked higher than row i − 1 if their value
distributions are statistically different (Mann-Whitney 95% confidence level) and the
median of row i is better than row i + 1. For recall and precision, higher values are
better. For the probability of false alarm, lower values are desired.

UNDERSTANDING MODELS 25

tendency to be discrete, while Quasi-Newton assumes continuous conditions. In
these situations, the algorithm is likely to become stuck in local minima.

Both Simulated Annealing and Quasi-Newton require favorable initial con-
ditions. This weakness is not shared by the treatment learners because of their
highly randomized nature. They do not make any single initial guess, and they
do not try to manipulate their findings. The use of stochastic search algorithms
has been criticized because their results may not be optimal; they may miss
potentially powerful treatments because they randomly skip around the space
of possible solutions. However, the problem that we are trying to solve is in-
herently not smooth (much less not convex), which means that gradient-based
optimization techniques are also likely to miss the optimal solution. This effect is
somewhat mitigated by TAR3 and TAR4.1 because they form treatments from
a cumulative probability distribution that favors high-scoring ranges.

8 Discussion

While the results show the advantage for using treatment learning algorithms
for these kinds of problems, they do not answer which one to use. TAR3 and
TAR4.1 excel in different areas, and there is a notable tradeoff between the two.
This makes it difficult to clearly recommend one over the other.

TAR3 is extremely specific in its recommendations. It tends to produce treat-
ments that maximize the lift calculation while just meeting the support require-
ment. The result of this are treatments with a low recall value and a very high
level of precision. While the recall values are weak, reflecting the lower support,
the false alarm rate is nonexistent. This alone may be a reason to favor TAR3’s
treatments. TAR3 will not give you all of the sources of failure, but it will suggest
very few false positives.

TAR4.1, on the other hand, is prone to suggesting treatments with a very
high level of support, leading to a higher probability of detection. The problem
with TAR4.1’s results is that its treatments are not well-fitted to the data, they
do a poor job of filtering out noisy factors or unnecessary information. This
results in a much higher false alarm rate then that seen in TAR3’s predictions.

The results for both treatment learners when asked to solve the problems
as designed by the RSE group, regardless of their respective strengths, tend
to be low when compared to the results of standard data mining problems in
the literature. Note that, in most cases, every single algorithm used in this
experiment returned performance values below 50%. This effect is largely due to
the type of problem being solved within the RSE group. In the experiments run
in this paper, these treatment learners were being asked to look for any critical
failure (not just specific types of critical failures). This has a tendency to blur the
results, as the learners must correlate back to a wide range of inputs, perhaps
with disjoint ranges, and there is no guarantee that key inputs for an individual
type of failure are in the dataset.

To gain a clearer look at their potential performance, we ran one additional
experiment, asking the treatment learning and optimization algorithms to look

26 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

Metric Project 2 (error: angle of attack)

Runtime (seconds)

Rank Program Median

1 TAR4.1 0.01
2 TAR3 0.02
3 SA-T3 2.6
3 QN 3.1
4 SA-T4 3.0

Recall

Rank Program Median Quartiles

1 TAR4.1 39 .5.5.9.5 t

2 QN 34 .2.8.7.2 t

3 TAR3 36 .0.1.4.0 t

3 SA-T4 24 .1.5.3.1 t

4 SA-T3 21 .1.8.5.1 t

0 50 100

P(False Alarm)

Rank Program Median Quartiles

1 TAR3 0 .0.0.0.0t

1 SA-T3 0 .0.3.0.0t

2 TAR4.1 7 .7.3.7.7 t

3 SA-T4 30 .7.3.0.7 t

4 QN 43 .3.3.7.3 t

0 50 100

Precision

Rank Program Median Quartiles

1 TAR3 100 .0.0.0.0 t

2 TAR4.1 97 .9.1.9.9 t

2 SA-T3 97 .2.6.7.2 t

3 SA-T4 81 .9.1.5.9 t

3 QN 82 .5.6.0.5 t

0 50 100

Fig. 8. Results on several criterion, sorted by Mann-Whitney rank, for a specific error
type in the second RSE project. In each quartile chart, the horizontal lines (if any)
show the 25 to 75 percentile range, and the black dot represents the median point.
Quartiles are obtained by summarizing data over ten repeats. Row i is ranked higher
than row i − 1 if their value distributions are statistically different (Mann-Whitney
95% confidence level) and the median of row i is better than row i + 1. For recall and
precision, higher values are better. For the probability of false alarm, lower values are
desired.

UNDERSTANDING MODELS 27

at a specific failure type in isolation for the second RSE project. We cannot
specify what the error was, but it was a type that would cause a critical mission
failure. Those results can be seen in Figure 8. Both TAR3 and TAR4.1 are better
able to fit their treatments to the specific problem, resulting in a much lower
false alarm rate and almost 100% precision. Interestingly, TAR3 and TAR4.1
performed almost identically, with TAR4.1 maintaining a slightly higher recall
and TAR3 a slightly higher precision. TAR3’s recall rose significantly, from a
23% median to 36%, while TAR4.1’s dropped roughly the same amount, from
48% to 39%.

This experiment in looking at a specific failure type is an even clearer ex-
ample of why treatment learning techniques should be used. While there was
an increase in precision across the board due to the more precise nature of the
problem, the performance of the optimization methods was far below the treat-
ment learners. When the TAR3 objective function was used by the simulated
annealer, it performed similarly to the actual TAR3. However, its results were
poorer and its runtime was slower. Simulated annealing with the TAR4.1 objec-
tive function and the Quasi-Newton method showed particularly poor results.
For both of these algorithms, the false alarm rate was higher than the median
detection rate.

Both the data mining and information retrieval fields have weighed in on
the tradeoff between precision and recall on numerous occasions [2,3,12,34,35],
never definitively preferring one over the other. For NASA use, both values are
highly important.. The RSE simulators allow for stochastic parameters, with the
wind values being a classic example. Even on a day in which there is no wind,
there is a chance for a gust. The model tries to mimic measured parameters
for the time of year and day in the launch location. The learners used in these
experiments only suggest treatments for parameters we can control or measure,
but these uncontrollable stochastic parameters still exist (note, however, that
these parameters are likely to be at least loosely correlated with parameters we
can control and measure). As a result, the failure boundaries are not well-defined.

In the particular cases that the RSE group is trying to solve, recall equates
to the percentage of failures contained within the predicted rule. Obviously, a
user would like recall to be high - you want the produced rules to actually
predict the failure. For example, if 95% of all parachute failures happen when the
easterly winds exceed some parameter in combination with a center of gravity
(cg) within some given range, then you would want to know that restricting
the allowable wind velocities and cg on launch day will greatly decrease the
odds of that kind of parachute failure (the next goal, at this point, would be to
find a rule that eliminates the odds of the other 5% of the failures). However,
most treatment-finding algorithms can trivially prevent 100% of launch failures
simply by specifying that the launch should never happen at all. If the learner
decides that the failures occur when the wind velocities are greater than zero,
the produced treatment is essentially stating that no launch is safe.

This is why precision is important in addition to recall - high precision values
imply that the treatment doesn’t trivially satisfy the constraints. Furthermore,

28 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

precision does more than just prevent trivial solutions; it gives the engineers
definitive trade spaces in which to work. In our previous example, we prevented
95% of parachute failures simply by restricting wind velocities in combination
with the cg. The rule could have prevented the same 95% of failures by just
restricting the cg placement without considering the wind velocities, but would
have done so with worse precision. If restricting the cg of the vehicle becomes
too expensive, it may be easier to move the launch date and time to make sure
that the the wind velocities are particularly low on the day of launch.

Given the high importance of both precision and recall on NASA simulations,
our recommendation would be to favor neither TAR3 or TAR4.1, but to run
both and compare the treatments delivered. The runtime advantage that both
algorithms have over standard optimization techniques allows for the use of both
to quickly explore the treatment space.

9 External Validity

These experiments were conducted at NASA Ames Research Center with assis-
tance from NASA contractors and civil servants. Additionally, two of the pri-
mary sources of data were from large-scale NASA project simulations. Therefore,
a possible threat to validity exists from the data and environment used for this
experiment. The external validity of NASA-based research has been debated by
other authors [36,54]. Basili et al. [5] have argued that conclusions derived from
NASA data are relevant to the overall software industry because NASA con-
tractors are obliged to demonstrate an understanding and adherence to modern
industrial best practices. These same contractors service numerous industries.
For example, Rockwell-Collins builds systems for both defense contractors and
civilian aerospace corporations.

However, the work of other authors is not enough to completely dispel the
issue of external validity. It was for this reason that the bicycle dataset was
included in this experiment. The data, recorded during the operation of a bicycle,
was not collected using NASA hardware or at a NASA facility. Despite this
separation, the same trends occurred and each of the algorithms performed at
a similar efficiency. This replication of trends shows that treatment learning is
not a task that has been tuned to NASA data; it, in fact, has applications for
both large-scale and small-scale industrial testing.

10 Conclusions and Future Work

Building a large-scale industrial system is a difficult task. It can cost millions of
dollars and require months to years of testing. Early simulation makes a large
difference, cutting both the cost and time to market [48]. However, this early
simulation does nothing if there is not a way to tell which specific factors led
to system failures. Experts are expensive and their time is limited, they cannot
waste hours sorting through gigabytes of simulation logs. They need a way to
limit the number of possible combinations that they are looking at.

UNDERSTANDING MODELS 29

Treatment learning, formally a subset of minimal contrast-set learning, is
one method of accomplishing this task. A treatment learner gathers evidence
from labeled simulation instances and determines the smallest rule that, when
imposed, makes it most likely that a specific outcome will occur.

Although the TAR3 learner has been used in prior publications, it has never
been benchmarked against optimization techniques on real-world applications.
The goal of this research is to comparatively assess two different treatment learn-
ing techniques (TAR3 and TAR4.1) against two standard optimization algo-
rithms (a Quasi-Newton method and Simulated Annealing) on real-world indus-
trial projects. Three sets of data were used, two from large NASA projects and
one from the operation of a bicycle. Each algorithm was executed multiple times
over each dataset and performance statistics were collected. The results show
that treatment learning shows better performance when compared to standard
optimization algorithms for these sorts of problems. Both TAR3 and TAR4.1
are orders of magnitude faster than standard techniques. TAR3 demonstrates
the lowest false positive rate and highest precision, while TAR4.1 produces the
highest recall. Thus demonstrating the superiority of treatment learning over
standard optimization algorithms for such design improvement. As both pre-
cision and recall are important for such NASA simulations, we favor neither
treatment learner; rather, we advocate the use of both TAR3 and TAR4.1 to
provide a pool of design suggestions.

The immediate research direction for the treatment learners will center around
improvements to the internal heuristics. One idea proposed has been to change
the discretization technique. Currently, both TAR3 and TAR4.1 use a simple
equal-bin scheme. This naive approach is likely to miss important curves in the
data space. Experiments are being conducted with various alternative schemes,
including recursive cliff-based methods [16]. Other planned improvements center
around optimization of the source code. There are still numerous memory issues
that should be addressed and the code should be re-engineered to follow the
highest industrial programming standards.

Both of our treatment learners ignore the time-dependency of the recorded
data. This is a potential weakness when looking at the failure of a complex
system, where the exact cause of a failure may not always be present at the
moment where the effect of that failure causes the system to cease functioning. A
potential avenue for future research could include incorporating a Markov Model
or a Linear Dynamical System into the data processing steps [7] and modifying
TAR3 and TAR4.1 with the ability to use these models in their analysis. The
treatment learners should consider extreme or mean values over some period
of time, whether a particular system mode was ever entered into, and other
key events. A goal for this analysis would be to find a way to use sequential
data within the machine learning techniques in order to automatically identify
interesting time-dependent factors.

30 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

11 Acknowledgments

This research was conducted at West Virginia University and the Ames Research
Center under a contract with the National Aeronautics and Space Administra-
tion. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not constitute or
imply its endorsement by the United States Government

References

1. A. Acevedo, J. Arnold, W. Othon, and J. Berndt, Antares: Spacecraft sim-
ulation for multiple user communities and facilities, in AIAA Modeling and Sim-
ulation Technologies Conference and Exhibit, 2007, pp. AIAA 2007–6888.

2. G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo, Re-
covering traceability links between code and documentation, IEEE Transactions on
Software Engineering, 28 (2002), pp. 970–983.

3. G. Antoniol and Y. Gueheneuc, Feature identification: A novel approach and
a case study, in ICSM 2005, 2005, pp. 357–366.

4. P. Austin, P. Grootendorst, and G. Anderson, A comparison of the ability of
different propensity score models to balance measured variables between treated and
untreated subjects: a monte carlo study, Statistics in Medicine, 26 (2007), pp. 734–
753.

5. V. Basili, F. McGarry, R. Pajerski, and M. Zelkowitz, Lessons learned
from 25 years of process improvement: The rise and fall of the NASA software
engineering laboratory, in Proceedings of the 24th International Conference on
Software Engineering (ICSE) 2002, Orlando, Florida, 2002. Available from http:

//www.cs.umd.edu/projects/SoftEng/ESEG/papers/83.88.pdf.

6. S.B. Bay and M.J. Pazzani, Detecting change in categorical data: Mining con-
trast sets, in Proceedings of the Fifth International Conference on Knowledge
Discovery and Data Mining, 1999. Available from http://www.ics.uci.edu/

~pazzani/Publications/stucco.pdf.

7. C. Bishop, Pattern Recognition and Machine Learning, Springer New York, 2007.

8. B. Boehm and P. Papaccio, Understanding and controlling software costs, IEEE
Trans. on Software Engineering, 14 (1988), pp. 1462–1477.

9. G. Boetticher, An assessment of metric contribution in the construction of a
neural network-based effort estimator, in Second International Workshop on Soft
Computing Applied to Software Engineering, Enschade, NL, 2001. Available from:
http://nas.cl.uh.edu/boetticher/publications.html.

10. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and regression trees, tech. report, Wadsworth International, Monterey, CA, 1984.

11. C.H. Cai, A.W.C. Fu, C.H. Cheng, and W.W. Kwong, Mining association
rules with weighted items, in Proceedings of International Database Engineering
and Applications Symposium (IDEAS 98), August 1998. Available from http:

//www.cse.cuhk.edu.hk/~kdd/assoc_rule/paper.pdf.

12. J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, The detection and clas-
sification of non-functional requirements with application to early aspects, in RE
2006, 2006, pp. 36–45.

UNDERSTANDING MODELS 31

13. S.L. Cornford, M.S. Feather, and K.A. Hicks, DDP a tool for life-cycle
risk management, in IEEE Aerospace Conference, Big Sky, Montana, March 2001,
pp. 441–451.

14. R. Dechter, Constraint Processing, Morgan Kaufmann, 2003.
15. V. Eruhimov, V. Martyanov, and E. Tuv, Constructing High Dimensional

Feature Space for Time Series Classification, Springer Berlin / Heidelberg, 2007,
ch. Knowledge Discovery in Databases: PKDD 2007, pp. 414–421.

16. U M Fayyad and I H Irani, Multi-interval discretization of continuous-valued
attributes for classification learning, in Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence, 1993, pp. 1022–1027.

17. M. Feather, S. Cornford, K. Hicks, J. Kiper, and T. Menzies, Application
of a broad-spectrum quantitative requirements model to early-lifecycle decision mak-
ing, IEEE Software, (2008). Available from http://menzies.us/pdf/08ddp.pdf.

18. B. Fischer and J. Schumann, Autobayes: a system for generating data analysis
programs from statistical models, Journal of Functional Programming, 13 (2003),
pp. 483–508.

19. Gregory Gay, Tim Menzies, Omid Jalali, Gregory Mundy, Beau Gilker-

son, Martin Feather, and James Kiper, Finding robust solutions in require-
ments models, Automated Software Engg., 17 (2010), pp. 87–116.

20. G. Gigerenzer and D.G. Goldstein, Reasoning the fast and frugal way: Models
of bounded rationality, Psychological Review, (1996), pp. 650–669.

21. P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization, Academic
Press, 1981.

22. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, 1989.

23. Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah, Algo-
rithms for the satisfiability (sat) problem: A survey, in DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, American Mathematical Society,
1997, pp. 19–152.

24. K. Gundy-Burlet, J. Schumann, T. Barrett, and T. Menzies, Parametric
analysis of antares re-entry guidance algorithms using advanced test generation and
data analysis, in 9th International Symposium on Artifical Intelligence, Robotics
and Automation in Space, 2007.

25. , Parametric analysis of a hover test vehicle using advanced test generation
and data analysis, in AIAA Aerospace, 2009.

26. R.C. Holte, Very simple classification rules perform well on most commonly used
datasets, Machine Learning, 11 (1993), p. 63.

27. G.J. Holzmann, The model checker SPIN, IEEE Transactions on Software Engi-
neering, 23 (1997), pp. 279–295.

28. Y. Hu, Treatment learning: Implementation and application, master’s thesis, De-
partment of Electrical Engineering, University of British Columbia, 2003.

29. H. Jing, R. George, and E. Tuv, Informatics in Control, Automation and
Robotics II, Springer Berlin / Heidelberg, 2007, ch. Contributors to a Signal from
an Artificial Contrast, pp. 71–78.

30. Corina Pasareanu Tim Menzies Johann Schumann, Karen Gundy-Burlet

and Anthony Barrett, Software v&v support by parametric analysis of large
software simulation systems, in 2009 IEEE Aerospace Conference, 2009.

31. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated
annealing, Science, Number 4598, 13 May 1983, 220, 4598 (1983), pp. 671–680.

32. Ron Kohavi and George H. John, Wrappers for feature subset selection, Arti-
ficial Intelligence, 97 (1997), pp. 273–324.

32 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

33. H. B. Mann and D. R. Whitney, On a test of whether one of two random vari-
ables is stochastically larger than the other, Ann. Math. Statist., 18 (1947), pp. 50–
60. Available on-line at http://projecteuclid.org/DPubS?service=UI&version=
1.0&verb=Display&handle=euclid.aoms/1177730491.

34. A. Marcus and J. Maletic, Recovering documentation-to-source code traceabil-
ity links using latent semantic indexing, in Proceedings of the Twenty-Fifth Inter-
national Conference on Software Engineering, 2003.

35. T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, Problems with
precision, IEEE Transactions on Software Engineering, (2007). http://menzies.

us/pdf/07precision.pdf.

36. T. Menzies, J. Greenwald, and A. Frank, Data mining static code attributes
to learn defect predictors, IEEE Transactions on Software Engineering, (2007).
Available from http://menzies.us/pdf/06learnPredict.pdf.

37. T. Menzies and Y. Hu, Data mining for very busy people, in IEEE Computer,
November 2003. Available from http://menzies.us/pdf/03tar2.pdf.

38. T. Menzies and E. Sinsel, Practical large scale what-if queries: Case studies
with software risk assessment, in Proceedings ASE 2000, 2000. Available from
http://menzies.us/pdf/00ase.pdf.

39. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and

E. Teller, Equation of state calculations by fast computing machines, J. Chem.
Phys, 21 (1953), pp. 1087–1092.

40. J. Oakley and A. O’Hagan, Probabalistic sensitivity analysis of complex models:
a bayesian approach, Journal of the Royal Statistical Society B, 66 (2004), pp. 751–
769.

41. A.S. Orrego, Sawtooth: Learning from huge amounts of data, master’s thesis,
Computer Science, West Virginia University, 2004.

42. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufman, 1992.
ISBN: 1558602380.

43. R.Agrawal, T.Imeilinski, and A.Swami, Mining association rules between sets
of items in large databases, in Proceedings of the 1993 ACM SIGMOD Confer-
ence, Washington DC, USA, 1993. Available from http://citeseer.nj.nec.com/

agrawal93mining.html.

44. K. Rose, E. Smith, R. Gardner, A. Brenkert, and S. Bartell, Param-
eter sensitivities, monte carlo filtering, and model forecasting under uncertainty,
Journal of Forecasting, 10 (1991), pp. 117–133.

45. A. Saltelli, K. Chan, and E.M. Scott, Sensitivity Analysis, Wiley, 2000.

46. A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni,

D. Gatelli, M. Saisana, and S. Tarantola, Global Sensitivity Analysis: The
Primer, Wiley, 2008.

47. J. Schumann, K. Gundy-Burlet, C. Pasareanu, T. Menzies, and T. Bar-

rett, Tool support for parametric analysis of large software systems, in Proc. Au-
tomated Software Engineering, 23rd IEEE/ACM International Conference, 2008.

48. S. Sendall and W. Kozacaynski, Model transformation: The heart and soul of
model-driven software development, IEEE Software, 20 (2003), pp. 42–45.

49. C. Sims, Matlab optimization software. QM&RBC Codes, Quantitative Macroe-
conomics & Real Business Cycles, Mar. 1999.

50. R. Spear, T. Grieb, and N. Shang, Parameter uncertainty and interaction in
complex environmental models, Water Resources Research, 30(11) (1994), pp. 3159–
3169.

UNDERSTANDING MODELS 33

51. B.J. Taylor and M.A. Darrah, Rule extraction as a formal method for the
verification and validation of neural networks, in IJCNN ’05: Proceedings. 2005
IEEE International Joint Conference on Neural Networks, vol. 5, 2005, pp. 2915–
2920.

52. K. Torkkola and E. Tuv, Feature Extraction, Springer Berlin / Heidelberg,
2006, ch. Ensembles of Regularized Least Squares Classifiers for High-Dimensional
Problems, pp. 297–313.

53. Geoffrey G. Towell and Jude W. Shavlik, Extracting refined rules from
knowledge-based neural networks, Machine Learning, 13 (1993), pp. 71–101.

54. B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, On the relative
value of cross-company and within-company data for defect prediction, Empirical
Software Engineering, (2009). Available from http://menzies.us/pdf/08ccwc.

pdf.
55. E. Tuv, A. Borisov, and K. Torkkola, Intelligent Data Engineering and Auto-

mated Learning – IDEAL 2006, Springer Berlin / Heidelberg, 2006, ch. Best Subset
Feature Selection for Massive Mixed-Type Problems, pp. 1048–1056.

56. Tomas E. Uribe and Mark E. Stickel, Ordered binary decision diagrams and
the davis-putnam procedure, in In Proc. of the 1st International Conference on
Constraints in Computational Logics, Springer-Verlag, 1994, pp. 34–49.

57. I.H. Witten and E. Frank, Data mining: Practical Machine Learning Tools and
Techniques 2nd edition, Morgan Kaufmann, 2005.

58. I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations, Morgan Kaufmann, 1999.

59. B. Cukic Y. Jiang and T. Menzies, Cost curve evaluation of fault prediction
models, in Proceedings, ISSRE’08, 2008. Available from http://menzies.us/pdf/

08costcurves.pdf.

34 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

A Reply to Reviewers

Thank you for allowing us to revise and resubmit this paper. This draft has been
significantly changed from the last round and we believe that this latest draft
addresses the issues raised by the reviewers.

This issues are shown below in italic font and our replies are shown in plain
font.

Editor’s Summary

You need to focus on stating the problem more clearly and clearly outlining your
novel contribution(s). Part of that will include relating better to your own re-
cent work mentioned by Reviewer#1. Also, please make clear what you mean by
”Monte Carlo”, as both reviewers seem confused on this point.

We now define Monte Carlo methods (as they are used at NASA’s Reli-
able Systems Group) on page two of this new draft. Also, we have pulled
it from the title. The new title is more focused on the precise contribution
of this paper.

Also, it seems like it should be clear to readers exactly what mission critical
failures your tool diagnosed! Please fix that also.

Note that we have removed the term “diagnosed” from this version.
Rather, now we say we identify the factors that select for different out-
comes.

In addition, please address in detail all the comments of both reviewers.

REVIEWER #1

Summary: The paper experimentally evaluates two, related treatment learners
developed by the authors, TAR3 and the more recent TAR4.1, against two opti-
mization algorithms, Simulated Annealing and Quasi-Newton algorithms, using
similar objective functions, on three datasets. The first two of these are simula-
tions from NASA systems; the third is data from a bicycle ride.

The paper reports three findings. The first is that treatment learners are much
faster than the SA and QN optimization algorithms. This confirms earlier results
by the second author in treatment learners. The second finding is that TAR3’s
treatments are more precise than SA and QN. The third finding is that TAR4.1
has a higher recall and lower false positive rate than SA or QN.

The paper’s contribution is its experimental results showing that the two treat-
ment learning algorithms out-perform two standard optimization algorithms on
the datasets. The reported results are interesting and have important implica-
tions for the expanded use of treatment learners in analyzing datasets produced
by simulations of large, complex systems.

Major Comments:

UNDERSTANDING MODELS 35

1. Two of the datasets were from physics simulations for launch-abort and
reentry of a vehicle, and both of these are certainly mission critical. However,
contrary to the expectation raised by the title, it was not shown in the paper
whether or how the treatment learner results actually assisted in diagnosing any
mission-critical failures in these cases, nor were any examples given. The main
experiment looked for any failure type, not an individual failure type. Fig. 9 and
the accompanying text describe an experiment for ”a specific error type” but no
information is given as to what that was. The abstract refers to ”fault points” and
”settings most likely to cause a mission-critical failure”, but again, this seemed
to motivate the work on treatment learners rather than reflect results reported in
this paper.

The wording in the paper has been revised and strengthened. We have
provided some details on the failures being searched for in section 2. Note
that some of the specifics cannot be discussed due to government secrecy
requirements. We have also attempted, throughout sections 6 and 7, to
clarify that these treatment learners are only looking for mission-critical
failures, not just any type of failure.

2. The fact that TAR3’s treatments perform better than standard techniques is
not a new finding. Two of the authors of this paper were co-authors on a 2009
paper, ”Software V&V Support by Parametric Analysis of Large Software Sim-
ulation Systems,” that explored combinations of two learners, TAR3 and AU-
TOBAYES. The first two authors are co-authors on a 2010 Automated Software
Engineering paper, ”Finding Robust Solutions in Requirements Models,” that
uses BORE and TAR, and describes a comparison with simulated annealing in
a different context. These papers should both be cited here as related work.

This paper had already been submitted prior to the acceptance of the
2010 ASE paper. A description of that experiment has been added to
the ”Related Work” section, and the 2009 paper is now referenced. And
please note that we would argue that the empirical comparisons offered
in this paper are far more convincing that those other studies:
– The model used in the ASE conference paper was a heuristic software

process model invented in a few weeks by graduate students. The
models used here are far more elaborate, far more mature, and far
more complex.

– Comparing against just simulated annealing? That’s a straw man
that falls very quickly. In this paper, we took care to ask the local
NASA modeling experts “what is your state of the art technique?” (it
was the Quasi-Newton methods), then we benchmarked out methods
against that state of the art.

3. The paper is unnecessarily hard to read in several places and needs to be care-
fully edited to fill in logical gaps (see comments) and provide continuity across
what seem to be separately authored sections that sometimes lack cohesion.

This new version of the paper has been edited more substantially.

36 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

4. Page 16 shows TAR4.1 and QN as tied on recall (i.e., within parentheses),
but Figs. 6-8, as well as the introduction, indicate that TAR4.1 is better than
QN on recall.

TAR4.1 and QN tied in terms of statistical ranking, though TAR4.1 had
a better median values. This has been clarified in the section 7.

5. The discussion of TAR3 vs. TAR4.1 on p. 21 can probably be strengthened a
bit. For example, can anything be said regarding the choice made by the Margins
Analysis Project as to whether to use TAR3 or TAR4.1 be included in the dis-
cussion on p. 21? The only guidance given is that ”The final recommendation
on which treatment learner to use comes down to the priorities of a particular
project.” I would also guess that the data mining and IR fields have ”weighed
in” on whether precision or recall matters most for mission-critical systems.

Additional discussion has been added on the importance of precision vs
recall in section 8.

6. Page 21: At least a brief explanation is needed as to why these two algorithms
were chosen for the benchmark comparison.

A justification was added. Thank you for pointing this out this oversight.

Minor:
1. The paragraph in the Introduction, beginning ”Ultimately, classifiers” on

page 2, should be rewritten to be clearer to a reader without a background in
this area. Is a ”category” here the same as a ”Class” in the previous paragraph?
What’s a ”smallest” rule? The previous paragraph referred instead to a set of
rules. What is evidence? What is a complex target? Try to keep your reader with
you through the Introduction by defining your terms, using consistent terminology
and/or abstracting out the details. A small example would help here.

The introduction has been revised with more consistent terminology.
Additionally, an example of a situation where treatment learning would
be used has been added.

2. It’s not clear what Fig. 1 adds, and it can be deleted without loss.

This figure had no true purpose and has been removed.

3. The first paragraph of 4.3 does not define terms. What is C? What is c? What
does ”Some subset of e subset of E” mean?

The terms used in this paragraph have been clarified.

4. Why does 4.4 begin with an explanation of what a data miner is and why
TAR3 isn’t one?

This was a piece of rhetoric to motivate the creation of a more efficient
treatment learner. This text has been removed and the beginning of
section 3.6 has been clarified to better introduce that motivation.

UNDERSTANDING MODELS 37

5. In the Future Works section, the future work in Margins Analysis does not
seem to be directly related to the work described here, so can be deleted.

All future work not directly related to the treatment learning stage has
been removed.

6. Missing noun in all figures’ captions: ”iff their their are”

Fixed, thank you for pointing this out.

7. Page 11 introduces another learner, TAR4, that preceded TAR4.1. The inno-
vation of TAR4 was the use of a Nave Bayesian classifier to improve runtime
and lessen memory. Does TAR4.1 share this? If so, it may be better to omit the
discussion of TAR4.

TAR4 and TAR4.1 are essentially identical except for a squared probabil-
ity term in TAR4.1. TAR4 was mentioned as a reason for why that term
is squared. Such introduction was deemed unnecessary, and all mentions
of TAR4 have been removed.

8. What does the ”new” in the title refer to, both TARs or just TAR 4.1? TAR3
has already been evaluated in other papers; TAR4.1 builds on TAR3 so may not
merit the claim of novelty.

The title has been changed.

9. p. 21: typo: ”for an some”

Fixed. Thank you.

10. Reference 18 should be updated. NASA should be capitalized in Ref. 31, RAID
in Ref. 33.

Thanks for pointing out the oversight. All three have been corrected.

A.1 REVIEWER #2

Those comments/remarks below are both for author and editor, and are addressed
to author of the article. 1) ”Monte Carlo filtering” in article name is never
defined/explained later in the article.

This connection was not made clear enough in the previous draft. This
concept is explained earlier, on page 2 of the current draft.

2) Need to show connection/difference between rule induction and treatment
learning. Is treatment learning a new term introduced by authors? If so what
is the necessity fir it?

38 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

We have more notes on the connection of treatment learning and other
learning methods like rule induction, decision tree learning, contrast set
learning in §3.1.
As to the necessity for a new learner, please see §3.2: “Menzies [38]
elaborated the concept of treatment learning while trying to explain
the output of data miners to business users. In one domain, he found
that users never understood the large theories being generated using
any of the above techniques. In an extreme example of this, C4.5 was
generating trees with 6000 nodes. The TAR1 prototype (discussed above)
achieved some remarkable reductions in that space; specifically, it found
constraints on just four variables that pruned away all branches except
those leading to the most preferred outcome.
The lesson of TAR1 was that, sometimes, a small minority of constraints
can control a much larger space of variables, TAR2 was an experiment in
generating tiny theories using this simplicity assumption; a small number
of factors most influence the outcome. This assumption has two conse-
quences: (1) it implies that the search for an effective model need not
be too elaborate; (2) more importantly (in terms of explanation) the
generated theory is very small. ”

3) Goal and contribution of the article should be stated unambiguously; any
specifics for the data that authors work with should be explained(at least stated)
in the abstract. The novel element (research) should be clearly distinguished - if
there is any.

The goals of this research have been more thoroughly explained in the
abstract, introduction, and conclusion.

4) p.5 : RSE - what is it ? is RSE=RSA?

RSE refers to the Robust Software Engineering Group at NASA, as
introduced in the previous section. This has been made clearer.

5) p.6-8 : authors show decision tree and result of treatment learning and say
decision tree is more difficult to interpret. This is not correct comparison since
both methods have different goals, and terminal nodes of tree (”rules”) - can
be sorted in a way that puts rules/nodes with high support/lift will be on top
- the same that ”treatment learning” does. Also it is not clear whether goal of
treatment learning is to find only one big region with high ”fail count” or to
describe all faults. Tree seems more advantageous because it can do both and
needs no discretization of numeric variables.

In our experience, decision tree summaries of simulations can be very
very large indeed: as mentioned in our reply to comment 2): “In one
extreme example of this, C4.5 was generating trees with 6000 nodes. The
TAR1 prototype (discussed above) achieved some remarkable reductions
in that space; specifically, it found constraints on just four variables that
pruned away all branches except those leading to the most preferred
outcome.”

UNDERSTANDING MODELS 39

As to the different goals of decision tree learning and treatment learning,
we would say that decision tree learners are trying to build theories about
every class while treatment learning is trying to find the delta between
classes. Our experience, documented in this paper, is that the latter
generates much smaller theories (for example, compare fig1 to fig2). In
terms of the goals of this paper (understanding complex models), the
smaller theories of treatment learner are preferred.

6) p. 8-9 : BORE Classification - is it the only special problem that is targeted
with your approach? What is the origin of this problem? Response generation
method seems taken from the sky - and obviously makes the problem not super-
vised.

BORE is a generic classification system. The data we use initially is just
given a continuous score, and BORE is used to convert those scores into
discrete class values. The text now clarifies this.

7) p.9 : Not clear how binary response of BORE is connected with multi-class
response on par 4.3 (TAR 3) - how utility costs are selected , for example?

BORE does not necessarily do a binary split, and the text has been
rewritten to show that.

8) ”Each example .. maps a set of attribute ranges ”Ri, Rj,...-¿C to some class
scores” - what does it mean? Usually example consists of feature (variable) val-
ues, not a set of intervals - do you consider really different problem statement?
How does it appear and why it is necessary? What is the number of attribute
ranges in ”...” ? to some class score - does it refer to class C?

This section has been clarified.

9) p.10 : ”Past research ... has shown that treatment size should be leads than
four attributes” - how such a general statement could be made? Was this ”re-
search” done on the same datasets with application of other RI(=rule induction)
methods? Or it is just end user concern that a rule should not be too long?

This is more of a rule of thumb intended to keep rules understandable
by humans. The wording has been clarified.

10) ”TAR3 determines ... by first determining the lift of each individual at-
tribute” - lift of an attribute is not defined.

The word ”range” was left out of this sentence. The sentence has been
rewritten to make its point clearer.

11) p.11. ”TAR3 is not a data miner” - what is the meaning of this statement?
As I see term ”data miner” is not a formal term, five bullets below also are not
formal/unambiguous definitions, at least most classifiers (linear regression ,trees,
KNN, SVN(or rule induction (apriori, PRIM) obviously do not satisfy all five
conditions below. Also bullets ”online, anytime algorithm” and ”are suspendable,
stoppable and resumably” are not clear, and seem impossible to formalize.

40 G. GAY AND T. MENZIES AND M. DAVIES AND K. GUNDY-BURLET

This was a bit of unscientific rhetoric to show that TAR3 could be more
efficient. It has been deemed necessary and has been removed.

12) ”Domingos and Pazzini have shown ... that independence assumption is a
problem only in vanishingly small percent of cases - again too general statement
to be true in real life. That is probably a consequence of obvious fact that ”real
life datasets” are vanishingly small portion of ”general” distribution of datasets
(at least because they are non-random in some way). In my experience most real
datasets contain a lot of highly correlated variables, for example pixel colors in
face and text recognition, etc.

This statement was primarily included as an interesting footnote to ex-
plain the name of the algorithm, and as such has little bearing on the
research work being conducted here. We have removed the statement, as
it adds nothing of value to the paper.

13) p. 12 ”Each example ... adds downi and upi” -¿ how it adds? this has to be
written in more formal way. F (Ri|base) and F (Ri|apex) are not defined.

This section has been rewritten to make each item more clear.

14) p. 14 - Gradient Based optimization - it is unclear how attributes (variables)
for intervals in the ”treatment” (decision rule) are selected and optimized using
continuous optimization method. Need to formalize.

This entire section has been rewritten and clarified.

15) p. 16 - why you selected so many criteria for estimation of algorithm quality?
Why not use just misclassification error or balanced error rate (in case you have
problems with imbalanced classes)? Anyway this is usually solved with specifying
costs or priors for classes in the rule quality function - that does not depend on
choice of rule optimization approach.

The space of possible weightings is very large. Elsewhere [59], we have
tried applying cost curves to build theories across the space of possible
weightings. We have found those results to be unsatisfying- the conclu-
sions gained from that analysis are getting suspiciously close to statistical
noise.

Therefore, we try to avoid combination rules. Rather, we present the
raw results (e.g. figs 5,6,7,8) so that different readers can apply their
own weighting schemes.

16) QN is not self explaining - before you talk of gradient based optimization.

QN is short for Quasi-Newton, a form of gradient-based optimization.
The term Quasi-Newton is used throughout the paper, and it has been
made clearer that QN is a shortened form of that.

UNDERSTANDING MODELS 41

17) Results table are non-informative : a) time requirements - what units do you
use (sec, min, hours)? also you cannot directly compare times because proba-
bly you used different implementations of the algorithms, also parameters (like
number of iterations and stopping criteria, or cooling/reheating strategy for SA)
affect running time a lot, and you do not even mention parameter values! b)
”50%” column - it is not clear what value is there, and in what measurement
units. Probably you can present some theoretical estimations of computational
complexity? c) It is unclear how percentile ranges for values were computed. Did
you use many runs with different or same parameter values? How many runs?

Time units (seconds) have been added. 50% is the median value, with
the unit being in seconds for runtime. For the other measures (recall,
precision, p.false alarm), there are technically no units. Percentile ranges
are for ten repeats, which has now been clarified.

18) p.23 - ”External Validity” - what do you mean by external validity? Because
there is no clear problem statement in the article, and you do not define what
kind of data do you work with, it is very vague.

In this paper, we have used two data sets from NASA. Our techniques
work well on this data. A third, non-NASA data set was incorporated to
show that our results are not specific to NASA data.

19) p.24 - how optimization of code relates to theme of the article? is it research
or experiment report/application article? Everything below ”Margins Analysis”
words in conclusion is unintelligible or not connected with main theme of the
article - should be explained for non - NASA people or dropped (I suggest the
later).

The paragraphs on Margins Analysis has been dropped, as it is unrelated
to the treatment learning work.

