############################################################### # # # Config file for hamlet's pre-processing engine # # # ############################################################### # number of clusters to generate numClusters=500 # percentage of dataset size to use as number of clusters # (ex. if there are 100 data points and clusterPercent=0.8, # then 80 clusters will be generated) clusterPercent=0.8 # When dealing with feature subset selection, this number tells how many #features (terms) we want to keep numKeyTerms=100 # The type of clustering algorithm to instantiate # possible values: # kmeans - in house k-means implementation # canopy - in house canopy implementation using k-means # genic - in house GenIc implementation clusterer=genic # The type of classification algorithm to instantiate # possible values: # weka_BayesNet # weka_DMNBtext # weka_NaiveBayes # weka_NaiveBayesMultinomial # weka_NaiveBayesMultinomialUpdateable # weka_IBk # weka_KStar # weka_LWL # weka_HyperPipes # weka_VFI # weka_ConjunctiveRule # weka_DecisionTable # weka_JRip # weka_PART # weka_ZeroR # weka_DecisionStump # weka_J48 # weka_J48graft # weka_RandomForest # weka_RandomTree # weka_REPTree # weka_SimpleCart classifier=weka_NaiveBayes # The maximum number of iterations to use for kmeans. Default is 500. maxKMeansIterations=500