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1 Summary
WVU’s work into long-term document retention divides into immediate and long-term
investigations:

• The immediate concern is for an assessment of the STEP/EXPRESS language
for handling long-term data retention. For information on the immediate work,
see the reports from Victor Mucino.

• Other, more long-term work, is exploratory in nature. This paper is about HAM-
LET, which is one example of the exploratory work.

HAMLET is an “anything browser” that aims to offer advice on what engineering
parts are relevant to a partially complete current design.

HAMLET makes minimal assumptions about the nature of the engineering docu-
ments being explored and is designed to be “glue” that permits the searching of tech-
nical data in large heterogeneous collections.

Using technology from AI, information retrieval, program comprehension, and text
mining, HAMLET allows designers to dig up prior designs, study those designs, and
apply any learned insights to new tasks.

Figure 1: Digging up old designs. From [?].



Menzies: HAMLET - progress report 6 of 56

2 What is HAMLET? (overview)

2.1 What Else, What Not
HAMLET was named after the famous Shakespeare quote “to be or not to be?” For
the designer of a technical product, the analogoous question is “to do or not to do?”
HAMLET finds the deltas between the current design and old design to compute:

• “What else”: what is absent from the current design but is usually present in
older designs.

• “What not”; what is present in the current design but is usually absent in older
designs.

Figure 2 offers an example of these two lists.

Figure 2: A sample HAMLET screen. To the left are the nearest concepts to your new
design, along with their corresponding distances. The right side contains information
from the chosen nearby design. This includes the original text as well as attributes
pulled by the parser. In the nearest concepts, there exists certain concepts not found
in the new design. These are shown in the what else list in the center. Also, the new
design contains certain concepts not found in the nearest concepts. These are shown in
the what not list (also, center).

Note that designers are not obliged to always add the “what else” results or always
avoid the “what not” results. However, those two queries will allow a designer to assess
their current design with respect to the space of prior designs.
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Figure 3: HAMLET’s search for associations.

Once HAMLET returns these lists, the designer and HAMLET enter a feedback
loop where the designer reviews HAMLET’s “what else” and “what not” list. HAM-
LET learns the designer’s preferences and, subsequently, uses that knowledge to offer
results relevant to that user’s current design task.

From the feedback loop, preference knowledge can be learned. Given a community
of designers working on related tasks, HAMLET will be able to quickly learn what
prior designs are relevant for that community.

2.2 In Operation
HAMLET operates in three phases (see Figure 3). All these stages have the same goal:
from a large set of possible associations, extract the small subset that (a) have occurred
frequently in prior technical documents and which (b) the user will approve. Stages
one and two are required but stage three (visualization) is optional. Before running any
query:
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• Archival artifacts must be parsed into a network of nodes and edges. Each node
is represented as a set of terms referenced in that node. This set of terms can
include every term in the archive so we call these the wide vectors.

• The wide vectors are unwieldy to process. Hence, we run some linear time
reduction methods to isolate the most informative columns. This produces the
narrow vectors. Note that, when we run a query, we only use the parts of the
query that appear in these narrow vectors.

• HAMLET also clusters the narrow vectors into groups. These groups define
cliches of repeated structures.

When running a query:

• We remove irrelevant detail from the query. Linear time methods remove white
space and spurious word endings. Then the query is pruned back to include just
the terms seen in the narrow vectors.

• The resulting tuned vector is then matched to the the groups of vectors found
above. For computational reasons, we run this match in two-stages. First, we find
the N nearest clusters (this generates the relevant groups). Second, searching just
within those relevant groups, we perform exact matches to find related terms.

• The candidate matches found from the exact match are then ranked (by the size
of the overlap of the query and the terms) then pruned using thresholding (find
the neighboring items in the sort with the biggest difference between them; prune
the items below that largest cliff).

• These matches are then queries for “what else”. Also, the terms in the tuned
query that are furtherest away from the relevant groups are the “what not”.

• The user assesses the matched queries and declares that some are “relevant” and
some aren’t. This builds up a session log for this user working these kinds of
queries. Once this log grows beyond a certain size, it is used to refine the tuned
query such that the tuning favors nodes that do not contain what the user has
labeled “irrelevancies” and does contain what the user has called “relevances”.

Optionally, we can visualize the results:

• The N-dimensions of the vectors are mapped down to 3 dimensions, then visual-
ized on the screen.

2.3 Related Work
HAMLET draws on much of the literature on AI, information retrieval, text mining,
and program comprehension. Formally, HAMLET is a suggestion system that aug-
ments standard queries with (a) suggestions that near to the current partially incomplete
design and (b) suggestions of additions to the current design that would make it very
unusual with respect to the space of all prior designs [?].

Having said that, the comprehension of archival technical documentation has cer-
tain attributes that make HAMLET’s task different to other systems:
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• Zhai et al. [?] discuss cross-collection mixture models that seek to discover la-
tent common themes from large document collections. This work assumes that
all documents are expressed in a simple “bag of words” model (i.e. no links be-
tween documents). In HAMLET, on the other hand, documents are stored in a
connected graph showing neighborhoods of related terms.

• The HIPIKAT system of Čubranić and Murphy [?] explores comprehension of
heterogeneous technical products. Software development projects produce a
large number of artifacts, including source code, documentation, bug reports,
e-mail, newsgroup articles, and version information. The information in these
artifacts can be helpful to a software developer trying to perform a task, such as
adding a new feature to a system. Unfortunately, it is often difficult for a soft-
ware developer to locate the right information amongst the huge amount of data
stored. HIPIKAT recommends relevant software development artifacts based on
the context in which a developer requests help from HIPIKAT. While a land-
mark system, HIPIKAT is hard-wired into a particular set of development tools
(ECLIPSE) and the scalability of the tool has not be demonstrated by the authors.

• Hill et al.’s DORA system [?] stores JAVA programs using a combination of
“bag of words” as well as neighborhood hood information. Searching in DORA
is two-fold process where:

– Information retrieval on the bag of words finds candidate connections

– Topology queries on the candidates’ neighbors returns the strongly related
terms.

The drawback with DORA is that it assumes a homogeneous corpus (everything
in DORA is a JAVA class) and its search algorithms will not scale to very large
examples (since they are slower than linear time and memory).
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3 Why HAMLET? (motivation)

3.1 Background
A recent NSF-funded workshop1 highlighted current directions in long term technical
document retention. While much progress was reported on:

• systems issues of handling and sharing very large data collection (e.g. SLASH)

• scalable methods of building customization views (e.g. iRODS),

there was little mention of the cognitive issues of how users might browse and synthe-
size data from massive data collections of technical documents.

For example, here at WVU, we are mid-way through a review of the use of STEP/EXPRESS
for long term technical document retention2. STEP/EXPRESS is commonly used as
an inter-lingua to transfer technical data between CAD/CAM packages. Strange to
say, while STEP/EXPRESS is useful for transferring and understanding technical doc-
uments today, it does not appear to be suitable for understanding technical documents
from yesterday.

In theory, there is nothing stopping STEP/EXPRESS from recording and storing all
aspects of a project. In many ways, STEP/EXPRESS is as expressive as other technical
document standards (e.g. UML). STEP/EXPRESS offers a generic method for storing
part-of and is-a information, constraints, types, and the rules associated with a technical
document. However, in practice, the theoretical potential of STEP/EXPRESS is not
realized for the following reasons.

3.1.1 Heterogeneity

The reality of archival systems is that STEP/EXPRESS documents are stored along
side a much larger set of supporting documents in multiple formats. A recent study3

concluded that

• 80 percent of business is conducted on unstructured information.

• 85 percent of all data stored is held in an unstructured format (e.g. the unstruc-
tured text descriptions of issues found in PITS).

• Unstructured data doubles every three months.

That is, if we can learn how to understand large heterogeneous collections that include
STEP/EXPRESS knowledge as well as numerous other products in a wide variety of
formats, it would be possible to reason and learn from a very wide range of data.

1Collaborative Expedition Workshop #74, June 10, 2008, at NSF. “Overcoming I/O Bottlenecks in Full
Data Path Processing: Intelligent, Scalable Data Management from Data Ingest to Computation Enabling Ac-
cess and Discovery”. http://colab.cim3.net/cgi-bin/wiki.pl?ExpeditionWorkshop/
TowardScalableDataManagement_2008_06_10

2See reports from Mucino.
3http://www.b-eye-network.com/view/2098
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3.1.2 Incomplete meta-knowledge

A lot of work has focused on the creation of cached sets of EXPRESS schemas. Forty
such application protocols (AP) have been defined [?] including AP-203 (for geome-
try) and AP-213 (for numerical control). The list of currently defined application proto-
cols is very extensive (see Figure 4). These APs are the cornerstone of STEP tools: the
tools offer specialized support and screen import/export facilities for the APs. While
much effort went into their creation of these APs, very few have been stress-tested in
the information systems field. That is, the majority of these APs have been written
more than they have been read (exceptions: the above-mentioned AP-203 and AP-213
are frequently used and reused in 21st century CAD/CAM manufacturing processes),

3.1.3 Incomplete tool support

Perhaps because of the relative immaturity of the APs, current CAD/CAM tools offer
limited support for the STEP APs. While most tools support geometry (AP-203), the
support for the other APs in Figure 4 is minimal (to say the least).

3.1.4 Incomplete design rationale support

From a cognitive perspective, STEP/EXPRESS does not support the entire design cy-
cle. Rather, it only supports the last stages of design and not all of the interim steps
along the way.

3.1.5 Limited Historical Use

For all the above reasons, highly structured technical documents in formats like STEP/EXPRESS
are in the minority in the archival systems we have examined. We are aware of large
STEP/EXPRESS repositories but these are often inaccessible for a variety of reasons.

While this situation might change in the future (e.g. if all the above issues were
suddenly fixed and all organizations switch to using highly structured technical docu-
mentation), the historical record would still be starved for large numbers of examples.

3.2 Why Use HAMLET To Examine Data?
The most obvious reason for using HAMLET to look at a corpus of technical docu-
ments is its visualization value. Let’s say that your collection contains thirty STEP
documents and the EXPRESS schema that they all relate to. If you just looked through
those documents, you’d be faced with a complete information overload. That’s thirty-
one separate text files to stare at, some with over a thousand lines of code.

HAMLET provides an easy-to-use interface to visualize that data and make de-
ductions based on the raw content (see Figure 5). The document panel lists only the
documents that are relevant to your query (which can be a STEP design that you like).
You can click on one of those documents ans view the raw text as well as key attributes
of that file. This prevents the information overload associated with the raw files by only
giving you relevant information in a more organized fashion.
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AP area
201 Explicit Drafting
202 Associative Drafting
203 Configuration Controlled Design
204 Mechanical Design Using Boundary Representation
205 Mechanical Design Using Surface Representation
206 Mechanical Design Using Wireframe Representation
207 Sheet Metal Dies and Blocks
208 Life Cycle Product Change Process
209 Design Through Analysis of Composite and Metallic Structures
210 Electronic Printed Circuit Assembly, Design and Manufacturing
211 Electronics Test Diagnostics and Remanufacture
212 Electrotechnical Plants
213 Numerical Control Process Plans for Machined Parts
214 Core Data for Automotive Mechanical Design Processes
215 Ship Arrangement
216 Ship Molded Forms
217 Ship Piping
218 Ship Structures
219 Dimensional Inspection Process Planning for CMMs
220 Printed Circuit Assembly Manufacturing Planning
221 Functional Data and Schematic Representation for Process Plans
222 Design Engineering to Manufacturing for Composite Structures
223 Exchange of Design and Manufacturing DPD for Composites
224 Mechanical Product Definition for Process Planning
225 Structural Building Elements Using Explicit Shape Rep
226 Shipbuilding Mechanical Systems
227 Plant Spatial Configuration
228 Building Services
229 Design and Manufacturing Information for Forged Parts
230 Building Structure frame steelwork
231 Process Engineering Data
232 Technical Data Packaging
233 Systems Engineering Data Representation
234 Ship Operational logs, records and messages
235 Materials Information for products
236 Furniture product and project
237 Computational Fluid Dynamics
238 Integrated CNC Machining
239 Product Life Cycle Support
240 Process Planning

Figure 4: STEP Application Protocols.
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HAMLET’s graph tools provide another key visualization advantage. The two-
dimensional graph shows the nearby documents and how they relate to each other. For
example, if your data is written in STEP, the graph maps how the STEP designs relate
to their associated schema. HAMLET’s three-dimensional graph provides a visual tool
that allows you to quickly look at how close certain designs are to your query.

The power of HAMLET is not just in the formatting of data, it is also in the machine
learning techniques that allow you to dive deeper into the data. Clustering algorithms
and classifiers ensure that only relevant data is displayed, and user feedback mecha-
nisms ensure that the experience is tailored to the individual user.

Figure 5: Looking at data using HAMLET has several visualization advantages
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3.3 Under the Hood
3.3.1 Generic Parsing

Internally, HAMLET makes minimal assumptions about the form of the technical doc-
ument:

• A document contains slots and slots can be atomic or point to other documents;.

• The network of pointers between documents presents the space of connected
designs.

A generic parser class implements a standard access protocol for this internal model.
By sub-classing that parser, it is possible to quickly process new documents types.
Currently, HAMLET’s parsers can import:

• STEP/EXPRESS

• Florida Law (XML)

• Text documents structured as follows: sub-headings within headings, paragraphs
within sub-headings, sentences within paragraphs, words in sentences;

• JAVA: This JAVA import allows ready access to very large corpora of structured
technical information (i.e. every open source JAVA program on the web). Hence,
in the sequel, we will make extensive use of JAVA examples since that permits
tests of scalability.

3.3.2 The Geometry of Design

HAMLET treats technical document comprehension as a geometric problem:

• Old designs are clustered into groups.

• A new design can be placed at some point around those clusters.

• To compute “what else,” HAMLET finds the cluster nearest the new design and
looks for differences between the new design and the average design in that clus-
ter.

• To compute “what not,” HAMLET looks for parts of the current design that are
not usually found in the nearest cluster.

While simple in concept, the challenge of HAMLET is three-fold:

1. Doing all the above in a scalable manner; i.e. linear or sub-linear time process-
ing. HAMLET handles this is a variety ways including methods borrowed from
Google.

2. Doing all the above for a heterogeneous corpus. HAMLET handles multiple
formats in the corpus by storing them all documents in a minimalistic internal
format (a document contains slots and slots can be atomic or point to other doc-
uments).
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3. While the minimal format permits rapid extension of HAMLET to other doc-
ument types, it raises the issue of false alarms. Like any information retrieval
task, HAMLET returns some false negatives (i.e. incorrect “what not” results)
and false positives (i.e. incorrect “what else” results). HAMLET therefore builds
profiles for each user based on their particular preferences.
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4 A Session With HAMLET

4.1 Logging In
HAMLET collects information on each session. This session information is used to
tune the query system; e.g. not to show the user results some result that they have
previously indicated that they are not interested in. Figure 6 shows the log-in screen.

Figure 6: Logging in. The options of creating a new user or loading a user (saved
preferences for a specific user) are available.

During a typical HAMLET session, the user can indicate whether they like or dis-
like a particular document. HAMLET utilizes information retrevial techniques to bring
documents similar to those rated as liked to the top of query results, while filtering out
the documents disliked. The weights applied to whole documents by the user ratings
are also applied to the terms within that document, and the ”what-else/what-not” list is
weighted by the sum of all ratings on each term in the list.

The user profile itself is stored in a comma-separated CSV file. Each row is a term
and each column is a document (identified by its unique vector ID). Datasets are kept
separate within the profile so that vector IDs do not overlap. A document that is liked
receives a rating of 1, disliked are rated -1. A -2 means that the term is not found within
that document. A total is kept at the end, which is used for ranking purposes.

%Timothy Menzies

%dataset #1
Term,Vector,Vector2,Vector3,Total
Bob,-1,1,1,1
Alice,-2,1,-2,1
Jimmy,-1,-2,1,0

Figure 7: A simple user profile.
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4.2 The Preprocessor
HAMLET contains several components other than the UI shown below. One such com-
ponent is the pre-processor, a tool used by HAMLET to generate datasets which can
then be loaded into the UI allowing the user to query, rank, and visualize the documents
found in the loaded dataset. The majority of all machine learning takes place within
the pre-processor. This is where tasks like term frequency / document frequency gen-
eration, term selection, clustering, and learner training occurs. After being run through
the pre-processor, each document within a collection is assigned a vector representation
which describes what terms are present in the document and at what frequency.

HAMLET can switch between languages using the TOOLS menu of home screen
of Figure 8.Upon the creation of a new user, or loading a previously created one, the de-
fault HAMLET view provides a variety of options including loading a dataset, creating
a new member, altering the query language, etc.

Figure 8: Altering the query language.
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4.3 HAMLET output

Figure 9: A sample HAMLET screen

Figure 9 shows HAMLET, after running a query. To the left are the nearest concepts
to your new design, along with their corresponding distances. The right side contains
information from the chosen nearby design. This includes the original text as well as
attributes pulled by the parser. In the nearest concepts, there exists certain concepts
not found in the new design. These are shown in the what else list in the center. Also,
the new design contains certain concepts not found in the nearest concepts. These are
shown in the what not list (also, center).

An additional function of HAMLET is to provide the user with the ability to view
document vector distances. In order to retain order, when a user clicks on a document in
the unit list, that particular unit’s distance is immediately highlighted (see Figure 10).
The inverse is also possible, by first selecting a distance, which shows the user the
corresponding document.

By selecting which vectors to visualize, a finer grasp of relevant/irrelevant concepts
can be obtained. In the above image, by selecting ”Show Close”, a 3-D visualization
of the nearest related documents is shown, while ”Show Other” and ”Show Query”
are used to visualize less relevant points as well as new designs, respectively (see Fig-
ure 11). These points are made clear by varying colors.

Figures 11,12,13,14 illustrate HAMLET’s user feedback loop, in action. Figure 12
represents the initial state when HAMLET is started and the dataset is loaded. A query
is entered by the user. In this case, the query is a bug report for HAMLET itself
(i.e. numoerus JAVA classes). At this point, no user preferences have been recorded.
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Figure 10: Viewing document distances.

Therefore, the results in the left panel are based solely on the text content of the query.
At the point depicted in Figure 13, several items have been rated as ”liked” or

”disliked” by the user. The query has been re-run with these preferences in mind, and a
new set of results has been generated. As you can see in the left panel, results that have
been recorded during previous runs are marked with a + (helpful) or a - (unhelpful).
The total number of returned results is displayed at the bottom, along with counts of
old liked and old disliked results that are still considered to be nearby.

As shown in Figure 14, a seperate tab displays a complete list of rated documents.
The number next to the name is the vertex’s unique identifier in the dataset’s graph.
A set of buttons along the bottom let you ”rerate” a document or reset it to neutral as
desired.
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Figure 11: Select Vectors

Figure 12: Initial Query Run
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Figure 13: Results after items have been rated.

Figure 14: User Preferences Tab
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Figure 15: Ratings.

Figure 15 shows the rating system. Once a user rates a document, the immediate
effects can be seen in the unit list. A ’Like’ is denoted as a ’(+)’, and ’Dislike’ as a
’(-)’. Also, in the User Panel, the current likes and dislikes are organized into separate
lists.

Figure 16: After rating
.

As a user rates a document, all of the ratings appear in the User Panel. As shown
in Figure 16, the option is given to move a document from any rating to another by
highlighting the unit and clicking the appropriate button.
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4.4 A Web of Connections
HAMLET is a framework that supports the both the semantic and the syntactic structure
inherent in data. Displayed below is an example of the former, a web of hyper-links
connecting relevant document to each other (generated from STEP/EXPRESS data).
When this kind of information is combined with syntactic information (the actual text
of a document, e.g. term counts) a powerful information retrieval system can be cre-
ated that supports the ability to walk through the data. In our application, by clicking
on a document in the graph, you are shown all of the documents connected to the se-
lected document. By hopping from document to document and tweaking visualizations
parameters along the way, it is possible to truly walk through the dataset.

Figure 17: Displaying connections.
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4.5 3-D Visualization
In addition to visualizing 2-D semantic information, HAMLET also supports the abil-
ity to visualize each document vector as a point in 3-D space. To facilitate this, HAM-
LET utilizes dimensionality reduction in two stages. In the first stage, the list of all
possible terms in a given collection is analyzed to determine the most relevant terms
(this reduces the dimensionality from around 20,000 to 100). In the second stage, the
100 dimension document vectors are run through a fast (nearly linear) dimensional-
ity reduction algorithm called FastMap which finds the intrinsic geometry in the 100
dimensional space and projects that into a 3-D space capable of visualization.

Figure 18: 3-D visualization. A new design (in red) floats near its nearest related
concepts (in green). The gray points show parts of specifications that are less relevant
to the new design. Note that this is a 2-D visualization of a 100-D space.
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5 How Does HAMLET Work? (the details)
This section offers a technical description of the internals of HAMLET. In that descrip-
tion, the term “document” will be used since that is consistent with the information
retrieval literature. Note that HAMLET’s “document” may be much smaller than, say,
a Microsoft Word .doc file. A HAMLET “document” is just the smallest unit of com-
prehension for a particular type of entry in an archive. Indeed, depending on the parser
being used, a “document” may be:

• An EXPRESS data type

• A JAVA method

• A paragraph in an English document

• Some XML snippet.

• All text associated with an archived engineering project

The methods described in this section are in a state of flux. HAMLET is a prototype
system and we are constantly changing the internal algorithms. In particular:

• We are experiment with replacing all slower-than-linear algorithms with linear-
time algorithms (see the GENIC experiments, below).

• Our preliminary experiments suggest that many common methods may in fact
be superfluous for comprehension of technical documents. For example: (a) we
may soon be dropping the stopping and stemming methods described below;
(b) the value of discretization during InfoGain processing is not clear at this
time.

• Any threshold value described in this section (e.g. using the top k = 100 Tf*IDF
terms) will most probably change in the very near future as we tune HAMLET
to problem of archival storage.

5.1 Parsing From Native Formats
HAMLET utilizes a generic parsing framework that provides an interface between ex-
isting parsed data and information retrieval, text mining and program comprehension
methods supported by HAMLET. This allows both safe access to the data at run-time,
as well as easy implementation. A brief, high- level overview of the main functions of
this framework is discussed below.

5.1.1 Parsed Languages

Since HAMLET makes as few assumptions about a technical document as possible,
any language could theoretically be parsed and used within the user interface. The
HAMLET parsing API provides an interface for creating the XML format that the
HAMLET interface reads. Parsers have been provided that process data authored in
the following formats:
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• STEP/Express

• Plain Text

• Florida Law (XML)

• HTML

• Java

The above formats were chosen according to:

• Their relevance to this project- so STEP is highest;

• As well the availability of large corpora- so we use JAVA class libraries and a
large XML dump pf 400 years of Florida real estate law.

5.1.2 HAMLET Parsing API

HAMLET’s language-specific subparsers comb through individual files and pull out
important bits of information (entities in STEP, methods in Java). While processing
individual files, these subparsers collect information about each document. Some of
that information includes pointers to the parsed information and information about
what entities are used by others. The HAMLET generic parsing framework provides
several methods to utilize these data attributes.

The most important function of the API is the generation of the GraphXML file.
This file is the intermediary between the data set and HAMLET. It contains a list of each
document (vertice) and the relationships between them. Other pertinent information,
such as file pointers and document statistics, is stored in the form of attributes for each
document vertice. From a higher level, the collection of these pointers to files gives a
view of the region of interconnected designs, giving HAMLET the ability to make its
decisions and provide suggestions based on what it has already learned.

For certain language imports, such as Java or STEP, HAMLET utilizes edge gen-
eration to determine the relationship of one design to another. For instance, if a call
graph is generated on a set of Java source files, an edge can be placed between a mul-
titude of methods and calls made to and from them. The XML graph generated by the
parsing API includes both the document vertices and the edges that connect them. This
is essential for visualization purposes and provides a wealth of syntactical information.
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Figure 19: One vertice and the information associated with it.

Figure 20: Edges in the graph XML file.

5.2 TF*IDF
In order to perform mathematical operations and algorithms on documents and the text
that they contain, we must first transform them into a representative mathematical ob-
ject. The standard representation of a document is a vector in the space of all available
terms. For example, the phrase:

The quick brown dog was very
quick, very brown, and very dog like. (1)

Will be turned into a vector which looks something like this:

Phrase = [1 2 2 2 1 3 1 1] (2)

with each index of the above vector corresponding the a dimension which comes from
the term list (in this case, the dimensions are the, quick, brown, dog, was, very, like)

Tf*Idf is shorthand for “term frequency times inverse document frequency.” This
calculation models the intuition that jargon usually contains technical words that appear
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a lot, but only in a small number of paragraphs. For example, in a document describing
a space craft, the terminology relating to the power supply may appear frequently in
the sections relating to power, but nowhere else in the document.

Calculating Tf*Idf is a relatively simple matter:

• Let there be Words number of documents;

• Let some word I appear Word[I] number of times inside a set of Documents;

• Let Document[I] be the documents containing I .

Then:

Tf ∗ Id = Word[i]/Words ∗ log(Documents/Document[i])

The standard way to use this measure is to cull all but the k top Tf*Idf ranked
stopped, stemmed tokens. This study used k = 100.

5.3 Dimensionality Reduction
A major issue within HAMLET is dimensionality reduction. Standard AI learning
methods work well for problems that are nearly all fully described using dozens (or
fewer) attributes [13]. But a corpus of archival technical documents must process
thousands of unique words, and any particular document may only mention a few of
them [1, 12]. Therefore, before we can apply learning to technical document compre-
hension, we have to reduce the number of dimensions (i.e. attributes) in the problem.

There are several standard methods for dimensionality reduction such as tokeniza-
tion, stop lists, stemming, Tf*IDF, InfoGain, PCA, and FastMap. All these methods
are discussed below.

5.3.1 Tokenization

In HAMLET’s parser, words are reduced to simple tokens via (e.g.) removing all
punctuation remarks, then sending all upper case to lower.

5.3.2 Stop lists

Another way to reduce dimensionality is to remove “dull” words via a stop list of “dull”
words. Figure 21 shows a sample of the stop list used in HAMLET. Figure 21 shows
code for a stop-list function.

5.3.3 Stemming

Terms with a common stem will usually have similar meanings. For example, all these
words relate to the same concept.

• CONNECT

• CONNECTED



Menzies: HAMLET - progress report 29 of 56

a about across again against
almost alone along already also
although always am among amongst
amongst amount an and another
any anyhow anyone anything anyway
anywhere are around as at
... ... ... ... ...

Figure 21: 24 of the 262 stop words used in this study.

• CONNECTING

• CONNECTION

• CONNECTIONS

Porter’s stemming algorithm [11] is the standard stemming tool. It repeatedly replies a
set of pruning rules to the end of words until the surviving words are unchanged. The
pruning rules ignore the semantics of a word and just perform syntactic pruning (e.g.
Figure 22).

RULE EXAMPLE
---------------- -----------------------------
ATIONAL -> ATE relational -> relate
TIONAL -> TION conditional -> condition

rational -> ration
ENCY -> ENCE valency -> valence
ANCY -> ANCE hesitancy -> hesitance
IZER -> IZE digitizer -> digitize
ABLY -> ABLE conformably -> conformable
ALLY -> AL radically -> radical
ENTLY -> ENT differently -> different
ELY -> E vilely -> vile
OUSLY -> OUS analogously -> analogous
IZATION -> IZE vietnamization -> vietnamize
ATION -> ATE predication -> predicate
ATOR -> ATE operator -> operate
ALISM -> AL feudalism -> feudal
IVENESS -> IVE decisiveness -> decisive
FULNESS -> FUL hopefulness -> hopeful
OUSNESS -> OUS callousness -> callous
ALITY -> AL formality -> formal
IVITY -> IVE sensitivity -> sensitive
BILITY -> BLE sensibility -> sensible

Figure 22: Some stemming rules.

Porter’s stemming algorithm has been coded in any number of languages4 such as
the Perl stemming.pl used in this study.

5.3.4 InfoGain

According to the InfoGain measure, the best words are those that most simplifies the
target concept (in our case, the distribution of frequencies seen in the terms). Concept

4http://www.tartarus.org/martin/PorterStemmer
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“simplicity” is measured using information theory. Suppose a data set has 80% sever-
ity=5 issues and 20% severity=1 issues. Then that data set has a term distribution C0

with terms c(1) = cat, c(2) = dog etc with frequencies (say) n(1) = 0.8, n(2) = 0.2
etc then number of bits required to encode that distribution C0 is H(C0) defined as
follows:

N =
∑

c∈C n(c)
p(c) = n(c)/N

H(C) = −
∑

c∈Cp(c)log2p(c)

 (3)

After discretizing numeric data5 then if A is a set of attributes, the number of bits
required to encode a class after observing an attribute is:

H(C|A) = −
∑

a∈A
p(a)

∑
c∈C

p(c|a)log2(p(c|a)

The highest ranked attribute Ai is the one with the largest information gain; i.e the one
that most reduces the encoding required for the data after using that attribute; i.e.

InfoGain(Ai) = H(C)−H(C|Ai) (4)

where H(C) comes from Equation 3. In this study, we will use InfoGain to find the
top N = 10 most informative tokens.

5.3.5 TF*IDF Ranking

A similar way of reducing the number of terms is by using the summation of the
TF*IDF scores for each term. This method gives each a term a ranking tri each term
using the following equation:

tri =
∑
d∈D

TfIdfi,d (5)

where D is the entire set of documents and TfIdfi,d is the Tf*Idf value for term i and
document d. After this has been computed for each term, a simple sort over all terms
will give us the most important terms, as defined by their Tf*Idf scores. See Figure 23
for a list of real terms returned form a STEP dataset.

The benefit of using this method over InfoGain is not having to discretize the Tf*Idf
values. By using the Tf*Idf values as they are, we can bypass an extra computational
step. Additionally, this approach doesn’t have to compute a new metric as InfoGain
does, it simply sums the existing Tf*Idf scores which is computationally faster than
computing InfoGain.

5.3.6 PCA and FastMap

Numerous data mining methods check if the available features can be combined in
useful ways. These methods offer two useful services:

5E.g. given an attribute’s minimum and maximum values, replace a particular value n with (n −
min)/((max−min)/10). For more on discretization, see [6].
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cartesian_point type oriented_edge subtype entity
label sizeof self query select
name direction edge_curve where wr1
text real set not description
for rule items typeof supertype
... ... ... ... ...

Figure 23: 30 of the 100 key terms found in a STEP dataset using TF*IDF ranking

1. Latent important structures within a data set can be discovered.

2. A large set of features can be mapped to a smaller set, then it becomes possible
for users to manually browse complex data.

For example, principal components analysis (PCA) [4] has been widely applied to re-
solve problems with structural code measurements; e.g. [10]. PCA identifies the dis-
tinct orthogonal sources of variation in a data sets, while mapping the raw features
onto a set of uncorrelated features that represent essentially the same information con-
tained in the original data. For example, the data shown in two dimensions of Figure 24
(left-hand-side) could be approximated in a single latent feature (right-hand-side).

Since PCA combines many features into fewer latent features, the structure of PCA-
based models may be very simple. For example, previously [3], we have used PCA and
a decision tree learner to find the following predictor for defective software modules:

if domain1 ≤ 0.180
then NoDefects
else if domain1 > 0.180

then if domain1 ≤ 0.371 then NoDefects
else if domain1 > 0.371 then Defects

Here, “domain1” is one of the latent features found by PCA. This tree seems very
simple, yet is very hard to explain to business clients users since “domain1” is calcu-
lated using a very complex weighted sum (in this sum, v(g), ev(g), iv(g) are McCabe
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Figure 24: The two features in the left plot can be transferred to the right plot via one
latent feature.
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Figure 25: A 100-D space presented in 3-D. The point in red shows the current design
and the four points in green show the nearest 4 technical documents (and the gray points
show other documents that have been “trimmed” away using the techniques discussed
below).

or Halstead static code metrics [9, 7] or variants on line counts):

domain1= 0.241 ∗ loc + 0.236 ∗ v(g)
+0.222 ∗ ev(g) + 0.236 ∗ iv(g) + 0.241 ∗ n
+0.238 ∗ v − 0.086 ∗ l + 0.199 ∗ d
+0.216 ∗ i + 0.225 ∗ e + 0.236 ∗ b + 0.221 ∗ t
+0.241 ∗ lOCode + 0.179 ∗ lOComment
+0.221 ∗ lOBlank + 0.158 ∗ lOCodeAndComment
+0.163 ∗ uniqOp + 0.234 ∗ uniqOpnd
+0.241 ∗ totalOp + 0.241 ∗ totalOpnd
+0.236 ∗ branchCount

(6)

Nevertheless, such latent dimensions can be used to generate visualizations that show
users spatial distances between concepts in technical documents. For example, Fig-
ure 25 shows a 100-D space of prior designs converted to a 3-D representation. In the
conversion process, the three top-most domains were computed and the 100-D space
mapped to the 3-D space.

PCA is the traditional method of performing dimensionality reduction. It suffers
from scale-up problems (for large data sets with many terms, the calculation of the cor-
relation matrix between all terms is prohibitively computationally expensive). FastMap
is a heuristic stochastic algorithm that performs the same task as PCA, but do so in far
less time and memory [?]. Our own experiments with the two methods showed that
both yield similar structures.
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5.4 Clustering
The goal of HAMLET, as defined thus far, is to index large amounts of technical infor-
mation spread across a variety of document types in a manner that allows us to ask the
question, ”What designs are their similar to this design?” In order be able to answer
this question we must first find an appropriate way of locating the ”structure” in these
collections; including (a) the structure that exists within each document as part of the
collection, and (b) the comparative structure of all the documents and how they relate
to one other. Considering that each document type has a format that can vary from
highly syntactic source code, to badly formed HTML, to unstructured text, there is not
much common ground between the various document types. One common theme in all
of these documents is the exact thing you are looking at right now, natural language.
By grouping all the natural language associated with a single design into one document
we can solve some of the problems. This answers (a), the question of how to define
the structure of each document as its own entity within the larger collection, but not (b)
the question of how to define the comparative structure of the documents and how they
relate to each other. Enter document clustering.

By clustering text documents we are able to find the inter-document structure in
the collection. This is done by locating groupings of documents, which can later be
used to give us intelligent advice on what designs are similar. Below we illustrated
a few common clustering methods and how they might proof useful in the context of
HAMLET. In later sections of this document, we provide emperical analysis of two of
the algorithms presented, GENIC and K-Means.

5.4.1 CLustering with GENIC

GENIC is a generalized incremental clustering algorithm developed by Gupta and
Grossman [?] that provides potentials for large improvements in scalability over K-
Means. Since GENIC was designed with streaming data in mind, it only has a single
pass through the data to work with. Because of this, it scales linearly, which is a
requirement when dealing with large corpora. By using stochastic methods, GENIC
can be given an initial k equal to the number of items (each item is its own clusters)
and prune away unlikely clusters with each generation, giving a realistically estimated
value for k after the last generation. Here is how GENIC works:

1. Select parameters

• Fix the number of centers k.

• Fix the number of initial points m.

• Fix the size of a generation n.

2. Initialize

• Select m points, c1, ..., cm to be the initial candidate centers.

• Assign a weight of wi = 1 to each of these candidate centers.

3. Incremental Clustering For each subsequent data point p in the stream: do
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• Count = Count + 1

• Find the nearest candidate center ci to the point p

• Move the nearest candidate center using the formula

ci =
(wi ∗ ci + p

wi + 1
(7)

• Increment the corresponding weight

wi = wi + 1 (8)

• When Count mod n = 0, goto Step 4

4. Generational Update of Candidate Centers
When Count equals n, 2n, 3n, ..., for every
center ci in the list L of centers, do:

• Calculate its probability of survival using the formula

pi =
wi∑n
i=1 wi

(9)

• Select a random number δ uniformly from [0,1]. If pi ¿ δ, retain the center
ci in the list L of centers and use it in the next generation to replace it as a
center in the list L of centers.

• Set the weight wi = 1 back to one. Although some of the points in the
stream will be implicitly assigned to other centers now, we do not use this
information to update any of the other existing weights.

• Goto step 3 and continue processing the input stream

5. Calculate Final Clusters The list L contains the m centers. These m centers
can be grouped into the final k centers based on their Euclidean distances.

GENIC is of specific interest to HAMLET for two primary reasons, low expected
run-times on large corpora and a potential ability at estimating the number of natural
clusters in the collection.

• Scalability: Since GENIC was designed with streaming data in mind, it only has
a single pass through the data to work with. Because of this, it scales linearly,
which is a requirement if HAMLET is to scale to large corpora.

• An likely estimate for k: Because of GENIC’s stochastic based method of re-
moving unwanted or non-useful clusters, it has potential for use in correctly es-
timating a good value for k. By eliminating ”bad stuff”, GENIC can ideally
identify the correct number of types of ”good stuff”.
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5.4.2 Clustering with K-means

K-Means is a clustering algorithm that, when given a dataset of unidentified objects,
it will group those items into k groups based on some given similarity measure. The
algorithm is described in Figure 26. For an example of the algorithm in operation, see
Figure 27.

• i=0

• Partitioning the input points into k initial sets, either at random or using some
heuristic data.

• Repeat unitl (i ≤ maxIterations or no point changes set membership)

– Calculates the mean point, or centroid, of each set or cluster.

– Constructs a new partition, by associating each point with the closest cen-
troid.

– Recalculate the centroids for the newly partitioned cluster

– i = i + 1

Figure 26: K-Means algorithm. See Figure 27 for an example of this algorithm running
in practice.

While k-means may be sufficiently accurate, there are significant drawbacks. Most
notably is the speed (or lack thereof). Due to the k-means algorithm having to compute
distances from every item to every cluster. In situations where the cosine similarity
distance measure is used, computing the distance between points can be an expensive
operation (this is another place dimensionality reduction helps out). In recent tests
comparing clustering algorithm run-times, k-means was found to be up to 500 times
slower than another algorithm, GENIC, which we discuss further down.

Another problem with k-means is determining what value of k should be used.
Note the usability issues with requiring a user to pre-specify k: isn’t this the kind of
tedious detail that the computer should be telling us?

There are many techniques for automatically discovering an approximate value of
k, all of which include several rounds of initial guesses, trying various values around
the guess, then returning the k value that yields the best classification results. The
problem with these techniques is that K-Means is a slow algorithm- requiring it to run
many times is impractical for large corpora. In the sequel, we will empirically evaluate
the value of GENIC’s random seaerch vs K-means slower search.
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Step1: Here, we show some initial data points and the centroids generated based on random
assignment

Step2: Points are associated with the nearest centroid:

Step3: Next, we recompute centroid using new associations and update the stored centroid:

Steps 2 & 3 are repeated until one of the two convergences criteria are reached.

Figure 27: Example of K-means
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5.4.3 Canopy Clustering

A naive clustering algorithm runs in O(N2) where N is the number of terms being
clustered and all terms are assessed with respect to all other terms. For large archival
collections, this is too slow. Various improvements over this naive strategy include ball
trees, KD-trees and cover trees [2]. While all these methods are useful, their ability to
scale to very large examples is an open question.

An alternative to traditional clustering methods is canopy clustering [?, ?]. It is
intended to speed up clustering operations on large data sets, where using another al-
gorithm directly may be impractical because of the size of the data set. In a standard
clustering algorithms, two items are compared to determine some measure of how sim-
ilar or different they are. There are several distance measures used for different do-
mains (euclidean, cosine, manhattan, etc.), the draw back to all of these is that they are
all relatively computationally expensive. The secret to canopy clustering’s greater per-
formance over conventional clustering techniques is it’s use of two distance measures,
one being approximately accurate but computationally cheap and the other being more
accurate, however more expensive. To take advantage of the cheap distance metric,
two passes are taken over the dataset. In the first pass, the cheap distance measure
is used to determine canopies, which are groups of approximately close things. In the
second pass, the more expensive distance measure is used. If any two items being com-
pared do not share a canopy, then their distance is assumed to be infinite and no further
comparison is done. By doing this, canopy clustering prevents having to perform n2

comparisons at each step through the clustering algorithm.
The algorithm proceeds as follows:

• Cheaply partition the data into overlapping subsets, called ’canopies’ (see Fig-
ure 28);

• Perform more expensive clustering, but only between these canopies.

In the case of text mining applications like HAMLET, the initial cheap clustering
method can be performed using an inverted index; i.e. a sparse matrix representation
in which, for each word, we can directly access the list of documents containing that
word. The great majority of the documents, which have no words in common with the
partial design constructed by the engineering, need never be considered. Thus we can
use an inverted index to efficiently calculate a distance metric that is based on (say) the
number of words two documents have in common.
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Figure 28: The darker circle represents all points in a given canopy, points in the
smaller circles cannot be used as a new canopy center.
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5.5 Classification Within HAMLET
A key task with HAMLET is recognizing which cluster is nearest the partial design
offered by HAMLET’s user. The challenge is doing this in both a quick and effective
way. However, as often is the case in problems of computer science, speed and accuracy
are trade-offs.

5.5.1 Naive Bayes

Bayesian classifiers, and more generally the Naive Bayes algorithm, are simple sta-
tistical learning schemes. They have seen a lot of use in the Machine Learning field
because they are fast, use very little memory, and are trivial to implement.

Naive Bayes is an application of Bayes’ Theorem, relating the probability of event
H given evidence Ei, a prior probability for a class P (H), and a posteriori probability
P (H|E):

P (H|E) =
∏

i

P (Ei|H)
P (H)
P (E)

(10)

The classification with the highest probability is returned. The above assumes dis-
crete attributes. To deal with numeric values, a features mean µ and standard deviation
σ are used in a Gaussian probability function [14]:

f(x) = 1/(
√

2πσ)e−
(x−µ)2

2σ2

These classifiers are called ”naive” because they assume that all attributes are
equally important and statistically independent. Although these assumptions are al-
most never correct, Domingos and Pazzini have shown that the independence assump-
tion is a problem in a vanishingly small number of cases [5]. On average, Naive Bayes
classifiers perform as well, if not better than, more complex classification algorithms.

5.5.2 TWCNB

Rennie et al. [?] report a variant of a Naive Bayes classifier called Transformed Weight-
normalized Complement Naive Bayes (TWCNB) that uses normalized Tf*IDF counts
with the following properties:

• It handles low frequency data sets;

• It performs almost as well as more complex support vector machine implemen-
tations;

• Better yet, it is very simple to implement and runs in linear time (which makes it
suitable for scaling up to a very large corpus).

By using an optimization on the Naive Bayes classifier called the TWCNB we can
achieve near-state-of-the-art accuracy with state-of-the-art speed. This variant of Naive
Bayes is highly optimized for text classification by doing the following:
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• Transforming inherently non-gaussian text distributions (power law) into a guas-
sian to fit with Naive Bayes’s normal assumption

• Normalizes tfidf values to ensure the learner does not favor large or small docu-
ments

• Reverses the standard Naive Bayes likelihood function so instead of looking for
things that are like a given target, we look for things are not like the given target,
by doing this, TWCNB is able to avoid clusters with relatively low counts

Because of the nature of the data we are dealing with, a key requirement for our
classifier is that it handles low frequency counts: we anticipate that archival data sets
will contain many terms, but only very few of them will appear in any particular doc-
ument or the user’s partial design. This makes TWCNB an excellent candidate for
HAMLET. We are currently experimenting with our own implementation of TWCNB.

5.6 Trimming
Trimming is a simple heuristic to prune remote points. It is a fast and simple method
for focusing design reviews on near-by concepts.

Trimming runs like this:

• The user specifies some max distance measure N .

• The N nearest documents to the user’s partially specified design are accessed.
These documents are sorted 1, 2, 3, 4...N according to their distance to the cur-
rent design.

• The delta between document i and i + 1 in the sort order is computed and the
document i with the maximum delta (most difference between it and i + 1) is
declared “the trim point”.

• All documents i + 1, i + 2, ...N are trimmed away.

For example, Figure 29 show the number of related documents before and after trim-
ming to a maximum depth of N = 25.

5.7 Query Results and What Else/What Not
After classifying the user’s design using the above mentioned bayesian method, we
can drastically reduce the search space of potentially similar designs. This is possible
because after finding the most likely cluster (i.e. type of design), we only consider
items within that cluster when finding designs similar to the user’s query. After all
potentially similar designs have been identified, k-NN (k-Nearest Neighbor where k
is part of the query) is used to determine the most relevant designs within the set of
potentials.

After returning the ranked potentially similar items, the user is then given the option
of exploring the differences between the query (their design) and the results (designs
indexed in HAMLET). Comparisons can be done between the query and either an
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Figure 29: Trimming is a simple heuristic to prune remote points. It is a fast and simple
method for focusing design reviews on near-by concepts. The top picture, left-hand-
side, shows in green the 25 documents closest to some partial design developed by
the user. The contents of the third closest document, highlighted in blue, is shown in
the center screen. The bottom picture shows the same set of nearby documents, with
trimming enabled (see the check box shown in red). Note that now only four documents
are displayed to the user.
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individual item in the result list (ex. Product XYZ) or an item representative of all
items in the same cluster (type) (or at least the mathematical representation of one, as
this item may not be tangible). The delta generated by either of these comparisons
comprises two lists:

• What to add (the “what else” list).

• What to remove (the “what not” list).

Given the treatment as designs as bags (documents) containing stuff (words), an algo-
rithm to generate what else/what not based in set theory was the easiest to conceive.
If each design is a set of words that appear somewhere in its documentation, then the
formula’s for what else and what not are as follows:

WhatElse(D,T ) = T −D (11)
WhatNot(D,T ) = D − T (12)

where T is a target design or document (bag of words) and D is the design or document
currently being evaluated.

5.8 User Profiling with the Rochio Algorithm
5.8.1 Motivation

Without any sort of user feedback mechanism, the use of HAMLET is a one-time static
process. The user will enter their input design and look at the space of similar objects.
Some of those similar artifacts will be useful in the design process. However, it is
equally likely that some of these ”similar” objects will be unhelpful. This is why some
form of a user feedback mechanism could be helpful.

A user feedback mechanism could make this static process into a repeatable inter-
active one. The preferences expressed during one stage of the design process could
bias future iterations of the same design. During a single session, a query could be run
over and over, with the user rating additional items each time.

As a user searches the space of similar artifacts, they could mark these items as
”liked” or ”disliked.” This set of preferences could be used on subsequent iterations of
the same query to bias the results. In HAMLET, the Rochio user feedback formula is
used to move the point in space that the query represents to another spot. Ideally, this
new location is ”closer” to more relevant results. As more items are rated, this point
will continue to move within the space of document results.

5.8.2 What is the Rochio Formula?

All information retrieval systems, including HAMLET, suffer from false alarms; i.e.
returning query results that the user does not find relevant.

The Rochio algorithm is a standard method for pruning the results of an informa-
tional retrieval search with user feedback [8, ?] The algorithm reports the delta between



Menzies: HAMLET - progress report 43 of 56

the positive document vectors (that related to membership of the positive examples ap-
proved by the user) and the negative ones (that relate to membership of the negative
examples disapproved by the user).

Given a set of documents Dq encompassed by query Q, you can separate the docu-
ments into two distinct subsets of liked (Lq) and disliked (Uq) documents. The normal-
ized TFIDF vectors of those two subsets are summed and weighted by tuning param-
eters (α,β, and χ) that are determined via experimentation but Joachims recommends
weighting the positive information four times higher than the negative [?]. They are
then divided by the size of each set. These summations are then used to tune the origi-
nal query vector as follows:

Qn = αQn−1 +
β

|Lq|
∑
d∈Lq

d− χ

|Uq|
∑
d∈Uq

d (13)

According to Dekhtyar et al [?], placing emphasis on the positive elements (liked
documents in our example) may improve the recall (new relevant articles may be found)
while emphasizing the negative (disliked documents) may affect precision (false posi-
tive may be removed).

This equation is recursive in nature. When a new query is supplied by the user, the
formula uses that as Qn−1. The resulting query, Qn becomes Qn−1 during the next
iteration. Each round, the point in space moves slightly more in a direction taken from
the centroid of the liked documents and the centroid of the disliked documents.

The Rochio formula has a set of weighted constants that can be used to place im-
portance on the old query, the liked items, or the disliked items. Although certain past
research [?] suggests a weight of 4 on liked items and 16 on disliked items, others
[?] have found little practical use for them. By default, these weights are all set to ”1”
in HAMLET. We are experimenting with different treatments in order to find the most
effective one. Placing twice the importance on the old query (a setting of 2,1,1 for the
constants) has showm promise, but most complicated trials have not been performed
yet.

Essentially, all that the Rochio formula does is move your position in space. Ide-
ally, it will move towards more helpful documents, but the burden for this falls on the
clusterer and the clustering method used. If a cluster contain both helpful and unhelp-
ful documents, both types will appear in your results as the query moves closer to it.
Although it would be impossible to generate perfect clusters. Whether a document
is helpful or not depends on the current task. However, it is likely that the helpful
items will be similar to each other. If a cluster contains extemely similar documents,
it might be more likely that those documents will all be helpful. Improved clustering
performance could yield better Rochio results. Future work on both the user feedback
mechanisms and the clustering will go hand-in-hand.

5.8.3 HAMLET and Rochio

Although the Rochio formula has not been used in prior HAMLET-like systems, it
seemed to be the most appropriate user feedback mechanism for the purposes of this
project. The Rochio formula is a standard technique in the information retrieval field
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because it is based on the concept of TF*IDF, which is a concept used heavily within
HAMLET. Rochio has yielded strong results in systems that share common IR and ma-
chine learning techniques with HAMLET. It is for this reason that Rochio was chosen
as the initial user feedback mechanism.

Figure 30: The user-feedback cycle

This chart illustrates the user feedback cycle during a session with HAMLET. The
user supplies a query in text form in the HAMLET browser window. Once the run
button is clicked, this query is cleaned up and any unnecessary terms are removed. The
TF*IDF scores are calculated and normalized for the remaining terms. At this point,
the Rochio formula is applied to the user’s query as explained in the previous section.
This modified query is saved in memory then passed off to the classifier, which returns
a set of results.
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6 Clustering Experiments
In this section we describe empirical analysis into the trade-offs of GENIC and K-
means which respect to clustering textual documents in HAMLET’s domain. The
datasets used in these trials are of specific interest to HAMLET as they are generated
from collections of STEP/EXPRESS source code. This experiment evaluates the value
of the GENIC (§5.4.1) and K-means (§5.4.2) for clustering archival data. K-means is
a standard clsutering algorithm and GENIC is a novel stochastic method that showed
much promise.

After the experiments described below, we now recommend against GENIC for the
following reason. Some trade-offs are acceptable. In some cases, we would accept
that trade-off (e.g. a 10% reduction in clustering quality in exchange for the ability to
examine data sets 10 times as big). However, as reported below, the trade-off between
GENIC and K-means is unacceptable.

6.1 Experimental Design
In order to successfully measure the merits of GENIC and K-means, an evaluation
criteria must first be defined. The two criteria we care most about are, ”how good is
the clustering result?” and ”How long did it take us to come up with?” The second
question can be answered by simply measuring the run-times of the algorithms for the
same problem. The first question however needs slightly more effort in order to come
up with a good comparison mechanism.

For analyzing clustering accuracy or validity, evaluation metrics can be grouped
into two categories, external and internal [?]. External quality is based upon how the
clusters output match up with some initial correct labeling, while internal quality is
based entirely on the clusters output with no correct results to judge against. For the
purposes of this experiment, we can only focus on internal cluster quality since the
information needed for external quality does not exist for the text collections being
used in this study. To evaluate cluster accuracy, we are using two measures of internal
cluster validity, intra-cluster similarity and inter-cluster similarity [?].

The intra-cluster similarity is effectively the pairwise similarity between all ele-
ments within a cluster If nj is the number of elements in cluster j, and N is the total
number of elements in the corpus then intra-cluster similarity is defined as follows:

ISimj =
1
n2

j

∑
d∈Cjd′∈Cj

cos(d, d′) (14)

Intra cluster similarity =
∑

j

nj

N
ISimj (15)

Using the same notation, the inter-cluster similarity is defined as follows:

ESimij =
1

ninj

∑
ainCi,binCj

cos(a, b) (16)

Inter cluster similarity =
∑

j

nj

N
ISimj (17)
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The different treatments involved in the experiment will be all pairs of levels the
two independent factors, clusterers GENIC, K-means and a collection of values for
k ∈ 1, 4, 16, 32, 64, 128, 256, 512, 1024. Because both K-means and GENIC depend
on stochastic methods, we have repeated the experiment 20 times for each treatment to
minimize possible glitches caused by randomness. Furthermore, the random seed was
based on time to ensure new random numbers were being generated for eah repeat to
void seeing results that can be attributed to the effects of a non-randomized process.

The datasets being used for the experiment are two text datasets generated from
collections of STEP/EXPRESS documents. The STEP/EXPRESS files were sepa-
rated based on which AP they conform to/describe, resulting in two datasets; one from
AP203 and the other AP214. Further details are described in Figure 31

AP203 AP214
Total Documents 484 1373

Total Terms 1103 3050
Mean Document Length 143 164

StdDev of Document Length 8750 2313

Figure 31: Statistics on STEP/EXPRESS datasets.

6.2 Previous Works
Gupta & Grossman compare GENIC vs. windowed K-Means in [?] on metrics re-
garding run-time and cluster quality using Sum of Squares of Errors or Inter-cluster
similarity as their choice for the quality feature. Their results show GENIC and K-
Means very close for all cases except when GENIC was given a very large number
of centers to start with. However, all that was given in their were a few graphs and
subtle commentary. No statistical analysis was done on their results of either run-time
or cluster quality leaving room for more work to be done in this area. Additionally, the
datasets used by Gupta & Grossman in this paper were all artificially created, which
may raise questions about the external validity of their findings. With respect to the
run-time results of this study, they found GENIC running a maximum of 40 times
faster than K-Means, however this was only a maximum value that was given with no
further statistical results.
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6.3 Discussion of Results
6.3.1 Run-time

Which respect to run-times, the results were largely as expected. K-Means is not
designed for high speed scenarios like GENIC is, and the results show this. What
is surprising however, is that the low magnitude of victory (see K-Means/GENIC in
Figure 32). Contrary to evidence presented by Gupta in 2004, on average GENIC’s
run-time was only 10.4 times slower than K-Means (compared to 40 times faster as
presented by Gupta). This is even more surprising given the previous comparison was
against a version of K-means which was optimized for speed.

Figure 32: Average run-time graph of GENIC, K-Means, K-Means - GENIC, and K-
Means/GENIC

For the analysis of run-times, Mann-Whitney U tests were used because of their
non-parametric nature (run-times may not necessarily conform to a Gaussian distribu-
tion). By looking at the results from the MWU tests in Figure 33 below, you will see
that GENIC consistently out performs K-Means with respect to run-times, at the 95%
confidence interval. Given the linear approach of GENIC, this is as expected.
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treatment ties win loss win-loss-at-95%
genic & k=4 1 15 1 14
genic & k=1 1 15 1 14

genic & k=16 0 14 3 11
genic & k=32 0 13 4 9
genic & k=64 0 12 5 7

kmeans & k=4 1 10 6 4
genic & k=128 1 10 6 4

kmeans & k=16 1 8 8 0
genic & k=256 1 8 8 0

kmeans & k=32 1 6 10 -4
kmeans & k=64 2 4 11 -7
genic & k=512 4 3 10 -7

kmeans & k=128 3 3 11 -8
kmeans & k=256 2 2 13 -11
genic & k=1024 2 2 13 -11

kmeans & k=512 0 1 16 -15
kmeans & k=1024 0 0 17 -17

Figure 33: Mann-Whitney U tests for run-time of GENIC and K-Means. As expected,
GENIC wins over all K-means treatments within a few steps of k.

Run-time
Treatment (normalized 0..100, min..max)

genic, k = 256 r
genic, k = 128 r
genic, k = 64 r
genic, k = 32 r
genic, k = 1 r

genic, k = 16 r
kmeans, k = 256 r
kmeans, k = 16 r

genic, k = 4 r
kmeans, k = 64 r
genic, k = 512 r

kmeans, k = 128 r
kmeans, k = 32 r
kmeans, k = 4 r
kmeans, k = 1 r

genic, k = 1024 r
kmeans, k = 512 r

kmeans, k = 1024 r
50%

Figure 34: Run-times for GENIC and K-Means with different values for k (25 to 75%
percentile range from 40 simulations; median values shown as a dot). As expected,
GENIC outperforms K-Means in nearly all treatments.

6.3.2 Cluster Validity

When it comes to the validity of the clusters generated by GENIC and K-Means, the
results are completely opposite from the run-time results. Figure 38 shows the Mann-
Whitney results for intra-cluster similarity. In the MWU tests shown in Figure 38
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Similarity
Treatment (normalized 0..100, min..max)

genic, k = 4 r
genic, k = 512 r

genic, k = 1 r
genic, k = 256 r

genic, k = 16 r
genic, k = 128 r
kmeans, k = 4 r

genic, k = 1024 r
genic, k = 64 r
genic, k = 32 r

kmeans, k = 16 r
kmeans, k = 1 r

kmeans, k = 32 r
kmeans, k = 64 r

kmeans, k = 128 r
kmeans, k = 256 r
kmeans, k = 512 r

kmeans, k = 1024 r
50%

Figure 35: Cluster similarity measures using GENIC and K-Means with different val-
ues for k (25 to 75% percentile range from 40 simulations; median values shown as a
dot). Surprisingly, GENIC does not perform well at all with respect to cluster similar-
ity.

GENIC does not have a single treatment that scores more wins than losses at the 95%
significant level.

This could be attributed to the stochastic removal of clusters done by GENIC. How-
ever, K-Means also uses randomness when computing its initial clusters. One may also
consider the fact that GENIC does not retain the full number of clusters asked for a
reason for the poor performance. Figure 36 lists the actual number of clusters returned
by GENIC on average. So in all actuality, when comparing GENIC with k=1024 we
shouldn’t compare it against K-Means with k=1024, but rather a K-Means treatment
closer the value actually returned by GENIC, which is approximately 316. Though,
despite this caveat GENIC still fails to beat any K-Means treatment except when k=1.

Size Average k actually returned
1 1
4 3.9375

16 11.7875
32 20.275
64 35.5375

128 64.4375
256 114.013
512 189.15

1024 316.775

Figure 36: Average number of clusters returned by GENIC for each K
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Looking at Figure 37 further illustrates the vast differences in similarity between
K-Means and GENIC. Notice the K-means asymptotic approach to perfect similarity
while GENIC stays approximately the same regardless of the number of clusters with-
out ever raising over 0.5. Figure 37 also suggests that there is a useful maximum num-
ber of clusters in this domain: no improvement is apparent over (around) 300 clusters
for either of our methods.

Figure 37: Intra-cluster similarity graph of GENIC and K-Means on average

It would not be as significant if only the average similarity of GENIC was so low.
Given the randomness of the algorithm, its reasonable to believe that a good deal of
variance could be introduced. However, looking at the quartile charts in Figure 35, you
can see the small variance in GENIC performance. While it may be a good thing that
the scores are consistent despite randomness, its most certainly a bad thing that they are
so low. Further, these results directly contradict that of the previous work on GENIC
and K-Means which states that the GENIC and K-Means similarity (sum of squared
errors in their case) are comparable, granted there was no statistical testing done to say
one way over the other.
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treatment ties win loss win-loss-at-95%
kmeans & k=1024 0 17 0 17
kmeans & k=512 0 16 1 15
kmeans & k=256 0 15 2 13
kmeans & k=128 0 14 3 11
kmeans & k=64 0 13 4 9
kmeans & k=32 0 12 5 7
kmeans & k=16 0 11 6 5

genic & k=32 4 6 7 -1
kmeans & k=4 6 4 7 -3

genic & k=1024 6 4 7 -3
genic & k=64 7 3 7 -4

genic & k=128 7 3 7 -4
genic & k=256 6 3 8 -5
genic & k=16 6 3 8 -5

genic & k=512 4 3 10 -7
genic & k=4 0 2 15 -13

kmeans & k=1 1 0 16 -16
genic & k=1 1 0 16 -16

Figure 38: Mann-Whitney U tests for intra-cluster similarity of GENIC and K-Means.
GENIC does overwhelmingly bad on on all accounts with none of its treatments having
a positive record.

6.4 Implications of Results
Looking at the performance of K-Means as k in increased shows a direct correlation
between the number of clusters generated and intra-cluster similarity. While this could
mean that we should focus our efforts on generating cluster-sets with many clusters,
there is also the trade-off with respect to time. GENIC was an attempt at leveraging
the trade-offs with no avail. Given the similarity performance of GENIC, it has been
shown to be not acceptable for our tasks at hand.

More importantly however, when asking what a good value for k is, is what the data
tells us. How many clusters inherently exist in the data? The basic mathematics behind
similarity will usually yield sets with many clusters a higher similarity score than those
with less. Imagine if you were to measure the differences between every person in the
US as lumped into one massive group, you would not find much similarity (the case
when k = 1). Now if you were to continually arbitrarily split that group into sub-groups,
you would eventually have a small enough population that similarities could begin to
rise. Setting a static value for k for all datasets is not the answer. Each dataset is unique.
They each have different sizes, number of variables, variable types, noise, etc.; Given
this, what is important is to determine an appropriate value for k for your dataset. While
it may be more time efficient to produce fewer clusters and more accurate to produce
more, the best bet is to find the closest approximation to the inherent rank (number of
clusters) of the dataset, and work from there.

6.5 Future Work
This experiment has shown us that GENIC cannot suit our needs, and that while K-
Means may do a good job, it will take a long time to get there, which leads us to look
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for other alternatives. In our last report we mentioned an optimization step for K-Means
called canopy clustering, future work will further explore evaluate this method in the
same manner that GENIC was evaluated.

Other areas for improvement are the data collections we have to work with. We
have in our possession, 2-3 additional text mining dataset that we have yet to fully
evaluate due to their size and the computing time needed to run the numerous trials.
The additional benefit of these new datasets is that they are, unlike the STEP/EXPRESS
datasets, supervised, meaning each document has been pre-classified with a label that
can later be used to assess clusters using external validity measures. Adding more, non-
similarity based measurement criteria for clustering and classification as well is another
direction we are headed towards. While cluster similarity is a useful insight into the
clusters, a more practical measurement would better suit our needs. Currently in the
works is a method for evaluating how well our algorithms perform within HAMLET,
as used by a user.
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7 Next Steps
Plan to throw one away; you will anyhow.

- ”The Mythical Man-month” (1975)
HAMLET is a tool suitable for in-house use in a research lab. Much work is re-

quired before it can be released as a stand-alone tool for end-users, see Figure 39.

1. As to point 1, we have yet to hit the JAVA wall that makes us recode in “C”
(the GENIC experience suggests that smart algorithms can take us further than
changing the implementation language).

2. Point 3 (user studies) is the focus of the next few months. We know have all the
support code in place for that work. Now we can turn to user trials.

3. We have a design for parsing multi-documents, which will be implemented next
quarter.

The big push for the next quarter will be testing the Rochio user feedback loop.
While the implementation works, and all the GUI support is in place, the open question
will be “for technical users working on archival documents, will the feedback cycle
offered by Rocchio add (any) value to the HAMLET system.

For each data set in the Rocchio trial, a certain number of queries will be prepared.
In general, these queries will be taken from the text of bug reports. Users will be given
a random data set and query to test. They will interact with HAMLET over multiple
cycles of the user feedback loop, taking notes about the results returned. Although the

1. The current system was designed as a throw-away prototype to serve as an experimental work-
bench for numerous implementation ideas. For example, HAMLET is currently implemented
in JAVA since this was a language familiar to the student programmers working on this project.
The limitations of JAVA, in terms of runtime, are becoming apparent. We wish to avoid a port
to “C” and are looking into better internal JAVA-based data structures.

2. As to other matters, the scalability of HAMLET’s queries has yet to be empirically verified.

3. Also, the user profile system that takes input from the users, then dynamically tunes the results
of each query, is still being designed. That system is not implemented but we need experiments
to assess its value-added (if any).

4. Further, HAMLET’s ability to link between documents in heterogeneous collections has yet
to be tested. This test must be conducted.

5. More generally, another useful question is “what else is HAMLET good for?”. HAMLET is
a combination of feature extractors from technical documents, numerous data & text mining
techniques, some AI tools, and some information retrieval methods (including methods for
learning from user feedback). While the current version answers the questions “what else”
and “what not”, it is an interesting question to ask if the toolkit could be bent to another
purpose.

Figure 39: Our current todo list.
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queries and data sets are controlled, the individual like/dislike decisions made by the
user will be unique and will depend on their level of domain knowledge.

The purpose of user trials is to test the usefullness of the feedback mechanisms.
These trials mirror real-life use of the HAMLET software, and the data recorded by
these users should yield interesting results. Some of this data could include the number
of new documents returned, the number of rated documents that remain in the list, and
how many of those are liked or disliked. Knowing how many rounds of feedback that
a user has to go through to find the class they are looking for should provide a good
starting place for the future improvement of these mechanisms.

Because of the recursive nature of the Rochio formula, fewer new results will be
found as more items have been rated. Over time, the point in space that your query
represents will move less and less. Eventually, no new results will be returned. To
escape this trap, Viapianni et al [?] have found it useful to always replace a certain
percentage of your results with ”suggestions.” These suggestions should be similar
items, but different enough that they would not normally be returned with the nearest
neighbors. They propose several different ways to generate these suggestions. Any of
the methods that they suggest could be implemented in the HAMLET system.

Our current plans call for a local user trial using university students. JAVA will
be the technical document of choice because every student in the Computer Science
program will have a certain level of expertise with the language. Another reason to
favor JAVA is that there are a large number of open-source JAVA projects that could be
used for data sets. Our current JAVA data set is based on the HAMLET code base, but
future sets could include data from the Eclipse project or the jEdit program.

Note that if STEP case studies, with real-live users, come to hand, we would move
on to trials with STEP (once we have debugged our experimental method using JAVA).
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The HAMLET PROJECT: status report

Changes to this document since last submission
• §2.2 has a clearer overview of the HAMLET system (e.g. see Figure 3);

• §4.1, §4.2, §4.3 contains our our new screens, including all those required for the
user feedback system. The support text for all those figures have been changed.

• Most of §5.4 has been changed and better text has been added describing GENIC
(§5.4.1) and K-means (§5.4.2).

• The connection of HAMLET to the Rocchio algorithm is better explained in the
new text of §5.8.

• Chapter 6 is entirely new and describes our GENIC vs K-means shoot-em-up.

Work performed since last submission
Since our last report, our effort has gone into two tasks. Firstly, as shown in Chapter 6,
we spend much time running experiments assessming different clustering algorithms.
Secondly, we had to prepare the system for the user feedback triaks planned for 2009.
This required:

1. recoding the interface to handle preference information (see figures 11,12,13,14)

2. changing much of the internal structure of HAMLET to take into account user
profiles for mulitple users across multiple sessions.

Task 2 was a surprisingly tedious task: HAMLET’s original design assumed a single
user and that very pervausive throught the entire code base. Much work was required
to recode all the internal structures to handle multiple users running multiple sessions.

Resources used since last submission
Travel: No travel costs were incurred as part of this work for this quarter

Software: No software purchases.

Hardware: This work was performed on three Dell Laptops, (bought May 2008) and
one Apple Mac (June 2008).

PersonneL: The work for this quarter was performed by:

• Tim Menzies, associate professor LCSEE

• Andrew Matheny, Masters student, LCSEE

• Gregory Gay, Masters student, LCSEE

• Adam Nelson, undergraduate programmer, LCSEE


