
Progress on STEP Visualization
NETL / WVU NARA project

Tim McGraw, Takamitsu Kawai

December 2008

1 Personnel

• Tim McGraw, Asst. Professor
Duties : Research and develop algorithms for information visualization,
manage research assistants.

• Takamitsu Kawai, Graduate Research Assistant
Duties : Research, develop and implement algorithms for information vi-
sualization.

2 Travel in 2008

• October 19 - October 24 2008; Columbus, Ohio
Purpose : Attend IEEE Visualization conference to learn state-of-the-art
in information visualization and interface with experts in the field.

3 Overview

The field of information visualization is still in its infancy compared to scientific
visualization, but it is growing rapidly. Practitioners in this field seek to develop
visual representations for non-numerical data which give insight and convey
meaning in user-friendly and intuitive ways. The difficulty of this problem grows
when the datasets are large, high-dimensional or time-varying. The approach
we propose for visualization of STEP data has 2 defining characteristics:

1. GPU implementation.
We propose to use the graphics processing unit (GPU) to not only display
images, but to compute the intermediate results necessary for visualiza-
tion. This permits us to exploit the parallel processing power of the GPU
and maintain interactivity of the application. This is difficult to achieve
in other parallel processing environments. The growing memory on recent
GPUs allows us to apply our algorithms to large scale datasets.

1



2. Casting discrete entities into the continuous domain.
Many existing information visualization techniques utilize structures which
are discrete in nature - tables, bar charts, line graphs. However, interact-
ing with this data may introduce concepts which are continuous in nature.
One example of such a concept is scale. A large dataset is commonly sim-
plified by clustering. Entities which are similar according to some criteria
are collapsed into a single entity. Clustering can be applied recursively so
that similar clusters can also be joined together. At a very coarse scale
a dataset can be represented as a few large clusters, but at a finer scale
the individual entities may emerge. When presenting a user two views of
the data at 2 different scales it can be difficult to identify which entities
at the finer scale are related to the clusters at the coarser scale. By allow-
ing the user to select the scale in a continuous fashion we may eliminate
much ambiguity for visualization of large datasets. Continuous visualiza-
tion permits improved retention of the relationships between entities and
their clusters.

These characteristics will lead to interactive methods for large graph visualiza-
tion and annotation. Continuous representations are are also more natural to
store and manipulate on the GPU since it is designed to manipulate and display
triangle meshes and raster images.

4 Introduction

As the complexity of graphs increases, it becomes more important to develop
sophisticated graph visualization techniques that produce comprehensible re-
sults. Here we discuss our novel continuous level of detail (CLOD) techniques
for visualizing inclusive relations among clusters in graphs.

Researchers have developed various graph layout/visualization libraries such
as: OGDF (Open Graph Drawing Framework) [8], Graphviz [11][1], and VTK
(The Visualization Toolkit) [3]. We intend to utilize these libraries in our ap-
plication as the geometric problem of graph layout is beyond the scope of this
project. One of the missing features in these graph visualization libraries is the
ability to comprehensibly visualize the inclusive relations among clusters in a
graph. Generally graphs represent network structures of multiple components.
One of the important aspects of such graphs is that users can define multiple
clusters within them representing relations between vertices. A cluster typically
represents a certain meaningful grouping of graph vertices such as subassemblies
in an assembly. The clustering may be done interactively by users or automat-
ically by some clustering algorithm. These clusters can also be nested - it can
contain vertices and/or smaller clusters as its substructure. The important fact
is that these inclusive relations among clusters are orthogonal to the original
network structure of the graph. We would like to clearly visualize the transition
of the formation of these clusters. The conventional graph visualization libraries
typically use dots or small icons to represent vertices and use lines or curves for
edges. They also allow users to specify clusters of the vertices and produce

2



clustered layouts taking into account the clustering information. The clusters
are generally represented as nested boxes in the output. Although technically
these nested boxes themselves represent the inclusive relations among clusters,
it is difficult to see the process of the formation of those nested structures.

Figure 1: A clustered graph. Clusters are represented as nested boxes.

Figure 1 shows an example of a clustered graph and Figure 2 shows an
alternative to the nested box scheme. Here the nodes collapse together and
merge smoothly as they overlap. This is achieved by representing the nodes not
as individual discrete circles, but as the isocontours of a continuous function.
The cluster is rendered as a single node whose attributes are a combination of the
attribute of the constituent nodes. In this case we have used color to represent
node attributes, but texture and other visual attributes will be incorporated
in the future. The appearance of the cluster is computed on the GPU and
the animation from the first to last frame of Figure 2 is smooth and fast in
the running application. By rendering the cluster in this compact way we can
efficiently draw larger and more complex graphs.

Generally, the underlying graph can have any topological structure. In the
examples presented here the graph is a directed acyclic graph (DAG). The clus-
tering information can be given either by users or by some clustering algorithms.
The layout in Figure 1 is done by the OGDF [8] graph layout library. The black
dots with vertex numbers and curves indicate the original underlying DAG. The
red boxes indicate clusters. Note that the inclusive relations among clusters is
orthogonal to the original DAG structure. The layout library performs the lay-

3



Figure 2: Animation frames demonstrating the transition between individual
nodes and a cluster in a continuous manner. The merging of nodes is computed
on the GPU.

4



out taking into account the given clustering information so that the vertices
within a cluster are included in the same box yet the original underlying graph
structure is kept. In this figure, although we can recognize that there are mul-
tiple nested clusters, it is difficult to capture how each one of the clusters fuses
together and the fact that the smaller clusters gradually form larger clusters. In
order to address this problem, we introduce the concept of continuous level of
detail for graphs. Our basic idea is to visualize this cluster formation by utilizing
sets of isosurfaces that span multiple clusters in different levels of detail.

5 Graph CLOD Visualization Techniques

5.1 Input Files

To demonstrate our method, we use STEP files as input data. Figure 3 shows
an example visualization of the graph derived from a STEP file. It represents
the lower rudder arm of a large ship. The leaf nodes correspond to the most
primitive entities such as position and directional vectors. As we go up the
hierarchy, higher-level entities such as edges, faces and solids are represented.
Since one lower-level entity can be referenced by multiple higher-level entities,
generally the entire graph forms a DAG. We used a reduced version of this file
in its number of vertices to examine our methods.

Figure 3: Example of visualization of a STEP file using conventional graph
layout library.

5.2 Constructing Clustered Graphs

To facilitate our experiments, we developed a parser that extracts the graph
structure from an input STEP file. The extracted graphs are assumed to be a
DAG and stored as a graph object within the graph layout library. We used the
clustered graph layout algorithm available in OGDF. It allows users to specify
clustering information and perform layouts using this information. Figure 1
shows an example of clustered layout.

5



Figure 4: Continuous transition between clusters.

5.3 Constructing Isosurfaces

The number of levels of detail N is predetermined by users and we create one
layer per one level of detail. A layer is a container of the clustered layout of
the original input graph. Once the clustered graph layout is performed, the
layout information is copied into all the layers. In each layer, the bounding box
of each cluster is determined by the layout algorithm. We create isosurfaces
based on the coordinates of these bounding boxes. One set of isosurfaces is
created between two adjacent layers Ln and Ln+1. Therefore for N levels of
detail there are N corresponding layers and N − 1 sets of isosurfaces. Figure
5 shows an example of multiple layers. In this figure N = 3, so 2 isosurfaces
will be created. The sets of isosurfaces allow us to visualize how the clusters
converge or diverge as we navigate through the different levels of detail. In order
to construct isosurfaces, each scalar field is initialized as follows: Let the set of
bounding boxes in the n-th layer Ln be Bn. Denote the i-th cluster in Ln as cn,i

and its corresponding bounding box as bn,i. According to the inclusive relations
among clusters, appropriate clusters in adjacent layers are connected. Consider
connecting a cluster cn,i and another cluster cn+1,j . A smooth transition is made
for the corresponding bounding boxes bn,i and bn+1,j by Hermite interpolation
[5]. Figure 4 shows an example of the transition between the bounding boxes bn,i

and bn+1,j . Each one of four corners of the bounding boxes are interpolated.
We set up local coordinate systems for each pair of Ln and Ln+1. x and y

6



coordinates are set up so that the plane of layers is parallel to the xy plane.
Thus z direction is perpendicular to the layer planes. The Hermite interpolation
is given by

h1 = 2s3 − 3s2 + 1
h2 = −2s3 + 3s2

h3 = s3 − 2s2 + s

h4 = s3 − s2

p = h1p0 + h2p1 + h3t0 + h4t1

where 0 ≤ s ≤ 1 is a parameter, p0 and p1 are the three-dimensional coordinates
of one of four corner points of bn,i and bn+1,j , respectively. t0 = t1 = (0, 0, 1)
are the tangent vectors of the curve at the start and end points of the curve.
Once the trajectory of the curve is determined, radial basis functions (RBFs)
[16][10][6][15][14] based on a Gaussian kernel are accumulated into the scalar
field along the curve. For a point p = (px, py, pz) on the curve the RBF is given
by

s(x(x, y, z);p) = w(pz) exp

(
−α

((
x− px

a

)2

+
(

y − py

b

)2
))

where w is a weight function, α is a coefficient that determines the steepness of
the kernel, and a and b is the half the size of the interpolated bounding box.
The w(z) controls the strength of the kernel depending on the z position. Since
multiple clusters from Ln can be fused into to one cluster in Ln+1, w needs to be
determined so that the strength of each cluster connection is equally distributed
based on the number of incoming/outgoing connections for each cluster. Let the
multiplicity at the cluster cn,i be M0 and at the cluster cn+1,j be M1. The weight
is given by

w(z) = (1− z)
1

M0
+ z

1
M1

where z is the parameter ranging from 0 (at cn,i) to 1 (at cn+1,j) that parame-
terizes the z-position of a point on the Hermite curve.

5.4 Rendering Isosurfaces

After scalar fields are constructed for each pair of layers, isosurfaces are ex-
tracted from each scalar field. Our renderer uses the marching tetrahedra al-
gorithm [13][4] which is a variant of the marching cubes algorithm [7][4]. Our
implementation of the algorithm is GPU-based and it produces triangles using
the geometry shader. For lighting we used the per-pixel Phong lighting to give
the appearance of a smooth surface. In future work, spatially varying mate-
rial properties will be used for indicating data attributes. Figure 6 shows the
rendering result. The entire set of isosurfaces represent the continuous level of
detail making a smooth transition over multiple layers connecting clusters in
each layers. We can clearly identify the inclusive relations among clusters by
tracing the branching of the surfaces.

7



Figure 5: Clustered graph (multiple layers).

5.5 Issues in Parsing STEP Files

We attempted to use the STEP importer available in Open CASCADE library
[2], however we found some difficulties in applying the library when we tried
to extract the underlying graph structure. Although it allows us to traverse
the topological data structure such as vertices, edges, faces, and faces, it does
not completely reveal the original graph structure included in the STEP file.
Therefore we decided to develop our own STEP file parser. Although this parser
is a simple one, it has enough capability to extract all the vertices/edges relations
included in the input STEP file.

6 Conclusions and Future Work

We have described our novel continuous level of detail visualization techniques
for clustered graphs. The methods we have developed are amenable to imple-
mentation on the GPU. We have achieved interactive framerates for all examples
shown in this report.

Our future work will include augmenting the surface shown in Figure 6 with
features such as text annotation, texture mapping and bump mapping in order
to provide the user with more information about the nodes and clusters being
represented.

8



Figure 6: Rendering across multiple scales. The hierarchical structures of the
clusters is clearly visible. Boxes are shown overlaid on the surface for reference
only.

9



We are also working on other graphics techniques to allow users to manip-
ulate vertices and clusters more interactively. An approach using vector fields
to impose repulsive forces between nodes which are not in the same cluster (to
prevent them from merging) can permit the user to dynamically drag nodes and
rearrange the graph. A prototype system which computes these fields on the
GPU currently in development.

Currently we depend on a conventional isosurface extraction method to pro-
duce the surface in Figure 6. We are developing more sophisticated methods
for constructing this isosurface by efficiently computing the topological structure
using Reeb graphs [9][12]. Knowledge of the topology of the surface prior to sur-
face extraction will permit a more rapid surface extraction and allow the surface
to be more efficiently texture mapped and represented in the GPU memory.

References

[1] Graphviz Graph Visualization Software. http://www.graphviz.org.

[2] Open CASCADE. http://www.opencascade.org.

[3] VTK The Visualization Toolkit. http://www.vtk.org.

[4] P. Bourke. Polygonising a Scalar Field. http://local.wasp.uwa.edu.au/
~pbourke/geometry/polygonise/.

[5] R. L. Burden and J. D. Faires. Numerical Analysis. Brooks/Cole.

[6] J. C. Carr, W. R. Fright, and R. K. Beatson. Surface interpolation with
radial basis functions for medical imaging. IEEE Transactions on Medical
Imaging, 16:96–107, 1997.

[7] S. L. Chan and E. O. Purisima. A new tetrahedral tesselation scheme for
isosurface generation. Computers & Graphics, 22(1):83 – 90, 1998.

[8] M. Chimani, C. Gutwenger, M. Jünger, K. Klein, P. Mutzel, and M. Schulz.
The Open Graph Drawing Framework. In 15th International Symposium
on Graph Drawing 2007, Sydney (GD07), 2007.

[9] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pas-
cucci. Loops in Reeb Graphs of 2-Manifolds. Discrete Comput. Geom.,
32:231–244, 2004.

[10] T. R. Evans. Reconstruction and Representation of 3D Objects with Radial
Basis Functions. In Computer Graphics (SIGGRAPH ’01 Conf. Proc.),
pages 67–76. Springer, 2001.

[11] E. R. Gansner and S. C. North. An Open Graph Visualization System and
Its Applications. Software - Practice and Experience, 30:1203–1233, 1999.

10



[12] J. Snoeyink H. Carr and U. Axen. Computing contour trees in all dimen-
sions. Comput. Geom. Theory Appl., 24:75–94, 2002.

[13] W. E. Lorensen and H. E. Cline. Marching Cubes: a high resolution 3D
surface reconstruction algorithm. In Computer Graphics, volume 21, pages
163–169 (Proc. of SIGGRAPH), 1987.

[14] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H. Seidel. Multi-level
Partition of Unity Implicits. In SIGGRAPH, pages 463–470, 2003.

[15] W. Qiang, Z. Pan, C. Chun, and B. Jianjun. Surface Rendering for Parallel
Slices of Contours from Medical Imaging. 9:32–37, Jan/Feb., 2007.

[16] G. Turk and J. F. O’Brien. Shape transformation using variational implicit
functions. In SIGGRAPH ’99, pages 335–342, 1999.

11


