

Combining Formal Concept Analysis with Information Retrieval

for Concept Location in Source Code

Denys Poshyvanyk, Andrian Marcus1

Department of Computer Science
Wayne State University
Detroit Michigan 48202

313 577 5408
denys@wayne.edu, amarcus@wayne.edu

Abstract

The paper addresses the problem of concept
location in source code by presenting an approach
which combines Formal Concept Analysis (FCA) and
Latent Semantic Indexing (LSI). In the proposed
approach, LSI is used to map the concepts expressed in
queries written by the programmer to relevant parts of
the source code, presented as a ranked list of search
results. Given the ranked list of source code elements,
our approach selects most relevant attributes from
these documents and organizes the results in a concept
lattice, generated via FCA.

The approach is evaluated in a case study on
concept location in the source code of Eclipse, an
industrial size integrated development environment.
The results of the case study show that the proposed
approach is effective in organizing different concepts
and their relationships present in the subset of the
search results. The proposed concept location method
outperforms the simple ranking of the search results,
reducing the programmers’ effort.

1. Introduction
Identifying the parts of the source code that

correspond to a specific functionality is a prerequisite
to program comprehension and is one of the most
common activities undertaken by developers. This
process is called concept (or feature) location.

One of the most commonly used technique for
concept location is the source code text search, where
developers write queries and a search engine returns a
list of source code elements relevant to the query. In
many cases, only a small fraction of the result set is
relevant to the concept being located. In these
situations, the developers either undertake the daunting
task to investigate in detail as much as they can from
the results, or they reformulate their query to reduce the
size of result list. Eventually, even after a series of

queries, the user will still need to investigate the set of
results. Our work aims to help the user in reducing his
search effort by providing additional structure among
the search results, such that parts of the source code and
documentation are grouped based on common topics.
Our inspiration comes from similar approaches used in
web searching, such1 as the Vivisimo2 and Clusty3
clustering engines.

Specifically, we augment an existing information
retrieval (IR) based technique for concept location [1]
with automatic organization of the search results using
formal concept analysis (FCA). The IR based concept
location technique uses a search engine based on Latent
Semantic Indexing (LSI) [2], which allows the user to
search source code and related textual documentation
by writing natural language queries and retrieving a list
of source code elements (for example, classes, methods,
functions, files), ranked based on their similarity to the
query. Based on the ranked results of the search we
automatically generate a labeled concept lattice.
Developers can determine whether a node from the
concept lattice (that is, topic or category) is relevant or
not to their query by simply examining its label; they
can then explore only relevant nodes in the lattice and
ignore the other ones, thus reducing their search effort.

2. Related work
This section outlines research related to our work,

where we present existing approaches to feature and
concept location, with specific focus on the use of FCA
in this context.

Concept location is also referred to in the literature
as feature identification or concern location. Features
are special concepts that are associated with the user
visible functionality of the system. The shared goal of
these techniques is to identify the computational units

1 Corresponding author
2 www.vivisimo.com
3 www.clusty.com

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

(for example, methods, function, classes, etc.) that
specifically implement a concept of interest from the
problem or solution domain of the software. Concept
location is an essential part of the incremental change
process [3]. Through the rest of the paper we use the
term concept location, even when we refer to
techniques that are named differently. When the
context may produce confusion between the use of the
word concept in concept location and concept analysis
we use feature instead of concept.

Existing approaches to concept location use different
types of software analyses. They can be broadly
classified into static, dynamic, and combined analysis
based approaches.

Wilde et al. [4] was the first to address the problem
of feature location using the Software Reconnaissance
method, which utilizes dynamic information. The
approach is based on building two execution traces
based on two sets of test cases – one that exercises the
feature of interest and one that does not. The resulting
traces are used to identify elements of the source code
which implement that feature. This approach has been
recently revisited by several researches to improve its
accuracy by using new methods on how to analyze
execution traces [5] as well as selecting execution
scenarios [6].

Biggerstaff et al. [7] introduced the problem of
concept assignment in the context of static analysis.
They implement a tool which extracts identifiers from
the source code and clusters them to support
identification of concepts. The simplest and most
commonly used static technique is based on searching
the source code using regular expression matching
tools, such as the Unix utility grep. Modern
development environments like Eclipse and MS Visual
Studio build many useful add-ons on top of simple
pattern matching, including references to class and
method names, etc. A significant improvement over
regular expression matching is brought by information
retrieval-based approaches [1, 8], which allow more
general queries and rank the results to these queries.

Among other static-based techniques for concept
location is the one proposed by Chen et al. [9], which is
based on the search of abstract system dependence
graph. This approach has been recently extended in
[10] via analysis of dependency topologies to rank
elements of interest in source code. Some other
methods combine other types of information obtained
via static analysis (that is, textual and structural), such
as Zhao et al. [11] who proposed the technique which
combines information retrieval with branch-reserving
call-graph information to automatically assign features
to respective elements in the source code. Gold et al.
[12] proposed an approach for binding concepts with
overlapping boundaries to the source code which is

formulated as a search problem using genetic and hill
climbing algorithms. A comparison and overview of
static feature location techniques can be found in [13].

Eisenbarth et al. [14] combined both static (that is,
dependencies) and dynamic (that is, execution traces)
information to identify features in programs and use
FCA to relate features together. Salah and Mancoridis
[15] use static and dynamic data to identify feature
interaction in Java source code. Poshyvanyk et al. [16]
combined an information retrieval based technique with
scenario-based probabilistic ranking of the execution
traces to improve the precision of feature location.

A comparison of different approaches for feature
location in legacy systems is presented in [17]. A more
up-to-date summary of all existing approaches can be
found in [5], whereas a summary of industrial tools
available for feature location is available in [18].

FCA has many uses in software engineering [19]
such as identification of objects in legacy code however
we discuss here the ones that specifically address
concept location. In addition to the work of Eisenbarth
et al. [14] (mentioned above), Tonella et al. [20] use
dynamic analysis together with FCA to identify aspects
in execution traces, while more recently, FCA has been
applied for mining cross-cutting concerns from
software repositories [21]. Mens et al. [22] apply FCA
to mine source code to support various program
comprehension tasks, including concept location.

3. Background
In this section we present background information

on FCA, a mathematical technique for analyzing binary
relations and LSI, an advanced information retrieval
method. Readers familiar with FCA or LSI may skip
the respective section(s).

3.1. Formal concept analysis

Formal concept4 analysis is a branch of
mathematical lattice theory that provides means to
identify meaningful groupings of objects5 that share
common attributes [23] as well as provides a
theoretical model to analyze hierarchies of these
groupings.

The main goal of FCA is to define a concept as a
unit of two parts: extension and intension. The
extension of a concept covers all the objects that belong
to the concept, while the intension comprises all the
attributes, which are shared by all the objects under
consideration.

4 Note the difference between the use of the term concept in FCA and
concept location
5 Also note the difference between the terms object and attribute in
FCA and OOP

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

In order to apply FCA, the formal context or
incidence table of objects and their respective attributes
is necessary. Formal context consists of a set of objects
O, a set of attributes A, and a binary relation R ⊆ O × A
between objects and attributes, indicating which
attributes are possessed by each object. Formally, it
can be defined as C = (A, O, R). From the formal
context, FCA generates a set of concepts where every
concept is a maximal collection of objects that possess
common attributes. More formally, a concept is a pair
of sets (X, Y) such that:

X= {o ∈O | ∀a ∈ Y: (o,a) ∈R}
Y= {a ∈A | ∀o ∈ X: (o,a) ∈R}, where

X is considered to be the extent of the concept and Y is
intent of the concept. This set of concepts is called a
complete partial order where some concepts are super-
or sub-concepts with respect to others.

The set of all concepts constitutes a concept lattice
and there are several algorithms to compute concepts
and concept lattices form a given formal context. For
details on these algorithms as well as more complete
description on FCA, refer to [23].

3.2. Latent semantic indexing

In the proposed concept location approach we utilize
an information retrieval method, LSI [2], as a text
indexing and search engine.

LSI is based on a Singular Value Decomposition
(SVD) of the co-occurrence matrix of identifiers and
comments in source code documents of a software
system. SVD is a form of factor analysis, which is used
to reduce dimensionality of the feature space to capture
most essential semantic information. The formalism of
SVD is rather lengthy to be presented in the paper, thus
we refer the reader to [2] for complete details.

Originally LSI has been mostly applied on natural
language corpora, however, the method has been shown
to lend itself well on other types of data, for example,
textual information extracted from source code and
associated documentation. Some of the software
engineering problems, related to concept location,
which have been addressed using LSI are concept [1]
and feature [16] location, traceability link recovery
between source code and documentation [24, 25],
tracing requirements [26] and other software artifacts
[27], etc.

Details on how LSI is used for feature location in
source code are available in [1] and [13].

4. Concept Location using Concept Lattices
In this section we present the details of our approach

to concept location, which uses FCA to organize in a
concept lattice the results of a search performed by a
developer using the LSI based source code search
engine. Part of the approach is similar to the one
presented in [1] and offers users the same main
features, such as the ability to write queries in natural
language and sort the results based on their similarity to
the query. With the LSI-based source code search
engine, developers search the software much the same
way they do the internet with popular search engines
like Google.

Figure 1 shows the main steps in the concept
location process using LSI and FCA. The first two
steps are usually performed once, while the other ones
are performed repeatedly until the user finds the desired
parts of the source code.
1. Creating a corpus of a software system. The

source code is parsed using a developer-defined
granularity level (that is, methods or classes) and
documents are extracted from the source code. A
corpus is created, so that each method (and/or
class) will have a corresponding document in the

Figure 1. Concept location process using LSI and FCA

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

resulting corpus. Only identifiers and comments
are extracted from the source code. We developed
tools that automatically create corpora for MS
Visual Studio projects [28] and Eclipse projects
[29]. In addition, we also created corpus builder
for large C++ projects, using srcML [30] and
Columbus [31].

2. Indexing. The corpus is indexed using LSI and a
representation of the corpus as a real-valued vector
subspace is created. Dimensionality reduction is
performed in this step, capturing important
semantic information about identifiers, comments
and their relationships in the source code. In the
resulting subspace, each document (method or
class) has a corresponding vector.

3. Formulating a query. A developer selects a set of
terms that describe the concept of interest (for
example, ‘print page’). This set of words
constitutes the initial query. The tool spell-checks
all the terms from the query using the vocabulary
of the source code (generated by LSI). If any word
from the query is not present in the vocabulary,
then the tool suggests similar words based on
editing distance and removes the term from the
search query.

4. Ranking documents. Similarities between the
user query and documents from the source code
(for example, methods or classes) are computed.
The similarity between a query reflecting a concept
and a set of data about the source code indexed via
LSI allows generating a ranking of documents
relevant to the feature. All the documents are
ranked by the similarity measure in descending
order.

5. Selecting descriptive attributes. The top k
attributes from the first n documents in the ranked
list (for example, methods) are selected. These
terms are mostly similar to the selection of the n
documents but not common to all other documents
in the search results.

6. Applying Formal Concept Analysis. Before
applying FCA we prepare the formal context,
which is generated from a set of n-first documents
(objects) in the ranked list and k descriptive terms
(attributes) extracted in the previous step.
Subsequently, we apply the FCA bottom-up
algorithm [23] to build the set of concepts for a
given context which forms a complete partial
order, or simply a concept lattice.

7. Examining results. The resulting concept lattice,
with annotated descriptions for concept nodes and
with links to actual documents in source code is
presented to the user. The user can browse the
results by traversing the lattice and refining queries
if desired. If a user finds a part of the concept, then

the search succeeds, otherwise, the user formulates
a new query, taking into account new knowledge
obtained from the investigated documents in the
lattice, which may help formulate more specific
query (for example, narrow search criteria by
taking into account relations between node
descriptions in the lattice) and returns to step 3.

4.1. Selecting descriptive attributes
There are several published solutions to extract

descriptive terms for sub-collections of documents. For
example, okapi weighting scheme and terminological
formula are two of the approaches proposed for free-
text IR systems [32]. We adopt and adapt here the
technique proposed by Kuhn et al. in [33], since it was
defined in the context of source code to select relevant
terms with respect to given clusters of source code
elements. Following we present how this technique is
adapted and used to select terms to be used in FCA.

We define a corpus for a software system as a set of
documents D = {d1, d2 … ds}. A set of documents in
the ranked list which we use to build a formal context is
denoted as Dn, where the number of documents is
n=|Dn|. To denote the rest of the corpus, which does
not contain documents in Dn, we use D1 = {D – Dn},
where the number of documents is |D1| = s – n.

We define a set of unique terms which occur in D as
TD = {t1, t2 … tr}. A set of unique terms which occur in
Dn only is defined as TDn, where TDn ⊆ TD.

In order to rank every term ti ∈ TDn (for i=1 …|TDn|)
with respect to a document collection Dn we apply the
following formula to determine the ranking of the
terms:

1
1

1(,) (,) (,)
| |i n i n isim t D sim t D sim t D
D

= − ×∑

Using this approach we are able to rank all the
unique terms in Dn (for example, TDn) so that the terms
highly similar to the documents in Dn but not to the
documents in D1 are ranked higher. We penalize those
terms which are highly similar to D1, since it is
mentioned in [33] that there might be identifiers for
data structures or utility classes, which would pollute
the top ranked list of terms (for example, atoi, class,
sqrt, etc).

4.2. Applying formal concept analysis
We decided to use FCA instead of clustering

algorithms because of the following reasons: FCA
provides an intentional description for each cluster,
which makes groupings more interpretable; the
generated cluster organization is a lattice, rather than a
hierarchy, allowing recovery from bad decisions, while
exploring the hierarchy; FCA is generally, richer and

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

more flexible way of browsing the document space than
hierarchical clustering [34].

With the approach presented in this paper we tackle
the problem of scalability of FCA in the context of a
software system by applying it on the subset of relevant
search results only. Using this approach, the top search
results, that is, the first n methods or classes in the
ranked list are organized in the concept lattice based on
the attributes automatically selected from identifiers
and comments implemented in their source code.

To illustrate how FCA works with respect to the
problem that we are addressing in this work, that is,
concept location, we present the following example of
locating the feature ‘print page’ in the source code of
Eclipse 3.16 with the following methods returned as the
result of our initial query of the same name as the
feature: getBounds which obtains the size of the paper,
startPage and endPage which start and end printing a
page, startJob which initiates a print job which may
include printing several pages, endJob which finalizes
printing a page(s) and cancelJob which ends and
cancels the print job respectively.

Using the algorithm for selecting descriptive terms,
described in section 4.1, the following terms are
selected from the identifiers and comments of the
returned methods: printer, print, page, job, device,
paper and rendering. Note that these terms are specific
only to those six methods but not to the rest of the
source code in Eclipse.

Using top methods from source code and their
descriptive attributes, we generate a formal context C =
(A, O, R), where the objects O are aforementioned
methods and A are words (attributes) extracted from
implementation of the methods in O. Note that in this
example we choose n top objects (n=6) and k most
similar terms to these objects (k=7). The set of binary
relations R among O and A are summarized in Table 1.

Table 1. Formal context: objects (six methods from
source code of Eclipse) and attributes (shared in

identifiers and comments of those methods)

 printer print page job device paper rendering

startJob X X

endJob X X

cancelJob X X

startPage X X X

endPage X X X

getBounds X X X

While applying FCA on our example, the following

concepts are identified:

6 www.eclipse.org

C1= ({},{paper})
C2= ({getBounds}, {printer, device})
C3= ({startPage, endPage}, {page, rendering})
C4= ({startJob, endJob, cancelJob}, {print, job})
This set of concepts is referred to as a complete

partial order whereas some concepts are super- or sub-
concepts with respect to others (see Figure 2).

Figure 2. Concept lattice for the ‘print page’ feature.
Grey boxes are attributes (words) and white boxes

are objects (methods).

For example, the concept C2 is a sub-concept of
concept C1. Intuitively, from the term ‘paper’ in C1 we
also may assume that C1 is more general than concepts
C2 ‘printer device’ and C3 ‘page rendering’; moreover,
implementation of methods which belong to these
concepts indeed reflect this fact. In addition, both
methods implement different actions related to the
paper – getBounds is used to obtain physical properties
of the paper based on current system device, whereas
startPage and endPage implement operations which
initialize and finalize printing of a page respectively.

5. Evaluation of the Proposed Approach

We performed a case study to evaluate our approach
and better understand the effects of selecting various
values for n and k when applying FCA. The case study
design is based on recommendations from [35]. The
results of the new approach are compared with those of
its predecessor that uses list of ranked results.

5.1. Design of the case study

One recurrent issue in case studies on concept
location is the verification of the results. It is often
difficult to determine for sure that a certain method
implements at least in part a given concept. The best
way to validate such a fact is to implement a change
that alters that concept and confirm if that method
changed or not. Of course, a given change request may
be designed and implemented in many ways. In order

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

to minimize the threats to the validity of our results, we
opted to design the case studies similarly to those
constructed in [16]. Specifically, we decided to locate
concepts that are associated with particular bugs
reported for the given software. This way we could
verify the correctness of the location process by
checking the final patches for these bugs, as those are
available as well and are not implemented by people
associated with the authors. The documentation for
every bug used in the case study specifies which
methods were changed in response to bug fix. We
consider these methods as (part of) the implementation
of the concept associated with the bug, which we see as
an unwanted feature. We used the following criteria to
select bugs for the case study: (1) bugs should be well-
documented and reproducible; (2) bugs should have
approved patches applied in recent releases; (3) none of
the authors know the parts of the program
corresponding to the features to eliminate potential
bias; (4) we could formulate ad-hoc queries using
words in the description of the bug which would
correctly describe the associated concept. For each bug
we are interested in locating at least one of the methods
modified during its fix. We define the scope of concept
location to finding the starting point of a change, as
defined in [3], as it is the role of impact analysis and
change propagation to get the full extent of the change
in the source code.

5.1.1. Research questions and propositions

The goal of the case study is to evaluate the impact

on the size and quality of the concept lattice of the
following parameters:

• the number of documents n in the ranked list
that should be kept for selection of descriptive
attributes and the final concept lattice and

• the number of attributes k that should be
selected for the number of n documents.

In addition, we expected that the resulting concept
lattice will reduce the searching effort of the developers
when compared to the simple ranking of the results
based on the similarity of the methods to the user
query. This proposition is based on the fact that the
new approach can effectively utilize information about
relationship among the results of the search based on
common attributes rather than only those used in the
original user query. In other words, it can effectively
group relevant documents and provide informative
labels as node descriptions in concept lattice, helping
the user to navigate the resulting lattice more
effectively, possibly scanning only the fraction of the
documents. Such a representation should provide a
structural view about different sub-topics present in the
results of the search and provide additional information,

such as descriptive labels, which can be used as visual
cues to navigate results more effectively than a simple
ranked list.

5.1.2. Object and settings of the case study
We chose the Eclipse (version 3.1), integrated

development environment, a large open-source
software system used in research and industry. Eclipse
is easily accessible and has well documented bug
reports, which will make possible replication or
extension of the case study easy in the future.

Table 2. Eclipse source code and corpus vitals

Item Count
MLOC 2.9

Vocabulary 56,863
Number of parsed documents 86,208

We indexed the source code of Eclipse using the

approach outlined in Section 4. We chose method level
granularity (that is, each document in the corpus
corresponds to a method) and we did not index the class
interfaces. We construct the corpus for Eclipse by
extracting all comments and identifiers from the source
code. The resulting text is processed using the
following set of rules: some types of tokens are
eliminated (for example, operators, special symbols,
some numbers, keywords of the programming
language, standard library function names, etc.); the
identifiers in the source code are split into parts based
on known coding standards while the initial form of
each identifier is kept as well; each document in the
corpus is created with the comments and identifiers
corresponding to each method. No morphological
analysis or transformations are applied since we do not
use a predefined vocabulary, or a predefined grammar.

The size of the resulting corpus and number of
indexed methods from Eclipse is presented in Table 2.
We used LSI with a dimensionality reduction factor of
500, which accurately represents the semantic space of
this size.

5.1.3. Evaluation criteria and measures
We compare the results of our new technique with

the sorted list of results, obtained with LSI based
rankings. We assume that with a ranked list, a user has
to scan each document until the relevant document is
found (in our case, we consider the first method that
relates to the feature of interest). In reality users may
use visual cues such as the method name to skip some
elements in the ranked list. To simplify the evaluation
we consider the case when a user must diligently go
through the whole list until the sought method is found.

We want to measure whether the concept lattice
structure effectively groups or distillates relevant

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

documents, thus enabling a developer to locate relevant
information faster than in a ranked list of documents.
We use two measures proposed in [36], lattice
distillation factor and lattice browsing complexity.
Since the authors originally used the measures to find
all relevant documents, whereas we are concerned only
with the first element that belongs to the feature, we
introduce modifications to these measures to
accommodate this notion.

Lattice distillation factor

Let C be the set of nodes in the resulting concept
lattice. We assume that the programmer, while visiting
a node in the lattice can view the actual object which
corresponds to this node (for example, methods from
the software system). We define CFEATURE ⊆ C as the
subset of the methods relevant to the feature, which are
present in the concept lattice. We redefine the minimal
browsing area (MBA) as the minimal part of the lattice
that a user should explore, starting from the very top
node, to reach the first object in CFEATURE. PMBA, the
precision of MBA, is the upper bound of the capacity of
the lattice to distillate relevant information from the
initial list of ranked results. Obviously, the lower
bound is the size of the ranked list of results that the
user has to scan while he identifies the first method
belonging to the feature. We denote the precision of
the ranked list as PRL.

We redefine the lattice distillation factor (LDF) as
the potential precision gain obtained with the concept
lattice compared to the precision of the ranked list.

LDF(C) = 100×
−

RL

RLMBA

P
PP % (1)

Consider the example from Figure 2 and let us
assume that the developer is locating the method which
cancels printing operation and the method of interest
occurs in position 6, having PRL=0.16. However, in the
concept lattice it is in position 3, thus PMBA=0.33.
Eventually, LDF(C) = (0.33-0.16)/0.16 = 106%,
meaning that the concept lattice can distillate related
information approximately two times more effectively
than the simple ranked list in this particular case.

Lattice browsing complexity

As mentioned in [36], the LDF is only concerned with
the cost of reading the documents however the structure
of concept lattice has additional browsing costs. Thus,
we need to consider the number of nodes and the
structure of the lattice to evaluate its adequacy for
browsing purposes. In order to measure this property
of concept lattices we use the second measure from
[36], namely lattice browsing complexity (LBC). For
our problem we redefine LBC to capture the proportion
of nodes in the lattice that the developer will see while
traversing the MBA (also note that when a node is
explored, all its sub-concepts or nodes will be
considered, while only some of them will be explored).

LBC(C) = 100×
C

CVIEW % (2)

where CVIEW is formed by the sub-concepts of each
node which belongs to the MBA.

We assume that while visiting a node in the concept
lattice the user will read all documents associated with
this node. Thus, we impose the same worst case
scenario for exploration costs for concept lattices as we
did for ranked list, minimizing any bias.

Using the same example in Figure 2, CVIEW = 3,
which is the minimal number of nodes the user has to
visit in order to locate the feature of interest. Thus
LBC(C) = 3/6 × 100 = 50%, which means that the
developer will need to explore at most half of the nodes
in the lattice while locating the feature.

5.2. Locating features in Eclipse

We chose to locate the following features associated
with two bugs in Eclipse (see Table 3): sorting by
clicking on table header (associated with bug #34160)
and renaming project source files (associated with bug
#25457).

The search queries formulated are self-descriptive
with respect to the features associated with bugs that
we are locating. The terms from each bug description

Table 3. Descriptions, user queries, method ranking, and modified methods for Eclipse bugs

Bug # Description Query Rank Methods

341602
The task list, which uses the native table
widget, cannot be sorted by clicking on
the table headers

“table header
sort” 71

org.eclipse.swt.widgets.Table.createHandle
org.eclipse.swt.widgets.Table.createWidget
org.eclipse.swt.widgets.Table.kEventMouseDown
org.eclipse.swt.widgets.Table.itemNotificationProc

254573

Renaming project to the same name but
with different case causes source files
to be deleted if project's folder is locked
by other application.

“rename
project
source”

89 org.eclipse.core.internal.localstore.FileSystemStore.move

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

(extracted from Bugzilla) used as cues to formulate
queries are highlighted in italics (see Table 3). Table 3
also includes the methods that were changed in order to
fix the bugs (these are extracted from the official
patches released to fix the bugs). Among those
methods, the ones that occur first in the ranked links of
results are in bold. The table also shows their rank in
the list of the results.

For more details on these bugs the interested reader
is referred to https://bugs.eclipse.org/bugs/.

5.3. Results and discussion
We studied how the number of documents and terms

(attributes) affects the size and quality of the concept
lattice. After some initial testing with different
configurations of documents and attributes, we decided
to keep the number of attributes in the range from 10 to
25 and study the generated concept lattices for the top
80 to 100 documents from the ranked list. One of the
observations that we had while trying to use less than
10 attributes is that the clustering capacity was low in
grouping related concepts, while when we tried to use
more that 25 attributes, the number of concept nodes in
the lattice became relatively high making lattices
difficult to navigate.

Table 4 shows the results of applying FCA with
different configurations of documents and attributes for
two features to be located in the Eclipse source code.
We computed the LDF and LBC measures for 20
concept lattices of different configurations and
compared those with the simple ranked list. We did not
include the four lattices constructed based on 80 top
documents for bug #25457, as the ranking for the
relevant method is 89, so it will not be included in any
of these lattices.

LDF ranges from 15% to 318%, which indicates that
even in the worst case scenario, FCA brings some
improvement over the LSI ranking alone. Note that this
measure is an upper bound on the behavior of
developers (also note that we also make a worst case
assumption that the user will have to read all
documents associated with the nodes in the concept
lattice, even though we consider the exploration
strategy of concept lattices as optimal in this case).

The trade-off for different values of documents n
and attributes k becomes clearer as we analyze the
results. When using 25 attributes, we obtain the highest
values of LDF (96.6%-318%) for any number of
documents, but at the cost of larger lattice sizes (31-39
concept nodes), although the LBC values are the
lowest, which again is a benefit (that is, we have larger
lattices but they are easier to browse). Note that LDF is
growing linearly with the number of attributes and the
complexity factor, while LBC is decreasing linearly.

On the other hand, the number of nodes, C, grows
much faster. For example, the concept lattice created
based on the first 100 documents for bug #34160 with
10 attributes consists of 17 nodes, whereas the same
lattice but with 25 attributes contains 39 concept nodes.
It is interesting to note that the number of nodes in the
lattice that a developer needs to investigate is between 7
and 13 in any case.

Table 4. Experimental results for locating two
features in Eclipse with 24 concept lattices of

various configurations

Bug Docs Terms PMBA LDF C CVIEW LBC
34160 100 10 0.02 42.8% 17 8 47%
34160 100 15 0.025 78.5% 25 11 44%
34160 100 20 0.026 85% 33 11 33%
34160 100 25 0.033 96.6% 39 10 26%
34160 90 10 0.023 62.3% 17 8 47%
34160 90 15 0.027 98.4% 24 11 46%
34160 90 20 0.029 104% 31 11 36%
34160 90 25 0.039 174% 36 11 31%
34160 80 10 0.026 87.9% 15 7 47%
34160 80 15 0.033 138% 22 10 45%
34160 80 20 0.034 146% 28 10 36%
34160 80 25 0.043 207% 33 10 30%
25457 100 10 0.013 15% 13 8 62%
25457 100 15 0.013 15% 17 9 53%
25457 100 20 0.019 72% 25 10 40%
25457 100 25 0.021 91% 33 10 30%
25457 90 10 0.013 15% 13 8 62%
25457 90 15 0.013 15% 17 9 53%
25457 90 20 0.017 55% 25 11 44%
25457 90 25 0.046 318% 32 13 40%

We manually analyzed all 20 concept lattices for

which we computed the measures in Table 4. Due to
space limitations it is not possible to present all the
results here, however we present one reduced lattice,
generated based on the query for locating the feature
associated with bug #25457. The concept lattice is
generated from 20 documents with 10 first descriptive
terms (the concept lattices are visualized using Concept
Explorer7), see Figure 3.

Figure 3 shows that the resulting lattice distillates
relevant information well and the selected attributes are
descriptive, allowing the user to explore the subset of
search results effectively.

The results show that concept lattices are very
effective in terms of grouping relevant information and
the grouping effect is higher for larger attribute spaces.
We obtained the best results when applying FCA over
first 90 documents with 20-25 attributes. For the
feature associated with bug #25457, considering 90
documents and 25 attributes the precision is four times
better compared to the ranked list, while the lattice
browsing complexity remains relatively low (40%).

7 http://sourceforge.net/projects/conexp

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

Figure 3. Concept lattice generated for the feature

associated with bug #25457 from the first 20
documents and 10 selected terms

5.4. Threats to validity

Several issues may have affected the results of the
case study and thus may limit generalizations. We
made all efforts to minimize the effect of these issues.

One of the issues is that in our case studies we use
the number of documents to build concept lattices that
range from 80-100. However, if we do not have any
relevant results in this range, we can not compute any
of the measures we used for evaluation (for example
consider the case with 80 documents for bug #25457).

Another issue is the extent to which the software and
features used in the case study are representative to
those actually used in practice. Although Eclipse is a
real-world program this threat could be reduced if we
experiment with other programs of different sizes and
domains, as well as locating more concepts.

The queries formulated to obtain the LSI based
rankings are dependent on the developer’s knowledge,
thus the results may be impacted by the actual query.
However, as we discussed in the examples, the
developer does not need to have an extensive
knowledge of the source code to formulate LSI queries.
Regardless of the query, the proposed approach is
shown to help users understand search results better
than simple ranked list. The gain over the ranked list
alone is not affected as we use the same query.

The features may be implemented by more methods
than those suggested by a patch, as correcting the
problem may involve just part of the implementation.

Once again the assessment of the gain remains valid, as
both methods are equally influenced by this issue.

6. Conclusions and Future Work

The proposed concept location method, which
combines information retrieval and formal concept
analysis, provides very good results when considering a
relatively small number of methods (100 out of
80,000), hence it is easy to use for software of any size.

Moreover, concept lattices are shown to be quite
effective (up to four times improvement over simple
ranking) in terms of grouping relevant information and
labeling topics, concepts, and relationships between
them, offering the user additional cues when exploring
the results of a search.

We plan to move this research in several directions.
First, we plan to compare our approach with at least
two other different strategies on how to rank and select
descriptive attributes to build concept lattices, for
example terminological weighting formula and Okapi.
Second, we plan on devising a heuristic-based approach
to experiment with different strategies for selecting
attributes, which may be specific to source code, for
example, selecting only attributes that represent data
types or only class or methods names, etc. Third, we
plan to incorporate information about the rank of the
method into the structure of the concept lattice, which
may be helpful in terms of choosing the direction in the
lattice. Finally, we plan to investigate the impact of
concept lattices on query reformulation strategies,
which we did not address in the current work.

7. Acknowledgements
This research was partially supported by grants from

the US National Science Foundation (CCF-0438970)
and the US National Institute of Health (NHGRI
1R01HG003491).

8. References
[1] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, "An

Information Retrieval Approach to Concept Location in
Source Code," Proc. 11th IEEE Working Conf. on
Reverse Engineering, 2004, pp. 214-223.

[2] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman, "Indexing by Latent
Semantic Analysis," J. of the American Society for
Information Science, vol. 41, 1990, pp. 391-407.

[3] V. Rajlich and P. Gosavi, "Incremental Change in
Object-Oriented Programming," in IEEE Software,
July/August 2004, pp. 2-9.

[4] N. Wilde, T. Gust, J. A. Gomez, and D. Strasburg,
"Locating User Functionality in Old Code," Proc. IEEE
Conf. on Software Maintenance, 1992, pp. 200-205.

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

[5] G. Antoniol and Y. G. Guéhéneuc, "Feature
Identification: An Epidemiological Metaphor," IEEE
Transactions on Software Engineering, vol. 32, no. 9,
pp. 627-641, 2006.

[6] A. D. Eisenberg and K. De Volder, "Dynamic Feature
Traces: Finding Features in Unfamiliar Code," Proc.
21st IEEE Int. Conf. on Software Maintenance,
Budapest, Hungary, 2005, pp. 337-346.

[7] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster,
"Program Understanding and the Concept Assignment
Problem," CACM, vol. 37, no. 5, pp. 72-82, May 1994.

[8] D. Poshyvanyk, M. Petrenko, A. Marcus, X. Xie, and D.
Liu, "Source Code Exploration with Google" Proc. 22nd
IEEE Int. Conf. on Software Maintenance, Philadelphia,
PA, 2006, pp. 334 - 338.

[9] K. Chen and V. Rajlich, "Case Study of Feature Location
Using Dependence Graph," Proc. 8th IEEE Workshop on
Program Comprehension, 2000, pp. 241-249.

[10] M. Robillard, "Automatic Generation of Suggestions for
Program Investigation," Proc. Joint European Software
Engineering Conf. and ACM SIGSOFT Symposium on
the Foundations of Software Engineering, Lisbon,
Portugal, 2005, pp. 11 - 20

[11] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang,
"SNIAFL: Towards a Static Non-interactive Approach to
Feature Location," ACM Trans. on Software Engineering
and Methodologies, vol. 15, no. 2, pp. 195-226, 2006.

[12] N. Gold, M. Harman, Z. Li, and K. Mahdavi, "Allowing
Overlapping Boundaries in Source Code using a Search
Based Approach to Concept Binding," Proc. 22nd IEEE
Int. Conf. on Software Maintenance (ICSM'06),
Philadelphia, PA, 2006, pp. 310-319.

[13] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A.
Sergeyev, "Static Techniques for Concept Location in
Object-Oriented Code," Proc. 13th IEEE Int. Workshop
on Program Comprehension, 2005, pp. 33-42.

[14] T. Eisenbarth, R. Koschke, and D. Simon, "Locating
Features in Source Code," IEEE Transactions on
Software Engineering, vol. 29, no. 3, pp. 210 - 224,
March 2003.

[15] M. Salah and S. Mancoridis, "A hierarchy of dynamic
software views: from object-interactions to feature-
interactions," Proc. 20th IEEE Int. Conf. on Software
Maintenance, Chicago, IL, 2004, pp. 72-81.

[16] D. Poshyvanyk, Y. Gael-Guéhéneuc, A. Marcus, G.
Antoniol, and V. Rajlich, "Feature Location using
Probabilistic Ranking of Methods based on Execution
Scenarios and Information Retrieval," IEEE
Transactions on Software Engineering, to appear, 2007.

[17] N. Wilde, M. Buckellew, H. Page, V. Rajlich, and L.
Pounds, "A Comparison of Methods for Locating
Features in Legacy Software," J. of Systems and
Software, vol. 65, no. 2, pp. 105-114, February 15 2003.

[18] S. Simmons, D. Edwards, N. Wilde, J. Homan, and M.
Groble, "Industrial tools for the feature location problem:
an exploratory study," J. of Software Maintenance:
Research and Practice, vol.18, no. 6, pp. 457-474, 2006.

[19] G. Snelting, "Concept Lattices in Software Analysis,"
Proc. Formal Concept Analysis, 2005, pp. 272-287.

[20] P. Tonella and M. Ceccato, "Aspect Mining through the
Formal Concept Analysis of Execution Traces," Proc.

11th IEEE Working Conf. on Reverse Engineering, 2004,
pp. 112 - 121

[21] S. Breu, T. Zimmermann, and C. Lindig "Mining Eclipse
for Cross-Cutting Concerns," Proc. Int. Workshop on
Mining Software Repositories, 2006, pp. 94 - 97

[22] K. Mens and T. Tourwe, "Delving source code with
formal concept analysis," Computer Languages, Systems
& Struct., vol. 31, no. 3-4, pp. 183-198, Oct.-Dec. 2005.

[23] B. Ganter and R. Wille, Formal Concept Analysis.
Berlin, Heidelberg, New York: Springer-Verlag, 1996.

[24] A. Marcus, J. I. Maletic, and A. Sergeyev, "Recovery of
Traceability Links Between Software Documentation
and Source Code," Int. J. of Software Engineering and
Knowledge Engineering, vol. 15, no. 4, pp. 811-836,
October 2005.

[25] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, "Can
Information Retrieval Techniques Effectively Support
Traceability Link Recovery?" Proc. 14th IEEE Int. Conf.
on Program Comprehension, Athens, Greece, 2006, pp.
307-316.

[26] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram,
"Advancing candidate link generation for requirements
tracing: the study of methods," IEEE Trans. on Software
Engineering, vol. 32, no. 1, pp. 4-19, January 2006.

[27] M. Lormans and A. Van Deursen, "Can LSI help
Reconstructing Requirements Traceability in Design and
Test?," Proc. 10th IEEE European Conf. on Software
Maintenance and Reengineering, 2006, pp. 47-56.

[28] D. Poshyvanyk, A. Marcus, Y. Dong, and A. Sergeyev,
"IRiSS - A Source Code Exploration Tool," in Tool and
Demo Proc. 21st IEEE Int. Conf. on Software
Maintenance, 2005, pp. 69-72.

[29] D. Poshyvanyk, A. Marcus, and Y. Dong, "JIRiSS - an
Eclipse plug-in for Source Code Exploration," Proc.
14th IEEE Int. Conf. on Program Comprehension,
Athens, Greece, 2006, pp. 252-255.

[30] J. I. Maletic, M. L. Collard, and A. Marcus, "Source
Code Files as Structured Documents," Proc. 10th IEEE
Int. Workshop on Program Comprehension, Paris,
France, 2002, pp. 289-292.

[31] R. Ferenc, I. Siket, and T. Gyimóthy, "Extracting facts
from open source software," Proc. 20th Int. Conf. on
Software Maintenance, 2004, pp. 60-69.

[32] A. Penas, F. Verdejo, and J. Gonzalo, "Corpus-Based
Terminology Extraction Applied to Information Access,"
Corpus Linguistics, no. 2001.

[33] A. Kuhn, S. Ducasse, and T. Gîrba, "Semantic
Clustering: Identifying Topics in Source Code,"
Information and Software Technology, vol. 49, no. 3,
March 2007, pp. 230-243.

[34] J. Cigarran, A. Peñas, J. Gonzalo, and F. Verdejo,
"Evaluating Hierarchical Clustering of Search Results,"
Proc. 12th Int. Conf. on String Processing and
Information Retrieval (SPIRE'05), 2005, pp. 49-54.

[35] R. K. Yin, Applications of Case Study Research, 2 ed.
CA, USA: Sage Publications, Inc, 2003.

[36] J. M. Cigarrán, J. Gonzalo, A. Peñas, and F. Verdejo,
"Browsing Search Results via Formal Concept Analysis:
Automatic Selection of Attributes," Proc. 2nd Int. Conf.
on Formal Concept Analysis, Sydney, Australia, 2004,
pp. 74-87.

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

