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Abstract. A fundamental task in data analysis is understanding the differences between several contrasting
groups. These groups can represent different classes of objects, such as male or female students, or the same
group over time, e.g. freshman students in 1993 through 1998. We present the problem of mining contrast sets:
conjunctions of attributes and values that differ meaningfully in their distribution across groups. We provide a
search algorithm for mining contrast sets with pruning rules that drastically reduce the computational complexity.
Once the contrast sets are found, we post-process the results to present a subset that are surprising to the user given
what we have already shown. We explicitly control the probability of Type I error (false positives) and guarantee
a maximum error rate for the entire analysis by using Bonferroni corrections.
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1. Introduction

A common question in exploratory research is: “How do several contrasting groups differ?”
Learning about group differences is a central problem in many domains. For example, the US
Census Bureau prepares many statistical briefs that compare groups such as the publication,
“The Earnings Ladder: Who’s at the Bottom? Who’s at the Top?” which contrasts high and
low income earners over the years 1979 to 1992. They report such facts as: “About 4 in 10
year-round, full-time workers aged 18 to 24 had low earnings in 1992, up 19 percentage
points since 1979.”

Contrasting specific groups of interest is especially important in social science research.
For example, the Integrated Public Use Microdata Series (IPUMS) project (Ruggles and
Sobek, 1997) has expended great effort standardizing federal census data to allow re-
searchers to compare demographic groups over different time periods. Some of the research
conducted with this data involves comparing different racial groups (Darity, 1998) or exam-
ining trends in divorce rates (Ruggles, 1997). As another example, the Department of Urban
and Regional Planning at UCI conducts an annual survey of people in Orange County. Their
goals are to compare “the quality of life and local government ratings in Orange County with
Los Angeles County” and to “analyze the impact of changing demographics by contrasting
survey responses of Latinos, Asians, and non-Hispanic whites.”

∗To whom correspondence should be addressed.
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(a)

(b)

Figure 1. Comparing UCI applicants over 1993–1998. (a) Admitted ICS students with SAT Math > 700 ∧ SAT
Verbal > 700; (b) UCI applicants with Admit = Yes ∧ Home Location = Los Angeles County ∧ School
Type = Public.

Our goal is to automatically detect all differences between contrasting groups from ob-
servational multivariate data. We seek conjunctions of attributes and values, called contrast
sets, that have different levels of support in different groups. For example, if we are com-
paring education groups, we might find that P (occupation = sales | PhD) = 2.7%, while
P (occupation = sales | Bachelor) = 15.8%. Alternatively, groups could be based on
time with groups falling into different years as shown in figure 1.

Our emphasis in this paper will be on discovery of contrast sets. Our goal is to develop an
exploratory analysis tool so that users can gain insight into the differences between groups.

Our problem differs from those addressed by time series research or traditional statistical
methods such as cohort or cross-sectional analyses (Glenn, 1977; Menard, 1991). In time
series work, we typically have observations spaced through time with one observation per



MINING CONTRAST SETS 215

time point. In contrast, we have multiple observations at a few discrete points in time. For
example, we could have thousands of observations for each of the 1970, 1980, and 1990
federal censuses. Cohort and cross-sectional analyses are typically guided by well defined
prior hypotheses determined by domain knowledge. For example, a research question might
be “How does aging affect political party affiliation?” In contrast, our work would take
descriptions of young and old people and return all differences between them, one of which
could be a difference in political affiliation.

Another approach to distinguishing two or more groups from each other is to use a rule
learner or decision tree to learn a classification strategy. This has the advantage of being
fast. However there are four major disadvantages: (1) Rule learners and decision trees are
not complete. They achieve speed by using heuristics to prune large portions of the search
space and thus they may miss alternative ways of distinguishing one group from another.
(2) Rule learners and decision trees focus on discrimination ability and will miss group
differences that are not good discriminators but are still important. For example, knowledge
of figure 1(b) will not give good classification accuracy in terms of placing students in their
year of application.1 Nevertheless the differences could be vitally important especially to a
high school liaison officer at UCI. (3) Rules are usually interpreted in a fixed order where a
rule is only applicable if all previous rules were not satisfied. This makes the interpretation
of individual rules difficult since they are meant to be interpreted in context. Finally, (4) it is
difficult to specify useful criteria such as minimum support or an acceptable false positive
rate in the classification framework.

1.1. Relation to association rule mining

A closely related area to our work on contrast sets is association rule mining (Agrawal et al.,
1993). Association rules are relations between variables of the form X → Y . In market
basket data X or Y would be items such as bread or milk. In categorical data X and Y are
attribute-value pairs such as occupation = engineer or income ≥ $50K.

Finding association rules and mining contrast sets both require search through a space of
conjunctions of items or attribute-value pairs. In association rule mining, we look for sets
that have support greater than a certain cutoff (these sets are then used to form the rules) and
for contrast sets we seek those sets which represent substantial differences in the underlying
probability distributions.

Because both techniques have a search element there are many commonalities. In fact
we build on some of the search work developed for association rule mining to enhance
our contrast set algorithms. However, our work on contrast sets differs substantially from
association rule techniques because we are concerned with multiple groups and we have
different search criteria. Trying to directly apply association rule mining algorithms to find
contrast sets is a poor idea. For example, one approach would be to mine the large itemsets
for each group separately and then compare them. However, mining the groups separately
causes us to lose pruning opportunities and we show in Section 5.1 that these pruning
opportunities can greatly improve efficiency.

Alternatively, since association rules find relations between variables, we could encode
the group explicitly as a variable and let an association rule learner run on this representation.
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Figure 2. Association rules for Bachelor and Ph.D. degree holders. Rules are in the form X → Y (support,
confidence). (a) First 10 of 26796 association rules for Bachelor holders; (b) First 10 of 1674 association rules for
Ph.D. holders.

This will not, however, return group differences, and the results will be difficult to interpret.
For example, we ran an association rule program on census data and obtained the results in
figure 2 (1% min-support, 80% confidence).

Examining these rules, it is extremely difficult to tell what is different between the two
groups. First, there are too many rules to compare. Second, the results are difficult to interpret
because the rule learner does not enforce consistent contrast (Davies and Billman, 1996)
(i.e., using the same attributes to separate the groups). Clearly there are at least 26796 −
1674 = 25122 rules that have no match. Finally, even with matched rules, we still need a
proper statistical comparison to see if differences in support and confidence are significant.

1.2. Overview

In Section 2, we present a formal definition of the mining problem. Section 3 discusses
our search algorithm for finding contrast sets and Section 4 discusses how we can filter
the mined results to present a concise summary of the differences between groups. We
evaluate our algorithms in Section 5 which analyzes objective measures of performance
and in Section 6 which is a case study on UCI enrollment and measures empirically how
useful the discovered knowledge is to an end user. We discuss related work in Section 7 and
finally, we conclude in Section 8.

2. Problem definition

Association rules typically deal with market basket data where the database D is a set of
transactions with each transaction T ⊆ I = {i1, i2, . . . , im}. Each member of I is a literal
called an item, and any set of these literals is called an itemset. An important step for most
mining algorithms is to find all itemsets whose support, the percentage of transactions in
which the itemset occurs, is greater than a threshold min-support.

In this paper we generalize the data model to grouped categorical data. The data is a set
of k-dimensional vectors where each component can take on a finite number of discrete
values. The vectors are organized into n mutually exclusive groups G1, G2, . . . , Gn , with
Gi ∩ G j = ∅ ∀i �= j . The concept of an itemset can be extended to a contrast set for this
model as follows:
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Definition 1. Let A1, A2, . . . , Ak be a set of k variables called attributes. Each Ai can
take on values from the set {Vi1, Vi2, . . . , Vim}. Then a contrast set is a conjunction of
attribute-value pairs defined on groups G1, G2, . . . , Gn with no Ai occurring more than
once.

Example 1. sex = female ∧ occupation = manager.

Similar to the definition of support for an itemset, we define the support of a contrast set
with respect to a group G as follows:

Definition 2. The support of a contrast set with respect to a group G is the percentage of
examples in G where the contrast set is true.

Our goal is to find all contrast sets whose support differs meaningfully across groups.
Formally, we want to find those contrast sets (cset) where:

∃i j P(cset = True | Gi ) �= P(cset = True | G j ) (1)

max
i j

|support(cset, Gi ) − support(cset, G j )| ≥ δ (2)

and δ is a user defined threshold called the minimum support difference. We call contrast
sets where Eq. (1) is statistically valid significant, and contrast sets where Eq. (2) is met
large. If both requirements are met, then we call it a deviation.

The statistical significance criterion ensures that the contrast set represents a true differ-
ence between the groups. The second criterion measures the effect size and ensures that
everything we report to the user is a big enough effect to be important.

One question that arises is why do we use a statistical test when the null hypothesis,
that contrast sets have exactly equal probabilities across groups, is always false in the real
world and thus a large enough sample will lead to its rejection (Cohen, 1990). We use the
significance test in addition to the effect size test for two reasons. First, we may have limited
data. Clearly with millions of data points, many statistically significant findings will be too
small to be practically significant, but what if we have only 10000 or perhaps as little as
1000 data points? Even when data is abundant, we might have a rare group with very few
observations. We need techniques that scale across a spectrum of data set sizes. Second,
the number of hypotheses can grow exponentially with the number of variables and with
multiple hypotheses we need stricter cutoffs to control the false positive error rate. However,
it is not clear at what point effect size will be sufficient to eliminate statistically insignificant
findings with multiple tests, thus we explicitly control for both factors.

Once we have found all significant and large contrast sets, we would like to present a
subset which are “interesting” to the user. Deciding what is interesting is an open problem
in data mining. Clearly, any complete solution would consider the prior knowledge and the
subjective viewpoint of the user (Silberschatz and Tuzhilin, 1996). However, this is beyond
the scope of our paper; thus, we limit our system to reporting results that are surprising (in
a statistical sense) given what we have already shown the user.
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3. Search for contrast sets

We can find contrast sets that meet our criteria through search. We explore the space of all
possible contrast sets and return only those sets that meet our criteria. Clearly this search
space is huge (exponential in the number of attribute-value pairs) and cannot easily be
explored.

Although we cannot change the fundamental complexity of the problem, we use ad-
missible pruning rules in conjunction with heuristics to limit the complexity. We present
STUCCO (Search and Testing for Understandable Consistent Contrasts), and in practice it
runs efficiently and can mine at low support differences without being overwhelmed with
the number of potential candidates (Section 5). STUCCO uses a breadth-first search frame-
work which incorporates several techniques from work on efficiently mining large itemsets.
To this search framework, our contributions are:

1. joint statistical significance and effect size testing to identify valid contrast sets
2. explicit control over search error to limit false discoveries
3. contrast set pruning rules for efficient mining

After presenting these contributions, we discuss how our work relates to algorithms that
find large itemsets such as Apriori and its variants.

3.1. Framework

We organize the search for contrast sets using set-enumeration trees (Rymon, 1992; Bayardo,
1998) to ensure that we visit every node only once or not at all if nodes can be pruned. Figure 3
shows an example set-enumeration tree for four items (each item is an attribute-value pair).
Note that set-enumeration trees are equivalent to canonical orderings (Riddle et al., 1994).
A simple rule for creating the tree is to generate the children of a node by appending only
those terms that follow all existing terms in a given ordering.

We can search the tree in figure 3 in any manner we desire, using for example breadth first,
depth first, or any other complete search algorithm. We use breadth-first search because it

Figure 3. Example search tree for four attribute-values pairs with ordering {1,2,3,4}.
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proceeds in a levelwise manner. We start searching the space of contrast sets with the most
general terms first, i.e. those contrast sets with a single attribute-value pair such as gender
= male or major = Arts. These sets are the easiest to understand and will have the largest
support. We then progress to more complicated sets that involve conjunctions of terms, for
example, gender = male ∧ major = Arts. The levelwise nature allows us to present results
in an anytime fashion.

At each level of the search, we scan the database and count the support of all nodes for
each group. We examine the counts to determine which nodes meet our criteria and which
nodes should be pruned. We then move to the next level.

During the counting phase we organize nodes into candidate groups (Bayardo, 1998;
Srikant and Agrawal, 1996). We place nodes with the same parent (i.e. all nodes with a
common prefix) in one group. Within the group we maintain two lists of items: the head,
h(g), which is the common prefix of all sets in the group, and the tail, t(g), which is the set
of all one item extensions to the prefix.

Candidate groups improve the search speed for two reasons. First, the common prefix
allows us to quickly check if an observation matches an entire set of candidates (i.e. if the
prefix doesn’t match then we do not need to check the individual sets). Second, the head
and tail organization allows us to specify all of the sets that may occur in that branch of
the search tree. Every set is a superset of h(g) and a subset of h(g) ∪ h(g). This allows
us to bound the support for all sets in that section of the tree and this is essential for
pruning.

We count the support of h(g) ∪ i, ∀i, i ∈ h(g) and h(g) ∪ t(g). The first condition means
that we count the support of all sets within the candidate group. It also provides an upper
bound on the support in any children of a node since frequency counts can only decrease
as we add additional terms. The second condition provides a lower bound because for any
sets A, B, and C with A ⊂ B ⊂ C then the support(A) ≥ support(B) ≥ support(C). We
use knowledge of these upper and lower bounds for our pruning methods described in
Section 3.4. Example 2 highlights the use of candidate groups.

Example 2. Consider the sets {1,2}, {1,3}, and {1,4} in figure 3. We can represent these
three sets with a candidate group that has as its head {1} (the common prefix) and as its tail
{2,3,4}. During the counting phase we calculate the supports of all the three original sets
h(t) ∪ i = {1,2}, {1,3}, {1,4} and the support of h(g) ∪ t(g) = {1,2,3,4}.

Finally the pruning techniques in Section 3.4 work best when the upper and lower bounds
are close together. Thus we dynamically sort the items in the tail so that items that occur
frequently are at the end (Brin et al., 1997; Bayardo, 1998). This ensures that the lower
bound of support, h(g) ∪ t(g), is as large as possible.

3.2. Finding significant contrast sets

We can check if a contrast set is significant by testing the null hypothesis that contrast set
support is equal across all groups or, equivalently, contrast set support is independent of
group membership.
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Table 1. 2 × 8 contingency table enumerating high SAT verbal scores and school: Arts, Biology, Engineering,
Humanities, Information and Computer Science (ICS), Physical Science, Social Ecology, and Social Science.

Arts Bio Eng. Human ICS PhysSci SocEc SocSci

SATV > 700 45 142 85 70 60 34 11 102

¬(SATV > 700) 583 2465 1523 733 502 738 414 1703

The support counts from each group is a form of frequency data which can be analyzed
in contingency tables. We form a 2×G contingency table where the row variable represents
the truth of the contrast set, and the column variable indicates the group membership.

For example, consider the top admitted students at UCI as measured by SAT Verbal
scores (SATV > 700) and their school of admission. Table 1 shows the contingency table
and the counts from our data. If SATV and UCI School are independent variables, then we
would expect the proportion of students with high SATV scores to be roughly equal across
all groups. Clearly, the proportions are not equal and vary from a high of 12.0% for ICS to
a low of 2.7% for Social Ecology. We need to determine if the differences in proportions
represent a true relation between the variables, or if it can be attributed to random causes.

The standard test for independence of variables in contingency tables is the chi-square
test. It works by computing the statistic χ2:

χ2 =
r∑

i=1

c∑
j=1

(Oi j − Ei j )
2

Ei j
(3)

where Oij is the observed frequency count for the cell in row i and column j . Eij is the
expected frequency count in cell ij given independence of the row and column variables
and is calculated as follows: Eij = ∑

j Oij
∑

i Oij/N with N being the total number of
observations. We then compare the result to the distribution of χ2 when the null hypothesis
is true. If the observed frequencies follow a multinomial distribution and the expected values
are not too small, then the χ2 statistic has an approximately chi-square distribution.

To determine if the differences in proportions are significant, we first pick a test α level.
The choice of α sets the maximum probability of rejecting the null hypothesis when it is
true. For a single test, α is commonly set to 0.05. We then calculate that χ2 = 49.6 with
7 degrees of freedom and has a p-value of 1.7e-8. Since the p-value is less than the 0.05
cutoff, we can infer that the null hypothesis is likely false and that contrast set support and
group membership are not independent.

3.3. Controlling search error

Most data mining algorithms that use a statistical criterion to accept or reject candidates
do not consider how search affects the overall error rate. One exception is the work by
Megiddo and Srikant (1998) where they found that in association rule mining traditional
support-confidence filtering did a good job of eliminating statistically insignificant rules.
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However their study was done in the context of market basket data, not in terms of dense
multivariate data that we analyze. Other work (Silverstein et al., 1998; Liu et al., 1999a)
suggests that in dense data there may be many false discoveries.

With a single test, α sets the maximum probability of falsely rejecting the null hypothesis.
However, with multiple tests, the probability of false rejection can be highly inflated. This is
especially true in data mining, where often thousands, or millions, of hypotheses are tested.
For example, if the null hypothesis is always true (i.e., contrast set probability is independent
of group membership) and we made 1000 tests each at α = 0.05, we would obtain on average
50 “significant” differences. Falsely rejecting the null hypothesis, i.e., concluding that there
is a difference when none exists, is known as a Type I error or false positive.

Type I error can be controlled for a family of tests by using a more stringent α cutoff
for the individual tests. We can relate the αi levels used for each individual test to a global
α (the expected error rate) by using the Bonferroni inequality: given any set of events
e1, e2, . . . , en , the probability of their union (e1 ∨ e2 ∨ · · · ∨ en) is less than or equal to the
sum of the individual probabilities. Applied to hypothesis testing, we let ei be the rejection
of the i th hypothesis hi . Then, in the simple Bonferroni method, we reject hi if pi ≤ αi

where
∑

i αi ≤ α. Usually αi = α/n, where n is the total number of tests.
This method controls the error rate per family (PFE), which is the expected number

of false rejections (PFE ≤ α) for any combination of true or false hypotheses and holds
even if the tests are dependent (Hochberg and Tamhane, 1987; Shaffer, 1995). Note that
the familywise error rate (FWE), the probability of making at least one error, is always less
than or equal to PFE (FWE ≤ PFE). If all the null hypotheses are true then PFE = α.

There are two problems with applying this. First, if we are reporting results incrementally
after we mine each level, we do not know how many tests we will make in total. Thus, n
is unknown. Second, we use the same cutoff for testing a conjunction of size 1 as size 10.
This is undesirable because as αi gets smaller, we lose power and are less able to detect a
difference if it exists. This is an unavoidable tradeoff, as power is related to Type I error.
Since lower order conjuncts are more general, we would like more power on those tests.

The Bonferroni inequality holds as long as
∑

i αi ≤ α, so we can use different αi for
tests at different levels of the search tree as follows:

αl = min

(
α

2l

/
|Cl |, αl−1

)
(4)

where αl is the cutoff for all tests at level l, and |Cl | is the number of candidates at level l.
This apportions 1/2 of the total α risk to tests at level 1, 1/4 to tests at level 2, and so on.
The minimum requirement ensures that the test α levels always become more stringent and
this is necessary for χ2 based pruning (next section). We use this approach of partitioning
risk whenever we make a series of tests.

3.4. Pruning

We can prune portions of the search space when we determine that the search will only lead
to contrast sets that fail to meet our effect size or statistical significance criteria. We also
prune when we determine that the search will lead only to uninteresting contrast sets.
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3.4.1. Effect size pruning. We prune nodes based on effect size when we can bound the
maximum support difference between the groups below δ.

Theorem 1. Let U [i] be an upper bound and let L[ j] be the lower bound of support for
groups i and j . Then the following is an upper bound on the support difference between
any two groups.

δmax = max
i j,i �= j

U [i] − L[ j] (5)

Proof: Consider groups i and j . The maximum support difference will occur when either
the support of i is greater than j or vice versa. Clearly if the support of i is greater than j ,
then U [i] − L[ j] is an upper bound on the support difference between the two groups
(U [ j] − L[i] if the support of i is less than j). The above equation considers all possible
pairs of groups and takes the maximum, thus it is an upper bound. ✷

Apriori pruning is a special case where we have only a single group and the lower bound
is zero. Thus we prune if the upper bound is below δ.

3.4.2. Statistical significance pruning. Nodes are pruned when either there are too few
data points to have a valid chi-square test or the maximum value the χ2 statistic can take is
too small to be significant.

Validity of the chi-square test. The expected cell frequencies in the top row of the contin-
gency table can only decrease as we specialize the contrast set. This is important because the
validity of the chi-square test depends on approximating the distribution of the χ2 statistic
with the chi-square distribution. When the test is invalid, we prune the node because we
cannot make valid inferences.

The approximation is made under the assumption that the expected cell frequencies in
the contingency table are not “too small.” Typically, expected values of 5 or more are
considered satisfactory (Everitt, 1992). However, a number of researchers have pointed out
that this may be overly conservative and that smaller expectations are sufficient. Lewontin
and Felsenstein (1965) suggest that for 2×c tables we can use the chi-square criterion even
when the expected values are as low as 1. To be somewhat conservative, we set the limit at 3.

χ2 Maximum. The χ2 statistic is non-monotonic and thus cannot be used in any pruning
method. However, since the actual cell counts in the top row of the contingency table must
decrease as we specialize (the bottom row must increase), the maximum possible value of
the χ2 statistic in any child can be found. We can use this to prune candidates when it is no
longer possible for specializations to meet the χ2 cutoff implied by the test αl value.

Theorem 2. Let U = {u1, u2, . . . , uG} be the upper bound on the counts in row 1 and let
L = {l1, l2, . . . , lG} be the lower bound. Note that the counts in row 2 are automatically
determined once row 1 is specified since the columns must sum to the group totals. Then
the following is the maximum value of the χ2 statistic possible in any specialization.

χ2
max = max

oi ∈{ui ,li }
χ2(o1, o2, . . . , oG) (6)
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where χ2(o1, o2, . . . , oG) is the value of the χ2 statistic for a contingency table with obser-
vations o1, o2, . . . , oG in row 1 (i.e. oi = O1i ).

Proof: χ2 is a convex function (Appendix A), therefore the maximum value must occur
at an extreme point (Bazaraa and Shetty, 1979) which is a corner of the feasible region. The
above equation takes the maximum over all 2G extreme points and thus is a maximum of
the feasible region. ✷

We expect to compare only a small number of groups, say G < 10, so that the exponential
number of extreme points we must evaluate is small. If G is large we can use χ2 bounds
(Bay and Pazzani, 1999) that can be found in linear time.

3.4.3. Interest based pruning. The previous pruning methods only eliminated deviations
that could not meet the effect size or statistical significance criteria. In this section, we
present pruning methods that may eliminate contrast sets that are deviations but are clearly
not interesting. Contrast sets are not interesting when they represent no new information
and this may occur when specializations of the contrast set have identical support or when
the relation between groups is fixed.

Specializations with identical support. We believe that specializations with the same sup-
port as the parent are not interesting for two reasons. First, since both sets will cover the
same instances in the database, targeting the parent with an action will be the same as
targeting the child. Second, specializations with the same support often represent findings
that are common knowledge. Consider the following two examples.

Example 3. Consider the contrast sets race = Latino ∧ Income > $50K and race =
Latino ∧ Income > $50K ∧ WorkedLastYear = Yes. Because of the high prevalence of
WorkedLastYear = Yes, the support of both contrast sets will be nearly identical but given
that we know the first contrast set adding the additional term is not interesting.

Example 4. Consider the contrast set marital-status = husband. This contrast set will
have exactly the same support as marital-status = husband ∧ sex = male barring data
errors. The addition of the sex = male term adds no information as by definition all husbands
are male.

We require that specializations of a contrast set be different both statistically and in
terms of an effect size measurement. Formally, let cset’ be a specialization of the con-
trast set. Then if either of the following two conditions is not true, we prune the
node.

∃i P(cset = True | Gi ) �= P(cset’ = True | Gi ) (7)

max
i

|support(cset, Gi ) − support(cset’, Gi )| ≥ δs (8)
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We test these criteria in a similar fashion as Eqs. (1) and (2). We use L the lower bound in
place of H as it is the maximally different descendent. Typically, we set δs to a very small
number such as the minimum of 1% or δ/2.

Fixed relations. Often one group will have a much higher support level for a given contrast
set than all other groups and this will be true no matter what additional terms we add. In
this case we prune the node as the contrast set specializations do not add new information.
For example, in figure 4, the support for 1998 is much higher than the other years. This
higher support continues no matter what terms we append. Formally, if m is the group with
the highest support then we prune the node under following condition:

min
i,i �=m

|L[m] − U [i]| ≥ δ f (9)

(a)

(b)

Figure 4. Comparing admitted UCI students over 1993–1998. (a) Ethnicity = decline to state; (b) Ethnicity
= decline to state ∧ Admit Code = freshman ∧ Born In US = Y ∧ High School Type = public.
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3.5. Relation to itemset mining

Our problem is related to finding all large itemsets because the minimum support difference
criterion (Eq. (2)) implies constraints on the support levels in individual groups. For example,
mining contrast sets at a support difference of 10% implies that the support in at least one
group must be greater then or equal to this value.

Finding the large itemsets is a common step in association rule mining and most
algorithms eliminate large portions of the search space based on the following
properties:

If A and B are itemsets where A ⊂ B, then

1. If A is infrequent then B must be infrequent.
2. If B is frequent then A must be frequent.

These two properties allow efficient search for large itemsets. Property 1 is used by
bottom up algorithms (Agrawal and Srikant, 1994; Mannila and Toivonen, 1997) (Apriori
and its variants) and allows subset infrequency pruning where a candidate is eliminated if
any of its subsets are eliminated. Property 2 is used by top down algorithms (Zaki et al.,
1997) and allows superset frequency pruning where a candidate is eliminated if any superset
is frequent. Algorithms such as Max-Miner (Bayardo, 1998) and Pincer-Search (Lin and
Kedem, 1998) use both properties for efficient search.

Finding group differences is a more difficult task because these properties do not ap-
ply to contrasts sets: A can be a deviation while B is not and vice versa. However,
we are still able to use A and B’s support in our pruning methods as upper and lower
bounds.

We also need to consider multiple groups. Although this may seem like an inherent
disadvantage that would make search more difficult, it actually allows additional pruning
opportunities not possible if we were to mine the groups separately and then combine the
results in a post analysis. For example, both our statistical significance and interest based
pruning require knowledge of all group’s supports to work. Without these methods, we
would not be able to mine efficiently at low supports (Section 5.2).

Effect size pruning can be seen as a generalization of subset infrequency pruning extended
to handle group differences and lower bounds. Our interest based pruning is similar to
superset frequency pruning: we look ahead in the search (to find a lower support bound)
and we use that knowledge to eliminate many sets. The difference is that we concentrate
on eliminating uninteresting subspaces whereas superset frequency pruning eliminates non
maximal sets that are large (the pruned sets are guaranteed to be large so they do not need
to be explicitly tested).

Our statistical significance pruning does not have an analog in itemset mining because
association rule programs have not incorporated statistical testing. Our pruning also differs
from that used in correlation rules (Silverstein et al., 1998) because of our problem formu-
lation. Our contingency tables are 2 × G and the χ2 statistic is non-monotonic whereas in
correlation rules the contingency table is n-dimensional with 2n cells where n is the number
of items, and the χ2 statistic is upward closed (i.e. if a set of items has a χ2 value of S, then
any superset will also have a χ2 value of at least S).
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4. Filtering for summarizing contrast sets

Dealing with the large volume of data produced by data mining is a difficult problem. For ex-
ample, association rule mining programs can produce thousands of results (Liu et al., 1999a)
which are far too many for a user to view. We typically discover several thousand contrast
sets, thus we need to summarize or reduce our results to present a small interesting subset.

Deciding what we should show to a user is a difficult task because of its subjective nature.
Some past approaches have used constraints on the variables or items which appear to limit
the rules shown (Klemettinen et al., 1994; Srikant et al., 1997; Ng et al., 1998; Bayardo
et al., 1999). Another technique is to compare the discovered rules to an explicit list of rules
or beliefs that the user already knows (Liu and Hsu, 1996; Liu et al., 1997; Padmanabhan
and Tuzhilin, 1998; Silberschatz and Tuzhilin, 1996; Liu et al., 1999b) and then to show
only those results that are unexpected. For temporal groups, time series shape matching
could also be used (Agrawal et al., 1995; Keogh and Pazzani, 1998).

All of these methods could be used to filter the discovered contrast sets. Here we present
two new methods that we have found useful. The first is an expectation based statistical
approach which keeps track of what has been shown to the user and only presents results
that are surprising given the current context of results. It does not require the user to input
information unlike several of the above approaches. The second allows us to identify and
select contrast sets that are linear trends.

4.1. Statistical surprise

We show the user the most general contrast sets first, those involving a single term, and then
only show more complicated conjunctions if they are surprising based on the previously
shown sets. For example, we might start by showing the contrast sets Gender = female,
School = ICS, and GPA > 4. We would then move on to showing more complicated sets
such as Gender = female ∧ School = ICS or School = ICS ∧ GPA > 4, and finally
Gender = female ∧ School = ICS ∧ GPA > 4. This bottom up approach is similar to
forward selection approaches (Agresti, 1990) and to Liu et al. (1999a).

Figure 5 shows our algorithm for filtering contrast sets. The function model returns the
expected value based on a log-linear model which we will describe next. The function
isSurprising returns true if the expected counts are different (as in Eqs. (1) and (2)) from
the observed counts.

Our model estimates the probability of a conjunction based on its subsets and from this
we obtain our expected frequency counts. This is a well studied problem and there are
many algorithms, such as Iterative Proportional Fitting (IPF), (Bishop et al., 1975; Everitt,
1992) which can find the maximum likelihood estimates. These algorithms are equivalent
to assuming a log-linear model of the data (Agresti, 1990; Bishop et al., 1975; Everitt, 1992;
Knoke and Burke, 1980) where “the log of the expected frequency is an additive function
of a constant plus terms for each variable and their interactions” (Knoke and Burke, 1980).
We believe that this model is accurate at identifying contrast sets that are not interesting
because they can be explained by lower order interactions.

Our frequency expectations obtained under the log-linear model is the maximum likeli-
hood estimate given the marginals seen. This assumes that the interaction term involving
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Figure 5. Filtering algorithm for finding surprising contrast sets.

all variables is zero although this will not be true in general. For example, in calculating
the expectation of Gender = female ∧ School = ICS we ignore the interaction between
gender and school and only look at the individual subsets even though these two are not
independent. We deal with this by scaling the expected frequencies with a factor derived
from all groups (Appendix B).

For computation speed, our model uses direct estimates (i.e. equations) when they exist,
otherwise we use IPF.

4.2. Detecting linear trends

If our group variable is ordinal as in federal census data, our task of mining contrast sets
is identical to finding changes over time. With temporal data, linear trend detection is
important because they often represent simple relations between the variables which are
easy to understand and may have good predictive power.

In Section 3.2 we showed that we could detect significant contrast sets by using the
chi-square test to check for independence of contrast set support and group membership.
However this test checks for all deviations from independence and does not measure a
specific type of departure such as a linear trend. Since our contingency table is 2 × G we
can use regression techniques (Everitt, 1992) to find the portion of the χ2 statistic that arises
from a linear trend if the group variable is ordinal (such as data from consecutive years).

We fit a regression equation to the categorical data by encoding the group (column)
as the independent variable (x) and the contrast set truth (row variable) as the dependent
or target variable (y). The portion of the the χ2 statistic that comes from linear trend is
then b2

yx/V (byx ) where byx is the linear regression coefficient of y on x , and V (byx ) is its
variance. The portion of χ2 explained by linear regression has 1 degree of freedom.

Figure 6 shows two different significant deviations found from 1998 UCI admissions
data.2 In part (a) we see that a linear trend is responsible for most of the total χ2 value and
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Source of Variation d.f. χ2 p

linear regression 1 54.12 1.9e−13

departure 4 2.36 0.67

total 5 56.48 6.5e−11

Source of Variation d.f. χ2 p

linear regression 1 2.64 0.10

departure 4 34.98 4.69e−07

total 5 37.62 4.51e−07

(a) (b)

Figure 6. Deviations from independence and linear trends: (a) significant linear trend in the percentage of
admitted ICS students whose first language is not English; (b) no significant linear trend for intent to enroll of
admitted Social Ecology students.

that we have an extremely low p value. The departure from regression is not significant. In
part (b) we see that although the deviation is significant, a linear trend is not responsible.

5. Evaluation

In this section, we evaluate STUCCO on objective measures of performance. We ask three
research questions. (1) Can we efficiently mine contrast sets at low support differences
(small δ)? (2) Which pruning rules are responsible for the speedups? (3) How effective are
the filtering rules for reducing the number of items that need to be shown to the end user?

All experiments were performed on a Sun Ultra 5 computer with 128 MB of memory.
STUCCO was implemented in C++ and compiled with gcc version 2.7.2.1. To provide
a comparison, we used C. Borgelt’s implementation of Apriori, version 2.1, which was
implemented in C.3 This version of Apriori is highly optimized and uses prefix trees which
implement set-enumeration search and can quickly count candidates in a similar manner
to candidate groups. Note that Apriori does not perform the same task as STUCCO and it
serves only as a foil to help understand performance issues. We used the following datasets
which are summarized in Table 2.

• Adult. The Adult census data contains information extracted from the 1994 Current
Population Survey. There are variables such as age, working class, education, sex, hours
worked, salary, etc.
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Table 2. Description of data sets.

Data set # Features # Examples Groups

Adult 13 8619 Doctorates, Bachelors

Mushroom 22 8124 Edible, Poisonous

UCI admissions 19 100876 Applicants 1993–1998 (6 cohorts)

IPUMS census 60 23348 1970, 1980, 1990

• Mushroom. This data set describes mushrooms and their physical properties such as
shape, odor, habitat, etc. Mushroom is not a true observational data set as the examples
are not drawn from individual instances but rather are compiled from a field guide (Lincoff,
1981). It is a difficult data set for most mining algorithms because there are many frequent
and long itemsets.

• UCI admissions data. See Section 6.
• Integrated public use microdata series (IPUMS). The IPUMS project (Ruggles and

Sobek, 1997) is a large collection of federal census data which has standardized coding
schemes to make comparisons across time easy. We obtained an unweighted 1 in 100
sample of responses from the Los Angeles—Long Beach area for the years 1970, 1980,
and 1990. The household and individual records were flattened into a single table and
we used all variables that were available for all three years.4 When there was more than
one version of a variable, we used the most general. For occupation and industry we
used the 1950 basis. Continuous variables were discretized into roughly 5 to 10 equal
sized divisions by frequency (e.g. income) or interval width (e.g. age). Finally, we further
randomly sampled the data to obtain a 1 in 1000 sample. Federal Census data is one of
the most difficult data sets to mine because of the long average record width coupled with
the high number of popular attribute-value pairs which occur frequently in many records.
These two factors combine to result in many long and frequent itemsets.

The Adult and Mushroom datasets are available from the UCI Repository of Machine
Learning Databases (Blake and Merz, 1998). The IPUMS data is available from the UCI
KDD Archive (Bay, 1999).

5.1. Mining efficiency

Evaluating the efficiency of mining algorithms analytically is difficult without imposing
strong distributional assumptions that make the analysis of limited worth. Thus we resort
to experimental studies.

We ran both STUCCO and Apriori on the evaluation data sets and figure 7 shows the
results comparing CPU time to the minimum support difference. For Apriori we reported
the sum of times to mine at the given support level for each group. Note that if we were
to use Apriori to mine contrast sets this would grossly underestimate the computational
effort because with multiple groups we need support counts for itemsets below the support
difference threshold. For example, if we are mining at a support difference of 10% and group
A has a support of 11% we still need to mine group B as long as its support is non-zero.
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(a) (b)

(c) (d)

Figure 7. CPU time versus support difference. (a) Adult; (b) Mushroom; (c) UCI admissions; (d) IPUMS.

STUCCO was very fast and did well on all data sets, even on Mushroom and IPUMS
which are among the most difficult data sets for mining algorithms. STUCCO was slower
than Apriori on UCI Admissions by a factor of approximately three. This is probably because
UCI Admissions has few high support attribute-value pairs thus STUCCO could not take
advantage of lower bounds: Pruning is most effective when the lower and upper bounds are
close. The number of candidates examined by STUCCO on UCI Admissions was similar
to Apriori, but STUCCO does more work per candidate as it performs additional testing
beyond simple size comparisons.

5.2. Pruning strategies

In this section, we examine the effectiveness of the three pruning strategies on STUCCO’s
complexity. We use a lesion study approach where we remove a single strategy and evaluate
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(a) (b)

Figure 8. Lesion studies of pruning effectiveness. (a) Adult; (b) Mushroom.

the algorithm’s performance. This gives a good measure of the relative importance of the
various parts and allows us to see the unique contribution of each pruning strategy.

We compared three methods by removing all pruning based on: (1) effect size,
(2) statistical significance, and (3) interest. We used the Adult and Mushroom data sets
because we could mine these with the entire range of support differences (i.e. we could
mine with δ = 0). Figure 8 shows the ratio of candidates counted at different support levels
with respect to the number of candidates counted using all of the pruning strategies. On the
Mushroom data set it was impossible to mine without interest based pruning with δ ≤ 20%.

The results indicate that effect size and statistical significance pruning are complimentary.
As δ → 0%, statistical significance pruning is more important. Conversely as δ → 100%
effect size pruning is more important. Interest based pruning is essential for difficult data sets.

5.3. Filtering evaluation

In this section, we evaluate the filtering algorithm in terms of the number of contrast sets
shown to the user. We realize that filtering techniques must also be measured in terms of
the quality of the results and we address this in the next section.

Table 3 shows the number of deviations and surprising sets found by STUCCO for the
four data sets. Most deviations were not surprising and thus we were able to drastically
reduce the number of contrast sets by more than an order of magnitude.

It is not hard to see why filtering does a good job at removing unnecessary contrast sets.
Consider a simple case with n variables all independent of each other but with different
support levels for each group. All 2n combinations of the variables should be deviations
(assuming that when multiplied together the probabilities aren’t exactly equal) but all com-
binations are uninteresting because there are no higher order effects.

The performance of STUCCO is reasonable. The largest data set, UCI Admissions, took
about 30 minutes and the other data sets took at most a few minutes. In the worst case,
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Table 3. Filtering effectiveness.

Adult UCI Admissions Mushroom IPUMS

Level Dev. Surp. Dev. Surp. Dev. Surp. Dev. Surp.

1 34 34 32 32 69 69 16 16

2 234 7 295 61 627 354 179 35

3 699 4 1111 34 1769 382 695 27

4 1031 0 2008 11 2443 133 1610 86

5 1014 1 1606 1 1003 39 1411 11

6 610 0 459 0 196 0 503 6

7 87 0 29 0 6 0 64 0

8 4 0 0 0

Total 3713 46 5540 139 6113 982 4478 181

Time 93.4 s 29.8 m 336.7 s 279.1 s

however the running time could be very bad as during iterative estimation with IPF we
potentially need to sum over a contingency table of size 2n where n is the number of
variables.

6. Case study: UCI admissions data

This section presents a case study that demonstrates how STUCCO is used in practice
and provides empirical evidence that contrast sets are more useful for understanding group
differences than other alternatives such as classification rules from C5.

At UCI, the admissions office collects data on all undergraduate applicants to UCI. The
second author serves on a campuswide committee whose goal is to analyze this data to
identify changes that could be made to admissions policies that would improve the quality,
quantity, and diversity of students that enroll at UCI. Currently the admissions officers
typically analyze the data by manipulating spreadsheets and thus they can only form simple
summaries and do not perform detailed multivariate analyses.

We have access to 6 years of data from 1993–98 with about 17000 applicants for each
year. The data contains information on variables such as ethnicity, UCI School (e.g. Arts,
Engineering, etc.), if an offer of admission was made, gender, home location, first language,
GPA, SAT scores, Selection Index Number (SIN) which is a composite score formed from
GPA and SAT scores, statement of intent to enroll, etc. We joined the data with a zipcode
database and added fields for the distance to UCI and to other UC schools. From this data
we selected the relevant tuples that corresponded to our groups. Numeric variables, such
as SAT scores and distances were manually converted into nominal variables at thresholds
that are meaningful for the admissions office.

Here, we report on an analysis of the 1997–98 enrollment data to identify differences
between students who chose to enroll and those who did not for, Biology, ICS, undeclared
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students and all UCI students as a whole. We ran STUCCO and C5.0 Rules on the data to
obtain contrast sets. For STUCCO we used the following parameter settings: δ = 1% and
α = 1. For C5.0 Rules we used the default parameter settings except we set the misclassi-
fication costs to balance the different group sizes (typically only 30% of admitted students
will enroll). This was necessary as without cost balancing C5 would sometimes fail to find
any rules.

The contrast sets can easily be converted to English paragraphs describing the differences
in a rule like format. With contrast sets we normally report the support for each group.
However, admissions officers find this format difficult to understand and thus we translated
the results into yield and gain. Yield is the percentage of students that enroll; gain is the
difference in the number of students that would enroll if the yield was identical to the
average yield. The contrast sets can be ordered by gain to see what changes might have the
largest effect. Rule 1 shows a sample contrast set converted automatically to English text.
Appendices C & D contain all results for STUCCO and C5 on Biology.

Rule 1. Students who are Korean and have a SIN between 6000 and 6500 are more likely
to enroll with a 30% higher yield than average. This represents a gain of 66 students.

Table 4 shows the size and number of sets mined by C5 and STUCCO. Examining the table
we see that C5 returned far more results than STUCCO and that the individual sets tended
to be larger and more complicated. While more complex results are undesirable, by itself,
it is not an indication that one method is better than another. However when we examine
individual sets, we found that C5 suffered from two problems that make it unsuitable for
finding group differences.

The first problem is that C5 tended to find many rules with a gain or loss of very few
students such as in Rule 2. For UCI, the median number of students affected by C5 contrast
sets was only 3 whereas for STUCCO the median was 103. Of the 235 sets found by C5
for UCI, 189 affected less than 10 students. The minimum number of students affected by

Table 4. Summary of results for C5 and STUCCO.

UCI Biology ICS Unaffiliated

Size C5 STUCCO C5 STUCCO C5 STUCCO C5 STUCCO

1 29 42 13 26 22 6 19 32

2 54 34 20 12 14 0 50 15

3 58 16 17 7 3 1 32 10

4 48 9 15 1 20 1

5 33 1 3 9

6 10 1

7 2

8 1

Total 235 102 69 45 39 8 130 58
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a STUCCO rule was 22. Of course, this occurs because C5.0 Rules tries to find one way to
distinguish with high accuracy those students that will enroll in UCI and divides the data
into very small sets with high concentrations of students that do or do not enroll.

Rule 2. Students who declined to state their ethnicity, are from Los Angeles County, have a
SIN between 6500 and 7000, have a parental income greater than $80000, and live
between 30 and 100 miles away from UCI are more likely to enroll with a 34% higher
yield than average. This represents a gain of 2 students.

The second problem of C5 is that it missed several important rules, even when the rules
were simple and obvious. Rule 3, the most important factor found by STUCCO, did not
show up as a factor for C5.

Rule 3. Students who live within 30 miles of UCI are more likely to enroll with a 11%
higher yield than average. This represents a gain of 432 students.

We now present an actionable rule which identifies students that could be directly targeted.
Rule 4 was found by STUCCO and suggests that UCI does an extremely poor job of
recruiting bright students who have not yet declared a major. This is probably because
recruiters treated non-declared majors as confused students who needed help rather than
as students who wanted to explore their options. Rule 4 passes the filtering mechanism
because its yield is much greater than one might expect given the subsets (Rules 5 and 6).

Rule 4. Students who have a GPA greater than 4, and are undeclared majors are less likely
to enroll with a 15% lower yield than average. This represents a loss of 123 students.

Rule 5. Students who have a GPA greater than 4 are less likely to enroll with a 9% lower
yield than average. This represents a loss of 76 students.

Rule 6. Students who are undeclared majors are less likely to enroll with a 2% lower yield
than average. This represents a loss of 57 students.

C5 did not find the contrast set in Rule 4. Due to this discovery, UCI is changing the way
it approaches recruiting undeclared students, particularly those with high GPAs.

UCI has been uncertain of the effect that the proximity to UCI and other UC campuses
plays in student’s college choice. Students who live at home with their parents substantially
reduce the cost of higher education. It was well known that students who live close to UCI
are more likely to accept offers, but little was understood about how this interacts with other
variables. The following STUCCO rules provide insight into this. Rule 7 suggests that UCI
competes fairly well for students with UCLA, UCSD and UC Riverside. Rule 8 suggests
that UCI does a poor job of recruiting highly qualified first generation students who live
near other UC campuses.

Rule 7. Students who live within 30 miles of UCI and live within 30 miles of another UC
school are more likely to enroll with a 10% higher yield than average. This represents a
gain of 329 students.
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Rule 8. Students who have a Selection Index Number greater than 7000, are not born in
the US, live within 30 miles of another UC school are less likely to enroll with a 18%
lower yield than average. This represents a loss of 139 students.

Our results here have shown that there are problems with using C5 to perform the de-
scriptive task of mining interesting contrast sets and that these problems do not occur with
STUCCO. This is not surprising as C5 was primarily intended to be a classification tool
(and it does this job well).

7. Related work

We restrict our discussion of related work to general change detection algorithms and to
filtering algorithms for reducing and summarizing mining results.

7.1. Change detection algorithms

Concurrent with our work, Dong and Li (1999) worked on the problem of discovering
emergent patterns (EP). An EP is defined as an itemset X where

growthrate(X) = supportD2
(X)

supportD1
(X)

> g (10)

and D1, D2 are two different data sets and g is growth limit such as 2. Their algorithm
represents the EPs by using borders. For example, an EP could be 〈{1,2,3}, {1,2,3,6,9,10}〉.
This means that all sets that are contained in the border (superset of {1,2,3} and subset of
{1,2,3,6,9,10}) would have a growth rate of at least g between the two data sets.

To calculate the EPs they first find the border of large itemsets using Max-Miner for each
of the two data sets. For example, if comparing Texas and Michigan at g > 1.2 they might
enumerate all itemsets with support greater than 25% in Texas and 30% in Michigan. They
then use an operation called border-diff to compare these sets and find the EPs as above.

This is an interesting and very promising approach in that it attempts to calculate all
possible EPs after finding the large borders with Max-Miner. It is reminiscent of the highly
influential version space algorithm (Michell, 1977). However, for the problems we are
addressing, there would be several drawbacks with this. First, their algorithm must mine
the data multiple times for different base supports. For example, if they were trying to
find all EPs in census data between Texas and Michigan with g > 1.2 they would have
to enumerate with Max-Miner all itemsets with support greater 25% in Texas and 30% in
Michigan, 40% Texas and 50% Michigan, etc. Second, it is not clear if the method can be
extended to handle more than two groups. Third, so far there is no method of verifying the
statistical significance of discovered EPs. Consider that if an itemset occurs once in D2 and
never occurs in D1, its growth rate is considered ∞. Their algorithm would find and report
this. Finally, there is the problem of displaying the large volume of results. For example, on
the Mushroom data set they found 299811 borders, each representing about 218 sets. This
is far too many results to show to an end user.
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Explora (Hoschka and Klösgen, 1991; Klösgen, 1996) searches for subgroups of cases
with unusual distributions of a target variable with respect to aparent population. For exam-
ple, the target variable could be the mean salary which is larger for the subgroups gender
= male education > 15 years, and race = white (Klösgen, 1993). In contrast, given high
and low income groups, our goal would be to find the differences between them which
could be in gender, race, or education. Explora controls the search complexity by using
redundancy filters to prune the search space. For example, a redundancy rule used is if a
node is true than its successor is false. In the given example, this would manifest itself as not
searching for any subgroups involving conjunctions with the term male; i.e. the successors
are sets such as gender = male ∧ education > 15 years.

Chakrabarti, Sarawagi, and Dom (1998) tackle the problem of finding surprising temporal
patterns in boolean market basket data: i.e. finding itemsets whose support varies over time
and cannot be explained by changes in the support of the itemset’s component subsets. They
use a Minimum Description Length approach where surprising patterns are those with long
encoding costs. The data is segmented into distinct time periods and then a model is fit to
each period so that encoding costs can be calculated. Our work has similar goals to theirs,
to find changes in data, but is fundamentally different: We find differences between two or
more probability distributions, whereas they find changes in a single distribution as it varies
through time. Thus a query such as “How does group A differ from B” has no meaning in
their data model as different groups (distributions) do not exist. Conversely, in our model,
asking for what has changed without reference to a group is nonsensical.

Ganti, Gehrke, Ramakrishnan, and Loh (1999) work on detecting the differences between
datasets by examining differences between models induced on the data. They represent each
model with a structure component which identifies regions in the feature space and a measure
component which summarizes the data mapped to the region (e.g. fraction of examples).
They aggregate and compare the measure components over the regions and at the end of
the analysis they have a single number which quantifies the dissimilarity of the data sets.

7.2. Filtering algorithms

Chakrabarti, Sarawagi, and Dom (1998) also calculate the expectation of an itemset based
on all proper marginals. Our work differs in how we use these expectations. Once they have
the expected supports, they use this to encode differences in an MDL framework. We use
the expected values to directly compare differences in the observed probabilities to measure
the size of the effect and in statistical tests to see if the expected probabilities could possibly
generate the observed values.

Liu, Hsu, and Ma (1999a) summarize a rule set by only showing direction setting (DS)
rules. The direction of a rule X → y is the sign of the correlation between X and y (the sign
is 0 if the X and y are independent). A DS rule then is a rule whose direction cannot be
explained by its subsets. For example, if we have the rules X → y (sign −1) and Z → y
(sign −1) then if X ∧ Z → y has a sign of 1 it is surprising. This method is very fast at
pruning rules, however it has a number of limitations. First, the combination rules are ad hoc
and there is no method of handling situations like finding the expected sign for positive and
negative combinations. Second, the method is limited to determining expected directions
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but not expected counts. Thus it will not be able to find combinations that have correlations
that are much bigger than the individual components if the signs are the same.

Srikant and Agrawal (1996) filter quantitative association rules unless the confidence and/
or support are greater than expected. For example, they would filter the rule age(25..30) →
married unless it was significantly different from age(20..30) → married. Their work
applies to numerical ranges which are subsets of each other.

8. Conclusion

We introduced the problem of detecting differences across several contrasting groups as that
of finding all contrast sets, conjunctions of attributes and values, that have meaningfully
different support levels. This allows us to answer queries of the form, “How are History and
Computer Science students different?” or “What has changed from 1993 through 1998?”

We combined statistical hypothesis testing with search to develop the STUCCO algorithm
for mining contrast sets. It has (1) pruning rules which allow efficient mining at low support
differences, (2) guaranteed control over false positives, (3) linear trend detection, and (4)
compact summarization of results.

Appendix A: χ2 is convex

Theorem 3. The χ2 statistic is a convex function of the observed values.

Proof: We prove that χ2 is convex for 2 × 2 contingency tables (the proof, although
cumbersome, generalizes easily to 2 × c tables). Expanding the summations in Eq. (3) we
know that for 2 × 2 tables

χ2 = (O11 − E11)
2

E11
+ (O21 − E21)

2

E21
+ (O12 − E12)

2

E12
+ (O22 − E22)

2

E22
(11)

Let C1 = ∑r
i=1 Oi1 and C2 = ∑r

i=1 Oi2 be the column sums in our contingency tables.
These values are fixed as the column sum is constant. Then because of constraints we know
that

O21 = C1 − O11 (12)

O22 = C2 − O12 (13)

E21 = C1 − E11 (14)

E22 = C2 − E12 (15)

Thus leaving us with

χ2 = (O11 − E11)
2

E11
+ (−O11 + E11)

2

C1 − E11
+ (O12 − E12)

2

E12
+ (−O12 + E12)

2

C2 − E12
(16)
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substituting

E11 = C1(O11 + O12)

N
(17)

E12 = C2(O11 + O12)

N
(18)

where N = C1 + C2, and simplifying our notation to let o1 = O11 and o2 = O12 leaves

χ2 = (o1 − (o1 + o2)C1/N )2 N )

(o1 + o2)C1
+ (−o1 + (o1 + o2)C1/N ))2

C1 − (o1 + o2)C1/N

+ (o2 − (o1 + o2)C2/N )2 N

(o1 + o2)C2
+ (−o2 + (o1 + o2)C2/N )2

C2 − (o1 + o2)C2/N
(19)

To show that χ2 is convex we must show that the Hessian (the matrix of second order partial
derivatives) H = ∇2χ2 is positive semi-definite (Bazaraa and Shetty, 1979). Thus,

H = ∇2χ2 =




∂2χ2

∂o2
1

∂2χ2

∂o1∂o2

∂2χ2

∂o2∂o1

∂2χ2

∂o2
2


 (20)

where,

∂2χ2

∂o2
1

= 2
No2

2

C1(o1 + o2)3
− 2

N (o2 − C2)
2

C1(−N + o1 + o2)3
+ 2

No2
2

C2(o1 + o2)3

− 2
N (o2 − C2)

2

C2(−N + o1 + o2)3
(21)

∂2χ2

∂o1∂o2
= ∂2χ2

∂o2∂o1
= −2

No1o2

C1(o1 + o2)3
+ 2

N (o2 − C2)(−C1 + o1)

C1(−N + o1 + o2)3

−2
No1o2

C2(o1 + o2)3
+ 2

N (o2 − C2)(−C1 + o1)

C2(−N + o1 + o2)3
(22)

∂2χ2

∂o2
2

= 2
No2

1

C1(o1 + o2)3
− 2

(−C1 + o1)
2 N

C1(−N + o1 + o2)3
+ 2

No2
1

C2(o1 + o2)3

− 2
(−C1 + o1)

2 N

C2(−N + o1 + o2)3
(23)

Recall that H is positive semi-definite if xT Hx ≥ 0 for all x. Expanding and factoring
xT Hx gives

xT Hx = 2
N (x1o2 − x2o1)

2

C1(o1 + o2)3
+ 2

N (x1(o2 − C2) − x2(o1 − C1))
2

C1(N − o1 − o2)3

+ 2
N (x1o2 − x2o1)

2

C2(o1 + o2)3
+ 2

N (x1(o2 − C2) − x2(o1 − C1))
2

C2(N − o1 − o2)3
(24)
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Terms 1 and 3 are always positive. Terms 2 and 4 are also always positive as N −o1 −o2 ≥ 0
(recall that N = C1 + C2 and that C1 ≥ o1 and C2 ≥ o2). Thus H is positive semi-definite
and therefore χ2 is convex. ✷

Appendix B: Estimating the scale factor

We estimate the scale factor (ρ) used in Section 4.1 with maximum likelihood under a
binomial model.

Let ni be the total number of observations from group i and let oi be the number of
observations meeting the contrast set criteria from group i . Let λi be the expected probability
for group i from our initial log-linear model (for convenience we treat this as a fixed value).
Then the probability of obtaining the observed counts as a function of ρ is:

P(ρ) =
G∏

i=1

(
ni

oi

)
(ρλi )

oi (1 − ρλi )
ni −oi (25)

Taking logarithms to get the log-likelihood:

l(ρ) = log P(ρ) =
G∑

i=1

log

(
ni

oi

)
+ oi log(ρλi ) + (ni − oi ) log(1 − ρλi ) (26)

Taking partial derivatives with respect to ρ

∂l(ρ)

∂ρ
=

G∑
i=1

oi

ρ
− λi (ni − oi )

1 − ρλi
(27)

For two groups, we solve for the maximum ( ∂l(ρ)

∂ρ
= 0) exactly by using the quadratic

formula. For more than two groups, exact solution becomes cumbersome and thus we use
an iterative solver.

Appendix C: STUCCO results for Biology 1997–98

This appendix contains the rules found by STUCCO which differentiate the 1997–98 Biol-
ogy students who chose to, or not to enroll at UCI. There were 700 students who enrolled
and 1954 who did not resulting in an average yield of 26.4%.

Positive yield rules

1. Students who live within 30 miles of UCI are more likely to enroll with a 13% higher
yield than average. This represents a gain of 125 students.

2. Students who scored less than 500 on their SAT Verbal are more likely to enroll with
a 18% higher yield than average. This represents a gain of 104 students.
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3. Students who have a SIN between 6000 and 6500 are more likely to enroll with a 16%
higher yield than average. This represents a gain of 99 students.

4. Students who scored between 500 and 600 on their SAT Math are more likely to enroll
with a 11% higher yield than average. This represents a gain of 86 students.

5. Students who are from Orange County are more likely to enroll with a 17% higher
yield than average. This represents a gain of 85 students.

6. Students who are from Orange County and live within 30 miles of UCI are more likely
to enroll with a 17% higher yield than average. This represents a gain of 82 students.

7. Students who have a GPA between 3.5 and 4 are more likely to enroll with a 5% higher
yield than average. This represents a gain of 62 students.

8. Students who have a GPA between 2.75 and 3.5 are more likely to enroll with a 23%
higher yield than average. This represents a gain of 62 students.

9. Students who have a SIN between 6000 and 6500 and scored between 500 and 600 on
their SAT Math are more likely to enroll with a 19% higher yield than average. This
represents a gain of 61 students.

10. Students who left the ethnicity blank are more likely to enroll with a 18% higher yield
than average. This represents a gain of 54 students.

11. Students who scored less than 500 on their SAT Verbal and have a SIN between 6000
and 6500 are more likely to enroll with a 20% higher yield than average. This represents
a gain of 53 students.

12. Students who have a SIN between 5000 and 6000 are more likely to enroll with a 23%
higher yield than average. This represents a gain of 52 students.

13. Students who are not born in the US are more likely to enroll with a 5% higher yield
than average. This represents a gain of 47 students.

14. Students who scored less than 500 on their SAT Math are more likely to enroll with a
17% higher yield than average. This represents a gain of 42 students.

15. Students who scored less than 500 on their SAT Verbal, are not native English speakers,
and are not born in the US are more likely to enroll with a 15% higher yield than average.
This represents a gain of 34 students.

16. Students who scored less than 500 on their SAT Math and scored less than 500 on
their SAT Verbal are more likely to enroll with a 20% higher yield than average. This
represents a gain of 31 students.

17. Students who live between 30 and 100 miles away from another UC school and live
within 30 miles of UCI are more likely to enroll with a 26% higher yield than average.
This represents a gain of 31 students.

18. Students who have a SIN between 5000 and 6000, scored less than 500 on their SAT
Verbal, and live within 30 miles of another UC school are more likely to enroll with a
28% higher yield than average. This represents a gain of 30 students.

19. Students who have a SIN between 5000 and 6000 and have a GPA between 2.75 and
3.5 are more likely to enroll with a 27% higher yield than average. This represents a
gain of 30 students.

20. Students who have a SIN between 5000 and 6000 and scored less than 500 on their SAT
Math are more likely to enroll with a 26% higher yield than average. This represents a
gain of 26 students.
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21. Students who have a GPA between 2.75 and 3.5 and have a SIN between 6000 and
6500 are more likely to enroll with a 22% higher yield than average. This represents a
gain of 26 students.

22. Students who are Filipino are more likely to enroll with a 8% higher yield than average.
This represents a gain of 22 students.

23. Students who scored less than 500 on their SAT Verbal, scored between 500 and 600
on their SAT Math, and have a parental income of less than $35000 are more likely to
enroll with a 17% higher yield than average. This represents a gain of 22 students.

24. Students who scored between 650 and 700 on their SAT Math, have a SIN between
6500 and 7000, and live within 30 miles of UCI are more likely to enroll with a 26%
higher yield than average. This represents a gain of 18 students.

25. Students who have a SIN between 5000 and 6000, have a GPA between 2.75 and 3.5,
and scored less than 500 on their SAT Verbal are more likely to enroll with a 26%
higher yield than average. This represents a gain of 17 students.

26. Students who scored between 650 and 700 on their SAT Math, are from Orange County,
and have a SIN between 6500 and 7000 are more likely to enroll with a 38% higher
yield than average. This represents a gain of 16 students.

Negative yield rules

1. Students who have a SIN greater than 7000 are less likely to enroll with a 16% lower
yield than average. This represents a loss of 142 students.

2. Students who have a GPA greater than 4 are less likely to enroll with a 11% lower yield
than average. This represents a loss of 124 students.

3. Students who have a SIN greater than 7000 and have a GPA greater than 4 are less
likely to enroll with a 15% lower yield than average. This represents a loss of 103
students.

4. Students who live more than 100 miles from UCI are less likely to enroll with a 12%
lower yield than average. This represents a loss of 80 students.

5. Students who scored greater than 700 on their SAT Math and have a SIN greater than
7000 are less likely to enroll with a 15% lower yield than average. This represents a
loss of 55 students.

6. Students who scored between 600 and 650 on their SAT Verbal are less likely to enroll
with a 11% lower yield than average. This represents a loss of 55 students.

7. Students who scored greater than 700 on their SAT Math are less likely to enroll with
a 12% lower yield than average. This represents a loss of 53 students.

8. Students who scored between 650 and 700 on their SAT Math are less likely to enroll
with a 8% lower yield than average. This represents a loss of 49 students.

9. Students who are born in the US are less likely to enroll with a 3% lower yield than
average. This represents a loss of 48 students.

10. Students who scored between 650 and 700 on their SAT Verbal are less likely to enroll
with a 14% lower yield than average. This represents a loss of 46 students.

11. Students who live between 30 and 100 miles away from UCI are less likely to enroll
with a 5% lower yield than average. This represents a loss of 44 students.
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12. Students who scored between 650 and 700 on their SAT Verbal and have a SIN greater
than 7000 are less likely to enroll with a 16% lower yield than average. This represents
a loss of 40 students.

13. Students who have a parental income greater than $80000 are less likely to enroll with
a 6% lower yield than average. This represents a loss of 36 students.

14. Students who have a SIN greater than 7000, are not born in the US, and are from Los
Angeles County are less likely to enroll with a 24% lower yield than average. This
represents a loss of 32 students.

15. Students who are Chinese are less likely to enroll with a 7% lower yield than average.
This represents a loss of 30 students.

16. Students who are from Santa Clara County are less likely to enroll with a 19% lower
yield than average. This represents a loss of 22 students.

17. Students who scored greater than 700 on their SAT Verbal are less likely to enroll with
a 12% lower yield than average. This represents a loss of 21 students.

18. Students who scored greater than 700 on their SAT Verbal and have a SIN greater than
7000 are less likely to enroll with a 13% lower yield than average. This represents a
loss of 21 students.

19. Students who are from San Diego County are less likely to enroll with a 11% lower
yield than average. This represents a loss of 20 students.

Appendix D: C5 results for Biology 1997–98

This appendix contains the rules found by C5 which differentiate the 1997–98 Biology
students who chose to, or not to enroll at UCI. Rules which affected 5 or fewer students are
not shown for space reasons.

Positive yield rules

1. Students who attended a public high school and have a SIN between 6000 and 6500
are more likely to enroll with a 19% higher yield than average. This represents a gain
of 94 students.

2. Students who have a SIN between 6500 and 7000 and live within 30 miles of UCI are
more likely to enroll with a 19% higher yield than average. This represents a gain of
59 students.

3. Students who have a SIN between 5000 and 6000 are more likely to enroll with a 23%
higher yield than average. This represents a gain of 52 students.

4. Students who are from Los Angeles County and have a SIN between 6000 and 6500
are more likely to enroll with a 18% higher yield than average. This represents a gain
of 46 students.

5. Students who are not born in the US, have a SIN between 6500 and 7000, and live
within 30 miles of UCI are more likely to enroll with a 28% higher yield than average.
This represents a gain of 42 students.

6. Students who are from Orange County, and have a SIN between 6000 and 6500 are
more likely to enroll with a 43% higher yield than average. This represents a gain of
42 students.
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7. Students who are male, are Filipino, and have a SIN between 6000 and 6500 are more
likely to enroll with a 40% higher yield than average. This represents a gain of 11
students.

8. Students who are from Los Angeles County, have a SIN between 6500 and 7000, and
have a parental income between $35000 and $55000 are more likely to enroll with a
8% higher yield than average. This represents a gain of 8 students.

9. Students who left the ethnicity blank, are born in the US, have a SIN between 6500
and 7000, and live within 30 miles of UCI are more likely to enroll with a 49% higher
yield than average. This represents a gain of 8 students.

10. Students who are Chicano, are from Los Angeles County, are born in the US, and live
within 30 miles of UCI are more likely to enroll with a 14% higher yield than average.
This represents a gain of 7 students.

11. Students who stated their ethnicity as “other”, have a SIN between 6500 and 7000,
and live within 30 miles of UCI are more likely to enroll with a 55% higher yield than
average. This represents a gain of 6 students.

An additional 16 rules affect 5 or fewer students.

Negative yield rules

1. Students who have a SIN greater than 7000 are less likely to enroll with a 16% lower
yield than average. This represents a loss of 142 students.

2. Students who have a GPA greater than 4 are less likely to enroll with a 11% lower yield
than average. This represents a loss of 124 students.

3. Students who have a SIN between 6500 and 7000 and live more than 100 miles from
UCI are less likely to enroll with a 18% lower yield than average. This represents a
loss of 47 students.

4. Students who have a GPA between 3.5 and 4 and scored between 650 and 700 on their
SAT Verbal are less likely to enroll with a 15% lower yield than average. This represents
a loss of 17 students.

5. Students who have a SIN between 6500 and 7000, have a parental income of less than
$35000, and live between 30 and 100 miles away from UCI are less likely to enroll
with a 16% lower yield than average. This represents a loss of 16 students.

6. Students who are from San Diego County and have a SIN between 6500 and 7000 are
less likely to enroll with a 20% lower yield than average. This represents a loss of 13
students.

7. Students who are from Santa Clara County, and scored between 650 and 700 on their
SAT Math are less likely to enroll with a 26% lower yield than average. This represents
a loss of 10 students.

8. Students who are from Alameda County, and have a GPA between 3.5 and 4 are less
likely to enroll with a 24% lower yield than average. This represents a loss of 9 students.

9. Students who are from Sacramento County are less likely to enroll with a 20% lower
yield than average. This represents a loss of 7 students.

10. Students who are East Indian or Pakistani, and are from Los Angeles County are less
likely to enroll with a 11% lower yield than average. This represents a loss of 6 students.
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11. Students who are from San Francisco County are less likely to enroll with a 26% lower
yield than average. This represents a loss of 6 students.

12. Students who are Caucasian, are from San Diego County, and attended a public high
school are less likely to enroll with a 18% lower yield than average. This represents a
loss of 6 students.

13. Students who are from San Mateo County are less likely to enroll with a 12% lower
yield than average. This represents a loss of 6 students.

14. Students who are African American, are from Los Angeles County, and have a SIN
between 6000 and 6500 are less likely to enroll with a 26% lower yield than average.
This represents a loss of 6 students.

An additional 24 rules affect 5 or fewer students.
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Notes

1. The optimal classification strategy knowing only the information in the figure 1(b) will yield an accuracy of
17.7% while random guessing gives 16.67% (assuming equal class priors).

2. The reported p values are not adjusted for multiple tests.
3. This program is available from http://fuzzy.cs.Uni-Magdeburg.de/∼borgelt/. Version 1.8 of his

program is incorporated in the data mining tool Clementine.
4. Note that PUMS data is based on cluster samples, i.e. samples are made of households or dwellings from which

there may be multiple individuals. Individuals from the same household are no longer independent and thus we
violate the independence assumption. We ignore this as we are using the data only as a computational test (this
violation is also ignored in Silverstein et al. (1998), Dong and Li (1999), Brin et al. (1997) etc. Ruggles (1995)
suggests that even if the independence assumption is violated, because of stratification the standard errors on
PUMS data may be similar to what we would expect of a true random sample.

References

Agrawal, R., Imielinski, T., and Swami, A. 1993. Mining associations between sets of items in massive database.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 207–216.

Agrawal, R., Psaila, G., Wimmers, E., and Zait, M. 1995. Querying shapes of histories. In Proceedings of the 21st
International Conference on Very Large Databases.

Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules. In Proceedings of the 20th
International Conference on Very Large Databases.

Agresti, A. 1990. Categorical Data Analysis. New York: John Wiley & Sons.
Bay, S.D. 1999. The UCI KDD archive. [http://kdd.ics.uci.edu/]. Irvine, CA: University of California, Department

of Information and Computer Science.
Bay, S.D. and Pazzani, M.J. 1999. Detecting change in categorical data: Mining contrast sets. In Proceedings of

the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 302–306.
Bayardo, R.J. 1998. Efficiently mining long patterns from databases. In Proceedings of the ACM SIGMOD

Conference on Management of Data.



MINING CONTRAST SETS 245

Bayardo, R.J., Agrawal, R., and Gunopulos, D. 1999. Constraint-based rule mining in large, dense databases. In
Proceedings 15th International Conference on Data Engineering.

Bazaraa, M.S. and Shetty, C.M. 1979. Nonlinear Programming: Theory and Algorithms. New York: John Wiley
& Sons.

Bishop, Y.M.M., Fienberg, S.E., and Holland, P.W. 1975. Discrete Multivariate Analysis: Theory and Practice:
The MIT Press, Cambridge, Massachusetts.

Blake, C. and Merz, C.J. 1998. UCI repository of machine learning databases. Irvine, CA: University of California,
Department of Information and Computer Science. [http://www.ics.uci.edu/∼mlearn/MLRepository.html].

Brin, S., Motwani, R., Ullman, J.D., and Tsur, S. 1997. Dynamic itemset counting and implication rules for
market basket data. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
pp. 255–264.

Chakrabarti, S., Sarawagi, S., and Dom, B. 1998. Mining surprising patterns using temporal description length.
In Proceedings of the 24th International Conference on Very Large Databases.

Cohen, J. 1990. Things I have learned (so far). American Psychologist, 45:1304–1312.
Darity, W.A. 1998. Intergroup disparity: Economic theory and social science evidence. Southern Economic Journal,

64:805–826.
Davies, J. and Billman, D. 1996. Hierarchical categorization and the effects of contrast inconsistency in an

unsupervised learning task. In Proceedings of the Eighteenth Annual Conference of the Cognitive Science
Society, p. 750.

Dong, G. and Li, J. 1999. Efficient mining of emerging patterns: Discovering trends and differences. In Proceedings
of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

Everitt, B.S. 1992. The Analysis of Contingency Tables, 2nd ed. Chapman and Hall, London, U.K.
Ganti, V., Gehrke, J.E., Ramakrishnan, R., and Loh, W. 1999. A framework for measuring changes in data

characteristics. In Proceedings of Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems.

Glenn, N.D. 1977. Cohort Analysis. Newbury Park, CA: Sage Publications.
Hochberg, Y. and Tamhane, A.C. 1987. Multiple Comparison Procedures. New York: John Wiley & Sons.
Hoschka, P. and Klösgen, W. 1991. A support system for interpreting statistical data. In Knowledge Discovery in

Databases, G. Piatetsky-Shapiro and W.J. Frawley (Eds.). AAAI Press, Menlo Park, CA, pp. 325–346.
Keogh, E. and Pazzani, M.J. 1998. An enhanced representation of time series that allows fast and accuracte classi-

fication, clustering, and relevance feedback. In Proceedings of the 4th International Conference on Knowledge
Discovery and Data Mining.

Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo, A.I. 1994. Finding interesting rules from
large sets of discovered association rules. In Proceedings of the Third International Conference on Information
and Knowledge Management, pp. 401–407.

Klösgen, W. 1993. Explora user documentation: A support system for discovery in databases.
Klösgen, W. 1996. Explora: A multipattern and multistrategy discovery assistant. In Advances in Knowledge

Discovery and Data Mining, U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.). AAAI
Press/The MIT Press, Cambridge, Massachusetts, pp. 249–271.

Knoke, D. and Burke, P.J. 1980. Log-linear Models. Newbury Park, CA: Sage Publications.
Lewontin, R.C. and Felsenstein, J. 1965. The robustness of homogeneity in 2 × n tables. Biometrics, 21:19–

33.
Lin, D. and Kedem, Z.M. 1998. Pincer-search: A new algorithm for discovering the maximum frequent set. In

Proceedings of the Sixth European Conference on Extending Database Theory.
Lincoff, G.H. 1981. The Audubon Society Field guide to North American Mushrooms. Random House, New

York.
Liu, B. and Hsu, W. 1996. Post-analysis of learned rules. In Proceedings of the Thirteenth National Conference

on Artificial Intelligence, pp. 828–834.
Liu, B., Hsu, W., and Chen, S. 1997. Using general impressions to analyze discovered classification rules.

In Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, pp. 31–
36.

Liu, B., Hsu, W., and Ma, Y. 1999a. Pruning and summarizing the discovered associations. In Proceedings of the
Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.



246 BAY AND PAZZANI

Liu, B., Hsu, W., Mun, L., and Lee, H. 1999b. Finding interesting patterns using user expectations. IEEE Trans-
actions on Knowledge and Data Engineering, 11:817–832.

Mannila, H. and Toivonen, H. 1997. Levelwise search and borders of theories in knowledge discovery. Data Mining
and Knowledge Discovery, 1:241–258.

Megiddo, N. and Srikant, R. 1998. Discovering predictive association rules. In Proceedings of the 4th International
Conference on Knowledge Discovery in Databases and Data Mining.

Menard, S. 1991. Longitudinal Research. Newbury Park, CA: Sage Publications.
Michell, T.M. 1977. Version spaces: A candidate elimination approach to rule learning. In Proc. of the 5th Int’l

Joint Conf. on Artificial Intelligence.
Ng, R., Lakshmanan, L.V.S., Han, J., and Pang, A. 1998. Exploratory mining and pruning optimizations of

constrained associations rules. In Proceedings of the ACM SIGMOD Conference on Management of Data.
Padmanabhan, B. and Tuzhilin, A. 1998. A belief-driven method for discovering unexpected patterns. In Proceed-

ings of the 4th International Conference on Knowledge Discovery and Data Mining.
Riddle, P., Segal, R., and Etzioni, O. 1994. Representation design and brute-force induction in a boeing manufac-

turing domain. Applied Artificial Intelligence, 8:125–147.
Ruggles, S. 1995. Sample designs and sampling errors. Historical Methods, 28:40–46.
Ruggles, S. 1997. The rise of divorce and separation in the united states, 1880–1990. Demography, 34:455–466.
Ruggles, S. and Sobek, M. 1997. Integrated public use microdata series: Version 2.0. [http://www.ipums.

umn.edu/].
Rymon, R. 1992. Search through systematic set enumeration. Third International Conference on Principles of

Knowledge Representation and Reasoning.
Shaffer, J.P. 1995. Multiple hypothesis testing. Annual Review Psychology, 46:561–584.
Silberschatz, A. and Tuzhilin, A. 1996. What makes patterns interesting in knowledge discovery systems. IEEE

Transactions on Knowledge and Data Engineering, 8:970–974.
Silverstein, C., Brin, S., and Motwani, R. 1998. Beyond market baskets: Generalizing association rules to depen-

dence rules. Data Mining and Knowledge Discovery, 2:39–68.
Srikant, R. and Agrawal, R. 1996. Mining quantitative association rules in large relational tables. In Proceedings

of the ACM SIGMOD Conference on Management of Data.
Srikant, R., Vu, Q., and Agrawal, R. 1997. Mining association rules with item constraints. In Proceedings of the

3rd International Conference on Knowledge Discovery in Databases and Data Mining.
Zaki, M.J., Parthasarathy, S., Ogihara, M., and Li, W. 1997. New algorithms for fast discovery of association rules.

In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining.

Stephen D. Bay received his B.A.Sc. and M.A.Sc. from the Department of Systems Design Engineering at the
University of Waterloo. He is currently completing his Ph.D. in the Department of Information and Computer
Science at the University of California, Irvine. His research interests include data mining and machine learning.

Michael J. Pazzani is a Professor and former chair of the Information and Computer Science Department at the
University of California, Irvine. He received his M.S. and B.S. in Computer Engineering from the University of
Connecticut and his Ph.D. in Computer Science from UCLA. He is a member of AAAI and the Cognitive Science
Society. His research interests include data mining and intelligent agents.


