
Learning to Match and Cluster
Large High-Dimensional Data Sets

For Data Integration

Will iam W. Cohen
WhizBang Labs
4616 Henry St.

Pittsburgh, PA 15213
wi l l i am@wcohen.com

Jacob Richman
WhizBang Labs
4616 Henry St.

Pittsburgh, PA 15213
. jsr@whizards.org

ABSTRACT
Part of the process of data integration is determining which
sets of identifiers refer to the same real-world entities. In
integrating databases found on the Web or obtained by us-
ing information extraction methods, it is often possible to
solve this problem by exploiting similarities in the textual
names used for objects in different databases. In this paper
we describe techniques for clustering and matching identifier
names that are both scalable and adaptive, in the sense that
they can be trained to obtain bet ter performance in a par-
t icular domain. An experimental evaluation on a number of
sample datasets shows that the adaptive method sometimes
performs much bet ter than either of two non-adaptive base-
line systems, and is nearly 'always competi t ive with the best
baseline system.

Keywords
Learning, clustering, text mining, large datasets

1. INTRODUCTION
Data integration is the problem of combining information

from multiple heterogeneous databases. One step of data
integration is relating the primitive objects that appear in
the different databases--specifically, determining which sets
of identifiers refer to the same real-world entities. A num-
ber of recent research papers have addressed this problem
by exploiting similarities in the textual names used for ob-
jects in different databases. (For example one might suspect
that two objects from different databases named "USAMA
FAYYAD" and "Usama M. Fayyad respectively might
refer to the same person.) Integration techniques based on
textual similarity are especially useful for databases found
on the Web [1] or obtained by extracting information from
text [6, 13, 11], where descriptive names generally exist but

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD '02 Edmonton, Alberta, Canada
Copyright 2002 ACM 1-58113-567-X/02/0007 ...$5.00.

global object identifiers are rare.
Previous publications in using textual similarity for data

integration have considered a number of related tasks. Al-
though the terminology is not completely standardized, in
this paper we define entity-name matching as the task of
taking two lists of entity names from two different sources
and determining which pairs of names are co-referent (i.e.,
refer to the same real-world entity). We define entity-name
clustering as the task of taking a single list of entity names
and assigning entity names to clusters such that all names
in a cluster are co-referent. Matching is important in at-
tempting to join information across of pair of relations from
different databases, and clustering is important in remov-
ing duplicates from a relation that has been drawn from the
union of many different information sources. Previous work
in this area includes work in distance functions for matching
[14, 3, 9, 8] and scalable matching [2] and clustering [13] al-
gorithms. Work in record linkage [15, 10, 21, 20, 7] is similar
but does not rely as heavily on textual similarities.

In this paper we synthesize many of these ideas. We
present techniques for enti ty-name matching and clustering
that are scalable and adaptive, in the sense that accuracy
can be improved by training.

2. LEARNING TO MATCH AND CLUSTER

2.1 Adaptive systems
We will begin defining the problems of adaptive match-

ing and clustering by describing a very general notion of
an adaptive system. Assume a source of training examples.
Each training example is a pair (x,y*), where x is a prob-
lem instance and y" is a desired solution to x. We will also
assume a loss function, Loss(y,y*), measuring the quality
of a proposed solution y relative to a desired solution y*.
The goal of an adaptive system L is to take a set of training
examples (x l, y[) , (xm, y~) and learn to propose "good"
solutions to novel problems xj . In other words, the input
to L is the set {(xl,y~)}~=l and the output is a function f
such that the loss Loss(f(xj),y~) is small, where y~ is the
desired solution for xj . One simple, well-explored example
of an adaptive system is classification learning.

2.2 Adaptive matching
Consider the task of learning to match names from some

domain A with names from a second domain B. For exam-

475

pie, we might wish to learn to match a researcher's name and
address with a university name if and only if the researcher
is affiliated with that university. To formalize this, we let
each problem instance x be a pair, x = (A, B), where A and
B are sets of strings. For instance, A might be names and
addresses of researchers registered for KDD-02, and B might
be names of universities in the United States. A solution y is
a set of pairs y = {(al, bl) , (ak, bk)}, specifically a sub-
set of A x B that indicates which pairs are to be matched.
A natural loss function Loss(y, y*) might be the size of the
symmetric difference of y and y*: i.e. if y = {(a~,bi)}~=l
and y* {(a;, * k" = b3)}~=1 then

Loss(y,y,) =_ [{(ai,b,) • y : (a,,b,) Cy*}[

+]{(a; ,b;) G y* : (a;,b;) CY}I

Other related measures are recall, precision, and F-measure---
all of which are based on the symmetric difference of two
sets.

Many matching problems are more constrained than this
example. For instance, if the a ' a and b's are entity names,
and each b E B refers to a distinct entity, then it makes little
sense for a proposed solution y to contain both (a, b) and
(a, b'). We define a constrained adaptive matching problem
to be one in which the set of pairs in every desired pairing
y* is a one-to-one function.

Constrained matching problems are common- - in fact, both
of the matching problems considered in Section 4 are con-
strained. However, we consider here the more general case,
which is useful (for instance) in matching datasets that may
duplicates.

2.3 Adaptive clustering
The second problem we consider is adaptive clustering.

In this case, each problem instance x is set of strings D =
dl , . • •, d,~. A solution y* is an assignment of the strings di
to clusters, encoded as a function z from D to the integers
between 1 and k (where k is the number of clusters).

For example, consider clustering descriptions consisting
of a researcher's name, together with some additional piece
of identifying information, such as his or her affiliation in
July, 2002. A problem instance x would be a set of strings
(like "William W. Cohen, Whizbang Labs", "W. Cohen,
WhizBang Labs - Research", "Jude Shavlik, University of
Wisconsin", etc) and a solution y* would be a function z
such that z(dl) = z(d2) iff dl and d2 refer to the same per-
son. Adaptive clustering is learning to cluster better given
a sequence of training data in the form of (x, z) pairs.

3. SCALABLE ADAPTIVE METHODS

3.1 Clustering
The definitions above are extensions of the model for adap-

tive ranking systems described by Cohen, Singer and Schapire
[5]. To oversimpfy slightly, Cohen, Singer and Schapire con-
sidered adaptive systems in which each problem instance x
was an unordered set of objects x = { d l , . . . ;din}, and each
desired solution y* was a total ordering over the objects in
x. The problem of learning to order instances was addressed
by learning a preference function, p(d, d')--conceptually, a
function p : X x X ~ {0, 1} indicating if d should be ranked
before d' in the desired ordering y*.

Adaptive matching and clustering can be implemented in

To train from {(D1, Zl) (Din, zm)}:

1. Build a training sample S for the pairing function h.

(a) Let 5; = 0.
(b) F o r i = l m:

i. Generate all pairs (d, d') E D~ x Di.

ii. Let label(d, d') ~ { +_ otherwiseif z~(d) = zi(d')

iii. Add the labeled example (d, d') to S.

2. Train a classification learner on S. The result will be
a hypothesis h tha t labels pairs (d, d') as positive or
negative.

To c l u s t e r a new set D = {d l , . . . ,d,~}:

1. Build a gxaph G with vertex set D, where an edge
exists between dl and dj iff h(dl, dj) = +.

2. Make each connected component of G be a cluster.

Figure 1: A n a i v e clustering algorithm based on a
learned pairing function

an analogous way, by learning an appropriate pairing func-
tion. In the context of matching, a pairing function h(a, b)
is a binary function that indicates if a should be matched
with b. In the context of clustering, h(d, d') indicates if d
and d' should be placed in the same cluster. Figure 1 gives
a simple algorithm for clustering using a pairing function.

The algorithm of Figure 1 has two problems: a small num-
ber of errors in the learned pairing function h may lead to
large mistakes in the clusters created; and the algorithm is
inefficient, since it requires generation of all pairs.

To address these problems, we modify Figure 1 in three
ways. First, in training, we will enumerate only a limited
number of "candidate" pairs in Step l(b)i. Ideally the can-
didate set will be of manageable size, bu t will include all
pairs (d, d') that should be clustered together.

Second, we will exploit the fact that classification learners
can provide a confidence for their classifications. We replace
Steps 1 and 2 with bet ter methods for building and using
the "pairing graph" G. In clustering Step 1, we construct
the edges of G by using the same candidate-pair generation
procedure used in training, and then weight each edge (d, d')
by the confidence of the learned hypothesis h so that the
label of (d,d') should be "+". In Step 2, we cluster the
resulting edge-weighted graph (in this paper, using greedy
agglomerative clustering). The resulting algorithm is shown
in Figure 2.

We next consider the generation of candidate pairs (an
operation often all called "blocking" in the record finkage

• literature). We use the canopy method, proposed by Mc-
Callum, Nigam and Under [13]. This method relies on the
ability to take an enti ty-name d and efficiently find all nearby
points d' according to some "approximate" distance metric.
Following McCallum et al we used a T F I D F distance met-
ric based on tokens. In this case, an inverted-index based
ranked retriewd system can find nearby pairs quite quickly.

The canopy method, shown in Figure 3, begins with an
empty set of candidate pairs, and operates by repeatedly

476

To train from ((D1, Zl) , (D,~, zm)}:

1. Build a training sample S for the pairing function h.

(a) L e t S - - 0 .

(b) F o r i = l m:

i. Let CandidatePairs(D) be a set of "candi-
date" pairings (d, d').

ii. For each (d, d') E CandidatePairs(D), let

label(d,d') _= (+_ otherwiseif zi(d) = zi(d')

iii. Add the labeled example (d, d') to S.

2. Train a classification learner on S. The result will be
a hypothesis h that labels pairs (d, d') as positive or
negative.

3. Let c(d,d') be the confidence given by h that the
h(d, d') = +.

To c lus ter a new set D = {dx, . . . , d,~} into K clusters:

1. Build a graph G with vertex set D, where an
edge exists between dl and d~ iff (di,d¢) E
CandidatePairs(D), and the weight of the edge be-
tween d and de is c(di, d¢).

2. Perform greedy agglomerative clustering (GAC) on G
to produce K clusters.

(a) Create a singleton cluster to hold each vertex.

(b) While there are more than K clusters:

• Merge the two "closest" clusters, where clus-
ter distance is the minimum distance between
any members of the clusters.

3. Use the clustering produced by GAC on G as the clus-
tering of D.

Figure 2: A b e t t e r and m o r e efficient adapt ive clus-
ter ing a lgor i thm

picking a random "center point" d. After d is picked, all
points d' that are "close enough" to d (within distance Tl)
are found. These "canopy" points are paired with each
other, and the resulting pairs are added to the set of can-
didate pairs. Next, the set of poflsible "center points" is
decreased by removing all points d within distance Tt,ght of
d, where Ttight < T~ This process repeats until all possi-
ble center points are chosen.

For the benchmark problems considered in Section 4, it
was fairly easy to find thresholds Ttight and Tt that allow
generation of nearly all "true" pairs (pairs that belong in a
desired cluster) without generating too many spurious pairs.

In learning, two issues must be addressed: how to repre-
sent a pair (d, d'), and which learning algorithm to use. We
explored several different classification learning systems, and
different feature sets for representing pairs (d, d'). Here we
will report results for a maximum entropy learner [16]. This
learning system requires that examples be represented as a
vector of binary features. Examples of the features used to
encode a pair are shown in Table 1. Here the edit distance

To compute CandidatePairs(D):

1. Let CandidatePairs = 0.

2. Let PossibleCenters = D.

3. While PossibleCenters is not empty:

(a) Pick a random d in PossibleCenters

(b) Let Canopy(d)=

{(d,d') : d' E D A approxDist(d,d') < Tl }

In the implementation, appvoxDist(d, d') is based
on TFIDF similarity, and Canopy(d) is computed
efficiently using an inverted-index based retrieval
method.

(c) Add to CandidatePairs all pairs (d~, d~) such that
both d~ and d~ are in Canopy(d).

(d) Remove from PossibleCenters all points d E D
such that approxDist(d, d) < Ttight
(Again, {d : approxDist(d, d) _< Tt~ght} can be
computed quickly using inverted indices.)

4. Return CandidatePairs

Figure 3: C o m p u t i n g a set o f candiate pairs us-
ing the canopy a lgor i thm of M c C a l l u m , N i g a m and
U n g e r

gives every character insertion and deletion unit cost, and
Jaccard distance [18] is computed by treating d and d' as sets
of tokens and using [d n d'[/[d u d'[as a distance function.

In some of the test datasets we considered, the items
to be clustered are not strings, but records consisting of
several strings (for instance, a record containing a name
and an address, or a bibliographic entry containing a title,
author, date, and publication venue). For such datasets, a
pair was encoded by extracting the features of Table 1 for
every pair of fields, and combining all the features: for in-
stance, in pairing name/address records, we computed the
features SubstringMatchname, SubstringMat ch~ddr~s~,
PrefixMatch PrefixMatch~ad ,
StrongNumberMatch~ame, StrongNumberMatchadd)

3.2 Matching and Constrained Matching
It is fairly simple to adapt the algorithm above to the

problem of constrained adaptive matching. Generation of
candidate pairs is substantially easier, since one need only
consider pairs (a, b) where a E A and b E B. One possible
technique is to use the canopy algorithm of Figure 3 with
these modifications:

• in Step 2, let PossibleCenters = A;

• in Step 3b, let Canopy(a) = {(a,b) : b E B and
approxDist(a, b) < Tt }; and

• in Step 3d, let Ttiaht = 0 (i.e., only remove a from the
set of PossibleCenters).

A functionally equivalent but somewhat more efficient ap-
proach would be to use a soft join algorithm [3].

Learning a pairing function and construction of the graph
G is identical. The greedy agglomerative clustering step,

477

SubstringMatch
PrefixMatch
EditDistance(k)

MatchAToken(n)
MatchBToken(n)
MatchABigram(n)
JaccardDistance(k)

StrongNumberMatch

true iff one of the two strings is a substring of the other.
true iff one of the strings is a prefix of the other.
for k E {0.5, 1, 2, 4, 8, 16, 32, 64}, true iff the edit
distance between the two strings is less than k.
true iff the n-th token in d matches some token in d'.
analogous to MatchAToken(n).
like MatchAToken(n) but requires that both tokens n and n + l match some token in d'.
for k E {0.1, 0.2, 0.4, 0.6, 0.8, 0.9}, true iff the Jaccard
distance between the sets of tokens in d and d' is less than k.
true if both d and d' contain the same number.

T a b l e 1: F e a t u r e s used in l e a r n i n g t h e p a i r i n g f u n c t i o n .

Benchmark

Cora

OrgNamel

OrgName2

Restaurant

Parks

TFIDF
Prec/Recall

0.68/0.85
0.61/0.89
0.91/0.94
0.24/0.80
0.97/0.94
0.66/0.95

Edit Distance
Prec/Recall

0.74/0.97

0.54/0.42
0.94/0.97
0.67/0.50
0.86/0.97

0.98/0.98 0.83/0.83
0.67/0.97 0.87/0.87
0.98/0.98 ~ 0.97/0.97
o.97/o.971 0.97/0.97

Adaptive
Prec/Recall

0.99/0.91
0.99/0.94
0.94/0.91
0.71/0.85
0.97/0.94
0.996/0.97
1.00/1.00
0.95/0.95
0.98/0.98
0.97/0.97

Benchmark] TFIDF
Cora 0.751

0.721
OrgNamel 0 .925

0.366
OrgName2 0 .958

0.778
Restaurant 0.981

0 .967
Parks 0.976

0 .967

Edit Distance Adaptive
0.839 0 .945

0 .964
0.633 0.923
0 .950 0.776
0.571 0 .958
0.912 0 .984
0.827 1.000
0.867 0.950
0.967 0 .984
0 .967 0 .907

T a b l e 4: E x p e r i m e n t a l r e s u l t s : F - m e a s u r e

T a b l e 3: E x p e r i m e n t a l r e s u l t s : p r e c i s i o n a n d r e c a l l

however, should be replaced with an operation that enforces
the constraints required for constrained adaptive matching.
This can be done by computing the minimal weight cutset
of G, and returning the edgee~ of this cutset as the pairing.
We have experimented with ooth a greedy approach and an
exact minimization (which exploits the fact that the graph
is bipartite [17]). The experiments in this paper are for
a simple greedy mincut-finding algorithm, which is more
efficient for large graphs.

3.3 Relationships
We note that the problems of learning pairing functions,

clustering, and matching are closely related, but distinct. In
unconstrained matching, the pairs do not correspond imme-
diately to clusters, since pairs may overlap, but clusters are
disjoint. In constrained matching, matching can be reduced
to clustering, but exploiting the additional constraint that a
pairing is one-to-one can substantially change the difficulty
of a clustering task. Finally, while learning a pairing func-
tion is a natural way of making a clustering system adaptive,
obtaining an accurate hypothesis h does not mean that the
ensuing clustering will be any good, as it is possible for small
errors in h to cause large clustering errors [4].

4. EXPERIMENTS
We used several datasets for evaluation purposes. Two

of the datasets require clustering, and two require match-
ing. The first clustering dataset, Cora, is a collection of
paper citations from the Cora project [12, 13]. The second
dataset, 0rgName, is a collection of 116 organization names.
We considered two target clusterings of this data, one into

56 clusters, and one into 60 clusters. 1
There are also two constrained matching datasets. The

Restaurant dataset contains 533 restaurants from one restau-
rant guide to be matched with 331 from a second guide. 2
The Parks dataset contains 388 national park names from
one listing and 258 from a second listing, with 241 names in
common.

We assumed[that the number of intended clusters K is
known. For 0rgName, Restaurant, and Parks, we constrained
all systems (adaptive and non-adaptive) to produce the true
number of clusters or pairings. For Cora, we wished to com-
pare to the best previous clustering result, which was ob-
tained varying cluster size widely. We tried two different
target cluster sizes and report the one which gave the best
result, obtained setting K to 1.5 times the true number of
clusters.

To evaluate performance we split the data into two parti-
tions, then trained on the first and tested on the second, and
finally trained on the second and tested on the first. The
datasets used are summarized in Table 2. For each dataset,
we record the number of entities in each partition; the num-
ber of desired clusters or pairs; the thresholds used for the
canopy algorithm; and the number of positive and negative
examples generated.

As success measures for the algorithms, we used several
different definitions of "loss". Recall that for matching, a
solution y* is a set of pairs (a, b). Following the usual con-

1The difference is that in the second clustering, different
branches of an organization (such as "Virginia Polytechic
Institute, Blacksburg" and "Virginia Polytechnic Institute,
Charlottesville") are considered distinct, and in the first,
they are not. Thanks to Nick Kushmeric for providing this
data.
2Thanks to Sheila Tejada for providing this data.

478

Benchmark Name Cluster
or Match?

Cora (c)

OrgNamel (c)

OrgName2 (c)

Partition Size
#Entities #Clusters

991 65
925 64

Thresholds
Tti9ht Ttoo,~
0.36 0.53

Pairing Examples
#Pos #Neg

19,111 7,379
15,431 8,711

Potential
Recall
0.972
0.998

60 42 0.24 0.40 33 56 1.000
56 17 196 250 1.000

0.24 0.40 53 34
63 22

Restaurant (m) 430 52
434 60

Park names (m) 325 124
321 117

36 48
270 181

52 426
59 153

124 304
117 357

0.28 0.93

0.30 0.90

1.000
1.000

1.000
0.983
0.992
0.975

Table 2: D a t a s e t s used in the e x p e r i m e n t a l eva luat ion

vention in information retrieval, we define the recall of y
relative to y* to be lY N y* I/[y*l, the precision of y relative
to y* to be [yNy*l/ly h the F-measure ofy relative to y* to
be the harmonic mean of recall and precision. 3

For clustering algorithms, recall that a problem instance
x is a set of objects D, and a solution y* is a mapping z
from D into the integers {1, . . . , K}, and define pairs(D, z)
to be the set of all pairs {(d, dt) E D x D : z(d) = z(d')}.
We will define recall and precision in terms of pairs(D, z):
i.e., we define the recall of z relative to z* is Ipairs(D,z)N
pairs(D, z*)l/[pairs(D , z*)[, and the precision of z relative
to z* is Ipairs(D, z) N pairs(D, z*)l/[pairs(D, z)l. ,The final
column of Table 2 shows the maximum recall obtainable us-
ing the CandidatePairs produced by the canopy algorithm. 4

In addition to the algorithm described in Section 3, we
considered two additional clustering/matching algorithms
as performance baselines. The first one replaces c(a, b) in
the graphs above with Levenstein edit distance. Applied
to clustering, this aseline algorithm is similar to the algo-
rithm proposed by McCallum, Nigam and Unger; applied to
matching, it is similar to the method proposed by Monge and
Elkan[14]. The second baseline replaces c(a, b) with TFIDF
distance, using the formula given in [18], which is similar to
the algorithm used in WHIRL [2].

The experimental results for these algorithms on the datasets
of Table 2 are shown in Tables 3 and 4. The baseline results
for edit distance are taken from [13], who used hand-tuned
edit distance, and unlike the other entries in the table, they
apply to the whole set, rather than a single partition. In
Table 4, the best F-measure obtained on each problem is
placed in bold.

A first observation on the results of Table 4 is that neither
baseline system appears to outperform the other. Discount-
ing Cora (for which the edit-distance function was hand-

3That is, F = 2.P.R

4Creating appropriate partitions for training and test is non-
trivial, since one must ensure that the test cases are inde-
pendent of the training cases, and a simple random parti-
tion of would likely lead to a situation in which some of the
intended clusters were split between the training and test
sets. To avoid this, we split the data so that no algorithm
that considers only pairs produced by the canopy algorithm
would ever consider a pair containing one instance from the
test set and one instance from the training set. A disadvan-
tage of this procedure is that it was sometimes impossible
to create well-balanced splits, biasing the results away from
adaptive methods.

engineered), the TFIDF-based baseline obtains a better F1
score than the distance-function baseline on five runs, per-
forms worse on two runs, and performs identically on one
run. This confirms our belief that both TFIDF and edit-
distance distance metrics are useful in data integration set-
tings.

The adaptive method does far better than either base-
line technique on the Cora dataset. Notice that the ¢ora
dataset is the largest of the datasets considered, as well as
the one for which the baseline methods perform the worst;
hence it offers the most opportunity for adaptive techniques
to improve performance. In the remaining eight runs, the
adaptive technique performs best on five, and nearly equals
the best result on two more (the first split of 0rgNamel and
the second split of Restau.rant). Thus on nine of the ten
partitions, the adaptive method obtains results comparable
to or better than the best of the baseline approaches.

The adaptive methods performs poorly on only one of the
ten runs--the second partition of 0rgNamel. We conjecture
that for this dataset (by far the smallest we considered) the
constraints on partitioning used above resulted in substan-
tial variation across the two partitions used for training and
testing. 5

5. CONCLUSIONS
We have presented a scalable adaptive scheme for cluster-

ing or matching entity names. Experimental results with the
method are comparable to or better than results obtained
by clustering or matching with two plausible fixed distance
metrics.

As noted above, our formalization of adaptive clustering
and matching is inspired by the model of "learning to order"
of Cohen, Schapire, and Singer [5]. They consider adap-
tive ordering systems and show that this problem can be
solved by supervised learning of a binary ordering relation,
followed by a greedy method for constructing a total order
given a set of (possibly inconsistent) binary ordering deci-
sions. They also give provable bounds on the loss of such

SNotice that the TFIDF-based baseline system does much
better than the edit-distance based baseline on the first par-
tition, but that the opposite holds on the second partition.
Thus even the trivial adaptive system that chooses the bet-
ter of the two baseline systems based on training data would
perform poorly. The size of the pairing-function training sets
and the number of entities per cluster is also varies greatly
in the two partitions.

479

a system. Finding such bounds for adaptive clustering or
learning remains a problem for future work.

The architecture of the adaptive matching and clustering
method is modeled after the system of McCalhim, Nigam
and Unger [13]. However, in our system, we consider match-
ing as well as clustering, we also replace a fixed, hand-coded,
edit-distance meti'ic with a learned pairing function. Our
focus on general-purpose adaptive clustering and matching
methods also distinguishes this work from previous work on
general-purpose non-adaptive similarity metrics for entity
names (e.g. [9, 14]) or general frameworks for manually im-
plementing similarity metrics (e.g.,[8]).

The "core" idea of learning distance functions for entity
pairs is not new--there is a substantial literature on the
"recordqinkage" problem in statistics (e.g., [10, 20] much of
which based on a record-linkage theory proposed by Felligi
and Sunter [7]. The maximum entropy learning approach we
use has an advantage over Felligi-Sunter in that it does not
require features to be independent, allowing a broader range
of potential similarity features to be used; at the same time
the method is fairly efficient, in contrast to Felligi-Sunter
extensions based on latent class models [19].

ChoiceMaker.com, a recent start-up company, has also
implemented a matching procedure based on a maximum
entropy learner. We extend this work with a systematic
experimental evaluation, use of canopies to eliminate the
potentially quadratic cost of learning and clustering, and
application of the pairing function to both clustering and
matching.

A number of enhancements to the current method are
possible. In future work we hope to examine other features;
for instance, one notable current omission is the lack of any
feature that directly measures TFIDF similarity. We also
hope to compare these methods directly to other matching
techniques developed in the statistical literature [19, 20].

6. REFERENCES
[1] William W. Cohen. Reasoning about textual

similarity in information access. Autonomous Agents
and Multi-Agent Systems, pages 65-86, 1999.

[2] William W. Cohen. Data integration using similarity
joins and a word-based information representation
language. A CM Transactions on Information Systems,
18(3):288-321, July 2000.

[3] William W. Cohen. WHIRL: A word-based
information representation language. Artificial
Intelligence, 118:163-196, 2000.

[4] William W. Cohen and Jacob Richman. Learning to
match and cluster entity names. In Proceedings of the
ACM SIGIR-~O01 Workshop on Mathematical/Formal
Methods in Information Retrieval, New Orleans, LA,
2001.

[5] William W. Cohen, Robert E. Schapire, and Yoram
Singer. Learning to order things. Journal of Artificial
Intelligence Research, 10:243-270, 1999.

[6] M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery..Learning to
extract symbolic knowledge from the world wide web.
In Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-98), Madison, WI, 1998.

[7] I. P. Felligi and A. B. Sunter. A theory for record
linkage. Journal of the American Statistical Society,
64:1183-1210, 1969.

[8] H. Galhardas, D. Florescu, D. Shasha, and E. Simon.
AJAX: an extensible data-cleaning tool. In
Proceedings of ACM SIGMOD-2000, June 2000.

[9] M. Hernandez and S. Stolfo. The merge/purge
problem for large databases. In Proceedings of the
1995 ACM SIGMOD, May 1995.

[10] B. Kilss and W. Alvey. Record linkage
techniques--1985. Statistics of Income Division,
Internal Revenue Service Publication 1299-2-96.
Available from
http://www.bts.gov/fcsm/methodology/, 1985.

[11] Steve Lawrence, C. Lee Giles, and Kurt Bollacker.
Digital libraries and autonomous citation indexing.
IEEE Computer, 32(6):67-71, 1999.

[12] A. McCallum, K. Nigam, J. Rennie, and K. Seymore.
Automating the construction of internet portals with
machine learning. Information Retrieval, 2000.

[13] A. McCallum, K. Nigam, and L. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In Proceedings of
the Sixth International Conference on Knowledge
Discovery and Data Mining, pages 169-178, 2000.

[14] A. Monge and C. Elkan. The field-matching problem:
algorithm and applications. In Proceedings of the
Second International Conference on Knowledge
Discovery and Data Mining, August 1996.

[15] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and
A. P. James. Automatic linkage of vital records.
Science, 130:954-959, 1959.

[16] Kamal Nigam, John Lafferty, and Andrew McCallum.
Using maximum entropy for text classification. In
Proceedings of Machine Learning for Information
Filtering Workshop, IJCAI '99, Stockholm, Sweden,
1999.

[17] H.A. Baler Saip and C.L. Lucchesi. Matching
algorithm, s for bipartite graph. Technical Report
DCC-03/93, Departamento de Cincia da Computao,
Universidade Estudal de Campinas, 1993.

[18] Gerard Salton, editor. Automatic Text Processing.
Addison Welsley, Reading, Massachusetts, 1989.

[19] W. E. Winkler. Improved decision rules in the
Felligi-Sunter model of record linkage. Statistics of
Income Division, Internal Revenue Service Publication
RR93/12. Available from
http://www.census.gov/srd/www/byname.html, 1993.

[20] W. E. Winkler. The state of record linkage and
current research problems. Statistics of Income
Division, Internal Revenue Service Publication
R99/04. Available from
http://www.census.gov/srd/www/byname.html, 1999.

[21] William E. Winkler. Matching and record linkage. In
Business Survey methods. Wiley, 1995.

Acknowledgments
The authors thank Andrew McCallum for numerous helpful
suggestions.

480

