
Progress on STEP Visualization

NETL/ WVU NARA project

Tim McGraw

September 2008

1 Introduction

We are currently developing techniques for visualizing collections of STEP files.
Here we will describe the methods used and present preliminary results. Our
preliminary results use small synthetic graphs as input to the system. In these
examples the nodes may represent STEP files, and the edges represent references
between them, just as the assembly of a large structure may reference smaller
subassemblies. At another scale the graph may represent the structure within
a single step file. It is important to note that the nodes and edges we visualize
are not necessarily the vertices and edges of the 2D/3D geometry contained in a
STEP file. We are developing large graph visualization methods as an approach
to solving the problem of visualizing STEP data and the relationships among
datasets in a repository.

The traditional approach to displaying graphs is to render a small symbol (a
circle, or sphere) for each node, and then draw the edges in the graph as curves
between the nodes. Such a visualization becomes unsatisfactory for moderately
sized graphs. The overlapping edges leads to visual clutter which can obfuscate
the relations between nodes. We illustrate part of our approach with an exam-
ple. Consider the two graphs in Figure 1. Are they equivalent? (The graphs are
equivalent if there is a one-to-one mapping between the nodes in one graph and
the nodes in the other graph such that the mapping preserves edge connectiv-
ity). Even for this small example it is not trivial to determine the equivalence
visually. Now consider the two shapes in Figure 2. Are they equivalent? In this
case they are equivalent, and it is fairly easy to come to this conclusion by visual
inspection. The intuitive and visual notion of shape is invariant to many trans-
formations. For instance, one can easily identify a cube, regardless of position,
orientation and size. There is another important connection between the graph
in Figure 1 and the shape in Figure 2. The given graph is not embeddable in
the plane - there is no set of node positions in the plane such that no two graph
edges overlap. The given graph is, however, embeddable on the torus as shown
in Figures 6 and 7. Our visualization approach is to map graph structure to
geometric shape and other visual properties which are easily discernable. We

1

Figure 1: Two graphs. Are they the same? It is difficult to determine visually.

Figure 2: Two shapes. Are they the same? It is easy to determine visually.

consider the torus in this case to be a visual representation of the graph. In
addition, we would also like to support the option of seeing the nodes and edges
embedded on the surface. The physically-based method for achieving this is
described in section 2.1.

The graph in Figure 1 is known as K5, the completely connected graph of 5
nodes. It can be proven that every graph which is not embeddable in the plane
has K5 or B3,3 (the complete bipartite graph with 3 nodes in each partition)
as a subgraph. Furthermore, by removing the K5 and B3−3 subgraphs from a
nonplanar graph we can obtain a graph which is embeddable in the plane.

The approach we will take for visualizing global graph structure is to rep-
resent the graph as a surface which that graph is embeddable on. In general,
a graph may have multiple K5 and B3,3 subgraphs, so we may need a high
genus surface on which to embed the graph. The genus of this surface can be
determined by graph segmentation since the number of K5 and B3,3 subgraphs
determine the genus of the visualization surface.

The embedding surface shape alone is not the sole method of visualizing a
graph. However, this surface acts as a canvas for visualizing other properties
of the graph. We propose a hierarchical mapping from graph structure to vi-
sual appearance for further visualization which is summarized in Figure 3. We
also propose to take a multiscale approach to visualization. Using clustering
approaches we can collapse highly connected groups of nodes at one scale to
a single node at the next higher scale. A spectral clustering approach is de-
scribed in section ?? which will allow us to deal with a moderate number of
nodes at each scale during visualization will and require render embedding sur-
faces of moderate genus. Strictly speaking, the full graph is then visualized as

2

Figure 3: A hierarchy of graph properties and visual properties.

a sequence of surfaces with increasing scale.

2 Methods

2.1 Graph Drawing Algorithm

Given an arbitrary graph and a manifold, consider embedding the graph on
the manifold. In order to make the graph visually comprehensible we wish to
embed all the vertices and edges of the graph on the manifold so that there
are no overlapping edges. Our approach is to convert the given graph into a
mass-spring system [1]. In order to constrain the motion of the vertices within
the manifold we utilize constrained dynamics [2]. At the same time, we apply
repulsive electric forces and damping forces among all the vertices so that they
maintain a certain distance from each other. We initialize the positions of the
particles randomly or manually and simulate the motion of the particles until
those positions converge to their steady state.

2.1.1 Mass-spring System Representation of Graph

Consider a graph G = (V, E) where V is a set of N vertices {v1, v2, . . . , vN} and
E is a set of M edges {e1, e2, . . . , eM}. Each edge is given by a pair of vertices
(vi, vj), i, j = 1, . . . , N .

We construct a particle system that corresponds to G as follows:

3

• For each vertex, assign a particle.

• For each edge, subdivide the edge into multiple segments and assign a
spring to each segment and a particle to each joint between the setments.
Let the total number of the particles that are assigned to the joints be L.

Thus in total we have K = N + L particles in the particle system. Let
the total number of the springs be Ks. The motion of this particle system is
governed by Newton’s second law of motion

Mq̈ = Q + Q̂ (1)

where q is the vector of the position of particles defined as

q = [x1, y1, z1, x2, y2, z2, . . . , xK , yK , zK]T ,

M = diag(m1,m1,m1,m2,m2,m2, . . . ,mK ,mK ,mK) is the mass matrix, Q is
the external force, and Q̂ is the constraint force.

The external force Q is a sum of the repulsive electric forces F (e), spring
forces F (s), and damping forces F (d) given by

Q = F (e) + F (s) + F (d). (2)

Each term in the right hand side of Equation (2) are comprised of the combi-
nation of the following components. The repulsive electric force between the
particle pi and pj follows Coulomb’s law given by

f
(e)
ij = ke

qiqj

||rij ||2
rij

||rij ||
where ke is a coefficient that determines the strength of the force, qi is the
charge of the particle pi, and rij = ri−rj where ri is the position vector of the
particle pi. The spring force between the particle pi and pj follows Hooke’s law
given by

f
(s)
ij = −ks(||rij || − dij)

rij

||rij ||
where ks is the spring constant and dij is the rest length of the spring. Finally
the damping force for each particle pi is given by

f
(d)
i = −kdvi,

where vi is the velocity of particle pi.
Thus we have computed the external force Q.

2.1.2 Constrained Dynamics

In order to solve Equation (1), we need to know the constraint force Q̂. This is
the force that constrains the motion of the particles on the given manifold. The
manifold is given as an implicit surface F (x, y, z) = 0. We wish all the particles’

4

motion to be constrained on this surface. Thus, F (q3i, q3i+1, q3i+2) = 0, i =
1, . . . , N . We combine all these constraint equations into a vector equation
C(q) = 0. To calculate Q̂ we utilize constrained dynamics [2]. Utilizing the
formulation described in [2] the final equation to be solved can be described as
a linear system

JWJT λ = −J̇q̇ − JWQ− ksC − kdĊ (3)

where W = M−1, J = ∂C
∂q is the Jacobian, λ is the Lagrange multiplier, ks and

kd are feedback parameters for numerical stabilization. The constraint force Q̂
is given by

Q̂ = JT λ. (4)

We solve Equation (3) for λ and then constraint force Q̂ is obtained by Equation
(4). Now that we know all the terms in the right hand side of Equation (1), we
can solve it for q. Eventually the value of q will converge to its steady state
(due to the damping force) and thus the particles’ positions are determined.

2.2 Rendering Manifolds

Presently, the embedding surface is rendered with a simple shading model. Fu-
ture work will involve assigning material properties and local perturbations
which will represent graph structural information. We use the marching cubes
algorithm [3][4] for rendering the manifold since it is represented an implicit
surface.

2.3 Hyperbolic Geometry

Hyperbolic geometry creates a fisheye lens effect. This characteristics is useful
to display and navigate large graphs in a limited display area. There are various
methods that implement the hyperbolic geometry [5][6][7]. We used a simple
geometric method shown in Figure 4 to examine the effect of the hyperbolic
geometry. The transformation is done by the following steps:

1. The input coordinates P (px, py, 0) are transformed by the hyperboloid

H :
(x

a

)2

+
(y

b

)2

−
(z

c

)2

= −1.

2. Project P (px, py, 0) onto H and let the projection be P ′(px, py, pz).

3. Calculate the intersection Q′(qx, qy, c) of line OP′ and the plane z = c.

4. Project Q′ onto z = 0 and let the projection be Q(qx, qy, 0).

In future work this type of mapping will be useful for navigating and visualizing
the planar portions of the graph.

5

2.4 Spectral Clustering

Clustering is an important part of our proposed multiscale visualization tech-
nique. It will be used to minimize visual clutter at each scale of the visualization.
Spectral Clustering [8][9][10] is a clustering method that has many fundamental
advantages compared to traditional clustering methods. One of the advantages
is that it can cluster data points that are not necessarily comprised of convex
subsets. We apply this method to find distinct clusters in the graph. We ex-
amined the unnormalized spectral clustering algorithm that is described in [8].
The algorithm is as follows:

• Input: Similarity matrix S ∈ Rn×n, number k of clusters to construct.

• Construct a similarity graph. Let W be its weighted adjacency matrix.

• Compute the unnormalized Laplacian L.

• Compute the first k eigenvectors u1, . . . , uk of L.

• Let U ∈ Rn×k be the matrix containing the vectors u1, . . . , uk as columns.

• For i = 1, . . . , n, let yi ∈ Rk be the vector corresponding to the i-th row
of U .

• Cluster the points (yi)i=1,...,n in Rk with k-means algorithm into clusters
C1, . . . , Ck.

• Output: Clusters A1, . . . , Ak with Ai = {j|yj ∈ Ci}.

3 Preliminary Results

The methods of the previous sections have been implemented and tested on
small synthetic graphs.

3.1 Graph Embedding on Torus

We attempted to embed a perfect graph with five nodes (K5) on a torus. K5 is
known to be impossible to embed on a plane and it requires a torus with genus
one to be embedded on. The equation of the torus that we used is given by

F (x, y, z) = (x2 + y2 + z2 + r2
1 − r2

2)
2 − 4r2

1(x
2 + y2) = 0

where r1 is the major radius and r2 is the minor radius. We manually initialized
the position of particles and edges as in Figure 6. Starting with this initial
condition the positions of particles evolve until they reach the steady state.
Figure 7 shows the final (converged) positions of the particles. We confirmed
that our algorithm creates reasonably smooth graph layouts.

6

3.2 Hyperbolic Geometry

We implemented the hyperbolic mapping technique and generated the images
of large graphs. An example output is shown in Figure 5. Note that it creates
the fisheye lens effect that emphasizes the detail in the center. Though the
detail in the periphery is greatly distorted, some features are still discernable.
By allowing the user to change the location of the center of projection it is
possible to implement a movable lens feature in the user interface of our proposed
software. This will be useful for navigating and visualizing the large planar
portions of graphs. Adopting this method to the nonplanar regions is proposed
for future work.

Figure 4: Hyperbolic geometry.
Figure 5: Effect of hyperbolic geometry.

Figure 6: Graph on a torus (initialized). Figure 7: Graph on a torus (converged).

7

3.3 Spectral Clustering

We implemented the spectral clustering technique ?? and examined the perfor-
mance with synthetic inputs. We show the results for 50 data points that are
expected to be clustered into 3 clusters in Figure 8. The similarity graph is con-
structed by the Gaussian similarity function s(xi,xj) = exp(−||xi−xj ||2/(2σ2))
where σ = 1.0 and xi is the position of data point i. Figure 9 shows that the
input data is successfully clustered into the 3 expected clusters.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Figure 8: Input data for spectral clustering.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

22
2

2 2
22

2
2 2

2

1
1

1 1 1
1

1
1

111
1

1
11

11
1

1
1

1
111

1

111
1

11

333
3 33

33

Clustering result

Figure 9: Result of spectral clustering.

8

4 Conclusion

We have presented a description of our proposed visualization methods, and
described some of the computational machinery needed to implement it. The
preliminary results have confirmed that these tools are valid for the visualiza-
tion of small synthetic graphs. A physically-based graph layout algorithm was
described which can be used to draw graphs on embedding surfaces has been de-
veloped. In the future this method can be used to draw graph nodes and edges
directly, or be used to position the local deformations and material properties
which will represent graph properties. Code for performing hyperbolic mapping
has been developed which will be used in the user interface implementation. A
clustering method has been implemented and tested. Such a clustering method
is important to our multiscale approach to visualization. Future work towards
development and testing the proposed methods on real STEP datasets will in-
volve the following tasks:

• STEP parsing and large graph generation.

• Multiscale graph decomposition using clustering.

• Embedding surface formulation.

• Preliminary user interface development.

References

[1] Andrew Witkin: Physically Based Modeling: Principles and Practice, Par-
ticle System Dynamics, SIGGRAPH ’97 course notes.

[2] Andrew Witkin: Physically Based Modeling: Principles and Practice, Con-
strained Dynamics, SIGGRAPH ’97 course notes.

[3] W.E. Lorensen and H.E. Cline: Marching Cubes: a high resolution 3D sur-
face reconstruction algorithm, Computer Graphics, Vol. 21, No. 4, pp. 163-
169 (Proc. of SIGGRAPH), 1987.

[4] Paul Bourke: Polygonising A Scalar Field,
http://local.wasp.uwa.edu.au/˜pbourke/geometry/polygonise/

[5] John Lamping and Ramana Rao: The Hyperbolic Browser: A Fo-
cus+Context Technique for Visualizing Large Hierarchies, Journal of Visual
Languages and Computing, vol. 7, no. 1, pp. 33-55, 1995.

[6] Tamara Munzner: H3: Laying Out Large Directed Graphs in 3D Hyperbolic
Space, Proceedings of the 1997 IEEE Symposium on Information Visualiza-
tion, pp. 2-10, 1997.

[7] Mark Phillips and Charlie Gunn: Visualizing hyperbolic space: unusual uses
of 4x4 matrices, SI3D ’92: Proceedings of the 1992 Symposium on Interactive
3D graphics, pp. 209-214, 1992.

9

[8] Ulrike von Luxburg: A Tutorial on Spectral Clustering, Statistics and Com-
puting, vol. 17, issue 4 (December 2007), pp. 395-416, 2007.

[9] Marina Meila and Jianbo Shi: Learning Segmentation with Random Walk,
Neural Information Processing Systems, NIPS, 2001.

[10] Jianbo Shi and Jitendra Malik: Normalized Cuts and Image Segmentation,
IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI),
Vol. 22, No. 8, pp. 888-905, 2000.

10

