Semi-supervised Single-label Text Categorization using Centroid-based Classifiers

Ana Cardoso-Cachopo Arlindo Oliveira

Instituto Superior Técnico — Technical University of Lisbon / INESC-ID

SAC-IAR 2007, March 12th

Problem Description

- 2 Characteristics of the Datasets
- 3 Why use Centroid-based Methods
- Why use Unlabeled Data
- Incorporate Unlabeled Data using EM
- Incrementally Incorporate Unlabeled Data

Experimental Results

Conclusions and Future Work

- Problem Description
 - 2 Characteristics of the Datasets
 - 3 Why use Centroid-based Methods
 - Why use Unlabeled Data
 - Incorporate Unlabeled Data using EM
 - Incrementally Incorporate Unlabeled Data
 - Experimental Results
 - Conclusions and Future Work

- Problem Description
- 2 Characteristics of the Datasets
- 3 Why use Centroid-based Methods
 - Why use Unlabeled Data
 - 5 Incorporate Unlabeled Data using EM
 - Incrementally Incorporate Unlabeled Data
 - Experimental Results
 - Conclusions and Future Work

- Problem Description
- 2 Characteristics of the Datasets
- Why use Centroid-based Methods
- Why use Unlabeled Data
 - Incorporate Unlabeled Data using EM
- Incrementally Incorporate Unlabeled Data
 - Experimental Results
- Conclusions and Future Work

- Problem Description
- 2 Characteristics of the Datasets
- Why use Centroid-based Methods
- Why use Unlabeled Data
- 5 Incorporate Unlabeled Data using EM
 - Incrementally Incorporate Unlabeled Data
 - Experimental Results

- Problem Description
- 2 Characteristics of the Datasets
- 3 Why use Centroid-based Methods
- Why use Unlabeled Data
- 5 Incorporate Unlabeled Data using EM
- 6 Incrementally Incorporate Unlabeled Data
 - Experimental Results

- Problem Description
- 2 Characteristics of the Datasets
- Why use Centroid-based Methods
- Why use Unlabeled Data
- Incorporate Unlabeled Data using EM
- Incrementally Incorporate Unlabeled Data
 - Experimental Results

- Problem Description
- 2 Characteristics of the Datasets
- 3 Why use Centroid-based Methods
- Why use Unlabeled Data
- 5 Incorporate Unlabeled Data using EM
- Incrementally Incorporate Unlabeled Data
 - Experimental Results

• Text Categorization

- Single-label
- Datasets
 - Reuters 21578 R8
 20 Noviegroups 20Ng
 Web Knowledge Base Web4
 Cade Cade12

- Text Categorization
- Single-label
- Datasets
 - Reuters 21578 R8
 - 20 Newsgroups 20Ng
 - ▶ Web Knowledge Base Web4
 - ⊳ Cade Cade12

- Text Categorization
- Single-label
- Datasets
 - Reuters 21578 R8
 - 20 Newsgroups 20Ng
 - Web Knowledge Base Web4
 - Cade Cade12

- Text Categorization
- Single-label
- Datasets
 - Reuters 21578 R8
 - 20 Newsgroups 20Ng
 - Web Knowledge Base Web4
 - Cade Cade12

- Text Categorization
- Single-label
- Datasets
 - Reuters 21578 R8
 - 20 Newsgroups 20Ng
 - Web Knowledge Base Web4
 - Cade Cade12

- Text Categorization
- Single-label
- Datasets
 - Reuters 21578 R8
 - 20 Newsgroups 20Ng
 - Web Knowledge Base Web4
 - Cade Cade12

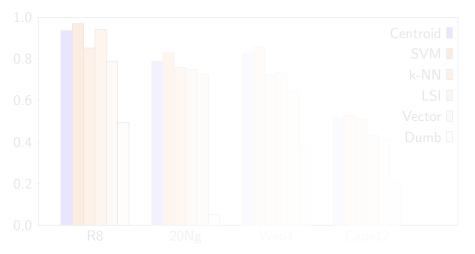
- Text Categorization
- Single-label
- Datasets
 - Reuters 21578 R8
 - 20 Newsgroups 20Ng
 - Web Knowledge Base Web4
 - Cade Cade12

Characteristics of the Datasets

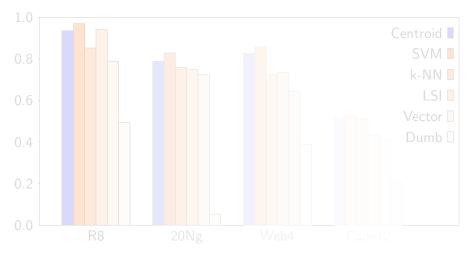
	Train	Test	Total	Smallest	Largest
	Docs	Docs	Docs	Class	Class
R8	5485	2189	7674	51	3923
20Ng	11293	7528	18821	628	999
Web4	2803	1396	4199	504	1641
Cade12	27322	13661	40983	625	8473

Numbers of documents for the datasets: number of training documents, number of test documents, total number of documents, number of documents in the smallest class, and number of documents in the largest class.

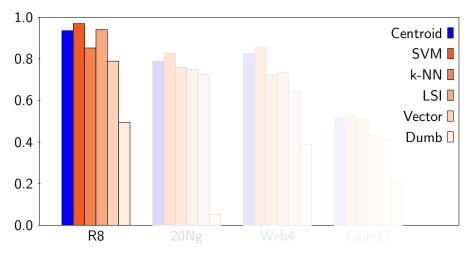
- Very fast
- Good Accuracy



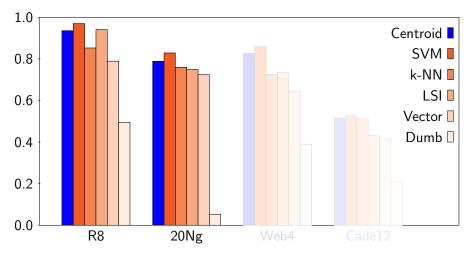
- Very fast
- Good Accuracy



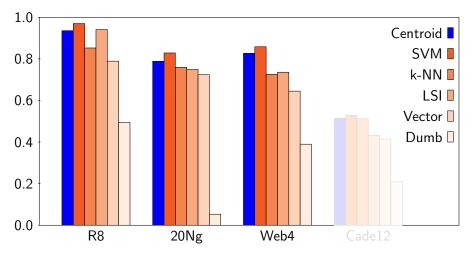
- Very fast
- Good Accuracy



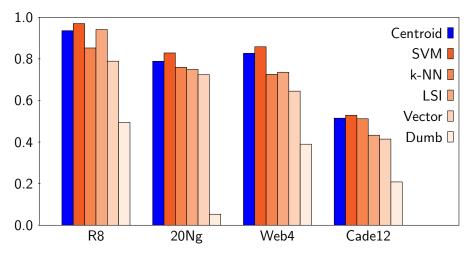
- Very fast
- Good Accuracy



- Very fast
- Good Accuracy



- Very fast
- Good Accuracy



Why use Unlabeled Data

• Small amounts of labeled data available

- Large amounts of unlabeled data available
- Hard or expensive to label new data

Why use Unlabeled Data

- Small amounts of labeled data available
- Large amounts of unlabeled data available
- Hard or expensive to label new data

Why use Unlabeled Data

- Small amounts of labeled data available
- Large amounts of unlabeled data available
- Hard or expensive to label new data

If the entire dataset is available from the start, like in a library.

Inputs: A set of labeled document vectors, L, and a set of unlabeled document vectors U.

Initialization step: For each class c_j appearing in L, determine the class's centroid $\overrightarrow{c_j}$, using one of the formulas for the centroids and considering only the labeled documents.

Estimation step: For each unlabeled document $d_j \in U$, classify it according to the available centroids.

Maximization step: For each class c_j , update its centroid $\overline{c_{j_{new}}}$, considering the labeled documents and the labels for the unlabeled documents obtained in the previous step.

Iterate: Until the centroids do not change in two consecutive iterations. **Outputs:** For each class c_j , the centroid $\overrightarrow{c_j}$.

If the entire dataset is available from the start, like in a library.

Inputs: A set of labeled document vectors, L, and a set of unlabeled document vectors U.

Initialization step: For each class c_j appearing in L, determine the class's centroid $\overrightarrow{c_j}$, using one of the formulas for the centroids and considering only the labeled documents.

Estimation step: For each unlabeled document $d_j \in U$, classify it according to the available centroids.

Maximization step: For each class c_j , update its centroid $\overline{c_{j_{new}}}$, considering the labeled documents and the labels for the unlabeled documents obtained in the previous step.

Iterate: Until the centroids do not change in two consecutive iterations. **Outputs:** For each class c_j , the centroid $\vec{c_j}$.

If the entire dataset is available from the start, like in a library.

Inputs: A set of labeled document vectors, L, and a set of unlabeled document vectors U.

Initialization step: For each class c_j appearing in L, determine the class's centroid $\overrightarrow{c_j}$, using one of the formulas for the centroids and considering only the labeled documents.

Estimation step: For each unlabeled document $d_j \in U$, classify it according to the available centroids.

Maximization step: For each class c_j , update its centroid $\overrightarrow{c_{j_{new}}}$, considering the labeled documents and the labels for the unlabeled documents obtained in the previous step.

Iterate: Until the centroids do not change in two consecutive iterations. **Outputs:** For each class c_j , the centroid $\overrightarrow{c_j}$.

If the entire dataset is available from the start, like in a library.

Inputs: A set of labeled document vectors, L, and a set of unlabeled document vectors U.

Initialization step: For each class c_j appearing in L, determine the class's centroid $\overrightarrow{c_j}$, using one of the formulas for the centroids and considering only the labeled documents.

Estimation step: For each unlabeled document $d_j \in U$, classify it according to the available centroids.

Maximization step: For each class c_j , update its centroid $\overrightarrow{c_{j_{new}}}$, considering the labeled documents and the labels for the unlabeled documents obtained in the previous step.

Iterate: Until the centroids do not change in two consecutive iterations. **Outputs:** For each class c_j , the centroid $\overrightarrow{c_j}$.

If the entire dataset is available from the start, like in a library.

Inputs: A set of labeled document vectors, L, and a set of unlabeled document vectors U.

Initialization step: For each class c_j appearing in L, determine the class's centroid $\overrightarrow{c_j}$, using one of the formulas for the centroids and considering only the labeled documents.

Estimation step: For each unlabeled document $d_j \in U$, classify it according to the available centroids.

Maximization step: For each class c_j , update its centroid $\overrightarrow{c_{j_{new}}}$, considering the labeled documents and the labels for the unlabeled documents obtained in the previous step.

Iterate: Until the centroids do not change in two consecutive iterations. **Outputs:** For each class c_j , the centroid $\overrightarrow{c_j}$.

If the entire dataset is available from the start, like in a library.

Inputs: A set of labeled document vectors, L, and a set of unlabeled document vectors U.

Initialization step: For each class c_j appearing in L, determine the class's centroid $\overrightarrow{c_j}$, using one of the formulas for the centroids and considering only the labeled documents.

Estimation step: For each unlabeled document $d_j \in U$, classify it according to the available centroids.

Maximization step: For each class c_j , update its centroid $\overrightarrow{c_{j_{new}}}$, considering the labeled documents and the labels for the unlabeled documents obtained in the previous step.

Iterate: Until the centroids do not change in two consecutive iterations. **Outputs:** For each class c_j , the centroid $\overrightarrow{c_j}$.

If the entire dataset is available from the start, like in a library.

Inputs: A set of labeled document vectors, L, and a set of unlabeled document vectors U.

Initialization step: For each class c_j appearing in L, determine the class's centroid $\overrightarrow{c_j}$, using one of the formulas for the centroids and considering only the labeled documents.

Estimation step: For each unlabeled document $d_j \in U$, classify it according to the available centroids.

Maximization step: For each class c_j , update its centroid $\overrightarrow{c_{j_{new}}}$, considering the labeled documents and the labels for the unlabeled documents obtained in the previous step.

Iterate: Until the centroids do not change in two consecutive iterations. **Outputs:** For each class c_j , the centroid $\overrightarrow{c_j}$.

Incrementally Incorporate Unlabeled Data

If the dataset changes over time, like a news feed or the web.

Inputs: A set of labeled document vectors, L, and a set of unlabeled document vectors U.

Initialization step: For each class c_j appearing in L, determine the class's centroid $\overrightarrow{c_j}$, using one of the formulas for the centroids and considering only the labeled documents.

Iterate: For each unlabeled document $d_j \in U$:

- Classify d_j according to its similarity to each of the centroids.
- Update the centroids with the new document *d_j* classified in the previous step.

Outputs: For each class c_j , the centroid $\overrightarrow{c_j}$.

Incrementally Incorporate Unlabeled Data

If the dataset changes over time, like a news feed or the web.

Inputs: A set of labeled document vectors, L, and a set of unlabeled document vectors U.

Initialization step: For each class c_j appearing in L, determine the class's centroid $\overrightarrow{c_j}$, using one of the formulas for the centroids and considering only the labeled documents.

Iterate: For each unlabeled document $d_j \in U$:

Classify d_j according to its similarity to each of the centroids.

Outputs: For each class c_j , the centroid $\overrightarrow{c_j}$.

Incrementally Incorporate Unlabeled Data

If the dataset changes over time, like a news feed or the web.

Inputs: A set of labeled document vectors, L, and a set of unlabeled document vectors U.

Initialization step: For each class c_j appearing in L, determine the class's centroid $\overrightarrow{c_j}$, using one of the formulas for the centroids and considering only the labeled documents.

Iterate: For each unlabeled document $d_j \in U$:

Classify d_j according to its similarity to each of the centroids.

 Update the centroids with the new document d_j classified in the previous step.

Outputs: For each class c_j , the centroid $\overline{c_j}$.

If the dataset changes over time, like a news feed or the web.

Inputs: A set of labeled document vectors, L, and a set of unlabeled document vectors U.

Initialization step: For each class c_j appearing in L, determine the class's centroid $\overrightarrow{c_j}$, using one of the formulas for the centroids and considering only the labeled documents.

Iterate: For each unlabeled document $d_j \in U$:

• Classify d_j according to its similarity to each of the centroids.

 Update the centroids with the new document d_j classified in the previous step.

If the dataset changes over time, like a news feed or the web.

Inputs: A set of labeled document vectors, L, and a set of unlabeled document vectors U.

Initialization step: For each class c_j appearing in L, determine the class's centroid $\overrightarrow{c_j}$, using one of the formulas for the centroids and considering only the labeled documents.

Iterate: For each unlabeled document $d_j \in U$:

- Classify d_j according to its similarity to each of the centroids.
- Update the centroids with the new document *d_j* classified in the previous step.

If the dataset changes over time, like a news feed or the web.

Inputs: A set of labeled document vectors, L, and a set of unlabeled document vectors U.

Initialization step: For each class c_j appearing in L, determine the class's centroid $\overrightarrow{c_j}$, using one of the formulas for the centroids and considering only the labeled documents.

Iterate: For each unlabeled document $d_j \in U$:

- Classify d_j according to its similarity to each of the centroids.
- Update the centroids with the new document *d_j* classified in the previous step.

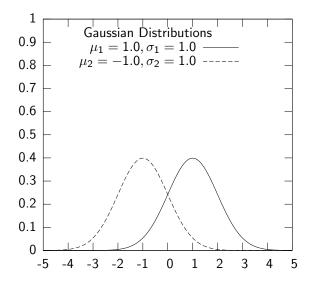
If the dataset changes over time, like a news feed or the web.

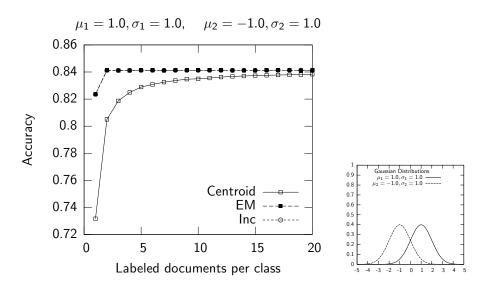
Inputs: A set of labeled document vectors, L, and a set of unlabeled document vectors U.

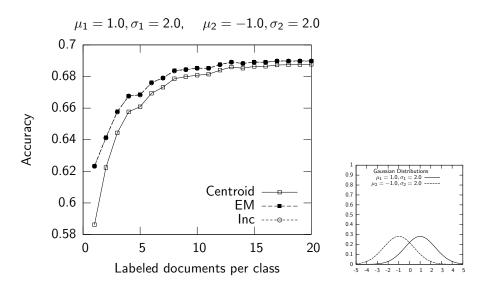
Initialization step: For each class c_j appearing in L, determine the class's centroid $\overrightarrow{c_j}$, using one of the formulas for the centroids and considering only the labeled documents.

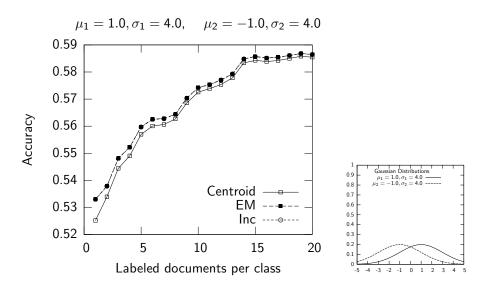
Iterate: For each unlabeled document $d_j \in U$:

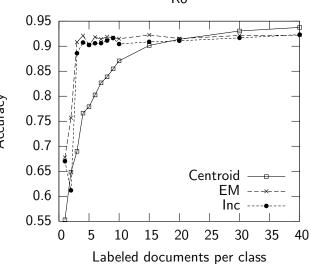
- Classify d_j according to its similarity to each of the centroids.
- Update the centroids with the new document *d_j* classified in the previous step.





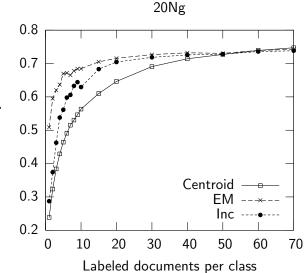




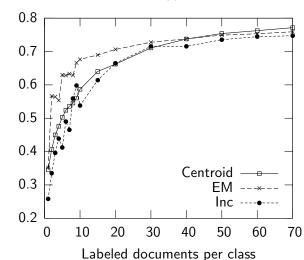


R8

Accuracy

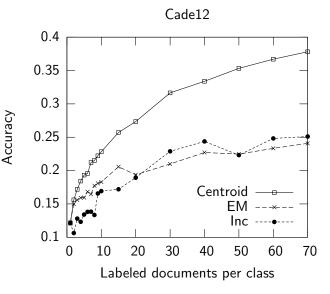


Accuracy



Web4

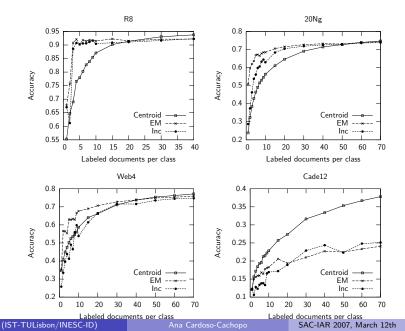
Accuracy



(IST-TULisbon/INESC-ID)

Ana Cardoso-Cachopo

SAC-IAR 2007, March 12th 16 / 19



17 / 19

Conclusions and Future Work

- If the initial model of the data is sufficiently precise, using unlabeled data improves performance.
- Using unlabeled data degrades performance if the initial model is not precise enough.
- As future work, we plan to extend this approach to multi-label datasets.

Conclusions and Future Work

- If the initial model of the data is sufficiently precise, using unlabeled data improves performance.
- Using unlabeled data degrades performance if the initial model is not precise enough.
- As future work, we plan to extend this approach to multi-label datasets.

Conclusions and Future Work

- If the initial model of the data is sufficiently precise, using unlabeled data improves performance.
- Using unlabeled data degrades performance if the initial model is not precise enough.
- As future work, we plan to extend this approach to multi-label datasets.

Thank You.

Any Questions?