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Problem Description

Text Categorization

Single-label

Datasets
I Reuters 21578 - R8
I 20 Newsgroups - 20Ng
I Web Knowledge Base - Web4
I Cade - Cade12
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Characteristics of the Datasets

Train Test Total Smallest Largest
Docs Docs Docs Class Class

R8 5485 2189 7674 51 3923

20Ng 11293 7528 18821 628 999

Web4 2803 1396 4199 504 1641

Cade12 27322 13661 40983 625 8473

Numbers of documents for the datasets: number of training documents,
number of test documents, total number of documents, number of
documents in the smallest class, and number of documents in the largest
class.
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Why use Centroid-based Methods

Very fast

Good Accuracy
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Why use Unlabeled Data

Small amounts of labeled data available

Large amounts of unlabeled data available

Hard or expensive to label new data
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Incorporate Unlabeled Data using EM

If the entire dataset is available from the start, like in a library.

Inputs: A set of labeled document vectors, L, and a set of unlabeled
document vectors U.
Initialization step: For each class cj appearing in L, determine the class´s
centroid −→cj , using one of the formulas for the centroids and considering
only the labeled documents.
Estimation step: For each unlabeled document dj ∈ U, classify it
according to the available centroids.
Maximization step: For each class cj , update its centroid −−→cjnew ,
considering the labeled documents and the labels for the unlabeled
documents obtained in the previous step.
Iterate: Until the centroids do not change in two consecutive iterations.
Outputs: For each class cj , the centroid −→cj .
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Incrementally Incorporate Unlabeled Data

If the dataset changes over time, like a news feed or the web.

Inputs: A set of labeled document vectors, L, and a set of unlabeled
document vectors U.
Initialization step: For each class cj appearing in L, determine the class´s
centroid −→cj , using one of the formulas for the centroids and considering
only the labeled documents.
Iterate: For each unlabeled document dj ∈ U:

Classify dj according to its similarity to each of the centroids.

Update the centroids with the new document dj classified in the
previous step.

Outputs: For each class cj , the centroid −→cj .

(IST-TULisbon/INESC-ID) Ana Cardoso-Cachopo SAC-IAR 2007, March 12th 8 / 19



Incrementally Incorporate Unlabeled Data

If the dataset changes over time, like a news feed or the web.

Inputs: A set of labeled document vectors, L, and a set of unlabeled
document vectors U.
Initialization step: For each class cj appearing in L, determine the class´s
centroid −→cj , using one of the formulas for the centroids and considering
only the labeled documents.
Iterate: For each unlabeled document dj ∈ U:

Classify dj according to its similarity to each of the centroids.

Update the centroids with the new document dj classified in the
previous step.

Outputs: For each class cj , the centroid −→cj .

(IST-TULisbon/INESC-ID) Ana Cardoso-Cachopo SAC-IAR 2007, March 12th 8 / 19



Incrementally Incorporate Unlabeled Data

If the dataset changes over time, like a news feed or the web.

Inputs: A set of labeled document vectors, L, and a set of unlabeled
document vectors U.
Initialization step: For each class cj appearing in L, determine the class´s
centroid −→cj , using one of the formulas for the centroids and considering
only the labeled documents.
Iterate: For each unlabeled document dj ∈ U:

Classify dj according to its similarity to each of the centroids.

Update the centroids with the new document dj classified in the
previous step.

Outputs: For each class cj , the centroid −→cj .

(IST-TULisbon/INESC-ID) Ana Cardoso-Cachopo SAC-IAR 2007, March 12th 8 / 19



Incrementally Incorporate Unlabeled Data

If the dataset changes over time, like a news feed or the web.

Inputs: A set of labeled document vectors, L, and a set of unlabeled
document vectors U.
Initialization step: For each class cj appearing in L, determine the class´s
centroid −→cj , using one of the formulas for the centroids and considering
only the labeled documents.
Iterate: For each unlabeled document dj ∈ U:

Classify dj according to its similarity to each of the centroids.

Update the centroids with the new document dj classified in the
previous step.

Outputs: For each class cj , the centroid −→cj .

(IST-TULisbon/INESC-ID) Ana Cardoso-Cachopo SAC-IAR 2007, March 12th 8 / 19



Incrementally Incorporate Unlabeled Data

If the dataset changes over time, like a news feed or the web.

Inputs: A set of labeled document vectors, L, and a set of unlabeled
document vectors U.
Initialization step: For each class cj appearing in L, determine the class´s
centroid −→cj , using one of the formulas for the centroids and considering
only the labeled documents.
Iterate: For each unlabeled document dj ∈ U:

Classify dj according to its similarity to each of the centroids.

Update the centroids with the new document dj classified in the
previous step.

Outputs: For each class cj , the centroid −→cj .

(IST-TULisbon/INESC-ID) Ana Cardoso-Cachopo SAC-IAR 2007, March 12th 8 / 19



Incrementally Incorporate Unlabeled Data

If the dataset changes over time, like a news feed or the web.

Inputs: A set of labeled document vectors, L, and a set of unlabeled
document vectors U.
Initialization step: For each class cj appearing in L, determine the class´s
centroid −→cj , using one of the formulas for the centroids and considering
only the labeled documents.
Iterate: For each unlabeled document dj ∈ U:

Classify dj according to its similarity to each of the centroids.

Update the centroids with the new document dj classified in the
previous step.

Outputs: For each class cj , the centroid −→cj .

(IST-TULisbon/INESC-ID) Ana Cardoso-Cachopo SAC-IAR 2007, March 12th 8 / 19



Incrementally Incorporate Unlabeled Data

If the dataset changes over time, like a news feed or the web.

Inputs: A set of labeled document vectors, L, and a set of unlabeled
document vectors U.
Initialization step: For each class cj appearing in L, determine the class´s
centroid −→cj , using one of the formulas for the centroids and considering
only the labeled documents.
Iterate: For each unlabeled document dj ∈ U:

Classify dj according to its similarity to each of the centroids.

Update the centroids with the new document dj classified in the
previous step.

Outputs: For each class cj , the centroid −→cj .

(IST-TULisbon/INESC-ID) Ana Cardoso-Cachopo SAC-IAR 2007, March 12th 8 / 19



Experimental Results - Synthetic Dataset
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Experimental Results - Real World Datasets
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Conclusions and Future Work

If the initial model of the data is sufficiently precise, using unlabeled
data improves performance.

Using unlabeled data degrades performance if the initial model is not
precise enough.

As future work, we plan to extend this approach to multi-label
datasets.
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Thank You.

Any Questions?
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