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ABSTRACT 
Part  of the process of data  integration is determining which 
sets of identifiers refer to the same real-world entities. In 
integrating databases found on the Web or obtained by us- 
ing information extraction methods, it is often possible to 
solve this problem by exploiting similarities in the textual 
names used for objects in different databases. In this paper 
we describe techniques for clustering and matching identifier 
names that  are both scalable and adaptive, in the sense that  
they can be trained to obtain bet ter  performance in a par- 
t icular domain. An experimental  evaluation on a number of 
sample datasets shows that  the adaptive method sometimes 
performs much bet ter  than either of two non-adaptive base- 
line systems, and is nearly 'always competi t ive with the best 
baseline system. 
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1. INTRODUCTION 
Data integration is the problem of combining information 

from multiple heterogeneous databases. One step of data  
integration is relating the primitive objects that  appear in 
the different databases--specifically, determining which sets 
of identifiers refer to the same real-world entities. A num- 
ber of recent research papers have addressed this problem 
by exploiting similarities in the textual  names used for ob- 
jects in different databases. (For example one might suspect 
that  two objects from different databases named "USAMA 
FAYYAD" and "Usama M. Fayyad . . . .  respectively might 
refer to the same person.) Integration techniques based on 
textual  similarity are especially useful for databases found 
on the Web [1] or obtained by extracting information from 
text [6, 13, 11], where descriptive names generally exist but  
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global object identifiers are rare. 
Previous publications in using textual  similarity for data  

integration have considered a number of related tasks. Al- 
though the terminology is not completely standardized, in 
this paper we define entity-name matching as the task of 
taking two lists of entity names from two different sources 
and determining which pairs of names are co-referent (i.e., 
refer to the same real-world entity). We define entity-name 
clustering as the task of taking a single list of entity names 
and assigning entity names to clusters such that  all names 
in a cluster are co-referent. Matching is important  in at- 
tempting to join information across of pair of relations from 
different databases, and clustering is important  in remov- 
ing duplicates from a relation that  has been drawn from the 
union of many different information sources. Previous work 
in this area includes work in distance functions for matching 
[14, 3, 9, 8] and scalable matching [2] and clustering [13] al- 
gorithms. Work in record linkage [15, 10, 21, 20, 7] is similar 
but does not rely as heavily on textual  similarities. 

In this paper we synthesize many of these ideas. We 
present techniques for enti ty-name matching and clustering 
that  are scalable and adaptive, in the sense that  accuracy 
can be improved by training. 

2. LEARNING TO MATCH AND CLUSTER 

2.1 Adaptive systems 
We will begin defining the problems of adaptive match- 

ing and clustering by describing a very general notion of 
an adaptive system. Assume a source of training examples. 
Each training example is a pair (x,y*), where x is a prob- 
lem instance and y" is a desired solution to x. We will also 
assume a loss function, Loss(y,y*), measuring the quality 
of a proposed solution y relative to a desired solution y*. 
The goal of an adaptive system L is to take a set of training 
examples (x l, y[) . . . .  , (xm, y~)  and learn to propose "good" 
solutions to novel problems xj .  In other words, the input 
to L is the set {(xl,y~)}~=l and the output  is a function f 
such that  the loss Loss(f(xj),y~) is small, where y~ is the 
desired solution for xj .  One simple, well-explored example 
of an adaptive system is classification learning. 

2.2 Adaptive matching 
Consider the task of learning to match names from some 

domain A with names from a second domain B. For exam- 
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pie, we might wish to learn to match a researcher's name and 
address with a university name if and only if the researcher 
is affiliated with that  university. To formalize this, we let 
each problem instance x be a pair, x = (A, B), where A and 
B are sets of strings. For instance, A might be names and 
addresses of researchers registered for KDD-02, and B might 
be names of universities in the United States. A solution y is 
a set of pairs y = {(al,  bl) . . . .  , (ak, bk)}, specifically a sub- 
set of A x B that indicates which pairs are to be matched. 
A natural  loss function Loss(y, y*) might be the size of the 
symmetric difference of y and y*: i.e. if y = {(a~,bi)}~=l 
and y* {(a;,  * k" = b3)}~=1 then 

Loss(y,y,) =_ [{(ai,b,) • y :  (a,,b,) Cy*}[ 

+ ]{(a; ,b;)  G y* : (a;,b;) CY}I 

Other related measures are recall, precision, and F-measure--- 
all of which are based on the symmetric difference of two 
sets. 

Many matching problems are more constrained than  this 
example. For instance, if the a ' a  and b's are entity names, 
and each b E B refers to a distinct entity, then it makes little 
sense for a proposed solution y to contain both (a, b) and 
(a, b'). We define a constrained adaptive matching problem 
to be one in which the set of pairs in every desired pairing 
y* is a one-to-one function. 

Constrained matching problems are common- - in  fact, both 
of the matching problems considered in Section 4 are con- 
strained. However, we consider here the more general case, 
which is useful (for instance) in matching datasets that  may 
duplicates. 

2.3 Adaptive clustering 
The second problem we consider is adaptive clustering. 

In this case, each problem instance x is set of strings D = 
dl , .  • •, d,~. A solution y* is an assignment of the strings di 
to clusters, encoded as a function z from D to the integers 
between 1 and k (where k is the number  of clusters). 

For example, consider clustering descriptions consisting 
of a researcher's name, together with some additional piece 
of identifying information, such as his or her affiliation in 
July, 2002. A problem instance x would be a set of strings 
(like "William W. Cohen, Whizbang Labs", "W. Cohen, 
WhizBang Labs - Research", "Jude Shavlik, University of 
Wisconsin", etc) and a solution y* would be a function z 
such that  z(dl) = z(d2) iff dl and d2 refer to the same per- 
son. Adaptive clustering is learning to cluster better  given 
a sequence of training data  in the form of (x, z) pairs. 

3. SCALABLE ADAPTIVE METHODS 

3.1 Clustering 
The definitions above are extensions of the model for adap- 

tive ranking systems described by Cohen, Singer and Schapire 
[5]. To oversimpfy slightly, Cohen, Singer and Schapire con- 
sidered adaptive systems in which each problem instance x 
was an unordered set of objects x = { d l , . . .  ;din}, and each 
desired solution y* was a total ordering over the objects in 
x. The problem of learning to order instances was addressed 
by learning a preference function, p(d, d')--conceptually,  a 
function p : X x X ~ {0, 1} indicating if d should be ranked 
before d' in the desired ordering y*. 

Adaptive matching and clustering can be implemented in 

To train from {(D1, Zl) . . . . .  (Din, zm)}: 

1. Build a training sample S for the pairing function h. 

(a) Let 5; = 0. 
(b) F o r i = l  . . . . .  m: 

i. Generate all pairs (d, d') E D~ x Di. 

ii. Let label(d, d') ~ { +_ otherwiseif z~(d) = zi(d') 

iii. Add the labeled example (d, d') to S. 

2. Train a classification learner on S. The result will be 
a hypothesis h tha t  labels pairs (d, d') as positive or 
negative. 

To c l u s t e r  a new set D = {d l , . . .  ,d,~}: 

1. Build a gxaph G with vertex set D, where an edge 
exists between dl and dj iff h(dl, dj) = +. 

2. Make each connected component of G be a cluster. 

Figure 1: A n a i v e  clustering algorithm based on a 
learned pairing function 

an analogous way, by learning an appropriate pairing func- 
tion. In the context of matching, a pairing function h(a, b) 
is a binary function that  indicates if a should be matched 
with b. In the context of clustering, h(d, d') indicates if d 
and d' should be placed in the same cluster. Figure 1 gives 
a simple algorithm for clustering using a pairing function. 

The algorithm of Figure 1 has two problems: a small num- 
ber of errors in the learned pairing function h may lead to 
large mistakes in the clusters created; and the algorithm is 
inefficient, since it requires generation of all pairs. 

To address these problems, we modify Figure 1 in three 
ways. First, in training, we will enumerate only a limited 
number  of "candidate" pairs in Step l(b)i.  Ideally the can- 
didate set will be of manageable size, bu t  will include all 
pairs (d, d') that  should be clustered together. 

Second, we will exploit the fact that  classification learners 
can provide a confidence for their classifications. We replace 
Steps 1 and 2 with bet ter  methods for building and using 
the "pairing graph" G. In clustering Step 1, we construct 
the edges of G by using the same candidate-pair generation 
procedure used in training, and then weight each edge (d, d') 
by the confidence of the learned hypothesis h so that  the 
label of (d,d') should be "+". In Step 2, we cluster the 
resulting edge-weighted graph (in this paper, using greedy 
agglomerative clustering). The resulting algorithm is shown 
in Figure 2. 

We next consider the generation of candidate pairs (an 
operation often all called "blocking" in the record finkage 

• literature). We use the canopy method, proposed by Mc- 
Callum, Nigam and Under [13]. This method relies on the 
ability to take an enti ty-name d and efficiently find all nearby 
points d' according to some "approximate" distance metric. 
Following McCallum et al we used a T F I D F  distance met- 
ric based on tokens. In this case, an inverted-index based 
ranked retriewd system can find nearby pairs quite quickly. 

The canopy method, shown in Figure 3, begins with an 
empty set of candidate pairs, and operates by repeatedly 
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To train from ((D1, Zl) . . . .  , (D,~, zm)}: 

1. Build a training sample S for the pairing function h. 

(a) L e t S - - 0 .  

(b) F o r i = l  . . . . .  m: 

i. Let CandidatePairs(D) be a set of "candi- 
date" pairings (d, d'). 

ii. For each (d, d') E CandidatePairs(D), let 

label(d,d') _= ( +_ otherwiseif zi(d) = zi(d') 

iii. Add the labeled example (d, d') to S. 

2. Train a classification learner on S. The result will be 
a hypothesis h that labels pairs (d, d') as positive or 
negative. 

3. Let c(d,d') be the confidence given by h that the 
h(d, d') = +. 

To c lus ter  a new set D = {dx, . . . ,  d,~} into K clusters: 

1. Build a graph G with vertex set D, where an 
edge exists between dl and d~ iff (di,d¢) E 
CandidatePairs(D), and the weight of the edge be- 
tween d and de is c(di, d¢). 

2. Perform greedy agglomerative clustering (GAC) on G 
to produce K clusters. 

(a) Create a singleton cluster to hold each vertex. 

(b) While there are more than K clusters: 

• Merge the two "closest" clusters, where clus- 
ter distance is the minimum distance between 
any members of the clusters. 

3. Use the clustering produced by GAC on G as the clus- 
tering of D. 

Figure  2: A b e t t e r  and m o r e  efficient adapt ive  clus- 
ter ing  a lgor i thm 

picking a random "center point" d. After d is picked, all 
points d' that are "close enough" to d (within distance Tl . . . .  ) 
are found. These "canopy" points are paired with each 
other, and the resulting pairs are added to the set of can- 
didate pairs. Next, the set of poflsible "center points" is 
decreased by removing all points d within distance Tt,ght of 
d, where Ttight < T~ ... . .  This process repeats until all possi- 
ble center points are chosen. 

For the benchmark problems considered in Section 4, it 
was fairly easy to find thresholds Ttight and Tt . . . .  that allow 
generation of nearly all "true" pairs (pairs that belong in a 
desired cluster) without generating too many spurious pairs. 

In learning, two issues must be addressed: how to repre- 
sent a pair (d, d'), and which learning algorithm to use. We 
explored several different classification learning systems, and 
different feature sets for representing pairs (d, d'). Here we 
will report results for a maximum entropy learner [16]. This 
learning system requires that examples be represented as a 
vector of binary features. Examples of the features used to 
encode a pair are shown in Table 1. Here the edit distance 

To compute CandidatePairs(D): 

1. Let CandidatePairs = 0. 

2. Let PossibleCenters = D. 

3. While PossibleCenters is not empty: 

(a) Pick a random d in PossibleCenters 

(b) Let Canopy(d)= 

{(d,d') : d' E D A approxDist(d,d') < Tl . . . .  } 

In the implementation, appvoxDist(d, d') is based 
on TFIDF similarity, and Canopy(d) is computed 
efficiently using an inverted-index based retrieval 
method. 

(c) Add to CandidatePairs all pairs (d~, d~) such that 
both d~ and d~ are in Canopy(d). 

(d) Remove from PossibleCenters all points d E D 
such that approxDist(d, d) < Ttight 
(Again, {d : approxDist(d, d) _< Tt~ght} can be 
computed quickly using inverted indices.) 

4. Return CandidatePairs 

Figure  3: C o m p u t i n g  a set  o f  candiate  pairs us- 
ing the  canopy  a lgor i thm of  M c C a l l u m ,  N i g a m  and 
U n g e r  

gives every character insertion and deletion unit cost, and 
Jaccard distance [18] is computed by treating d and d' as sets 
of tokens and using [d n d'[/[d u d'[ as a distance function. 

In some of the test datasets we considered, the items 
to be clustered are not strings, but records consisting of 
several strings (for instance, a record containing a name 
and an address, or a bibliographic entry containing a title, 
author, date, and publication venue). For such datasets, a 
pair was encoded by extracting the features of Table 1 for 
every pair of fields, and combining all the features: for in- 
stance, in pairing name/address records, we computed the 
features SubstringMatchname, SubstringMat ch~ddr~s~, 
PrefixMatch . . . . .  PrefixMatch~ad ..... . . . ,  
StrongNumberMatch~ame, StrongNumberMatchadd ..... ) 

3.2 Matching and Constrained Matching 
It is fairly simple to adapt the algorithm above to the 

problem of constrained adaptive matching. Generation of 
candidate pairs is substantially easier, since one need only 
consider pairs (a, b) where a E A and b E B. One possible 
technique is to use the canopy algorithm of Figure 3 with 
these modifications: 

• in Step 2, let PossibleCenters = A; 

• in Step 3b, let Canopy(a) = {(a,b) : b E B and 
approxDist(a, b) < Tt . . . .  }; and 

• in Step 3d, let Ttiaht = 0 (i.e., only remove a from the 
set of PossibleCenters). 

A functionally equivalent but somewhat more efficient ap- 
proach would be to use a soft join algorithm [3]. 

Learning a pairing function and construction of the graph 
G is identical. The greedy agglomerative clustering step, 
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SubstringMatch 
PrefixMatch 
EditDistance(k) 

MatchAToken(n) 
MatchBToken(n) 
MatchABigram(n) 
JaccardDistance(k) 

StrongNumberMatch 

true iff one of the two strings is a substring of the other. 
true iff one of the strings is a prefix of the other. 
for k E {0.5, 1, 2, 4, 8, 16, 32, 64}, true iff the edit 
distance between the two strings is less than k. 
true iff the n-th token in d matches some token in d'. 
analogous to MatchAToken(n). 
like MatchAToken(n) but requires that both tokens n and n + l  match some token in d'. 
for k E {0.1, 0.2, 0.4, 0.6, 0.8, 0.9}, true iff the Jaccard 
distance between the sets of tokens in d and d' is less than k. 
true if both d and d' contain the same number. 

T a b l e  1: F e a t u r e s  used in l e a r n i n g  t h e  p a i r i n g  f u n c t i o n .  

Benchmark 

Cora 

OrgNamel 

OrgName2 

Restaurant 

Parks 

TFIDF 
Prec/Recall 

0.68/0.85 
0.61/0.89 
0.91/0.94 
0.24/0.80 
0.97/0.94 
0.66/0.95 

Edit Distance 
Prec/Recall 

0.74/0.97 

0.54/0.42 
0.94/0.97 
0.67/0.50 
0.86/0.97 

0.98/0.98 0.83/0.83 
0.67/0.97 0.87/0.87 
0.98/0.98 ~ 0.97/0.97 
o.97/o.971 0.97/0.97 

Adaptive 
Prec/Recall 

0.99/0.91 
0.99/0.94 
0.94/0.91 
0.71/0.85 
0.97/0.94 
0.996/0.97 
1.00/1.00 
0.95/0.95 
0.98/0.98 
0.97/0.97 

Benchmark] TFIDF 
Cora  0.751 

0.721 
OrgNamel 0 .925  

0.366 
OrgName2 0 .958  

0.778 
Restaurant 0.981 

0 .967  
Parks 0.976 

0 .967  

Edit Distance Adaptive 
0.839 0 .945  

0 .964  
0.633 0.923 
0 .950  0.776 
0.571 0 .958  
0.912 0 .984  
0.827 1.000 
0.867 0.950 
0.967 0 .984  
0 .967  0 .907  

T a b l e  4: E x p e r i m e n t a l  r e s u l t s :  F - m e a s u r e  

T a b l e  3: E x p e r i m e n t a l  r e s u l t s :  p r e c i s i o n  a n d  r e c a l l  

however, should be replaced with an operation that enforces 
the constraints required for constrained adaptive matching. 
This can be done by computing the minimal weight cutset 
of G, and returning the edgee~ of this cutset as the pairing. 
We have experimented with ooth a greedy approach and an 
exact minimization (which exploits the fact that the graph 
is bipartite [17]). The experiments in this paper are for 
a simple greedy mincut-finding algorithm, which is more 
efficient for large graphs. 

3.3 Relationships 
We note that the problems of learning pairing functions, 

clustering, and matching are closely related, but distinct. In 
unconstrained matching, the pairs do not correspond imme- 
diately to clusters, since pairs may overlap, but clusters are 
disjoint. In constrained matching, matching can be reduced 
to clustering, but exploiting the additional constraint that a 
pairing is one-to-one can substantially change the difficulty 
of a clustering task. Finally, while learning a pairing func- 
tion is a natural way of making a clustering system adaptive, 
obtaining an accurate hypothesis h does not mean that the 
ensuing clustering will be any good, as it is possible for small 
errors in h to cause large clustering errors [4]. 

4. EXPERIMENTS 
We used several datasets for evaluation purposes. Two 

of the datasets require clustering, and two require match- 
ing. The first clustering dataset, Cora, is a collection of 
paper citations from the Cora project [12, 13]. The second 
dataset, 0rgName, is a collection of 116 organization names. 
We considered two target clusterings of this data, one into 

56 clusters, and one into 60 clusters. 1 
There are also two constrained matching datasets. The 

Restaurant dataset contains 533 restaurants from one restau- 
rant guide to be matched with 331 from a second guide. 2 
The Parks dataset contains 388 national park names from 
one listing and 258 from a second listing, with 241 names in 
common. 

We assumed[ that the number of intended clusters K is 
known. For 0rgName, Restaurant,  and Parks, we constrained 
all systems (adaptive and non-adaptive) to produce the true 
number of clusters or pairings. For Cora, we wished to com- 
pare to the best previous clustering result, which was ob- 
tained varying cluster size widely. We tried two different 
target cluster sizes and report the one which gave the best 
result, obtained setting K to 1.5 times the true number of 
clusters. 

To evaluate performance we split the data into two parti- 
tions, then trained on the first and tested on the second, and 
finally trained on the second and tested on the first. The 
datasets used are summarized in Table 2. For each dataset, 
we record the number of entities in each partition; the num- 
ber of desired clusters or pairs; the thresholds used for the 
canopy algorithm; and the number of positive and negative 
examples generated. 

As success measures for the algorithms, we used several 
different definitions of "loss". Recall that for matching, a 
solution y* is a set of pairs (a, b). Following the usual con- 

1The difference is that in the second clustering, different 
branches of an organization (such as "Virginia Polytechic 
Institute, Blacksburg" and "Virginia Polytechnic Institute, 
Charlottesville") are considered distinct, and in the first, 
they are not. Thanks to Nick Kushmeric for providing this 
data. 
2Thanks to Sheila Tejada for providing this data. 
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Benchmark Name Cluster 
or Match? 

Cora (c) 

OrgNamel (c) 

OrgName2 (c) 

Partition Size 
#Entities #Clusters 

991 65 
925 64 

Thresholds 
Tti9ht Ttoo,~ 
0.36 0.53 

Pairing Examples 
#Pos #Neg 

19,111 7,379 
15,431 8,711 

Potential 
Recall 
0.972 
0.998 

60 42 0.24 0.40 33 56 1.000 
56 17 196 250 1.000 

0.24 0.40 53 34 
63 22 

Restaurant (m) 430 52 
434 60 

Park names (m) 325 124 
321 117 

36 48 
270 181 

52 426 
59 153 

124 304 
117 357 

0.28 0.93 

0.30 0.90 

1.000 
1.000 

1.000 
0.983 
0.992 
0.975 

Table  2: D a t a s e t s  used in the  e x p e r i m e n t a l  eva luat ion  

vention in information retrieval, we define the recall of y 
relative to y* to be lY N y* I/[y*l, the precision of y relative 
to y* to be [yNy*l/ly h the F-measure ofy relative to y* to 
be the harmonic mean of recall and precision. 3 

For clustering algorithms, recall that a problem instance 
x is a set of objects D, and a solution y* is a mapping z 
from D into the integers {1, . . . ,  K}, and define pairs(D, z) 
to be the set of all pairs {(d, dt) E D x D : z(d) = z(d')}. 
We will define recall and precision in terms of pairs(D, z): 
i.e., we define the recall of z relative to z* is Ipairs(D,z)N 
pairs(D, z*)l/[pairs(D , z*)[, and the precision of z relative 
to z* is Ipairs(D, z) N pairs(D, z*)l/[pairs(D, z)l. ,The final 
column of Table 2 shows the maximum recall obtainable us- 
ing the CandidatePairs produced by the canopy algorithm. 4 

In addition to the algorithm described in Section 3, we 
considered two additional clustering/matching algorithms 
as performance baselines. The first one replaces c(a, b) in 
the graphs above with Levenstein edit distance. Applied 
to clustering, this aseline algorithm is similar to the algo- 
rithm proposed by McCallum, Nigam and Unger; applied to 
matching, it is similar to the method proposed by Monge and 
Elkan[14]. The second baseline replaces c(a, b) with TFIDF 
distance, using the formula given in [18], which is similar to 
the algorithm used in WHIRL [2]. 

The experimental results for these algorithms on the datasets 
of Table 2 are shown in Tables 3 and 4. The baseline results 
for edit distance are taken from [13], who used hand-tuned 
edit distance, and unlike the other entries in the table, they 
apply to the whole set, rather than a single partition. In 
Table 4, the best F-measure obtained on each problem is 
placed in bold. 

A first observation on the results of Table 4 is that neither 
baseline system appears to outperform the other. Discount- 
ing Cora (for which the edit-distance function was hand- 

3That is, F = 2.P.R 

4Creating appropriate partitions for training and test is non- 
trivial, since one must ensure that the test cases are inde- 
pendent of the training cases, and a simple random parti- 
tion of would likely lead to a situation in which some of the 
intended clusters were split between the training and test 
sets. To avoid this, we split the data so that no algorithm 
that considers only pairs produced by the canopy algorithm 
would ever consider a pair containing one instance from the 
test set and one instance from the training set. A disadvan- 
tage of this procedure is that it was sometimes impossible 
to create well-balanced splits, biasing the results away from 
adaptive methods. 

engineered), the TFIDF-based baseline obtains a better F1 
score than the distance-function baseline on five runs, per- 
forms worse on two runs, and performs identically on one 
run. This confirms our belief that both TFIDF and edit- 
distance distance metrics are useful in data integration set- 
tings. 

The adaptive method does far better than either base- 
line technique on the Cora dataset. Notice that the ¢ora 
dataset is the largest of the datasets considered, as well as 
the one for which the baseline methods perform the worst; 
hence it offers the most opportunity for adaptive techniques 
to improve performance. In the remaining eight runs, the 
adaptive technique performs best on five, and nearly equals 
the best result on two more (the first split of 0rgNamel and 
the second split of Restau.rant). Thus on nine of the ten 
partitions, the adaptive method obtains results comparable 
to or better than the best of the baseline approaches. 

The adaptive methods performs poorly on only one of the 
ten runs--the second partition of 0rgNamel. We conjecture 
that for this dataset (by far the smallest we considered) the 
constraints on partitioning used above resulted in substan- 
tial variation across the two partitions used for training and 
testing. 5 

5. CONCLUSIONS 
We have presented a scalable adaptive scheme for cluster- 

ing or matching entity names. Experimental results with the 
method are comparable to or better than results obtained 
by clustering or matching with two plausible fixed distance 
metrics. 

As noted above, our formalization of adaptive clustering 
and matching is inspired by the model of "learning to order" 
of Cohen, Schapire, and Singer [5]. They consider adap- 
tive ordering systems and show that this problem can be 
solved by supervised learning of a binary ordering relation, 
followed by a greedy method for constructing a total order 
given a set of (possibly inconsistent) binary ordering deci- 
sions. They also give provable bounds on the loss of such 

SNotice that the TFIDF-based baseline system does much 
better than the edit-distance based baseline on the first par- 
tition, but that the opposite holds on the second partition. 
Thus even the trivial adaptive system that chooses the bet- 
ter of the two baseline systems based on training data would 
perform poorly. The size of the pairing-function training sets 
and the number of entities per cluster is also varies greatly 
in the two partitions. 
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a system. Finding such bounds for adaptive clustering or 
learning remains a problem for future work. 

The architecture of the adaptive matching and clustering 
method is modeled after the system of McCalhim, Nigam 
and Unger [13]. However, in our system, we consider match- 
ing as well as clustering, we also replace a fixed, hand-coded, 
edit-distance meti'ic with a learned pairing function. Our 
focus on general-purpose adaptive clustering and matching 
methods also distinguishes this work from previous work on 
general-purpose non-adaptive similarity metrics for entity 
names (e.g. [9, 14]) or general frameworks for manually im- 
plementing similarity metrics (e.g.,[8]). 

The "core" idea of learning distance functions for entity 
pairs is not new--there is a substantial literature on the 
"recordqinkage" problem in statistics (e.g., [10, 20] much of 
which based on a record-linkage theory proposed by Felligi 
and Sunter [7]. The maximum entropy learning approach we 
use has an advantage over Felligi-Sunter in that it does not 
require features to be independent, allowing a broader range 
of potential similarity features to be used; at the same time 
the method is fairly efficient, in contrast to Felligi-Sunter 
extensions based on latent class models [19]. 

ChoiceMaker.com, a recent start-up company, has also 
implemented a matching procedure based on a maximum 
entropy learner. We extend this work with a systematic 
experimental evaluation, use of canopies to eliminate the 
potentially quadratic cost of learning and clustering, and 
application of the pairing function to both clustering and 
matching. 

A number of enhancements to the current method are 
possible. In future work we hope to examine other features; 
for instance, one notable current omission is the lack of any 
feature that directly measures TFIDF similarity. We also 
hope to compare these methods directly to other matching 
techniques developed in the statistical literature [19, 20]. 
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