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1 Summary
WVU’s work into long-term document retention divides into immediate and long-term
investigations:

• The immediate concern is for an assessment of the STEP/EXPRESS language
for handling long-term data retention. For information on the immediate work,
see the reports from Victor Mucino.

• Other, more long-term work, is exploratory in nature. This paper is about HAM-
LET, which is one example of the exploratory work.

HAMLET is an “anything browser” that aims to offer advice on what engineering
parts are relevant to a partially complete current design.

HAMLET makes minimal assumptions about the nature of the engineering docu-
ments being explored and is designed to be “glue” that permits the searching of tech-
nical data in large heterogeneous collections.

Using technology from AI, information retrieval, program comprehension, and text
mining, HAMLET allows designers to dig up prior designs, study those designs, and
apply any learned insights to new tasks.

Figure 1: Digging up old designs. From [4].



Menzies: HAMLET - progress report 6 of 44

2 What is HAMLET? (overview)

2.1 A New View on HAMLET
HAMLET was originally conceived as a single application. This “anything browser”
was designed to glue together and search technical data in large heterogeneous collec-
tions. To achieve this goal, HAMLET offers the following operations:

• Provides an import facility from a variety of artifacts. The generic parsing facility
is designed to be extensible so, in theory, it would be possible to extend the range
of artifacts processed by HAMLET.

• Provides standard visualization techniques for those artifacts; e.g. fast graphical
browsing of used and used-by links. While state-of-the-art, these standard vi-
sualization techniques quickly overload and exhaust the user (for example, see
Figure 2). Hence, HAMLET uses AI, text mining, program comprehension tech-
niques, and information retrieval techniques to offer a set of filtered views on the
data.

HAMLET’s concept of operation has since changed. It has been realized that the
above operations can support a wide variety of activities:

• Originally, we were targeting a “what else” and “what not” design agent that
found the delta between a partial description of a current design to other designs.

• Now, we view HAMLET as a reconfigurable library of technical specification
comprehension tools. This library supports “what else” and “what not” but could
be made to support many other specification comprehension applications such as
concept location, validation, etc.

Figure 3 shows the new concept of operations. The application previously known as
HAMLET is built on top of a large library of other tools that can be mixed and matched
as required.

This new view of HAMLET is very recent and we have yet to take advantage of
this new HAMLET-as-library architecture. Future versions of this document will try to
exploit this new view. The rest of this document focuses on the use of this architecture
for our standard “what else” / “what not” task.
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Figure 2: Too many neighboring concepts: note the overdose of information result-
ing from a simple visualization of the query “what terms are used by the code in the
left-hand-side screen?” This figure shows the terms referenced by the code sample
on the left-hand-side to a depth of eight links (i.e. directly references, referenced by
something referenced in the left-hand-side code, referenced by something referenced
by something referenced in the left-hand-side code and so on to a nested depth of max-
imum eight links). The depth of nesting for the query is controlled by the slider at
bottom right. The code snippet is in JAVA but a similar query on an EXPRESS schema
would result in a similar information overload. The lesson of this figure is that special
tools are required: we should not show all the nested references; just the relevant ones.
HAMLET’s display of relevant local information is shown in Figure 4.
.
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Figure 3: Our toolkit is a set of libraries, on top of which we can implement multiple
user-level tools.
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2.2 What Else, What Not
HAMLET was named after the famous Shakespeare quote “to be or not to be?” For
the designer of an technical product, the analogoous question is “to do or not to do?”
HAMLET finds the deltas between the current design and old design to compute:

• “What else”: what is absent from the current design but is usually present in
older designs.

• “What not”; what is present in the current design but is usually absent in older
designs.

Figure 4 offers an example of these two lists. Note that designers are not obliged to
always add the “what else” results or always avoid the “what not” results. However,
those two queries will allow a designer to assess their current design with respect to the
space of prior designs.

Once HAMLET returns these lists, the designer and HAMLET enter a feedback
loop where the designer reviews HAMLET’s “what else” and “what not” list. HAM-
LET learns the designer’s preferences and, subsequently, uses that knowledge to offer

Figure 4: A sample HAMLET screen. To the left are the nearest concepts to your
new design. The right side contains information from the chosen nearby design. This
includes the original text as well as attributes pulled by the parser. In the nearest con-
cepts, there exists certain concepts not found in the new design. These are shown in the
what else list in the center. Also, the new design contains certain concepts not found in
the nearest concepts. These are shown in the what not list (also, center).
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results relevant to that user’s current design task.
From the feedback loop, preference knowledge can be learned. Given a community

of designers working on related tasks, HAMLET will be able to quickly learn what
prior designs are relevant for that community.

2.3 Related Work
HAMLET draws on much of the literature on AI, information retrieval, text mining,
and program comprehension. Formally, HAMLET is a suggestion system that aug-
ments standard queries with (a) suggestions that near to the current partially incomplete
design and (b) suggestions of additions to the current design that would make it very
unusual with respect to the space of all prior designs [11].

Having said that, the comprehension of archival technical documentation has cer-
tain attributes that make HAMLET’s task different to other systems:

• Zhai et al. [27] discuss cross-collection mixture models that seek to discover
latent common themes from large document collections. This work assumes that
all documents are expressed in a simple “bag of words” model (i.e. no links
between documents). In HAMLET, on the other hand, documents are stored in a
connected graph showing neighborhoods of related terms.

• The HIPIKAT system of Čubranić and Murphy [24] explores comprehension
of heterogeneous technical products. Software development projects produce a
large number of artifacts, including source code, documentation, bug reports,
e-mail, newsgroup articles, and version information. The information in these
artifacts can be helpful to a software developer trying to perform a task, such as
adding a new feature to a system. Unfortunately, it is often difficult for a soft-
ware developer to locate the right information amongst the huge amount of data
stored. HIPIKAT recommends relevant software development artifacts based on
the context in which a developer requests help from HIPIKAT. While a land-
mark system, HIPIKAT is hard-wired into a particular set of development tools
(ECLIPSE) and the scalability of the tool has not be demonstrated by the authors.

• Hill et al.’s DORA system [15] stores JAVA programs using a combination of
“bag of words” as well as neighborhood hood information. Searching in DORA
is two-fold process where:

– Information retrieval on the bag of words finds candidate connections

– Topology queries on the candidates’ neighbors returns the strongly related
terms.

The drawback with DORA is that it assumes a homogeneous corpus (everything
in DORA is a JAVA class) and its search algorithms will not scale to very large
examples (since they are slower than linear time and memory).
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3 Why HAMLET? (motivation)

3.1 Background
A recent NSF-funded workshop1 highlighted current directions in long term technical
document retention. While much progress was reported on:

• systems issues of handling and sharing very large data collection (e.g. SLASH)

• scalable methods of building customization views (e.g. iRODS),

there was little mention of the cognitive issues of how users might browse and synthe-
size data from massive data collections of technical documents.

For example, here at WVU, we are mid-way through a review of the use of STEP/EXPRESS
for long term technical document retention2. STEP/EXPRESS is commonly used as
an inter-lingua to transfer technical data between CAD/CAM packages. Strange to
say, while STEP/EXPRESS is useful for transferring and understanding technical doc-
uments today, it does not appear to be suitable for understanding technical documents
from yesterday.

In theory, there is nothing stopping STEP/EXPRESS from recording and storing all
aspects of a project. In many ways, STEP/EXPRESS is as expressive as other technical
document standards (e.g. UML). STEP/EXPRESS offers a generic method for storing
part-of and isa information, constraints, types, and the rules associated with a technical
document. However, in practice, the theoretical potential of STEP/EXPRESS is not
realized for the following reasons.

3.1.1 Heterogeneity

The reality of archival systems is that STEP/EXPRESS documents are stored along
side a much larger set of supporting documents in multiple formats. A recent study3

concluded that

• 80 percent of business is conducted on unstructured information.

• 85 percent of all data stored is held in an unstructured format (e.g. the unstruc-
tured text descriptions of issues found in PITS).

• Unstructured data doubles every three months.

That is, if we can learn how to understand large heterogeneous collections that include
STEP/EXPRESS knowledge as well as numerous other products in a wide variety of
formats, it would be possible to reason and learn from a very wide range of data.

1Collaborative Expedition Workshop #74, June 10, 2008, at NSF. “Overcoming I/O Bottlenecks in Full
Data Path Processing: Intelligent, Scalable Data Management from Data Ingest to Computation Enabling Ac-
cess and Discovery”. http://colab.cim3.net/cgi-bin/wiki.pl?ExpeditionWorkshop/
TowardScalableDataManagement_2008_06_10

2See reports from Mucino.
3http://www.b-eye-network.com/view/2098
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3.1.2 Incomplete meta-knowledge

A lot of work has focused on the creation of cached sets of EXPRESS schemas. Forty
such application protocols (AP) have been defined [16] including AP-203 (for geome-
try) and AP-213 (for numerical control). The list of currently defined application proto-
cols is very extensive (see Figure 5). These APs are the cornerstone of STEP tools: the
tools offer specialized support and screen import/export facilities for the APs. While
much effort went into their creation of these APs, very few have been stress-tested in
the information systems field. That is, the majority of these APs have been written
more than they have been read (exceptions: the above-mentioned AP-203 and AP-213
are frequently used and reused in 21st century CAD/CAM manufacturing processes),

3.1.3 Incomplete tool support

Perhaps because of the relative immaturity of the APs, current CAD/CAM tools offer
limited support for the STEP APs. While most tools support geometry (AP-203), the
support for the other APs in Figure 5 is minimal (to say the least).

3.1.4 Incomplete design rationale support

From a cognitive perspective, STEP/EXPRESS does not support the entire design cy-
cle. Rather, it only supports the last stages of design and not all of the interim steps
along the way.

3.1.5 Limited Historical Use

For all the above reasons, highly structured technical documents in formats like STEP/EXPRESS
are in the minority in the archival systems we have examined. We are aware of large
STEP/EXPRESS repositories but these are often inaccessible for a variety of reasons.

While this situation might change in the future (e.g. if all the above issues were
suddenly fixed and all organizations switch to using highly structured technical docu-
mentation), the historical record would still be starved for large numbers of examples.

3.2 Why Use HAMLET To Examine Data?
The most obvious reason for using HAMLET to look at a corpus of technical docu-
ments is its visualization value. Let’s say that your collection contains thirty STEP
documents and the EXPRESS schema that they all relate to. If you just looked through
those documents, you’d be faced with a complete information overload. That’s thirty-
one separate text files to stare at, some with over a thousand lines of code.

HAMLET provides an easy-to-use interface to visualize that data and make de-
ductions based on the raw content (see Figure 6). The document panel lists only the
documents that are relevant to your query (which can be a STEP design that you like).
You can click on one of those documents ans view the raw text as well as key attributes
of that file. This prevents the information overload associated with the raw files by only
giving you relevant information in a more organized fashion.
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AP area
201 Explicit Drafting
202 Associative Drafting
203 Configuration Controlled Design
204 Mechanical Design Using Boundary Representation
205 Mechanical Design Using Surface Representation
206 Mechanical Design Using Wireframe Representation
207 Sheet Metal Dies and Blocks
208 Life Cycle Product Change Process
209 Design Through Analysis of Composite and Metallic Structures
210 Electronic Printed Circuit Assembly, Design and Manufacturing
211 Electronics Test Diagnostics and Remanufacture
212 Electrotechnical Plants
213 Numerical Control Process Plans for Machined Parts
214 Core Data for Automotive Mechanical Design Processes
215 Ship Arrangement
216 Ship Molded Forms
217 Ship Piping
218 Ship Structures
219 Dimensional Inspection Process Planning for CMMs
220 Printed Circuit Assembly Manufacturing Planning
221 Functional Data and Schematic Representation for Process Plans
222 Design Engineering to Manufacturing for Composite Structures
223 Exchange of Design and Manufacturing DPD for Composites
224 Mechanical Product Definition for Process Planning
225 Structural Building Elements Using Explicit Shape Rep
226 Shipbuilding Mechanical Systems
227 Plant Spatial Configuration
228 Building Services
229 Design and Manufacturing Information for Forged Parts
230 Building Structure frame steelwork
231 Process Engineering Data
232 Technical Data Packaging
233 Systems Engineering Data Representation
234 Ship Operational logs, records and messages
235 Materials Information for products
236 Furniture product and project
237 Computational Fluid Dynamics
238 Integrated CNC Machining
239 Product Life Cycle Support
240 Process Planning

Figure 5: STEP Application Protocols.
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HAMLET’s graph tools provide another key visualization advantage. The two-
dimensional graph shows the nearby documents and how they relate to each other. For
example, if your data is written in STEP, the graph maps how the STEP designs relate
to their associated schema. HAMLET’s three-dimensional graph provides a visual tool
that allows you to quickly look at how close certain designs are to your query.

The power of HAMLET is not just in the formatting of data, it is also in the machine
learning techniques that allow you to dive deeper into the data. Clustering algorithms
and classifiers ensure that only relevant data is displayed, and user feedback mecha-
nisms ensure that the experience is tailored to the individual user.

Figure 6: Looking at data using HAMLET has several visualization advantages
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3.3 Under the Hood
3.3.1 Generic Parsing

Internally, HAMLET makes minimal assumptions about the form of the technical doc-
ument:

• A document contains slots and slots can be atomic or point to other documents;.

• The network of pointers between documents presents the space of connected
designs.

A generic parser class implements a standard access protocol for this internal model.
By sub-classing that parser, it is possible to quickly process new documents types.
Currently, HAMLET’s parsers can import:

• STEP/EXPRESS

• Florida Law (XML)

• Text documents structured as follows: sub-headings within headings, paragraphs
within sub-headings, sentences within paragraphs, words in sentences;

• JAVA: This JAVA import allows ready access to very large corpora of structured
technical information (i.e. every open source JAVA program on the web). Hence,
in the sequel, we will make extensive use of JAVA examples since that permits
tests of scalability.

3.3.2 The Geometry of Design

HAMLET treats technical document comprehension as a geometric problem:

• Old designs are clustered into groups.

• A new design can be placed at some point around those clusters.

• To compute “what else,” HAMLET finds the cluster nearest the new design and
looks for differences between the new design and the average design in that clus-
ter.

• To compute “what not,” HAMLET looks for parts of the current design that are
not usually found in the nearest cluster.

While simple in concept, the challenge of HAMLET is three-fold:

1. Doing all the above in a scalable manner; i.e. linear or sub-linear time process-
ing. HAMLET handles this is a variety ways including methods borrowed from
Google.

2. Doing all the above for a heterogeneous corpus. HAMLET handles multiple
formats in the corpus by storing them all documents in a minimalistic internal
format (a document contains slots and slots can be atomic or point to other doc-
uments).
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3. While the minimal format permits rapid extension of HAMLET to other doc-
ument types, it raises the issue of false alarms. Like any information retrieval
task, HAMLET returns some false negatives (i.e. incorrect “what not” results)
and false positives (i.e. incorrect “what else” results). HAMLET therefore builds
profiles for each user based on their particular preferences.
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4 A Session With HAMLET

4.1 The Preprocessor
HAMLET contains several components other than the UI shown below. One such com-
ponent is the pre-processor, a tool used by HAMLET to generate datasets which can
then be loaded into the UI allowing the user to query, rank, and visualize the documents
found in the loaded dataset. The majority of all machine learning takes place within
the pre-processor. This is where tasks like term frequency / document frequency gen-
eration, term selection, clustering, and learner training occurs. After being run through
the pre-processor, each document within a collection is assigned a vector representation
which describes what terms are present in the document and at what frequency.

Figure 7: A HAMLET screen.
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4.2 HAMLET output
Pictured below is HAMLET’s output after running a given query (the unit data text
box). The results are shown in the far left box. The far right boxes (what else and what
not) describe the deltas between your query and the currently selected item in the list
on the left side. What else can be described as “what do I need to add to my thing to
make it more like the selected thing,” while what not is more like “what do I need to
remove from my thing to make it more like the selected thing.” The sample dataset
being run here was built from a corpus of STEP documents corrusponding to AP 203.

Figure 8: HAMLET output.
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4.3 A Web of Connections
HAMLET is a framework that supports the both the semantic and the syntactic structure
inherent in data. Displayed below is an example of the former, a web of hyper-links
connecting relevant document to each other (generated from STEP/EXPRESS data).
When this kind of information is combined with syntactic information (the actual text
of a document, e.g. term counts) a powerful information retrieval system can be cre-
ated that supports the ability to walk through the data. In our application, by clicking
on a document in the graph, you are shown all of the documents connected to the se-
lected document. By hopping from document to document and tweaking visualizations
parameters along the way, it is possible to truly walk through the dataset.

Figure 9: Displaying connections.
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4.4 3-D Visualization
In addition to visualizing 2-D semantic information, HAMLET also supports the abil-
ity to visualize each document vector as a point in 3-D space. To facilitate this, HAM-
LET utilizes dimensionality reduction in two stages. In the first stage, the list of all
possible terms in a given collection is analyzed to determine the most relevant terms
(this reduces the dimensionality from around 20,000 to 100). In the second stage, the
100 dimension document vectors are run through a fast (nearly linear) dimensional-
ity reduction algorithm called FastMap which finds the intrinsic geometry in the 100
dimensional space and projects that into a 3-D space capable of visualization.

Figure 10: 3-D visualization. A new design (in red) floats near its nearest related
concepts (in green). The gray points show parts of specifications that are less relevant
to the new design. Note that this is a 2-D visualization of a 100-D space.
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4.5 User Profiles
HAMLET gives each user a unique profile that is stored on the local machine. During
a typical HAMLET session, the user can indicate whether they like or dislike a par-
ticular document. HAMLET utilizes the latest semantic analysis techniques to bring
documents similar to those rated as liked to the top of query results, while filtering out
the documents disliked. The weights applied to whole documents by the user ratings
are also applied to the terms within that document, and the ”what-else/what-not” list is
weighted by the sum of all ratings on each term in the list.

Figure 11: Logging in.

The user profile itself is stored in a comma-separated CSV file. Each row is a term
and each column is a document (identified by its unique vector ID). Datasets are kept
separate within the profile so that vector IDs do not overlap. A document that is liked
receives a rating of 1, disliked are rated -1. A -2 means that the term is not found within
that document. A total is kept at the end, which is used for ranking purposes.

%Timothy Menzies

%dataset #1
Term,Vector,Vector2,Vector3,Total
Bob,-1,1,1,1
Alice,-2,1,-2,1
Jimmy,-1,-2,1,0

Figure 12: A simple user profile.
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5 How Does HAMLET Work? (the details)
This section offers a technical description of the internals of HAMLET. In that descrip-
tion, the term “document” will be used since that is consistent with the information
retrieval literature. Note that HAMLET’s “document” may be much smaller than, say,
a Microsoft Word .doc file. A HAMLET “document” is just the smallest unit of com-
prehension for a particular type of entry in an archive. Indeed, depending on the parser
being used, a “document” may be:

• An EXPRESS data type

• A JAVA method

• A paragraph in an English document

• Some XML snippet.

• All text associated with an archived engineering project

The methods described in this section are in a state of flux. HAMLET is a prototype
system and we are constantly changing the internal algorithms. In particular:

• All slower-than-linear algorithms are being replaced with linear algorithms.

• Our preliminary experiments suggest that many common methods may in fact
be superfluous for comprehension of technical documents. For example: (a) we
may soon be dropping the stopping and stemming methods described below;
(b) the value of discretization during InfoGain processing is not clear at this
time.

• Any threshold value described in this section (e.g. using the top k = 100 Tf*IDF
terms) will most probably change in the very near future as we tune HAMLET
to problem of archival storage.

5.1 Parsing From Native Formats
HAMLET utilizes a generic parsing framework that provides an interface between ex-
isting parsed data and information retrieval, text mining and program comprehension
methods supported by HAMLET. This allows both safe access to the data at run-time,
as well as easy implementation. A brief, high- level overview of the main functions of
this framework is discussed below.

5.1.1 Parsed Languages

Since HAMLET makes as few assumptions about a technical document as possible,
any language could theoretically be parsed and used within the user interface. The
HAMLET parsing API provides an interface for creating the XML format that the
HAMLET interface reads. Parsers have been provided that process data authored in
the following formats:
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• STEP/Express

• Plain Text

• Florida Law (XML)

• HTML

• Java

The above formats were chosen according to:

• Their relevance to this project- so STEP is highest;

• As well the availability of large corpora- so we use JAVA class libraries and a
large XML dump pf 400 years of Florida real estate law.

5.1.2 HAMLET Parsing API

HAMLET’s language-specific subparsers comb through individual files and pull out
important bits of information (entities in STEP, methods in Java). While processing
individual files, these subparsers collect information about each document. Some of
that information includes pointers to the parsed information and information about
what entities are used by others. The HAMLET generic parsing framework provides
several methods to utilize these data attributes.

The most important function of the API is the generation of the GraphXML file.
This file is the intermediary between the data set and HAMLET. It contains a list of each
document (vertice) and the relationships between them. Other pertinent information,
such as file pointers and document statistics, is stored in the form of attributes for each
document vertice. From a higher level, the collection of these pointers to files gives a
view of the region of interconnected designs, giving HAMLET the ability to make its
decisions and provide suggestions based on what it has already learned.

For certain language imports, such as Java or STEP, HAMLET utilizes edge gen-
eration to determine the relationship of one design to another. For instance, if a call
graph is generated on a set of Java source files, an edge can be placed between a mul-
titude of methods and calls made to and from them. The XML graph generated by the
parsing API includes both the document vertices and the edges that connect them. This
is essential for visualization purposes and provides a wealth of syntactical information.
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Figure 13: One vertice and the information associated with it.

Figure 14: Edges in the graph XML file.

5.2 TF*IDF
In order to perform mathematical operations and algorithms on documents and the text
that they contain, we must first transform them into a representative mathematical ob-
ject. The standard representation of a document is a vector in the space of all available
terms. For example, the phrase:

The quick brown dog was very
quick, very brown, and very dog like. (1)

Will be turned into a vector which looks something like this:

Phrase = [1 2 2 2 1 3 1 1] (2)

with each index of the above vector corresponding the a dimension which comes from
the term list (in this case, the dimensions are the, quick, brown, dog, was, very, like)

Tf*Idf is shorthand for “term frequency times inverse document frequency.” This
calculation models the intuition that jargon usually contains technical words that appear



Menzies: HAMLET - progress report 25 of 44

a lot, but only in a small number of paragraphs. For example, in a document describing
a space craft, the terminology relating to the power supply may appear frequently in
the sections relating to power, but nowhere else in the document.

Calculating Tf*Idf is a relatively simple matter:

• Let there be Words number of documents;

• Let some word I appear Word[I] number of times inside a set of Documents;

• Let Document[I] be the documents containing I .

Then:

Tf ∗ Id = Word[i]/Words ∗ log(Documents/Document[i])

The standard way to use this measure is to cull all but the k top Tf*Idf ranked
stopped, stemmed tokens. This study used k = 100.
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5.3 Dimensionality Reduction
A major issue within HAMLET is dimensionality reduction. Standard AI learning
methods work well for problems that are nearly all fully described using dozens (or
fewer) attributes [25]. But a corpus of archival technical documents must process
thousands of unique words, and any particular document may only mention a few of
them [1, 23]. Therefore, before we can apply learning to technical document compre-
hension, we have to reduce the number of dimensions (i.e. attributes) in the problem.

There are several standard methods for dimensionality reduction such as tokeniza-
tion, stop lists, stemming, Tf*IDF, InfoGain, PCA, and FastMap. All these methods
are discussed below.

5.3.1 Tokenization

In HAMLET’s parser, words are reduced to simple tokens via (e.g.) removing all
punctuation remarks, then sending all upper case to lower.

5.3.2 Stop lists

Another way to reduce dimensionality is to remove “dull” words via a stop list of “dull”
words. Figure 15 shows a sample of the stop list used in HAMLET. Figure 15 shows
code for a stop-list function.

a about across again against
almost alone along already also
although always am among amongst
amongst amount an and another
any anyhow anyone anything anyway
anywhere are around as at
... ... ... ... ...

Figure 15: 24 of the 262 stop words used in this study.

5.3.3 Stemming

Terms with a common stem will usually have similar meanings. For example, all these
words relate to the same concept.

• CONNECT

• CONNECTED

• CONNECTING

• CONNECTION

• CONNECTIONS
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Porter’s stemming algorithm [21] is the standard stemming tool. It repeatedly replies a
set of pruning rules to the end of words until the surviving words are unchanged. The
pruning rules ignore the semantics of a word and just perform syntactic pruning (e.g.
Figure 16).

RULE EXAMPLE
---------------- -----------------------------
ATIONAL -> ATE relational -> relate
TIONAL -> TION conditional -> condition

rational -> ration
ENCY -> ENCE valency -> valence
ANCY -> ANCE hesitancy -> hesitance
IZER -> IZE digitizer -> digitize
ABLY -> ABLE conformably -> conformable
ALLY -> AL radically -> radical
ENTLY -> ENT differently -> different
ELY -> E vilely -> vile
OUSLY -> OUS analogously -> analogous
IZATION -> IZE vietnamization -> vietnamize
ATION -> ATE predication -> predicate
ATOR -> ATE operator -> operate
ALISM -> AL feudalism -> feudal
IVENESS -> IVE decisiveness -> decisive
FULNESS -> FUL hopefulness -> hopeful
OUSNESS -> OUS callousness -> callous
ALITY -> AL formality -> formal
IVITY -> IVE sensitivity -> sensitive
BILITY -> BLE sensibility -> sensible

Figure 16: Some stemming rules.

Porter’s stemming algorithm has been coded in any number of languages4 such as
the Perl stemming.pl used in this study.

5.3.4 InfoGain

According to the InfoGain measure, the best words are those that most simplifies the
target concept (in our case, the distribution of frequencies seen in the terms). Concept
“simplicity” is measured using information theory. Suppose a data set has 80% sever-
ity=5 issues and 20% severity=1 issues. Then that data set has a term distribution C0

with terms c(1) = cat, c(2) = dog etc with frequencies (say) n(1) = 0.8, n(2) = 0.2
etc then number of bits required to encode that distribution C0 is H(C0) defined as
follows:

N =
∑

c∈C n(c)
p(c) = n(c)/N

H(C) = −
∑

c∈Cp(c)log2p(c)

 (3)

After discretizing numeric data5 then if A is a set of attributes, the number of bits
required to encode a class after observing an attribute is:

H(C|A) = −
∑

a∈A
p(a)

∑
c∈C

p(c|a)log2(p(c|a)

4http://www.tartarus.org/martin/PorterStemmer
5E.g. given an attribute’s minimum and maximum values, replace a particular value n with (n −

min)/((max−min)/10). For more on discretization, see [9].
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The highest ranked attribute Ai is the one with the largest information gain; i.e the one
that most reduces the encoding required for the data after using that attribute; i.e.

InfoGain(Ai) = H(C)−H(C|Ai) (4)

where H(C) comes from Equation 3. In this study, we will use InfoGain to find the
top N = 10 most informative tokens.

5.3.5 TF*IDF Ranking

A similar way of reducing the number of terms is by using the summation of the
TF*IDF scores for each term. This method gives each a term a ranking tri each term
using the following equation:

tri =
∑
d∈D

TfIdfi,d (5)

where D is the entire set of documents and TfIdfi,d is the Tf*Idf value for term i and
document d. After this has been computed for each term, a simple sort over all terms
will give us the most important terms, as defined by their Tf*Idf scores. See Figure 17
for a list of real terms returned form a STEP dataset.

The benefit of using this method over InfoGain is not having to discretize the Tf*Idf
values. By using the Tf*Idf values as they are, we can bypass an extra computational
step. Additionally, this approach doesn’t have to compute a new metric as InfoGain
does, it simply sums the existing Tf*Idf scores which is computationally faster than
computing InfoGain.

cartesian_point type oriented_edge subtype entity
label sizeof self query select
name direction edge_curve where wr1
text real set not description
for rule items typeof supertype
... ... ... ... ...

Figure 17: 30 of the 100 key terms found in a STEP dataset using TF*IDF ranking

5.3.6 PCA and FastMap

Numerous data mining methods check if the available features can be combined in
useful ways. These methods offer two useful services:

1. Latent important structures within a data set can be discovered.

2. A large set of features can be mapped to a smaller set, then it becomes possible
for users to manually browse complex data.

For example, principal components analysis (PCA) [7] has been widely applied to re-
solve problems with structural code measurements; e.g. [20]. PCA identifies the dis-
tinct orthogonal sources of variation in a data sets, while mapping the raw features
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onto a set of uncorrelated features that represent essentially the same information con-
tained in the original data. For example, the data shown in two dimensions of Figure 18
(left-hand-side) could be approximated in a single latent feature (right-hand-side).

Since PCA combines many features into fewer latent features, the structure of PCA-
based models may be very simple. For example, previously [3], we have used PCA and
a decision tree learner to find the following predictor for defective software modules:

if domain1 ≤ 0.180
then NoDefects
else if domain1 > 0.180

then if domain1 ≤ 0.371 then NoDefects
else if domain1 > 0.371 then Defects

Here, “domain1” is one of the latent features found by PCA. This tree seems very
simple, yet is very hard to explain to business clients users since “domain1” is calcu-
lated using a very complex weighted sum (in this sum, v(g), ev(g), iv(g) are McCabe
or Halstead static code metrics [18, 13] or variants on line counts):

domain1= 0.241 ∗ loc + 0.236 ∗ v(g)
+0.222 ∗ ev(g) + 0.236 ∗ iv(g) + 0.241 ∗ n
+0.238 ∗ v − 0.086 ∗ l + 0.199 ∗ d
+0.216 ∗ i + 0.225 ∗ e + 0.236 ∗ b + 0.221 ∗ t
+0.241 ∗ lOCode + 0.179 ∗ lOComment
+0.221 ∗ lOBlank + 0.158 ∗ lOCodeAndComment
+0.163 ∗ uniqOp + 0.234 ∗ uniqOpnd
+0.241 ∗ totalOp + 0.241 ∗ totalOpnd
+0.236 ∗ branchCount

(6)

Nevertheless, such latent dimensions can be used to generate visualizations that show
users spatial distances between concepts in technical documents. For example, Fig-
ure 19 shows a 100-D space of prior designs converted to a 3-D representation. In the
conversion process, the three top-most domains were computed and the 100-D space
mapped to the 3-D space.

PCA is the traditional method of performing dimensionality reduction. It suffers
from scale-up problems (for large data sets with many terms, the calculation of the cor-
relation matrix between all terms is prohibitively computationally expensive). FastMap
is a heuristic stochastic algorithm that performs the same task as PCA, but do so in far
less time and memory [10]. Our own experiments with the two methods showed that
both yield similar structures.
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Figure 18: The two features in the left plot can be transferred to the right plot via one
latent feature.
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Figure 19: A 100-D space presented in 3-D. The point in red shows the current design
and the four points in green show the nearest 4 technical documents (and the gray points
show other documents that have been “trimmed” away using the techniques discussed
below).

5.4 Clustering
HAMLET adopts a geometric view of technical and other textual documents floating in
an N-dimensional space (those dimensions maybe have also been reduced by the above
methods). The documents are clustered and new designs can be critiqued with respect
to their position relative to old designs. The process of clustering allows similar designs
(or textual documents) to be placed into groups based upon some defined similarity
measure in this N-dimensional space. This is equivalent to asking, ”What types of
things are out there?”

5.4.1 K-Means

K-Means is a clustering algorithm that, when given a dataset of unidentified objects,
it will group those items into k groups based on some given similarity measure. The
algorithm is described in Figure 20. For an example of the algorithm in operation, see
Figure 21.

While k-means may be sufficiently accurate, there are significant drawbacks. Most
notably is the speed (or lack thereof). Due to the k-means algorithm having to compute
distances from every item to every cluster. In situations where the cosine similarity
distance measure is used, computing the distance between points can be an expensive
operation (this is another place dimensionality reduction helps out). In recent tests
comparing clustering algorithm run-times, k-means was found to be up to 500 times
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i=0
Partitioning the input points into k initial sets, either at random or using some heuristic data.
do

Calculates the mean point, or centroid, of each set or cluster.
Constructs a new partition, by associating each point with the closest centroid.
Recalculate the centroids for the newly partitioned cluster
i = i + 1

while(i ≤ maxIterations or no point changes set membership)

Figure 20: K-Means algorithm

slower than another algorithm, GENIC, which we discuss further down.
Another problem with k-means is determining what value of k should be used.

Note the usability issues with requiring a user to pre-specify k: isn’t this the kind of
tedious detail that the computer should be telling us?

There are many techniques for automatically discovering an approximate value of
k, all of which include several rounds of initial guesses, trying various values around
the guess, then returning the k value that yields the best classification results. The
problem with these techniques is that K-Means is a slow algorithm- requiring it to run
many times is impractical for large corpora.
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Step1: Here, we show some initial data points and the centroids generated based on random
assignment

Step2: Points are associated with the nearest centroid:

Step3: Next, we recompute centroid using new associations and update the stored centroid:

Steps 2 & 3 are repeated until one of the two convergences criteria are reached.

Figure 21: Example of K-means
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5.4.2 Canopy Clustering

A naive clustering algorithm runs in O(N2) where N is the number of terms being
clustered and all terms are assessed with respect to all other terms. For large archival
collections, this is too slow. Various improvements over this naive strategy include ball
trees, KD-trees and cover trees [2]. While all these methods are useful, their ability to
scale to very large examples is an open question.

An alternative to traditional clustering methods is canopy clustering [5, 19]. It
is intended to speed up clustering operations on large data sets, where using another
algorithm directly may be impractical because of the size of the data set. In a stan-
dard clustering algorithms, two items are compared to determine some measure of how
similar or different they are. There are several distance measures used for different
domains (euclidean, cosine, manhattan, etc.), the draw back to all of these is that they
are all relatively computationally expensive. The secret to canopy clustering’s greater
performance over conventional clustering techniques is it’s use of two distance mea-
sures, one being approximately accurate but computationally cheap and the other being
more accurate, however more expensive. To take advantage of the cheap distance met-
ric, two passes are taken over the dataset. In the first pass, the cheap distance measure
is used to determine canopies, which are groups of approximately close things. In the
second pass, the more expensive distance measure is used. If any two items being com-
pared do not share a canopy, then their distance is assumed to be infinite and no further
comparison is done. By doing this, canopy clustering prevents having to perform n2

comparisons at each step through the clustering algorithm.
The algorithm proceeds as follows:

• Cheaply partition the data into overlapping subsets, called ’canopies’ (see Fig-
ure 22);

• Perform more expensive clustering, but only between these canopies.

In the case of text mining applications like HAMLET, the initial cheap clustering
method can be performed using an inverted index; i.e. a sparse matrix representation
in which, for each word, we can directly access the list of documents containing that
word. The great majority of the documents, which have no words in common with the
partial design constructed by the engineering, need never be considered. Thus we can
use an inverted index to efficiently calculate a distance metric that is based on (say) the
number of words two documents have in common.

5.4.3 GENIC

GENIC is a generalized incremental clustering algorithm developed by Gupta and
Grossman [12] that provides HAMLET with two useful services:

• Scalability: Since GENIC was designed with streaming data in mind, it only has
a single pass through the data to work with. Because of this, it scales linearly,
which is a requirement if HAMLET is to scale to large corpora.

• An likely estimate for k: By using stochastic methods, GENIC can be given
an initial k equal to the number of items (each item is its own clusters) and



Menzies: HAMLET - progress report 34 of 44

Figure 22: The darker circle represents all points in a given canopy, points in the
smaller circles cannot be used as a new canopy center.

prune away unlikely clusters with each generation, giving a realistically esti-
mated value for k after the last generation.

Here is how GENIC works:

1. Select parameters

• Fix the number of centers k.

• Fix the number of initial points m.

• Fix the size of a generation n.

2. Initialize

• Select m points, c1, ..., cm to be the initial candidate centers.

• Assign a weight of wi = 1 to each of these candidate centers.

3. Incremental Clustering For each subsequent data point p in the stream: do

• Count = Count + 1

• Find the nearest candidate center ci to the point p

• Move the nearest candidate center using the formula

ci =
(wi ∗ ci + p

wi + 1
(7)
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• Increment the corresponding weight

wi = wi + 1 (8)

• When Count mod n = 0, goto Step 4

4. Generational Update of Candidate Centers
When Count equals n, 2n, 3n, ..., for every
center ci in the list L of centers, do:

• Calculate its probability of survival using the formula

pi =
wi∑n
i=1 wi

(9)

• Select a random number δ uniformly from [0,1]. If pi ¿ δ, retain the center
ci in the list L of centers and use it in the next generation to replace it as a
center in the list L of centers.

• Set the weight wi = 1 back to one. Although some of the points in the
stream will be implicitly assigned to other centers now, we do not use this
information to update any of the other existing weights.

• Goto step 3 and continue processing the input stream

5. Calculate Final Clusters The list L contains the m centers. These m centers
can be grouped into the final k centers based on their Euclidean distances.

GENIC has been shown in the literature to have a clustering error of less 1% [12].
Further, when tested on STEP schemas, it runs 100 to 1000s of times faster than k-
means, as shown in Figure 23 and Figure 24.



Menzies: HAMLET - progress report 36 of 44

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  50  100  150  200  250  300  350  400  450  500

R
un

-t
im

e(
se

co
nd

s)

Number of clusters requested

K-Means vs GenIc - STEP ap203 (n=484)

GenIc
K-Means

K-Means/GenIc

Figure 23: Clustering results of STEP AP203 (configuration controlled design).
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Figure 24: Clustering results of STEP AP214 (core data for automotive mechanical
design processes).

5.5 Classification Within HAMLET
A key task with HAMLET is recognizing which cluster is nearest the partial design
offered by HAMLET’s user. The challenge is doing this in both a quick and effective
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way. However, as often is the case in problems of computer science, speed and accuracy
are trade-offs.

5.5.1 Naive Bayes

Bayesian classifiers, and more generally the Naive Bayes algorithm, are simple sta-
tistical learning schemes. They have seen a lot of use in the Machine Learning field
because they are fast, use very little memory, and are trivial to implement.

Naive Bayes is an application of Bayes’ Theorem, relating the probability of event
H given evidence Ei, a prior probability for a class P (H), and a posteriori probability
P (H|E):

P (H|E) =
∏

i

P (Ei|H)
P (H)
P (E)

(10)

The classification with the highest probability is returned. The above assumes dis-
crete attributes. To deal with numeric values, a features mean µ and standard deviation
σ are used in a Gaussian probability function [26]:

f(x) = 1/(
√

2πσ)e−
(x−µ)2

2σ2

These classifiers are called ”naive” because they assume that all attributes are
equally important and statistically independent. Although these assumptions are al-
most never correct, Domingos and Pazzini have shown that the independence assump-
tion is a problem in a vanishingly small number of cases [8]. On average, Naive Bayes
classifiers perform as well, if not better than, more complex classification algorithms.

5.5.2 TWCNB

Rennie et al. [22] report a variant of a Naive Bayes classifier called Transformed
Weight-normalized Complement Naive Bayes (TWCNB) that uses normalized Tf*IDF
counts with the following properties:

• It handles low frequency data sets;

• It performs almost as well as more complex support vector machine implemen-
tations;

• Better yet, it is very simple to implement and runs in linear time (which makes it
suitable for scaling up to a very large corpus).

By using an optimization on the Naive Bayes classifier called the TWCNB we can
achieve near-state-of-the-art accuracy with state-of-the-art speed. This variant of Naive
Bayes is highly optimized for text classification by doing the following:

• Transforming inherently non-gaussian text distributions (power law) into a guas-
sian to fit with Naive Bayes’s normal assumption

• Normalizes tfidf values to ensure the learner does not favor large or small docu-
ments
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• Reverses the standard Naive Bayes likelihood function so instead of looking for
things that are like a given target, we look for things are not like the given target,
by doing this, TWCNB is able to avoid clusters with relatively low counts

Because of the nature of the data we are dealing with, a key requirement for our
classifier is that it handles low frequency counts: we anticipate that archival data sets
will contain many terms, but only very few of them will appear in any particular doc-
ument or the user’s partial design. This makes TWCNB an excellent candidate for
HAMLET. We are currently experimenting with our own implementation of TWCNB.

5.6 Trimming
Trimming is a simple heuristic to prune remote points. It is a fast and simple method
for focusing design reviews on near-by concepts.

Trimming runs like this:

• The user specifies some max distance measure N .

• The N nearest documents to the user’s partially specified design are accessed.
These documents are sorted 1, 2, 3, 4...N according to their distance to the cur-
rent design.

• The delta between document i and i + 1 in the sort order is computed and the
document i with the maximum delta (most difference between it and i + 1) is
declared “the trim point”.

• All documents i + 1, i + 2, ...N are trimmed away.

For example, Figure 25 show the number of related documents before and after trim-
ming to a maximum depth of N = 25.

5.7 Query Results and What Else/What Not
After classifying the user’s design using the above mentioned bayesian method, we
can drastically reduce the search space of potentially similar designs. This is possible
because after finding the most likely cluster (i.e. type of design), we only consider
items within that cluster when finding designs similar to the user’s query. After all
potentially similar designs have been identified, k-NN (k-Nearest Neighbor where k
is part of the query) is used to determine the most relevant designs within the set of
potentials.

After returning the ranked potentially similar items, the user is then given the option
of exploring the differences between the query (their design) and the results (designs
indexed in HAMLET). Comparisons can be done between the query and either an
individual item in the result list (ex. Product XYZ) or an item representative of all
items in the same cluster (type) (or at least the mathematical representation of one, as
this item may not be tangible). The delta generated by either of these comparisons
comprises two lists:

• What to add (the “what else” list).
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Figure 25: Trimming is a simple heuristic to prune remote points. It is a fast and simple
method for focusing design reviews on near-by concepts. The top picture, left-hand-
side, shows in green the 25 documents closest to some partial design developed by
the user. The contents of the third closest document, highlighted in blue, is shown in
the center screen. The bottom picture shows the same set of nearby documents, with
trimming enabled (see the check box shown in red). Note that now only four documents
are displayed to the user.
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• What to remove (the “what not” list).

Given the treatment as designs as bags (documents) containing stuff (words), an algo-
rithm to generate what else/what not based in set theory was the easiest to conceive.
If each design is a set of words that appear somewhere in its documentation, then the
formula’s for what else and what not are as follows:

•
WhatElse(D,T ) = T −D (11)

•
WhatNot(D,T ) = D − T (12)

where T is a target design or document (bag of words) and D is the design or document
currently being evaluated.

P (H|E) =
∏

i

P (Ei|H)
P (H)
P (E)

(13)

5.8 User Profiling with the Rochio Algorithm
All information retrieval systems, including HAMLET, suffer from false alarms; i.e.
returning query results that the user does not find relevant.

The Rochio algorithm is a standard method for pruning the results of an infor-
mational retrieval search with user feedback [14, 6] The algorithm reports the delta
between the positive document vectors (that related to membership of the positive ex-
amples approved by the user) and the negative ones (that relate to membership of the
negative examples disapproved by the user).

Given a set of documents Dq encompassed by query Q, you can separate the docu-
ments into two distinct subsets of liked (Lq) and disliked (Uq) documents. The normal-
ized TFIDF vectors of those two subsets are summed and weighted by tuning param-
eters (α,β, and χ) that are determined via experimentation but Joachims recommends
weighting the positive information four times higher than the negative [17]. They are
then divided by the size of each set. These summations are then used to tune the origi-
nal query vector as follows:

Qn = αQ +
β

|Lq|
∑
d∈Lq

d− χ

|Uq|
∑
d∈Uq

d (14)

According to Dekhtyar et al /citehayes07, placing emphasis on the positive ele-
ments (liked documents in our example) may improve the recall (new relevant articles
may be found) while emphasizing the negative (disliked documents) may affect preci-
sion (false positive may be removed).

We are currently exploring methods to augment Rochio with TWCNB.
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6 Next Steps
Plan to throw one away; you will anyhow.

- ”The Mythical Man-month” (1975)
HAMLET is a tool suitable for in-house use in a research lab. Much work is re-

quired before it can be released as a stand-alone tool for end-users, see Figure 26.
Note: The road-map in Figure 26 has changed little from last time (Aug 30):

1. As to point 1, we have yet to hit the JAVA wall that makes us recode in “C”
(the GENIC experience suggests that smart algorithms can take us further than
changing the implementation language).

2. We have some promising results regarding point 2 (scalability: see page 36 and
36).

3. Point 3 (user studies) is the focus of the next few months.

4. We’ll address point 4 (linking between document types) if the need arises.

5. As to point 5 (other applications of this toolkit), we exploring what value added
these tools add to Mucino’s “context discovery” problem.

1. The current system was designed as a throw-away prototype to serve as an experimental
workbench for numerous implementation ideas. For example, HAMLET is currently im-
plemented in JAVA since this was a language familiar to the student programmers working
on this project. The limitations of JAVA, in terms of runtime, are becoming apparent. We
wish to avoid a port to “C” and are looking into better internal JAVA-based data structures.

2. As to other matters, the scalability of HAMLET’s queries has yet to be demonstrated.
Theoretically, the algorithms within HAMLET’s current design run in linear time, or less.
However, this scalability must be empirically verified.

3. Also, the user profile system that takes input from the users, then dynamically tunes the
results of each query, is still being designed. Until that feature is designed, implemented,
and tuned, then users of HAMLET will suffer from too many false positives. This user
profile feature must be built.

4. Further, HAMLET’s ability to link between documents in heterogeneous collections has
yet to be tested. This test must be conducted.

5. More generally, another useful question is “what else is HAMLET good for?”. HAMLET
is a combination of feature extractors from technical documents, numerous data & text
mining techniques, some AI tools, and some information retrieval methods (including
methods for learning from user feedback). While the current version answers the ques-
tions “what else” and “what not”, it is an interesting question to ask if the toolkit could be
bent to another purpose.

Figure 26: Our current todo list.
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