
JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 1

On the Relative Value of Cross-company and
Within-Company Data for Defect Prediction

Burak Turhan, Student Member, IEEE, Tim Menzies, Member, IEEE, Ayse Bener, Member, IEEE,
and Justin Distefano

Abstract— We report experiments where defect predictors
from cross-company (CC) data result in dramatically high
probabilities of detecting faulty modules (median value of 7 data
sets: 97%). Sadly, this CC data also yield very large false alarm
rates (median value: 64%).

We explain this high false alarm rate by hypothesizing that CC
data mixes useful data with an excess of extraneous information.
In support of this hypothesis, we show that simple nearest
neighbor (NN) sampling of CC data can filter the extraneous
information to yield detectors with performance close to, but not
better than, within-company (WC) data. That is, NN-filtered CC
data can be a viable stop-gap technique while local data is being
collected.

That stop-gap can be quite brief: we demonstrate in this paper
that the minimum number of data samples required to build
effective defect predictors can be quite small (often, just 100
modules).

Hence, for defect prediction, we recommend a two-phase
approach. In phase one, companies should use NN-filtered CC
data to initiate defect prediction process and simultaneously
start collecting WC (local) data. Once enough WC data is
collected, organizations should switch to phase 2 and use
predictors learned from WC data.

KEYWORDS: defect prediction;learning; metrics (product
metrics); cross-company; within-company

I. INTRODUCTION

What is the generality of our theories for common prob-
lems in empirical software engineering? Are the lessons
learned from Project-X in Company-A relevant to Project-Y in
Company-B? Theoretically, the answer is “no”. Organizations
can work in different domains, have different processes, and
define/measure defects and other aspects of their products
and processes in different ways. Worse, all too often, orga-
nizations do not precisely define their processes, products,
measurements, etc. Hence, given data from Project-X from
Company-A it is not clear to what extent the domain, process,
and measurement varies from that project to other projects.

Mr. Turhan and Dr. Bener are with the Department of Computer Engi-
neering, Bogazici University, Turkey. Emails: turhanb@boun.edu.tr,
bener@boun.edu.tr.

Dr. Menzies and Mr. Distefano are with the Lane Department of Computer
Science and Electrical Engineering, West Virginia University. Mr. Distefano
is also Chief Programmer at Integrated Software Metrics. Emails: tim@
menzies.us and jdistefano@ismwv.com

The research described in this paper was supported by Bogazici University
research fund under grant number BAP-06HA104, by TUBITAK under grant
number EEEAG 108E014 and at West Virginia University under grants with
NASA’s Software Assurance Research Program. Reference herein to any
specific commercial product, process, or service by trademark, manufacturer,
or otherwise, does not constitute or imply its endorsement by the United States
Government.

See See http://menzies.us/pdf/07interra.pdf for an earlier
draft of this paper. Manuscript received June, 2008; revised XXX,

Our view is that cross-company data must be used with
great care in any software engineering problem. For example,
previously [1], we have built elaborate tool sets for con-
verting supposedly general effort estimation models to local
conditions. That work concluded that data imported from
other organizations must be extensively pruned (removal of
extraneous features and projects) before it can be tuned to
local conditions.

In this paper, we turn the attention to defect prediction.
Specifically, this paper assesses the relative merits of cross-
company (CC) vs within-company (WC) data for defect pre-
diction. To the best of our knowledge, this kind of analysis is
a novel one in defect prediction literature. We perform several
experiments to answer the following questions:

A. Are the defect predictors learned from CC data beneficial
for organizations?

Our first experiment identifies the conditions under which
cross-company data are preferred to within-company for the
purposes of learning defect predictors. Those conditions will
turn out to be quite extreme; so much that they hold in only a
small number of organizations (e.g. organizations would have
to tolerate extremely high false alarm rates). Hence, except
in very rare cases, this first experiment deprecates the use of
unfiltered cross-company data for defect prediction.

B. Can we still make use of CC data for defect prediction?

Our explanation for the poor performance of CC data is
that it mixes useful information with an excess of extraneous
information. To explore, we applied nearest neighbor (NN)
filtering to the CC data. This second experiment shows that
some of the drawbacks of CC data can be removed. While,
WC data still performs best, NN-filtered CC data can be viable
alternative, while an organization starts its own local WC
collection program.

C. How much data do organizations need for constructing a
local model for defect prediction?

Kitchenham et al. [2] argue that organizations use cross-
company data since within-company data can be so hard to
collect:

• The time required to collect enough data on past projects
from within a company may be prohibitive.

• Collecting within-company data may take so long that
technologies change and older projects do not represent
current practice.

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 2

We show below that predictors learned from a mere one
hundred examples perform as well as predictors learned from
many more examples. That is:

• Predictors tuned to the particulars of one company can
be learned using very little data, collected in a very small
amount of time;

• The above two reasons [2] for avoiding WC-data in
effort estimation may not neccessarily hold for defect
prediction.

D. Can our theories and results be generalized?

The above experiments use data collected from NASA
projects. In order to check the external validity of our conclu-
sions, we replicated all the above three experiments on data
from a company that has no ties with NASA: specifically,
a Turkish company writing software controllers for Turkish
whitegoods. All the results described above also hold for
the Turkish data. While this does not conclusively prove the
external validty of our conclusions, it does suggest that these
results are not just some fluke of one domain.

II. RELATED WORK

A. Effort Estimation

Before beginning, it is important to question the value of
WC vs CC studies. Intuitivaly, it could be argued that there is
no issue here since of course local data is always better than
imported data.

Prior to this article, there was no test of this intuition in
the domain of defect prediction. However, in the domain of
effort estimation, it turns out that this intuition has only mixed
support:

• Mendes et al. [3] found within-company data performed
much better than cross-company data for predicting es-
timation effort of web-based projects. They only recom-
mend using cross-company data in the special case when
that “data are obtained using rigorous quality control
procedures”.

• A similar conclusion was reached by Abrahansson et al.
who discussed learning effort predictors in the context of
an agile development process [4]. They strongly advocate
the use of WC-data.

However, other studies are not so clear in their conclusions:
• MacDonnel & Shepperd tried to find trends in a set of

papers relating to project management and effort estima-
tion [5]. However, the papers studied by MacDonnel &
Shepperd used a wide range of data sets so these authors
found it hard to offer a definitive combined conclusion.

• In other work, after a review of numerous case studies,
Kitchenham et al. [2] concluded that the value of CC vs
WC data for effort estimation is unclear:

. . . some organizations would benefit from using
models derived from cross-company benchmarking
databases but others would not [2].

• Premraj and Zimmermann suspects that the reason for
the contradictory results are due to heterogeneity in data.
Therefore they build business specific cost models to

have homogeneity in data. They compare within com-
pany, cross company and business specific cost models
and report that although cross company models perform
slightly worse, neither model is significantly better than
others [6].

How can these contradictory results be explained? One possi-
bility is that effort estimation requires the collection of project
data, some of which has ambiguous definitions. For example,
one of the features of the COCOMO-family [7] of effort
predictors is ”applications experience” (aexp). According to
one on-line source1, this feature is defined as follows: “the
project team’s equivalent level of experience with this type
of application”. No guidance is offered regarding how to
characterize “this type of application”. Hence, there is some
degree of ambiguity in this definition. We conjecture that the
ambiguity of the effort estimation features is one reason for
the variance in the results reported by MacDonnel & Shepperd
and Kitchenham et al. [2], [5].

Static code features, on the other hand, are not so am-
biguous. Simple toolkits can be used to collect these features
in a rapid, automatic, and uniform manner across multiple
projects. Therefore, in theory, conclusions reached from these
features should be less ambiguous than those reached from
effort estimation features.

To test this hypothesis, the rest of this paper assesses the
relative merits of WC-vs-CC data for defect prediction.

B. Defect Prediction

This section updates a literature review from a prior publi-
cation on defect prediction [8].

For the two experiments in this paper, we learn defect
predictors from tables of static code features defined by
McCabe [9] and Halstead [10]. McCabe (and Halstead) are
“module”-based metrics. Each row in the table stores infor-
mation from one module; the smallest unit of functionality2.
To learn such predictors, the data tables are augmented with
one column holding boolean values for “defects detected”. The
data mining task is to find combinations of code features that
predict for the value in the defects column.

Defect predictors can be used to bias the ordering of
modules to be inspected by verification and validation teams:

• In the case where there are insufficient resources to
inspect all code (which is a very common situation in
industrial developments), defect predictors can be used
to increase the odds that the inspected code will have
more defects.

• In the case where all the code is to be inspected, but that
inspection process will take weeks to months to complete,
defect predictors can be used to increase the odds that
defective modules will be inspected earlier. This is useful
since it gives the development team earlier notification of
what modules require rework, hence giving them more
time to complete that rework prior to delivery.

1http://sunset.usc.edu/research/COCOMOII/expert_
cocomo/drivers.html

2In other languages, modules may be called “function” or “method”.

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 3

We study defect predictors learned from static code at-
tributes since they are useful, easy to use, and widely-used.

Useful: This paper finds defect predictors with a probability
of detection of 80%, or higher. This is higher than currently-
used industrial methods such as manual code reviews:

• A IEEE Metrics 2002 [11] panel concluded that manual
software reviews can find ≈60% of defects3

• In 2004, Raffo (personnel communication)
reports that the defect detection capability
of industrial review methods can vary from
probability of detection: pd = TR(35, 50, 65)%4. for
full Fagan inspections [14] to pd = TR(13, 21, 30)%
for less-structured inspections.

Easy to use: static code attributes like lines of code and the
McCabe/Halstead attributes can be automatically and cheaply
collected, even for very large systems [15]. By contrast:

• Other methods such as manual code reviews are labor-
intensive; e.g. 8 to 20 LOC/minute can be inspected and
this effort repeats for all members of the review team,
which can be as large as four or six [16].

• Other features (e.g. number of developers, the software
development practices used to develop the code) may be
unavailable or hard to characterize.

Widely used: Many researchers use static attributes to guide
software quality predictions (see [9], [10], [15], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33]). Verification and validation (V&V)
textbooks ([34]) advise using static code complexity attributes
to select modules worthy of manual inspections. For several
years, the first author worked on-site at the NASA software
Independent Verification and Validation facility and he knows
of several large government software contractors that won’t
review software modules unless tools like McCabe predict that
they are fault prone. For example, in Feburary 2008 the first
author attended two briefings by NASA and European Space
Agency test engineers who both cited McCabe’s v(g) ≥ 10 as
one of their triggers for modules requiring closer inspections.

Nevertheless, there are many reasons to doubt the value
of static code attributes for defect prediction. Descriptions of
software modules only in terms of static code attributes can
overlook some important aspects of software including the
type of application domain; the skill level of the individual
programmers involved in system development; contractor de-
velopment practices; the variation in measurement practices;
and the validation of the measurements and instruments used
to collect the data. For this reason some researchers augment,
or replace static code measures with other information such
as the history of past faults or changes to code or number of
developers who have worked on the code [35].

Also, static code attributes are hardly a complete charac-
terization of the internals of a function. Fenton offers an
insightful example where the same functionality is achieved
using different programming language constructs resulting in

3That panel supported neither Fagan’s claim [12] that inspections can
find 95% of defects before testing or Shull’s claim that specialized directed
inspection methods can catch 35% more defects that other methods [13].

4TR(a, b, c) is a triangular distribution with min/mode/max of a, b, c.

probability of
data detection false alarm

pima diabetes 60 19
sonar 71 29

horse-colic 71 7
heart-statlog 73 21

rangeseg 76 30
credit rating 88 16

sick 88 1
hepatitis 94 56

vote 95 3
ionosphere 96 18

mean 81 20

Fig. 1. Some representative pds and pfs for prediction problems from the
UC Irvine machine learning database [36]. These values were generated using
the standard settings of a state-of-art decision tree learner (J48). For each data
set, ten experiments were conducted, where a decision tree was learned on
90% of the data, then tests are done of the remaining 10%. The numbers
shown here are the average results across ten such experiments.

different static measurements for that module [37]. Fenton uses
this example to argue the uselessness of static code attributes.
Further, Fenton & Pfleeger note that the main McCabe’s
attribute (cyclomatic complexity, or v(g)) is highly correlated
with lines of code [37]. Shepperd & Ince repeated that result,
commenting that “for a large class of software it (cyclomatic
complexity) is no more than a proxy for, and in many cases
outperformed by, lines of code” [38].

If the above criticisms are correct then we would predict
that, in general, the performance of a predictor learned by
a data miner should be very poor. More specifically, the
supposedly better static code attributes such as Halstead and
Mccabe should perform no better than just simple thresholds
on lines of code.

Neither of these predictions are true, at least for the data
sets used in this study. The defect predictors learned from
static code attributes perform surprisingly well. Formally,
learning a defect predictor is a binary prediction problem
where each modules in a database has been labeled ”defect-
free” or ”defective”. The learning problem is to build some
predictor which guesses the labels for as-yet-unseen modules.
In this paper we find predictors with a probability of detection
(pd) and probability of false alarm (pf) of

median(pd) ≥ 80;median(pf) ≤ 26

Figure 1 lets us compare our new results against stan-
dard binary prediction results from the UC Irvine machine
learning repository of standard test sets for data miners [36].
Our (pd, pf) are very close to the standard results of
(pd,pf)=(81%,20%) which is noteworthy in two ways:

1) It is unexpected. If static code attributes capture so little
about source code (as argued by Shepherd, Ince, Fenton
and Pfleeger), then we would expect lower probabilities
of detection and much higher false alarm rates.

2) These (pd, pf) results are better than currently used
industrial methods such as the pd≈60% reported at the
2002 IEEE Metrics panel or the median(pd) = 21..50

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 4

reported by Raffo5.
While Figure 1 shows that our defect detectors work nearly

as well as standard data mining methods, it does not demon-
strate that false alarm rates of around 1

4 are useful in an indus-
trial context. Assessing such detectors in an industrial context
depends on the industry. But one of our clients (the company
from which SOFTLAB data in Figure 2 are collected) is keen
to use our detectors, arguing that they operate in a highly
competitive market segment where profit margins are very
tight. Therefore reducing the cost of the product even by 1%
can make a major difference both in market share and profits.
Their applications are embedded systems where, over the last
decade, the software components have taken precedence over
the hardware. Hence their problem is a software engineering
problem. According to Brooks [39], half the cost of software
development is in unit and systems testing. The company also
believes that their main challange is the testing phase and they
seek predictors that indicate where the defects might exist
before they start testing. This allows them to efficiently use
their scarce resources.

III. DATA

This paper focuses solely on predictors learned from static
code features (These features are shown in Figure 3 and
explained in Figure 4 and Figure 5). It is therefore prudent
to digress and discuss the value of other types of features.

Defect predictors have been successfully learned from wide
variety of measures such as:

• static code features [8];
• churn metrics (rates of code change) [21];
• personnel details about the development team [40];
• features extracted from requirements documents [41].

This list is hardly exhaustive and can be extended be either
adding new feature types of combining existing ones. For
example, Jiang, Cukic & Menzies [41] found that defect
predictors learned from requirements and code measures can
create predictors that out-perform predictors learned from just
code or just requirements metrics.

Nevertheless, we hesitate to demand defect prediction
should always be based on churn, requirements, code, or
personnel features. We have some theoretical evidence sug-
gesting that the “best” set of features may change from project
to project (see the feature subset selection experiments of
[42]). More pragmatically, we note that different projects use
different tools and build software using different processes.
Hence, different projects have access to different sets of
features which may be useful for predicting where faults hide;
for example:

5But note that we can only relatively compare the defect detection properties
of automatic vs manual methods. Unlike automatic defect prediction via data
mining, the above manual inspection methods don’t just report “true,false”
on a module, Rather, the manual methods also provide specific debugging
information. Hence, a complete comparison of automatic vs manual defect
prediction would have to include both an analysis of the time to detect
potential defects and the time required to fix them. Manual methods might
score higher to automatic methods since they can offer more clues back to the
developer about what is wrong with the method. However, such an analysis
is beyond the scope of this paper. Here, we focus only on the relative merits
of different methods for detecting errors.

m = Mccabe v(g) cyclomatic complexity
iv(G) design complexity
ev(G) essential complexity

locs loc loc total (one line = one count
loc(other) loc blank

loc code and comment
loc comments
loc executable
number of lines (opening to clos-
ing brackets)

Halstead h N1 num operators
N2 num operands
µ1 num unique operators
µ2 num unique operands

H N length: N = N1 + N2

V volume: V = N ∗ log2µ
L level: L = V ∗/V where

V ∗ = (2 + µ2
∗)log2(2 + µ2

∗)
D difficulty: D = 1/L

I content: I = L̂ ∗ V where
L̂ = 2

µ1
∗ µ2

N2
E effort: E = V/L̂
B error est
T prog time: T = E/18 seconds

Fig. 3. Features used in this study. The Halstead features are explained in
Figure 4 and the Mccabe features are explained in Figure 5.

• An open source software (OSS) or agile process may have
no access to the detailed requirement documents used to
build model by Jian, Cukic, & Menzies;

• The data used in this study (see Figure 2) comes from
NASA sub-contractors who do not report the personnel
information used by Nagappan et.al. in their defect pre-
dictions [40].

Debates over the value of one kind of feature over another is
orthogonal to the main point of this paper. In this work, we
identify a particular type of feature (i.e. static code features)
which we can collect from multiple projects. With that data in
hand, we now explore the value of CC vs WC learning. For
future work, we would repeat this analysis with those other
kinds of features, if and when they become available from
multiple projects.

An advantage of static code features is that they can be
quickly and automatically collected from the source code, even
if no other information is available. The experiments of this pa-
per use the static code data of Figure 2, which are downloaded
from the PROMISE repository6. We considered using static
code features collected from OSS and examined the defect logs
of the Mozilla project. This experiment was abandoned when
we realized that, at least for the Mozilla project, that those
issue reports did not accurately map between defect reports
and modules; e.g. a developer may checking many modules as
part of a bug fix, some of which may actually be enhancements
generated as a side-effect of the bug fix. Other researchers
have had more success with OSS defect prediction [43] and
in future work we will try again to apply our methods to OSS.

Our data are taken from software developed in different
geographical locations across North America (NASA) and
Turkey (SOFTLAB). Within a system, the sub-systems shared
some common code base but did not pass personnel or code
between sub-systems. While NASA and SOFTLAB are one

6http://promisedata.org/repository

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 5

The Halstead features were proposed by Maurice Halstead in
1977. He argued that modules that are hard to read are more likely
to be fault prone [10]. Halstead estimates reading complexity by
counting the number of operators and operands in a module: see
the h features of Figure 3. These three raw h Halstead features
were then used to compute the H: the eight derived Halstead
features using the equations shown in Figure 3. In between the
raw and derived Halstead features are certain intermediaries:

• µ = µ1 + µ2;
• minimum operator count: µ∗1 = 2;
• µ∗2 is the minimum operand count and equals the number of

module parameters.

Fig. 4. Notes on the Halstead features

An alternative to the Halstead features of Figure 4 are the
complexity features proposed by Thomas McCabe in 1976. Un-
like Halstead, McCabe argued that the complexity of pathways
between module symbols are more insightful than just a count of
the symbols [9].
The first three lines of Figure 3 shows McCabe three main features
for this pathway complexity. These are defined as follows.

• A module is said to have a flow graph; i.e. a directed graph
where each node corresponds to a program statement, and
each arc indicates the flow of control from one statement to
another.

• The cyclomatic complexity of a module is v(G) = e−n+2
where G is a program’s flow graph, e is the number of arcs
in the flow graph, and n is the number of nodes in the flow
graph [37].

• The essential complexity, (ev(G)) of a module is the extent
to which a flow graph can be “reduced” by decomposing
all the subflowgraphs of G that are D-structured primes
(also sometimes referred to as “proper one-entry one-exit
subflowgraphs” [37]). ev(G) = v(G) − m where m is
the number of subflowgraphs of G that are D-structured
primes [37].

• Finally, the design complexity (iv(G)) of a module is the
cyclomatic complexity of a module’s reduced flow graph.

Fig. 5. Notes on the McCabe features

single source of data, there are several projects within each
source. For example, NASA is really an umbrella organization
used to co-ordinate and fund a large and diverse set of
projects:

• The NASA data was collected from across the United
States over a a period of five years from numerous NASA
contractors working at different geographical centers.

• These projects represent a wide array of projects, includ-
ing satellite instrumentation, ground control systems and
partial flight control modules (i.e. Attitude Control).

• The data sets also represent a wide range of code reuse:
some of the projects are 100% new, and some are
modifications to previously deployed code.

That is, even if we explore just (say) the NASA data sets, we
can still examine issues of cross- vs within- company data use.

The external validity of generalizing from NASA exam-
ples has been discussed elsewhere [8]. In summary, NASA
uses contractors who are contractually obliged (ISO-9O01) to
demonstrate their understanding and usage of current industrial
best practices. These contractors service many other indus-

tries; for example, Rockwell-Collins builds systems for many
government and commercial organizations. For these reasons,
other noted researchers such as Basili, Zelkowitz, et al. [44]
have argued that conclusions from NASA data are relevant to
the general software engineering industry.

Nevertheless, it is always wise to test claims of external
validity. Hence:

• The SOFTLAB data are, initially, in reserve. Our first
three experiments will be based solely on the aerospace
applications found in the NASA data.

• Our last experiment will check if the SOFTLAB data
exhibit the same pattern as the NASA data.

The results are shown below.

IV. EXPERIMENT #1: WC-VS-CC

A. Design

Our first WC-vs-CC experiments repeated the following
procedure for all 7 NASA tables of Figure 2. For each table,
test sets were built from 10% of the rows, selected at random.
Defect predictors were then learned from:

• Treatment 1 (CC): all rows from the other 11 tables.
• Treatment 2 (WC): just the other 90% rows of this table;

Most of the Figure 2 tables come from systems written in
“C/C++” but at least one of the systems was written in JAVA.
For cross-company data, an industrial practitioner may not
have access to detailed meta-knowledge (e.g. whether it was
developed in “C” or JAVA). They may only be aware that data,
from an unknown source, are available for download from a
certain url. To replicate that scenario, we will make no use of
our meta-knowledge about Figure 2. As we shall see, a clear
stable effect will occur across all the tables, regardless of (say)
the implementation language.

In order to control for order effects (where the learned
theory is unduly affected by the order of the examples) our
procedure was repeated 20 times, randomizing the order of
the rows in the table each time. Therefore, randomly selected
training and test sets did not stay constant throughout the
repetitions, In all, we ran 280 experiments to compare WC-
vs-CC:

(2 treatments) ∗ (20 randomized orderings) ∗ (7 tables)

All the numeric distributions in the Figure 2 data are
exponential. A “log-filter” replaces all numerics N with
log(N). This spreads out exponential curves more evenly
across the space from the minimum to maximum values
(to avoid numerical errors with ln(0), all numbers under
0.000001 are replaced with ln(0.000001)). This “spreading”
can significantly improve the effectiveness of data mining [8].

In prior work we have explored a range of data mining
methods for defect prediction and found that classifiers based
on Bayes theorem work best for the Figure 2 data [8] (for
notes on Bayes classifiers, see Figure 7). Since that study,
we have tried to find better data mining algorithms for defect
prediction. To date, we have failed. Our recent (as yet, un-
published) experiments have found no additional statistically

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 6

Fig. 6. Range of ranks seen in 19 learners building defects predictors when,
10 times, a random 66% selection of the data are used for training and the
remaining data are used for testing. In ranked data, values from one method
are replaced by their rank in space of all sorted values (so smaller ranks mean
better performance). In this case, the performance value was area under the
false positive vs true positive curve (and larger values are better). Vertical
lines divide the results into regions where the results are statistically similar.
For example, all the methods whose top ranks are 4 to 12 are statistically
insignificantly different. From [51].

significant improvement from the application of the follow-
ing data mining methods: logistic regression; average one-
dependence estimators; under- or over-sampling [45], random
forests, RIPPER [46], decision tree learning with J48 [47], rule
learning with OneR [48] and bagging [49]. Only boosting [50]
on discretized data offers a statistically better result than a
Bayes classifier. However, we cannot recommend boosting:
the median improvement is quite negligible and boosting is
orders of magnitude slower than our simple Bayes classifier.

Other researchers have also failed to improve our results.
For example, Lessmann et al. investigate the statistical dif-
ference of the results between 19 learners, including naive
Bayes, on the same datasets [51]. Figure 6 shows that the
simple Bayesian method discussed above ties in first place
along with 15 other methods.

Data mining effectiveness was measured using pd, pf and
balance [8], [55]. If {A,B, C, D} are the true negatives,
false negatives, false positives, and true positives (respectively)
found by a defect predictor, then:

pd = recall = D/(B + D) (2)
pf = C/(A + C) (3)

bal = balance = 1−

√
(0− pf)2 + (1− pd)2

√
2

(4)

All these values range zero to one. Better and larger balances
fall closer to the desired zone of no false alarms (pf = 0) and
100% detection (pd = 1).

Other measures such as accuracy and precision were not
used since, as shown in Figure 2, the percent of defective
examples in our tables was usually very small (median value
around 8%). Accuracy and precision are poor indicators of
performance for data where the target class is so rare (for
more on this issue, see [8], [55]).

The WC and CC results were visualized using quartile
charts. To generate these charts, the performance deltas for

Bayesian classifiers offers a relationship between fragments of evidence
Ei, a prior probability for a class P (H), and a posteriori probability
P (H|E). Note that the likelihood P (H|E) is approximated by the
product term due to the i.i.d. (independent and identically distributed)
assumption:

P (H|E) =

(∏
i

P (Ei|H)

)
P (H)

P (E)
(1)

For example, in our data sets, there are two hypotheses: modules are
either defective or not; i.e. H ∈ {defective, nonDefective}. Also, if
a particular module has numberofSymbols = 27 and LOC = 40 and
was previously classified as “defective” then

E1 : numberOfSymbols = 27
E2 : LOC = 40
H : defective

When building defect predictors, the posterior probability of each class
(“defective” or “defect-free”) is calculated, given the features extracted
from a module. So, if a data set has 100 modules and 25 of them are
faulty, then:

P (defective) = 0.25

When testing new data, a module is assigned to the class with the higher
probability, calculated from Equation 1.
For numeric features, a feature’s mean µ and standard deviation σ is used
in a Gaussian probability function [52]:

f(x) = 1/(
√

2πσ)e
− (x−µ)2

2σ2

Simple Bayes classifiers are often called “naive” since they assume
independence of each feature. While this assumption simplifies the im-
plementation (frequency counts are required only for each feature), it
is possible that correlated events are missed by this “naive” approach.
Potentially, this is a significant problem for our kinds of data sets where
the static code measures are highly correlated (e.g. the number of symbols
in a module increases linearly with module lines of code).
In a previous work, we have investigated variants of Bayesian models
considering this issue and observed that the independence assumption
of naive Bayes is safe for the Nasa datasets [53]. In another work, we
have also performed extensive feature subset selection (FSS) experiments,
where similar prediction performances were obtained using small subsets
of features selected by Information Gain [8]. However, we did not observe
an increase in the prediction performances when we used whole available
data. Furthermore, Domingos and Pazzani show theoretically that the
independence assumption is a problem in a vanishingly small percent
of cases [54]. This explains the repeated empirical result that, on average,
seemingly naive Bayes classifiers perform as well as other seemingly more
sophisticated schemes (e.g. see Table 1 in [54]).
The Domingos and Pazzani result also explains our prior experiments
where naive Bayes did not perform worse than other learners that
continually re-sample the data for dependent instances (e.g. decision-tree
learners that recurse on each “split” of the data [47]).

Fig. 7. About Bayes classifiers.

some treatment are sorted to isolate the median and the lower
and upper quartile of numbers. For example:

{
q1︷ ︸︸ ︷

4, 7, 15, 20, 31,

median︷︸︸︷
40 , 52, 64,

q4︷ ︸︸ ︷
70, 81, 90}

In our quartile charts, the upper and lower quartiles are
marked with black lines; the median is marked with a black
dot; and vertical bars are added to mark the 50% percentile
value. The above numbers would therefore be drawn as
follows:

0% u 100%

The Mann-Whitney U test [56] was used to test for statis-
tical difference between treatments. This non-parametric test
replaces (e.g.) pd values with their rank inside the popula-
tion of all sorted pd values. Such non-parametric tests are

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 7

treatment min Q1 median Q3 max

pd CC 50 83 97 100 100 u
WC 17 63 75 82 100 u

pf CC 14 53 64 91 100 u
WC 0 24 29 36 73 u

Fig. 8. Experiment #1 results averaged over seven NASA tables. Numeric
results on left; quartile charts on right. “Q1” and “Q3” denote the 25% and
75% percentile points (respectively). The upper quartile of the first row is not
visible since it runs from 100% to 100%; i.e. it has zero length.

pd pf
group WC → CC WC → CC tables |tables|

a increased increased CM1 KC1 KC2
MC2 MW1 PC1

6

b same same KC3 1

Fig. 9. Summary of U-test results (95% confidence): moving from WC to
CC. For full results, see Figure 10.

recommended in data mining since many of the performance
distributions are non-Gaussian [57].

We report one deviation from our prior procedure. The
tables of data come from different sources and, hence, have
different features. For this study, all the tables were pruned
such that they only contained features that appear in all the
seven tables.

B. Results from Experiment #1
Figure 8 shows the {pd, pf} quartile charts for CC vs WC

data averaged over seven NASA datasets. The trend is very
clear: CC data dramatically increases both the probability of
detection and the probability of false alarms. The pd results
are particularly striking.

For cross-company data:
• 50% of the pd values are at or above 97%
• 75% of the pd values are at or above 83%;
• And all the pd values are at or over 50%.
By way of comparison, recall from the above that our

previous result had an average pd of 71% [8].
To the best of our knowledge, Figure 8 are the largest pd

values ever reported from these data. However, these very high
pd values come at some considerable cost. Note in Figure 8
that the median false alarm rate has changed from 29% (with
WC) to 64% (with CC) and the maximum pf rate now reaches
100%.

We explain these increases in pd, pf with the following
extraneous hypothesis: Using a large training set (e.g. seven
of the tables in Figure 2) informs not only all the causes
of errors, but also of numerous irrelevancies (e.g. applying
statistics gathered from JAVA programs to “C” programs).
Hence, large training sets increase the probability of detection
(since there are more known sources of errors) as well as the
probability of false alarms (since there are more extraneous
factors introduced to the analysis). We test the extraneous
hypothesis in the next experiment.

C. Sanity Checks on Experiment #1
This section explores threats to the external validity of the

Experiment#1 conclusions. It can be skipped at first reading

of this paper.
Once a general result is defined (e.g. CC dramatically

increases both pf and pd), it is good practice to check for
specific exceptions to that pattern. Figure 9 shows a summary
of results when U tests were applied to test results from each
of the 7 tables, in isolation and Figure 10 shows the {pd, pf}
quartile charts for Experiment #1 for each NASA table:

• Usually (6
7), the general pattern still holds (see group a).

• In one case (see group b), there was no difference in the
results of the different treatments.

Overall, the general result holds in the majority of cases (i.e.
6
7), which is not a 100% internally consistent, however it is
still a very clear effect.

D. Discussion of Experiment #1

When practitioners use defect predictors with high false
alarm rates (e.g.the 64% reported above), they must allocate
a large portion of their debugging budget to the unfruitful
exploration of erroneous alarms.

In our industrial work, we have sometimes seen several
situations where detectors with high false alarms are useful:

• When the cost of missing the target is prohibitively
expensive. In mission critical or security applications,
the goal of 100% detection may be demanded in all
situations, regardless of the cost of chasing false alarms.

• When only a small fraction the data is returned. Hayes,
Dekhtyar, & Sundaram call this fraction selectivity
and offer an extensive discussion of the merits of this
measure [58].

• When there is little or no cost in checking false alarms.
For example, a detector we have found useful in industrial
settings is to check modules where

lines of comments

lines of code
> 0.25

This detector triggers on complex functions that pro-
grammers comment extensively, instead of splitting up
into smaller, more maintainable, functions. This detector
suffers from high false alarms- it often triggers on well-
written functions with detailed comments. On the other
hand, it may be fast and simple for a human agent to
inspect the identified modules and discern which ones
were well-written and which were over-commented to
compensate for being badly coded.

Having said that, we observe that most sites do not accept
false alarm rates as high as 64%. Therefore, the conditions
under which the benefits of CC data (high probabilities of
detection) outweigh their high costs (high false alarm rates)
are quite rare.

In summary, for most software applications, very high pf
rates like the CC results of Figure 8 make the predictors
impractical to use.

V. EXPERIMENT #2: NN-FILTERED CC

The results of the first experiment limits the use of CC
data to a limited domain (i.e. mission critical) and may
look discouraging at first glance. In the first experiment we

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 8

quartiles
rank 0 25 50 75 100

CM1 1 CC 98 98 98 98 98 u
2 NN 76 82 82 84 84 u
3 WC 20 60 80 80 100 u

MW1 1 CC 90 90 90 90 90 u
2 NN 68 68 68 68 71 u
2 WC 0 50 50 75 100 u

PC1 1 CC 99 99 99 99 99 u
2 NN 74 77 77 77 78 u
3 WC 38 62 62 75 100 u

50%

Fig. 11. Experiment #2 PD results where NNpd ≥ WCpd. Rankings
computed via Mann-Whitney (95% confidence) comparing each row to all
other rows.

explained our observations with the extraneous hypothesis,
that the results are affected by the irrelevancies in CC data.
In effort estimation literature, Kitchenham et al. argues the
same concept as the heterogeneity of CC data [2]. Further,
Premraj and Zimmermann builds business specific cost models
to avoid such heterogeneity [6]. However, the effects of more
homogeneous data for cost estimation are observed in a range
of patterns that vary in different companies. (Recall that we
explain this with the ambiguity in cost estimation features).
Here, we will perform similar analysis for defect prediction to
test the extraneous hypothesis.

A. Design

In this experiment, we try to construct more homogeneous
defect datasets from CC data. For this purpose we use a
simple sampling method (i.e. NN). Our idea behind sampling
is to collect similar instances together in order to construct
a learning set that is homogeneous with the validation set.
We simply use the k-Nearest Neighbor (k-NN) method to
measure the similarity between the validation set and the
training candidates. The expected outcome of the sampling
part is to obtain a subset of available CC data that shows
similar characteristics to the local code culture.

We first calculate the pairwise distances between the vali-
dation set and the candidate training set samples (i.e. all CC
data). Let N be the number of validation set size. For each
validation sample, we pick its k = 10 nearest neighbors from
candidate training set. Then we come up with a total of 10×N
similar samples. Note that these 10×N samples may not be
unique (i.e. a single data sample can be a nearest neighbor of
many data samples in the validation set). Using only unique
ones, we form the training set and use a random 90% of it for
training a predictor. We repeat the last step 100 times.

B. Results

The ideal result would be that NN can be used as a surrogate
for local WC data. This, in turn, would mean that developers
could avoid the tedium and expense of local data collection. If
NN out-performed WC then two observations would appear:

• Observation1: NN would have pd values above or equal
to WC’s pd. The examples displaying Observation1 are
shown in Figure 11.

quartiles
rank 0 25 50 75 100

KC1 1 CC 94 94 94 94 94 u
2 WC 64 76 82 85 94 u
3 NN 60 64 65 66 69 u

KC2 1 CC 94 94 94 94 94 u
2 WC 45 73 82 91 100 u
2 NN 77 78 79 79 80 u

KC3 1 CC 81 81 81 84 84 u
2 WC 20 60 80 100 100 u
3 NN 60 63 65 67 70 u

MC2 1 CC 83 83 83 83 85 u
2 WC 17 50 67 83 100 u
3 NN 56 56 56 56 58 u

50%

Fig. 12. Experiment #2 PD results where NNpd < WCpd.

quartiles
rank 0 25 50 75 100

KC1 1 NN 22 23 24 25 27 u
2 WC 26 32 35 37 43 u
3 CC 59 60 60 60 60 u

KC2 1 NN 24 25 25 25 27 u
1 WC 10 21 26 31 40 u
2 CC 67 67 67 67 67 u

KC3 1 NN 17 18 18 19 20 u
2 WC 7 17 21 26 31 u
3 CC 26 27 27 27 27 u

MC2 1 NN 29 30 31 32 35 u
2 WC 0 27 36 45 73 u
3 CC 71 71 71 71 71 u

50%

Fig. 13. Experiments #2 PF results where NNpf ≤ WCpf .

• Observation2: NN would have pf values below or equal
to WC’s pf . The examples displaying Observation2 are
shown in Figure 13.

Note that the conjunction of Observation1 and
Observation2 is uncommon. In fact, our results suggest that
Observation1 and Observation2 are somewhat mutually
exclusive:

• As shown in Figures 11 and 14, the examples where NN
increases the probability of detection are also those where
it increases the probability of false alarms.

Hence, we cannot recommend NN as a replacement for WC.

quartiles
rank 0 25 50 75 100

CM1 1 WC 16 29 33 38 49 u
2 NN 40 43 44 45 46 u
3 CC 90 91 91 91 93 u

MW1 1 WC 8 21 26 29 47 u
2 NN 30 32 33 33 36 u
3 CC 67 68 68 69 70 u

PC1 1 WC 16 24 28 31 40 u
2 NN 45 48 48 49 53 u
3 CC 94 94 94 94 94 u

50%

Fig. 14. Experiment #2 PF results where NNpf > WCpf .

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 9

Nevertheless, if local WC data is unavailable, then we would
recommend processing foreign CC data with NN.

In all cases, NN dramatically reduces the high false alarm
rates associated with the use of cross-company data. Often that
reduction halves the false alarm range. For example, in MW1,
the false alarm rate drops between CC to NN from 68% to
33%.

C. Discussions

In raw cross company models we see that the false alarm
rates substantially increase compared to the within company
models. Our new experiment shows that NN sampling removes
the increased false alarm rates. Now we argue that, using
NN sampling instead of random sampling, helps choosing
training examples that are similar to problem at hand. Thus,
the irrelevant information in non-similar examples are avoided.
However, this also removes the rich sample base and yields a
slight decrease in detection rates. Mann-Whitney tests reveal
that NN sampling is

• far better than random sampling cross company data,
• and still worse than using within company data.
NN Sampling picks training examples that are similar to the

examples about which we want to make predictions. Without
introducing irrelevant information, NN sampling populates
a set that has the same characteristics with the problem.
That means, the likelihood of implementing similar software
modules and having similar defects in these modules is high.
Thus, NN sampling simulates that the selected cross company
data are coming from within the company. Considering the
extraneous hypothesis, NN sampling introduces homogeneity
whereas random sampling introduces heterogeneity to cross
company data.

Combining these results, if a company lacks local data,
we would suggest a two-phase approach. In phase one, that
organization uses imported CC data, filtered via NN. Also, dur-
ing phase one, the organization should start a data collection
program to collect static code attributes. Phase two commences
when there is enough local WC data to learn defect predictors.
During phase two, the organization would switch to new defect
predictors learned from the WC data.

Our next experiment is, therefore, designed to determine the
number of examples required to build defect predictors from
WC data.

VI. EXPERIMENT #3: INCREMENTAL WC

In the introduction, the case was made that CC data are
attractive to organizations if it avoids a time-consuming or
expensive local data collection program. Also, our results of
Experiment #1 and #2 reveals the necessity for WC data. In
this section, we will show that adequate defect predictors can
be learned from very small samples of WC data.

A. Design

A curious aspect of the above results is that defect predictors
were learned using only a handful of defective modules. For
example, consider a 90%/10% train/test split on pc1 with 1,109

modules, only 6.94% of which are defective. On average,
the training set will only contain 1109 ∗ 0.9 ∗ 6.94/100 = 69
defective modules. Despite this, pc1 yields an adequate median
{pd, pf} results of {63, 27}%.

Experiment #3 was therefore designed to check how little
data are required to learn defect predictors. Experiment #3
was essentially the same as the first experiment, but without
treatment #1 (the cross-company study). Instead, experiment
#3 took the 7 example tables of Figure 2 and learned predictors
using:

• Treatment 3 (reduced WC): a randomly selected subset
of up to 90% of the rows.

After randomizing the order of the rows, training sets were
built using just the first 100,200,300,. . . rows in the tables.
After training, the learned theory was applied to the remaining
rows not used in training.

Experiment #1 only used the features found in all tables of
data. For this experiment, we imposed no such restrictions and
used whatever features were available in each data set.

B. Results from Experiment #3

Recall that Equation 4 defined “balance” to be a com-
bination of {pd, pf} that decreases if pd decreases or pf
increases. As shown in Figure 15, there was very little change
in balanced performance after learning from 100,200,300,...
examples. Indeed, there is some evidence that learning from
larger training sets had detrimental effects: the more training
data, the larger the variance in the performance of the learned
predictor. Observe how, in kc1 and pc1, as the training set size
increases (moving right along the x-axis) the dots showing the
balance performance start spreading out.

The Mann-Whitney U test was applied to check the visual
trends seen in Figure 15. For each table, all results from
training sets of size 100,200,300. . . were compared to all other
results from the same table. The issue was “how much data
are enough?” i.e. what is the minimum training set size that
never lost to other training set of a larger size. Usually, that
min value was quite small:

• In five tables {cm1, kc2, kc3,mc2,mw1}, min = 100;
• In {kc1, pc1}, min = {200, 300} instances, respectively.
We explain the experiment #3 results as follows. These

experiments used simplistic static code features such as lines
of code, number of unique symbols in the module, etc.
Such simplistic static code features are hardly a complete
characterization of the internals of a function. Recall Fenton’s
example where the same functionality is achieved using dif-
ferent programming language constructs resulting in different
static measurements for that module [59]. We would charac-
terize such static code features as having limited information
content [60]. Limited content is soon exhausted by repeated
sampling. Hence, such simple features reveal all they can
reveal after a small sample.

C. Sanity Checks on Experiment #3

This section checks for precedents on the Experiment #3
results and can be skipped at first reading of this paper.

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 10

 400

 200

 0
 800 600 400 200 0

pl
at

ea
u

dataset size

j48
nbk

 400

 200

 0
 800 600 400 200 0

pl
at

ea
u

dataset size

lsr
m5

Fig. 16. Y-axis shows plateau point after learning from data sets that have up
to X examples (from [61]). The left plot shows results from using Naive Bayes
(nbk) or a decision tree learner (j48) [47] to predict for discrete classes. Right
plot shows results from using linear regression (lsr) or model trees (m5) [62]
to learn predictors for continuous classes. In this study, data sets were drawn
from the UC Irvine data repository [36].

There is also some evidence that the results of Experiment
3 (that performance improvements stop after a few hundred
examples) have been seen previously in the data mining
literature (caveat: to the best of our knowledge, this is the
first report of this effect in the defect prediction literature):

• In their discussion on how to best handle numeric fea-
tures, Langley and John offers plots of the accuracy of
Naive Bayes classifiers after learning on 10,20,40,..200
examples. In those plots, there is little change in perfor-
mance after 100 instances [63].

• Orrego [61] applied four data miners (including Naive
Bayes) to 20 data sets to find the plateau point: i.e.
the point after which there was little net change in the
performance of the data miner. To find the plateau point,
Oreggo used t-tests to compare the results of learning
from Y or Y + ∆ examples. If, in a 10-way cross-
validation, there was no statistical difference between Y
and Y + ∆, the plateau point was set to Y . As shown in
Figure 16, many of those plateaus were found at Y ≤ 100
and most were found at Y ≤ 200. Note that these plateau
sizes are consistent with the results of Experiment 3.

D. Discussion of Experiment #3

In the majority case, predictors learned from as little as one
hundred examples perform as well as predictors learned from
many more examples. This suggests that the effort associated
with learning defect predictors from within-company data may
not be overly large. For example, Figure 17 estimates that
the effort required to build and test 100 modules may be as
little as 2.4 to 3.7 months. Considering the proposed two-
phase approach, these are the optimistic waiting times before
switching to phase two (i.e. local predictors from WC data).

VII. EXPERIMENT REPLICATION

Experiments # 1 to # 3 were based on NASA data. In order
to search evidence for the external validity of the conclusions
of those experiments, we obtained new data sets. Those data

100 modules may take as little as two to four months to construct.
This estimate was generated as follows:

• In the cm1 data base, the median module size is 17 lines.
100 randomly selected modules would therefore use 1700
LOC.

• To generate an effort estimate for these modules,
we used the on-line COCOMO [7] effort estimator
(http://sunset.usc.edu/research/COCOMOII/
expert_cocomo/expert_cocomo2000.html).
Estimates were generated assuming 1700 LOC and the
required reliability varying from very low to very high.

• The resulting estimates ranged from between 2.4 and 3.7
person months to build and test those modules.

Fig. 17. An estimate of the effort required to build and test 100 modules.

sets were deliberately chosen to be as far removed as possible
from American aerospace software applications. Using our
connections with the Turkish software industry, we collected
three data sets in the format of Figure 3 from a Turkish
white- goods manufacturer. The new datasets ({ar3, ar4, ar5}),
marked as “SOFTLAB” in Figure 2, are the controller software
for:

• A washing machine;
• A dishwasher;
• And a refrigerator.

Note that this software was developed via methods that
are both culturally and organizationally different to NASA
aerospace software. Turkish domestic appliances company
software are developed by a small team of 2-3 people. The
development is carried out in an ad-hoc, informal way rather
than formal, process oriented approach in NASA. Furthermore,
the company is a profit and revenue driven commercial orga-
nization, whereas NASA is a cost driven government entity.

For each SOFTLAB data set, we follow the same procedure
as in Experiments # 1 and #2; i.e. 10% of the rows of each
data set are selected at random for constructing test sets and
then defect predictors are learned from:

• Treatment 1 (CC): all rows from 7 NASA tables.
• Treatment 2 (WC): random 90% rows of remaining

SOFTLAB tables7;
• Treatment 3 (NN): similar rows from 7 NASA tables.
The SOFTLAB tables include 29 static code features, 19

of which common with the NASA tables. In order to simplify
the comparison between these new data and Experiment #1
and #2, we used only these shared attributes in our CC
experiments. On the other hand we use all available attributes
in WC experiments for SOFTLAB tables. In the following
external validity experiment, we treated each NASA table as
cross- company data for SOFTLAB tables.

Figure 18 shows the results:
• The pd values for CC treatment increases compared to

WC treatment with the cost of increased pf.

7In order to reflect the use in practice, we do not use the remaining 90%
of the same project for training, we rather use a random 90% of data from
other projects. Note that all WC experiments in this paper reflects within-
company, not within project simulations. Since SOFTLAB data are collected
from a single company, learning a predictor on some projects and to test it
on a different one does not violate within company simulation.

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 11

Average results on SOFTLAB data
treatment min Q1 median Q3 max

pd CC 88 88 95 100 100 u
WC 35 40 88 100 100 u

pf CC 52 59 65 68 68 u
WC 3 5 29 40 42 u

Table (ar3)
treatment min Q1 median Q3 max

pd CC 88 88 88 88 88 u
WC 88 88 88 88 88 u

pf CC 62 65 65 65 65 u
WC 40 40 40 40 42 u

Table (ar4)
treatment min Q1 median Q3 max

pd CC 95 95 95 95 95 u
WC 35 40 40 40 40 u

pf CC 52 55 56 59 60 u
WC 3 3 3 5 5 u

Table (ar5)
treatment min Q1 median Q3 max

pd CC 100 100 100 100 100 u
WC 88 100 100 100 100 u

pf CC 57 68 68 68 68 u
WC 29 29 29 29 29 u

Fig. 18. Experiment #1 results for the SOFTLAB tables. Averaged and
individual results are shown respectively.

quartiles
rank 0 25 50 75 100

AR4 1 CC 35 90 100 100 100 u
2 NN 65 65 70 70 70 u
3 WC 35 40 40 40 45 u

AR3 1 CC 75 88 88 88 88 u
1 NN 88 88 88 88 88 u
1 WC 88 88 88 88 88 u

AR5 1 CC 88 100 100 100 100 u
1 NN 100 100 100 100 100 u
1 WC 88 100 100 100 100 u

50%

Fig. 19. Experiment #2 PD results for the SOFTLAB tables where NNpd ≥
WCpd. Rankings computed via Mann-Whitney (95% confidence) comparing
each row to all other rows.

quartiles
rank 0 25 50 75 100

AR3 1 NN 38 38 38 38 40 u
2 WC 40 40 40 40 42 u
3 CC 38 55 56 60 80 u

AR5 1 NN 21 25 25 25 32 u
2 WC 29 29 29 29 29 u
3 CC 29 46 50 50 79 u

50%

Fig. 20. Experiments #2 PF results for the SOFTLAB tables where NNpf ≤
WCpf .

• The CC treatment shifts {Q1, median} of pf from {5, 29}
to {59, 65}.

• For the CC treatment:
– 25% of the pd values are at 100%.
– 50% of the pd values are above 95%
– And all the pd values are at or over 88%.

quartiles
rank 0 25 50 75 100

AR4 1 WC 3 3 3 5 7 u
2 NN 24 25 25 25 28 u
3 CC 6 47 62 67 78 u

50%

Fig. 21. Experiment #2 PF results for the SOFTLAB tables where NNpf >
WCpf .

These results also provide suggestive evidence for the gener-
ality of our conclusions for Experiment # 3 (where we discuss
that the minimum number of instances for training a predictor
is merely 100 − 200 examples). Note that SOFTLAB tables
ar3, ar4 and ar5 have {63,107, 36} modules respectively, with
a total of 206 modules. Thus, WC results in Figure 18 are
achieved using a minimum of (63+36)∗0.90 = 90 examples
(i.e. learn a predictor on (ar3 + ar5) and test it on ar4) and
a maximum of (63 + 107) ∗ 0.90 = 153 examples (i.e. learn a
predictor on (ar3 + ar4) and test it on ar5).

Figure 19 to Figure 21 shows Observation1 (i.e. NNpd ≥
WCpd) and Observation2 (i.e. NNpf ≤ WCpf) for SOFT-
LAB data. Recall that these observations were mutually ex-
clusive for NASA data. The pattern is similar in SOFTLAB
data:

• for ar4 mutual exclusiveness hold: NNpd ≥ WCpd and
NNpf > WCpf

• for ar3 and ar5: NNpf ≤ WCpf . If the observations
were mutually exclusive, we would expect NNpd <
WCpd. Yet, for pd NNpd ≥ WCpd, however this
inequality holds with the equity (see Figure 19) and
NNpd 6> WCpd

In summary, the WC, CC and NN patterns found in Amer-
ican NASA rocket software are also observed in software
controllers of Turkish domestic appliances. While this is not
the definitive proof of the external validity of our results,
we find it a very compelling result that provides suggestive
evidence for the generality for our observations.

VIII. CONCLUSION

In this study, we have found a clear and unambiguous con-
clusion for defect prediction amongst our static code features:

• CC-data dramatically increase the probability of detecting
defective modules;

• But CC-data also dramatically increase the false alarm
rate.

• This can be explained by the extraneous hypothesis;
• NN-filtering CC data avoids the high false alarm rates by

removing irrelevancies in CC data;
• Yet WC-data models are still the best and they can

be constructed with small amounts of data (i.e. 100
examples).

Interpreting these in terms of the posed questions in the
introduction, we conclude that:

• Companies can benefit from raw CC data in extreme
cases such as mission critical projects, where the cost
of false alarms can be afforded.

• Pruning CC data with NN-filter allows the use of CC
data for constructing practical defect predictors in other

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 12

domains. NN-filtered CC data yields much better results
than raw CC data, yet closer but worse results than WC
data.

• The best option of using WC data requires the collection
of a mere hundred examples from within a company and
can be done in a short time (i.e. a few months).

• We observe the same patterns not only in aerospace soft-
ware from NASA, but also in software from a completely
different company round the globe. While this is a strong
evidence of generality, we take great care not to interpret
it as a proof of external validity.

An important issue worth more mentioning is the concern
about the time required for setting up a metric program (i.e.
in order to collect data for building actual defect predictors).
Our incremental WC results suggest that, in the case of defect
prediction, this concern may be less than previously believed.
In most of our experiments, as few as 100 modules may
be enough to learn adequate defect predictors. When so few
examples are enough, it is possible that projects can learn local
defect predictors that are relevant to their current technology
in just a few months.

Further, our experiences with our industry partners show
that data collection is not necessarily a major concern. Static
code attributes can be automatically and quickly collected with
relatively little effort. We have found that when there is high
level management commitment, it becomes a relatively simple
process. For example, in an extreme case, the three projects
of SOFTLAB data were collected in less than a week’s time.
Neither the static code attributes, nor the mapping of defects to
software modules were available when the authors attempted
to collect these data. Since these were smaller scale projects,
it was sufficient to spend some time with the developers
and going through defect reports. Although not all projects
have 100 modules individually, the company has a growing
repository from several projects and enough data to perform
defect prediction.

We also have experience with a large scale telecommu-
nication company, where a long-term metric program for
monitoring complex projects (around 750.000 lines of code)
requires introducing automated processes. Again with high
level management support, it was possible to employ appro-
priate tool support and these new processes were introduced
easily and invisible to the staff. For that project, we have
now a growing repository of defects mapped with source code
(around 25 defects per month). Note that the software in that
project are being developed for more than 10 years and have
very low defect rates. We have obtained the first results in the
8th month of the project and it is planned to be completed in
12 months. In summary setting up a metric program for defect
prediction can be done more quickly than it is perceived.

We conclude our findings by proposing a two-phase ap-
proach for initiating defect prediction process:

• Phase1: Use NN filtered CC data to make local predic-
tions and start to collect WC data.

• Phase2: After a few hundred examples are available in
the local repository (usually a few months), discard the
predictor learned on CC data and switch to those learned

from WC data.

REFERENCES

[1] T. Menzies, Z. Chen, J. Hihn, and K. Lum, “Selecting best practices
for effort estimation,” IEEE Transactions on Software Engineering,
November 2006, available from http://menzies.us/pdf/06coseekmo.pdf.

[2] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross- vs.
within-company cost estimation studies: A systematic review,” IEEE
Transactions on Software Engineering, pp. 316–329, May 2007.

[3] E. Mendes, G. Dinakaran, and N. Mosley, “How valuable is it for
a web company to use a cross-company cost model, compared to
using its own single-company model?” in 16th International World
Wide Web Conference, Banff, Canada, May 8-12, 2007, available from
http://www2007.org/paper326.php.

[4] P. Abrahamsson, R. Moser, W. Pedrycz, A. Sillitti, and G. Succi, “Effort
prediction in iterative software development processes – incremental
versus global prediction models,” in First International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007), 2007,
pp. 344–353.

[5] S. MacDonell and M. Shepperd, “Comparing local and global software
effort estimation models – reflections on a systematic review,” in
Empirical Software Engineering and Measurement, ESEM 2007, 2007,
pp. 401–409.

[6] R. Premraj and T. Zimmermann, “Building software cost estimation
models using homogenous data,” Empirical Software Engineering and
Measurement, Jan 2007. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs all.jsp?arnumber=4343767

[7] B. Boehm, “Safe and simple software cost analysis,” IEEE Software, pp.
14–17, September/October 2000, available from http://www.computer.
org/certification/beta/Boehm Safe.pdf.

[8] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Transactions on Soft-
ware Engineering, January 2007, available from http://menzies.us/pdf/
06learnPredict.pdf.

[9] T. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308–320, Dec. 1976.

[10] M. Halstead, Elements of Software Science. Elsevier, 1977.
[11] F. Shull, V. Basili, B. Boehm, A. Brown, P. Costa, M. Lindvall, D. Port,

I. Rus, R. Tesoriero, and M. Zelkowitz, “What we have learned about
fighting defects,” in Proceedings of 8th International Software Metrics
Symposium, Ottawa, Canada, 2002, pp. 249–258, available from http:
//fc-md.umd.edu/fcmd/Papers/shull defects.ps.

[12] M. Fagan, “Advances in software inspections,” IEEE Trans. on Software
Engineering, pp. 744–751, July 1986.

[13] F. Shull, I. Rus, and V. Basili, “How perspective-based reading can
improve requirements inspections,” IEEE Computer, vol. 33, no. 7, pp.
73–79, 2000, available from http://www.cs.umd.edu/projects/SoftEng/
ESEG/papers/82.77.pdf.

[14] M. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, vol. 15, no. 3, 1976.

[15] N. Nagappan and T. Ball, “Static analysis tools as early indicators
of pre-release defect density,” in ICSE, 2005, pp. 580–586. [Online].
Available: http://doi.acm.org/10.1145/1062558

[16] T. Menzies, D. Raffo, S. on Setamanit, Y. Hu, and S. Tootoonian,
“Model-based tests of truisms,” in Proceedings of IEEE ASE 2002, 2002,
available from http://menzies.us/pdf/02truisms.pdf.

[17] M. Chapman and D. Solomon, “The relationship of cyclomatic
complexity, essential complexity and error rates,” 2002, proceedings
of the NASA Software Assurance Symposium, Coolfont Resort and
Conference Center in Berkley Springs, West Virginia. Available from
http://www.ivv.nasa.gov/business/research/osmasas/conclusion2002/
Mike C%hapman The Relationship of Cyclomatic Complexity
Essential Complexity and Erro%r Rates.ppt.

[18] T. Menzies, J. DiStefano, A. Orrego, and R. Chapman, “Assessing
predictors of software defects,” in Proceedings, workshop on Predictive
Software Models, Chicago, 2004, available from http://menzies.us/pdf/
04psm.pdf.

[19] “Polyspace verifier R©,” 2005, available from http://www.di.ens.fr/
∼cousot/projects/DAEDALUS/synthetic summary/POLYSP%ACE/
polyspace-daedalus.htm.

[20] G. Hall and J. Munson, “Software evolution: code delta and code churn,”
Journal of Systems and Software, pp. 111 – 118, 2000.

[21] A. Nikora and J. Munson, “Developing fault predictors for evolving
software systems,” in Ninth International Software Metrics Symposium
(METRICS’03), 2003.

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 13

[22] T. Khoshgoftaar, “An application of zero-inflated poisson regression
for software fault prediction,” in Proceedings of the 12th International
Symposium on Software Reliability Engineering, Hong Kong, Nov 2001,
pp. 66–73.

[23] T. Khoshgoftaar and N. Seliya, “Comparative assessment of software
quality classification techniques: An empirical case study,” Empirical
Software Engineering, vol. 9, no. 3, pp. 229–257, 2004.

[24] W. Tang and T. M. Khoshgoftaar, “Noise identification with the
k-means algorithm,” in ICTAI, 2004, pp. 373–378. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/ICTAI.2004.93

[25] T. M. Khoshgoftaar and N. Seliya, “Fault prediction modeling for
software quality estimation: Comparing commonly used techniques,”
Empirical Software Engineering, vol. 8, no. 3, pp. 255–283, 2003.
[Online]. Available: http://dx.doi.org/10.1023/A:1024424811345

[26] T. Menzies, J. D. Stefano, K. Ammar, K. McGill, P. Callis, R. Chapman,
and D. J, “When can we test less?” in IEEE Metrics’03, 2003, available
from http://menzies.us/pdf/03metrics.pdf.

[27] T. Menzies, J. S. DiStefeno, M. Chapman, and K. Mcgill, “Metrics that
matter,” in 27th NASA SEL workshop on Software Engineering, 2002,
available from http://menzies.us/pdf/02metrics.pdf.

[28] T. Menzies, J. D. Stefano, and M. Chapman, “Learning early lifecycle
IVV quality indicators,” in IEEE Metrics ’03, 2003, available from http:
//menzies.us/pdf/03early.pdf.

[29] T. Menzies and J. S. D. Stefano, “How good is your blind spot sam-
pling policy?” in 2004 IEEE Conference on High Assurance Software
Engineering, 2003, available from http://menzies.us/pdf/03blind.pdf.

[30] A. Porter and R. Selby, “Empirically guided software development using
metric-based classification trees,” IEEE Software, pp. 46–54, March
1990.

[31] J. Tian and M. Zelkowitz, “Complexity measure evaluation and selec-
tion,” IEEE Transaction on Software Engineering, vol. 21, no. 8, pp.
641–649, Aug. 1995.

[32] T. Khoshgoftaar and E. Allen, “Model software quality with classifica-
tion trees,” in Recent Advances in Reliability and Quality Engineering,
H. Pham, Ed. World Scientific, 2001, pp. 247–270.

[33] K. Srinivasan and D. Fisher, “Machine learning approaches to estimating
software development effort,” IEEE Trans. Soft. Eng., pp. 126–137,
February 1995.

[34] S. Rakitin, Software Verification and Validation for Practitioners and
Managers, Second Edition. Artech House, 2001.

[35] T. L. Graves, A. F. Karr, J. S. Marron, and H. P. Siy, “Predicting fault
incidence using software change history,” IEEE Trans. Software Eng.,
vol. 26, no. 7, pp. 653–661, 2000, available on-line at www.niss.org/
technicalreports/tr80.pdf.

[36] C. Blake and C. Merz, “UCI repository of machine learning databases,”
1998, uRL: http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[37] N. E. Fenton and S. Pfleeger, Software Metrics: A Rigorous & Practical
Approach (second edition). International Thompson Press, 1995.

[38] M. Shepperd and D. Ince, “A critique of three metrics,” The Journal of
Systems and Software, vol. 26, no. 3, pp. 197–210, September 1994.

[39] F. P. Brooks, The Mythical Man-Month, Anniversary edition. Addison-
Wesley, 1995.

[40] V. B. Nachiappan Nagappan, Brendan Murphy, “The influence of
organizational structure on software quality: An empirical case study,”
in ICSE’08, 2008.

[41] Y. Jiang, B. Cukic, and T. Menzies, “Fault prediction using early
lifecycle data,” in ISSRE’07, 2007, available from http://menzies.us/pdf/
07issre.pdf.

[42] G. Boetticher, T. Menzies, and T. Ostrand, “The PROMISE Repository
of Empirical Software Engineering Data,” 2007, http://promisedata.org/
repository.

[43] S. Kim, J. Whitehead, and Y. Zhang, “Classifying software changes:
Clean or buggy?” IEEE TSE, pp. 181–196, March/April 2008.

[44] V. Basili, F. McGarry, R. Pajerski, and M. Zelkowitz, “Lessons learned
from 25 years of process improvement: The rise and fall of the NASA
software engineering laboratory,” in Proceedings of the 24th Inter-
national Conference on Software Engineering (ICSE) 2002, Orlando,
Florida, 2002, available from http://www.cs.umd.edu/projects/SoftEng/
ESEG/papers/83.88.pdf.

[45] C. Drummond and R. C. Holte, “C4.5, class imbalance, and cost
sensitivity: why under-sampling beats over-sampling,” in Workshop on
Learning from Imbalanced Datasets II, 2003.

[46] W. Cohen, “Fast effective rule induction,” in ICML’95, 1995, pp. 115–
123, available on-line from http://www.cs.cmu.edu/∼wcohen/postscript/
ml-95-ripper.ps.

[47] R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufman,
1992, iSBN: 1558602380.

[48] R. Holte, “Very simple classification rules perform well on most
commonly used datasets,” Machine Learning, vol. 11, p. 63, 1993.

[49] L. Brieman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123–140, 1996.

[50] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” JCSS: Journal of Computer
and System Sciences, vol. 55, 1997.

[51] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings,” accepted for publication IEEE Transactions
on Software Engineering, 2009.

[52] I. H. Witten and E. Frank, Data mining. 2nd edition. Los Altos, US:
Morgan Kaufmann, 2005.

[53] B. Turhan and A. Bener, “A multivariate analysis of static code attributes
for defect prediction,” in Proceedings of the Seventh International
Conference on Quality Software. Los Alamitos, CA, USA: IEEE
Computer Society, 2007, pp. 231–237.

[54] P. Domingos and M. J. Pazzani, “On the optimality of the simple
bayesian classifier under zero-one loss,” Machine Learning, vol. 29,
no. 2-3, pp. 103–130, 1997. [Online]. Available: citeseer.ist.psu.edu/
domingos97optimality.html

[55] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Problems
with precision,” IEEE Transactions on Software Engineering, September
2007, http://menzies.us/pdf/07precision.pdf.

[56] H. B. Mann and D. R. Whitney, “On a test of whether one
of two random variables is stochastically larger than the other,”
Ann. Math. Statist., vol. 18, no. 1, pp. 50–60, 1947, available on-
line at http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=
Display&hand%le=euclid.aoms/1177730491.

[57] J. Demsar, “Statistical comparisons of clasifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006, avaliable
from http://jmlr.csail.mit.edu/papers/v7/demsar06a.html.

[58] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: The study of methods,”
IEEE Trans. Software Eng, vol. 32, no. 1, pp. 4–19, 2006. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/TSE.2006.3

[59] N. E. Fenton and S. Pfleeger, Software Metrics: A Rigorous & Practical
Approach. International Thompson Press, 1997.

[60] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang,
“Implications of ceiling effects in defect predictors,” in Proceedings of
PROMISE 2008 Workshop (ICSE), 2008, available from http://menzies.
us/pdf/08ceiling.pdf.

[61] A. Orrego, “Sawtooth: Learning from huge amounts of data,” Master’s
thesis, Computer Science, West Virginia University, 2004.

[62] J. R. Quinlan, “Learning with Continuous Classes,” in 5th Australian
Joint Conference on Artificial Intelligence, 1992, pp. 343–348, available
from http://citeseer.nj.nec.com/quinlan92learning.html.

[63] G. John and P. Langley, “Estimating continuous distributions in bayesian
classifiers,” in Proceedings of the Eleventh Conference on Uncertainty
in Artificial Intelligence Montreal, Quebec: Morgan Kaufmann, 1995,
pp. 338–345, available from http://citeseer.ist.psu.edu/john95estimating.
html.

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 14

(# modules) .
source project language description examples features loc %defective
NASA pc1 C++ Flight software for earth orbiting satellite 1,109 21 25,924 6.94
NASA kc1 C++ Storage management for ground data 845 21 42,965 15.45
NASA kc2 C++ Storage management for ground data 522 21 19,259 20.49
NASA cm1 C++ Spacecraft instrument 498 21 14,763 9.83
NASA kc3 JAVA Storage management for ground data 458 39 7749 9.38
NASA mw1 C++ A zero gravity experiment related to combustion 403 37 8341 7.69
SOFTLAB ar4 C Embedded controller for white-goods 107 30 9196 18.69
SOFTLAB ar3 C Embedded controller for white-goods 63 30 5624 12.70
NASA mc2 C++ Video guidance system 61 39 6134 32.29
SOFTLAB ar5 C Embedded controller for white-goods 36 30 2732 22.22

4,102

Fig. 2. Ten tables of data, sorted in order of number of examples. The rows labeled “NASA” come from NASA aerospace projects while the rows labeled
“SOFTLAB” come from a Turkish software company writing applications for domestic appliances. For details on the features used in each data set, see
Figure 3.

Table (cm1)
treatment min Q1 median Q3 max

pd CC 80 100 100 100 100 u
WC 40 60 80 100 100 u

pf CC 87 91 96 96 98 u
WC 24 27 33 38 47 u

Table (kc1)
treatment min Q1 median Q3 max

pd CC 82 88 94 94 100 u
WC 64 73 82 85 97 u

pf CC 47 49 51 53 57 u
WC 27 34 36 38 40 u

Table (kc2)
treatment min Q1 median Q3 max

pd CC 82 91 91 100 100 u
WC 55 73 82 91 100 u

pf CC 57 62 64 74 81 u
WC 14 24 31 33 45 u

Table (kc3)
treatment min Q1 median Q3 max

pd CC 60 80 80 80 100 u
WC 40 60 80 80 100 u

pf CC 14 19 24 31 38 u
WC 10 17 21 26 36 u

Table (mc2)
treatment min Q1 median Q3 max

pd CC 50 67 83 100 100 u
WC 17 33 67 67 83 u

pf CC 55 64 73 73 100 u
WC 0 27 36 45 73 u

Table (mw1)
treatment min Q1 median Q3 max

pd CC 75 75 100 100 100 u
WC 25 50 75 75 100 u

pf CC 50 55 63 66 82 u
WC 13 18 21 29 37 u

Table (pc1)
treatment min Q1 median Q3 max

pd CC 88 100 100 100 100 u
WC 38 63 63 75 88 u

pf CC 89 92 93 95 99 u
WC 17 25 27 30 34 u

Fig. 10. Project-wise Experiment #1 results for NASA tables.

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2008 15

 0

0.5

1.0

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

ba
la

nc
e

CM1

 0

0.5

1.0

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

ba
la

nc
e

KC1

 0

0.5

1.0

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

ba
la

nc
e

KC2

 0

0.5

1.0

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

ba
la

nc
e

KC3

 0

0.5

1.0

 0 2
0

 4
0

 6
0

 8
0

 1
00

ba
la

nc
e

MC2

 0

0.5

1.0

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

ba
la

nc
e

MW1

 0

0.5

1.0

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

ba
la

nc
e

PC1

Fig. 15. Results from experiment #3. Training set size grows in units of 100 examples, moving left to right over the x-axis. The MC2 results only appear
at the maximum x-value since MC2 has less than 200 examples.

