
Abduction Made Easy:

A Modified Bayesian Network Approach

Tim Menzies, Jason Gookins

December 13, 2008

1 Abstract

Abductive reasoning is a difficult problem. NP-
hard, in fact. As opposed to deduction and in-
duction, which produce a single, concrete conclu-
sion based either on direct proof or direct observa-
tion, respectively, abduction produces many possible
conclusions, each of fluctuating merit depending on
their applicability to various situations. This diffi-
culty could be alleviated by mapping abduction onto
a descriptive model and then using that model to
derive an approximation of abductive reasoning that
minimizes possible conclusions, and thus uncertainty.

We have developed a Bayesian network evaluation
tool called Belief that models a system upon which
the main functions of abductive reasoning can be
mapped. This paper first presents a logical descrip-
tion of the model and describes some of the technical
details of Belief. The report then describes abductive
reasoning via the mapping of its main components
onto the features contained in the Belief program. It
then lists any further features still required to imple-
ment a fully-functional approximation of abductive
reasoning. Finally, the paper briefly outlines some
possible future strategies, both technical and theo-
retical, for solving abduction by building upon the
concepts contained within the Belief program.

2 Introduction & Background

Abductive reasoning has been a complex problem in
the field of logic for millenia. First was Aristotles ep-
agoge: A syllogism with two premises, a major and

a minor, wherein the major premise is proven to be
true, but the minor premise which is, in fact, re-
quired to tie the entire proof together is only sup-
posed to be true. Charles Peirce adapted this concept
to modern logic in the late 19th century and was the
first to coin the phrase abduction.

Bayesian networks, on the other hand, are a rel-
atively recent concoction. Althrough based on and
named after the work of the mathematician Thomas
Bayes in the late 18th century, the networks them-
selves were not conceived in their entirety until
being outlined by Pearl in 1985. Conceived as
graphical models for deriving explanations based on
probabilistic-based assumptions, they rely heavily on
the concepts in Bayes work.

Interestingly, the classical examples of both abduc-
tive reasoning and Bayesian networks are one and the
same. Given a closed system comprised of a sprin-
kler, an area of grass, and a rain storm, one can use
a Bayesian network to compute the answers to ques-
tions such as What is the probability that it has just
rained, given that the grass is currently wet? The cor-
responding answer comes from abductive reasoning:
If the grass is wet, the most probable explanation
is that it has just rained. Thus it can be seen that
Bayesian networks and abduction contain many ap-
parent similarities in both form and function.

XYPIC FIGURE OF SPRIN-
KLER/RAIN/GRASS EXAMPLE BAYES NET
HERE

Previously we have proposed an anomaly approach
to dealing with uncertainty in software engineering
planning. In that approach, rather than making du-
bious assertions about uncertain values, we proposed

a logging scheme where ”normal” was learned from
experience and ”abnormal” was detected when new
data was significantly different to the old.

On reflection, we realized that this scheme was ac-
tually a special case of a general abductive reasoning
approach. We show here that with minimal changes
to our anomaly detection scheme we can build an ab-
ductive inference engine suitable for numerous soft-
ware engineering tasks, such as:

• Prediction

• Planning

• Classification

• Monitoring

• Explanation

• Tutoring

• Diagnosis & Probing

• Validation

• Verification

as well as just anomaly detection. We show all this
with a case study of managing IV&V projects.

3 Belief Network

A Belief network G can be modelled as follows:

G = <V+, E*>
V = name description operation priority

status distribution(s) cost isLeaf
Operation = and | or | not | null
Status = locked | free
E = from to
From = V
To = V
Distribution = minimum maximum buckets+
Bucket = value height
Distributions = goal given actual

A network g consists of vertices V, also known as
nodes, and edges E. These edges consist of ends from
and to which are themselves nodes. With the added
precept of forbidding cycles, this creates a directed
acyclic graph. When the tool is run, paths are taken
through this graph, evaluating nodes as they are hit,
and accruing mathematical equations that are used
to derive end results.

Nodes within the graph consist of a set of descrip-
tors: a name; an English description; an operation
to be applied to routes taken through the node; a
priority, which is used to determine the order of pro-
cessing during a run of the network; a current status,
either locked or free, which describes whether or not
the nodes distribution, if it has one, is mutable; a
possible set of distributions, which are histographic
in nature and represent the domain knowledge asso-
ciated with the particular node; and a boolean value
describing whether or not it is located on an outer
edge of the graph.

There are two components of nodes that are par-
ticularly critical. The first is the Distribution compo-
nent, which is a histographic distribution describing
the expected characteristics of the sub-system rep-
resented by a particular node. Each distribution is
composed of a range, which is bounded by a minimum
and a maximum, and a series of buckets that each
have a value and a height. A distribution comprised
of input domain knowledge is of the Given type; a dis-
tribution comprised of desired output from the model
is of the Goal type; and a distribution comprised of
data output by a traversal of the graph is of the Ac-
tual type.

The second important item is the Operation com-
ponent, which consists of possible states and, or, not,
or null, which correspond to the fuzzy logic operators
and an additional null state. These operators are ac-
tuated as paths taken through the network propagate
through the nodes that possess them. A node with
an and operator applies the corresponding fuzzy logic
and to the distributions of its child nodes; a node with
an or operator applies the corresponding fuzzy logic
or to the distributions of its child nodes; a node with
a not operator applies the corresponding fuzzy logic
not to the distribution of its child node; and a node
with the operator null allows the distributions of any

2

child nodes to pass through it untouched.

4 Abductive Reasoning

This section explains and maps the main tenets of
abductive reasoning onto the Belief model, from pre-
diction through to validation.

4.1 Prediction

Prediction is the process of determining the possible
outcome that can be derived from some set of input
data. It is the core function of a Bayesian network.
Given a set of input data about a system to be mod-
eled and a set of goals to be reached, we evaluate the
network and predict whether or not the goals can be
attained with the input data.

This is handled within the Belief framework by
propagating from the leaf nodes in to the root nodes,
taking goal distributions we see along the way and
aggregate distributions accrued during our journey,
normalizing them, and comparing them.

fun delta (dist1, dist2)
for (I in dist1)
{
tmp = dist1[i] dist2[I]
sum += tmp
out[I] = tmp

}

for (I in out)
{
out[I] = out[I] / sum

}

return out

4.2 Classification

Classification is merely a unique prediction case
wherein the output is the array of possible classifi-
cations.

Belief implements classification by a simple tagging
system for grouping sub-classes into super-classes. A

user can then find all nodes of a relevant type for
further specification or for generalization.

4.3 Explanation

Explanation is essentially the reverse of prediction,
and is more or less the core of abductive reasoning.
Given a set of goals, explanation derives the config-
uration of the antecedents that most closely approx-
imates the goals.

In the Belief model, after each evaluation of a
graph, the outcome is compared to the last, best out-
come. If it is deemed more optimum, it becomes the
new best. This is repeated until the current evalua-
tion reaches its run limit and terminates.

It is within the explanation phase that the tool ex-
hibits its actual AI elements. Leaf node distributions,
if they are not found to be locked and immutable, are
randomized and run through the model. If the newly
randomized distribution is not deemed a new best, it
is thrown out and replaced.

4.4 Diagnosis & Probing

Diagnosis in the case of the Belief model is essentially
a refinement of explanation; namely, minimum expla-
nation. Diagnosis sets about the task of both deriving
the best explanation and ensuring that the explana-
tion chosen results in the least amount of change in
the model.

Belief accomplishes this with a feature that works
as follows:

1. Evaluate the network fully

2. Order the leaf nodes by their amount of alter-
ation

3. Lock the distribution of the node with the high-
est degree of change

4. Re-evaluate the network with this new constraint

5. Repeat until the amount of change minimization
affected falls below a certain threshold, say 5%

This method quickly and concisely pulls out the prob-
lem children in the network; i.e. those leaf nodes that
contribute the most to change within the model.

3

Probing can be simply defined as being analagous
to minimal explanation. Repeated forays are made
into the network per the minimal explanation fea-
ture in an attempt to minimize change and maximize
closeness to goals.

4.5 Tutoring

Suppose that a user evaluates a large network that
contains domain knowledge from many disparate in-
dividuals. The user may not reach an optimal out-
come due to an information overload. In other words,
the user may not be able to understand or personally
verify all of the information contained in the network.
A tutoring system would solve this problem by dis-
playing only that information which a particular user
understands.

Belief implements this through a user profile sys-
tem. Each network can be given a set of user profiles,
each of which contains a specific subset of informa-
tion about the modeled system that is essentially a
targetted knowledge base for each user and/or each
relevant situation within the system. The given and
goal distributions that are assigned to each node are
stored exclusively within each user profile, so that ten
different users can feasibly have ten different views of
the way in which a particular aspect of the modelled
system actually works.

4.6 Validation

Validation checks a model against the semantic crite-
ria imposed upon the model. In the case of the Belief
model, the question is asked Can I achieve my goals
with the given inputs? The model answers this in the
easiest way possible.

After a Belief network has been fully evaluated,
every node possessing a goal distribution lights up
with a color ranging from red to green. The closer
to red the node is, the farther away from the goal we
are, and the closer to green the node is, the closer to
the goal we are.

SCREENSHOT OF RED/GREEN NODES HERE

4.7 Verification

Verification is the testing of the model against a set
of syntactic criteria. Simply put, verification ensures
that the model itself is not fundamentally broken,
which would ruin the chance of any meaningful in-
sights being gleaned from the data.

The most obvious verification method within the
Belief tool is the computation of the transitive closure
of the graph to maintain its acyclic nature. This is
done with the following recursive algorithm:

fun createsCycle (childNode, parentNode)
for (Node in parentNodes parents)
{
if (Node == childNode)
{
return true

}
else
{
createsCycle(childNode, Node)

}
}

Two nodes in a parent-child relationship are eval-
uated. A journey is made recursively up the graph
from the parent node. If the algorithm reaches the
child node, a cycle has been found, and the relation-
ship is disallowed. This check is performed at edge
creation and reversal, thus dynamically maintaining
the acyclicality of the graph.

Another verification method involves ensuring that
no node is allowed to possess an operator that would
make no logical sense. Nodes are allowed to have
and or or operators if and only if they have multiple
children, and a node can have a not operator if and
only if it has one child. These operator checks are also
made dynamically during node editing and deletion
to ensure the integrity of the model.

5 Unimplemented Features

This section details features of abductive reasoning
that do not yet have an analagous feature within the
Belief tool.

4

5.1 Planning

The planning component consists of the pursuit of
the model configuration which best arrives at the
goal state from the current state. Planning is ba-
sically a cost-benefit analysis for the explanation and
diagnosis processes. After running the network to
completion, a best case may be arrived at which al-
most perfectly matches the goals required, but will
take $1 trillion, thousands of man hours, and possibly
hundreds of lives to achieve. Planning will illuminate
the fact that there is a deceivingly sub-optimum plan
which does not perfectly match the goals, but would
take only $100,000 and a month to complete.

The Belief model will approximate planning by
implementing a cost attribute for contributory leaf
nodes. Evaluations of the network will then steer for
solutions that plan for both proximity to the goals
and the eventual cost of that proximity.

5.2 Monitoring

As the planning stage arrives at plans based on their
cost-benefit analysis, these plans may come to be ob-
solete or no longer feasible. Monitoring sets up a way
to perform long-term comparison of plans. As avail-
able data changes, so do assumptions inserted into
the network. A monitoring system checks old plans
against new assumptions, and removes those that are
no longer relevant.

The Belief model will implement a monitoring sys-
tem with two features. The first is a simple com-
ponent that saves evaluation results across multiple
evaluations of a network. The user can then compare
these various result sets to derive the most suitable
outcome based on the current prevailing knowledge
of the system.

The second feature is a way to determine the worst-
case scenario in a given system. Just as the best op-
erator drives the model to come as close as possible
to the goals, the worst operator drives the model to
keep as far as possible from complete abandonment
of the goals. The worst operator derives the distri-
butions which result in the greatest departure from
goal attainment in order to highlight any elements
that are particularly contributory so that they may

be avoided.

6 Tool Support

7 Screenshots

8 Future Work

Belief currently uses a simple, homebrew algorithm
for evaluating networks. It is possible that the tool’s
efficiency and accuracy could be greatly improved
through the exploration and testing of other bayesian
network evaluation algorithms.

From an aesthetic and usability standpoint, it has
been found through limited user trials that the Be-
lief tool may potentially present users with too much
information at one time. We have attempted to alle-
viate this problem with our simplified, slide-out list
structure, as well as the ability to automatically view
highlighted nodes. A possible improvement could be
a graphical feature that extends the user profile sys-
tem. When viewing a user profile, only those nodes
which had been provided distributions in that pro-
file would be displayed. The tool would automat-
ically travel through the network and compute the
aggregate connections between those nodes, supply-
ing special icons with which now hidden sections of
the network could be re-expanded.

8.1 Conclusion

We have introduced the Belief system as a tool
for approximating abductive reasoning using naive
bayesian networks. We have described the model be-
hind the tool and mapped the basic components of
abduction onto it.

5

