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Title: A Novel Metaheuristic Search Technique: Iterative Treatment Learning

Increasingly modeling is being used in all the software life cycle stages studied in the field

of software engineering. By using models from two such stages, the requirements stage and

the testing stage, we show that our machine learning based metaheuristic search technique can

be used to optimize these models. This technique is called Iterative Treatment Learning, ITL.

We apply ITL to three NASA cost/benefit models used during the requirements stage and two

biomathemitical and three NASA flight models used during the testing stage. These last five

models are investigated using an integrated development and testing framework, SPY, that has

built-in ITL search capabilities.

These studies improve upon previous work done with ITL by Menzies et. al. by 1) dis-

cussing ITL’s characteristics in metaheuristic search terminology 2) increasing the number

and complexity of the models studied 3) exploring the option space of ITL, including a new

discretizer and 4) investigating the stability and variance of ITL’s solutions.

With the cost/benefit models we show how our new method for discretizing the model’s

dependent variables 1) outperforms the previous discretizing method, both on solution quality

and convergence speed and 2) outperforms a simulated annealer, a commonly used meta-

heuristic search technique, on convergence speed while finding the same quality solutions.

With the biomathematical models we show that SPY can find potentially useful range restric-

tions to model inputs that restrict the model’s output to specified behavior modes. Finally,

with the NASA flight models we show that SPY can verify temporal properties in models with

real valued inputs, comparing SPY’s performance to a commercially available tool, Reactis,

that uses a random and heuristic search strategy.
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CHAPTER 1
INTRODUCTION

Two methodologies that are becoming increasingly popular in software engineering are model

based development and search based software engineering. The work presented in this thesis

attempts to apply search based techniques to model based development. We apply a new

metaheuristic search technique, Iterative Treatment Learning, ITL, to NASA requirements

models and NASA flight models. These two types of models represent early life cycle stages

and late stages, respectively.

1.1 Search Based Software Engineering

Software engineering is concerned with the process of software construction. The software

construction process is commonly decomposed into the following parts: requirements, design,

implementation, testing, and maintenance. Software engineering researchers have produced

work on all of the above life stages. The overall goal of this body of work is to improve

the quality of software. This might mean improving cost estimation for software projects,

developing tools that make implementation easier, or automatically generating a suite of test

cases that verify requirements.

Compared to the amount of research done in applying metaheuristic search techniques

to combinatorial problems and to other engineering fields, the amount of work done with

metaheuristic search in software engineering is quite small. Beginning in the mid-1990’s

some researchers in the software engineering field have argued for the application of common

metaheuristic search techniques to classical software engineering problems [32, 57, 58]. This

idea is accepted by this thesis as an important breakthrough in problem formulation for the

field of software engineering. It is also beginning to be accepted by the software engineering

field. For example, in a review completed in 2004 Rela [114] found at least 123 publications in

the field of search-based software engineering that used evolutionary algorithms (evolutionary

1



1.2. Model Based Development

algorithms will be discussed in §2.2). Of the 123 publications 44% (54) were related to testing,

while only 7% (8) were related to early project planning. In §2.3 we discuss these two topics,

because much of the work presented in this thesis deals with early project planning, such as

requirements engineering (chapter 4), and testing using model based verification (chapter 5).

The first step towards the application of metaheuristic search techniques to software en-

gineering problems is the realization that many of these problems are already or could easily

become a type of optimization problem. All that is needed is to reformulate the goal of the

research as an objective function1. The objective function is a function that evaluates the de-

sirability of a given candidate solution. This function can evaluate any property of the solution

that the practitioner wishes to use, as long as the output is numeric. For example, the objective

function could be path coverage or estimated project cost. Besides development of an objec-

tive function, a manipulatable language, as well as the operators that manipulate that language,

need to be developed. A more complete discussion of these steps can be found in §2.3.1.

Once an objective function is formulated, a software engineering researcher does not have

to develop their own optimization technique. Rather, researchers can borrow techniques devel-

oped for other problems that can be easily adapted to their own problem domain. While current

research on metaheuristic search techniques may focus on complex issues such as robustness

to noise, local optimum escaping, or hybrid approaches, software engineering researchers can

use simple versions of many metaheuristic search techniques that have be shown to be effec-

tive, despite their simplicity. In fact, for some languages and platforms, all the researcher has

to do is develop their objective function in a particular language and use a framework already

developed2.

This change in approach will facilitate the the adding of metaheuristic search techniques

to the toolbox of all software engineering researchers.

1.2 Model Based Development

Software engineers build models at every phase of the life cycle. Some are paper-based and

some are executable but all these artifacts are models, which are defined in [88] as

“elements describing something (for example, a system, bank, phone, or train)
1Sometimes called a cost, fitness, or worth function in the literature
2For example, see http://www.cs.uwyo.edu/˜wspears/freeware.html for William Spears’s

C implementation of a genetic algorithm

2



1.2. Model Based Development

built for some purpose that is amenable to a particular form of analysis, such as

communication of ideas between people and machines; completeness checking;

test case generation; etc.”

The benefits of modeling include increasing productivity and reduced time-to-market for soft-

ware products [119] and the imposition of “structure and common vocabularies so that artifacts

are useful for their main purpose in their particular stage in the life cycle” [53]. The current

ubiquity of the term model-driven software engineering is both a recognition of these benefits

and an appreciation of the reality that we are not using these models as effectively as we may

hope.

Model based software engineering has been put into practice by many groups. The Ob-

ject Management Group [108], Microsoft [52], and Lockhead Martin [130], have all adopted

model based development as part of their software engineering process. And just as their are

search based tools available to researchers, tools to support model based development have

been developed. These include tools for distributed agent-based simulations [28], discrete-

event simulation [59, 75, 80], continuous simulation (also called system dynamics) [1, 123],

state-based simulation [5, 56, 83], and rule-based simulations [98]. One can find models used

in the requirements phase (see §4.1 for a description of such a tool, DDP), refactoring of

designs using patterns [47], software integration [35], model-based security [71], and perfor-

mance assessment [9].

Recently, AI has been successful applied to model based software engineering. For exam-

ple, Whittle uses deductive learners to generate lower-level UML designs (state charts) from

higher-level constructs (use case diagrams) [138]. More generally, the field of search based

software engineering augments model based development with metaheuristic techniques, like

those discussed in §1.3 and §2.2, to explore a model. Such heuristic methods are hardly

complete but as remarked in [31]: “...software engineers face problems which consist, not in

finding the solution, but rather, in engineering an acceptable or near optimal solution from a

large number of alternatives.”

3



1.3. Metaheuristics

1.3 Metaheuristics

Metaheuristic search is the catch-all phrase for a set of high-level heuristics that are abstract

enough to be applied to many different fields. A central idea to all metaheuristic search tech-

niques is that most interesting real-world problems are far too difficult to solve exactly. There-

fore heuristic techniques must be used to find near-optimal solutions. Since heuristics tech-

niques have no performance or convergence guarantees several different techniques have been

developed, so that if a problem defeats one technique another may be used.

The most commonly used metaheuristic search techniques are simulated annealing, evolu-

tionary algorithms, and tabu search. These techniques will be discussed in §2.2. This section

will also discuss important ways to characterize metaheuristic techniques, such as mechanisms

for escaping local optima and candidate solution encoding. These characteristics will be re-

visited in §3.1.3 to see how they can be applied to our new metaheuristic search technique,

Iterative Treatment Learning. Occasionally we will review techniques from statistics and lin-

ear algebra that are used on some problems, which will be discussed in §2.3 and as they relate

to search based software engineering.

1.4 Machine Learning as a Search Heuristic

It will be shown in this thesis that a machine learning technique has been successfully used

as search heuristic. The machine learning technique used is treatment learning [91] and the

search technique we call Iterative Treatment Learning (ITL), since the treatment learner is

called in an iterative fashion. ITL has some characteristics that differentiate it from other

mainstream metaheuristic search techniques. Most metaheuristics’ base heuristic have a sta-

tistical or geometric interpretation. The base heuristic for ITL is treatment learning, which

is considered a machine learning algorithm. Another important difference is that ITL’s near-

optimal solution is a partial description rather than a complete description. The difference

between these two types of solutions is that partial descriptions do not comment on all the

available attributes and these comments are not exact value assignments, but are value range

assignments (see §3.1.2 for a more complete discussion of partial descriptions).

Menzies et. al. introduced ITL [89] as an alternative search heuristic in requirements

engineering. While their work was interesting and novel, the methodology used to demonstrate

the performance of ITL could use much improvement. A single model was used in their study,
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they did not explore design options within ITL, and ITL was not placed in the context of

metaheuristic search.

Another version of ITL called SPY has also been introduced by Clarke [29]. SPY is

an integrated model development and search environment. The search algorithm used by

SPY is an ITL method with a slightly different search strategy and a more efficient treatment

learner. SPY finds range restrictions to the model’s inputs to confine model output behavior

to specified modes. The original use case for SPY was that these behavior modes would be

temporal properties in models with real valued inputs. In [29] SPY was only applied to a

small number of simple models. In addition, there was no comparative analysis of SPY to

benchmark it against other tools or analysis methods And like the original work on ITL, SPY

was not presented in a search context. SPY will be described in more detail in §5.1.

1.5 Machine Learning

Machine learning is any algorithmic process that generalizes from a specific data set to a theory

that can be applied to new unseen data. One type of machine learner is the classifier; §2.1 will

describe several different classifiers, including treatment learning. Classifiers build theories

that can be used to assign one of the target labels to unseen examples. Contrast this with

the typical use of metaheuristic search techniques. Search techniques produce near-optimal

solutions without attempting to generalize anything learned during their search. Even when

viewing ITL as a search technique, which seeks a near-optimal solution, its solution is in a

form that captures generalizations that can be used after the search.

1.6 Problem Statement

Can ITL be used as a search technique for models from different stages of the software
life cycle?

To address that question the following topics will be discussed in the rest of this thesis.

1.6.1 Rethinking ITL as metaheuristic search

ITL has previously been presented as a machine learning technique. In this thesis we argue

that ITL should be considered a metaheuristic search technique that has novel characteristics
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not common in other metaheuristic search techniques.

1.6.2 Improved methodology demonstrating ITL’s ability to optimize early stage mod-
els in requirements engineering

The use of ITL to investigate early project requirements engineering has been limited to a

single model. Other uses of ITL have focused on models with a small number of independent

variables (fewer than 40). This thesis uses three models for early project requirements engi-

neering that have 99, 83, and 58 independent variables, respectively. The new methodology

also includes the development of extreme sampling, a new discretization method for ITL.

1.6.3 Can SPY be used in late stage life cycles?

Previous work with the SPY framework only used toy models which didn’t have any previous

analysis. This thesis uses the SPY framework on models that have been used elsewhere in

the literature, hence a comparison of previous results with results generated by SPY is pos-

sible. We will investigate the use of SPY on real world models from the aerospace industry

and compare the performance of SPY with a commercial tool. Lastly, we will investigate

biomathematical models, using SPY to restrict the output behavior modes of these models.

1.7 Previous Work on Problem Statement

Treatment learning has been developed and tested extensively by Menzies, Hu, Clarke, et.

al. [62,92,93,124]. The machine learning properties of treatment learning will no be explored

further in this thesis. ITL has been previously developed by Menzies et. al. [41, 94]. That

work focused on either models not presented in this thesis or just one of the requirements

models, aero, used in chapter 4. In addition, the SPY framework has developed by Clarke

and Menzies [29]. That work focused on the validation of the SPY framework’s methodology

using small toy problems developed for testing purposes.

1.8 Contribution

This thesis makes the following novel contributions towards addressing the problem statement
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• Presents ITL in a metaheuristic search context.

• Introduces the concept of an extreme sampling discretizer, and develops three variants
of a discretizer.

• Three cost/benefit models, including two not previously analyzed, are used to

– Conduct a study of the effect of parameter settings to extreme sampling’s perfor-
mance according to numerous criteria

– Compare performance of ITL with extreme sampling discretizer vs. diagonal strip-
ing discretizer

– Compare performance of ITL vs. simulated annealer

• A total of five models, from varied domains and with a higher complexity than mod-
els previously studied, are analyzed by SPY to find range restrictions that restrict the
models’ output behavior to specified modes.

The rest of this thesis will be structured around these contributions in the following man-

ner: ITL will be placed in the context of metaheuristic search in §2.2 and chapter 3, extreme

sampling and its three variants will be discussed in chapter 3, the three cost/benefit models

will be studied, along with extreme sampling, in chapter 4, and the five models analyzed by

SPY will be spread over chapter 5 and chapter 6.
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CHAPTER 2
LITERATURE REVIEW

This chapter describes past and related work that has been done to date on topics discussed

later in the thesis. The review will focus on three related topics

• General Machine Learning Techniques (§2.1)
• General Metaheuristic Search (§2.2)
• Search Based Software Engineering (§2.3)

The first 2 sections of this review are meant to give the reader an introduction to common tech-

niques in machine learning and metaheuristic search. This introduction will allow the reader

to appreciate how treatment learning differs from other machine learning techniques and how

ITL differs from other metaheuristic techniques. These sections also serve to demonstrate

some of the differences and similarities between machine learning and metaheuristic search.

The last section is a more in-depth look at how metaheuristic search is used in software engi-

neering.

2.1 Machine Learning Techniques

Since ITL utilizes a machine learning technique, a treatment learner, this section will introduce

the field of machine learning. First some basic terminology used in the field will be defined,

as well as some common characteristics used to describe different learners (§2.1.1). Then two

popular techniques will be discussed (§2.1.2 and §2.1.3). These two techniques are described

to highlight the differences between the form and usability of their theories and the form and

usability of treatment learners. Before treatment learners (§2.1.5) are discussed, we discuss

contrast set learners (§2.1.4) since treatment learners are a type of contrast set learner.

2.1.1 Introduction and Terminology

Machine learning deals with algorithmic processes that attempt to generalize knowledge learned

form past examples to future, unseen, examples. The past examples are often called instances,
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records, or input data. Each record has a number of attributes. These attributes entirely de-

scribe the record, i. e. all information presented to the learner is in the form of attributes.

Attributes can be continuous, e. g. the real numbers 0 to 10, or discrete. Discrete attributes

can be ordinal, e. g. the integers 1-10 or categorical, e. g. the primary colors. For many prob-

lems there is a special attribute which labels its type. This attribute is called the class or the

target class. Not all problems have a target class. The target class can also be real, ordinal or

categorical. Learners take the input records provided and build a theory that describes what

they learned. The learner is said to train on the input data to produce a theory. When trying

to predict continuous classes the theory may be an equation, or a decision tree or probability

table when trying to predict discrete classes. Other types of theories are possible.

Learners are often classified by what type of inputs they can use and what type of outputs

their theories can predict for. Some learners, e. g. a naı̈ve Bayes learner, (see §2.1.3) only

work with discrete input data and can only predict for a discrete target class. Any learner can

be adapted to handle continuous data by discretizing the data in a pre-processing step. The

performance characteristics of different discretization methods are an active area of research

[38, 97, 141] but a detailed description of these methods is beyond the scope of this review.

Discretization is most commonly used on the independent attributes, but can be applied to the

dependent attributes as well. Our extreme sampling discretizer, described in §3.1.4, is one that

works on the dependent attributes.

Another way to describe machine learners is whether they are performance or explana-

tory systems. Performance learners only attempt to maximize their predictive performance

according to some criterion, such as accuracy or precision. Explanatory learners also attempt

to maximize their predictive performance, but their theories are in a form that can offer insight

to human users. Naı̈ve Bayes (§2.1.3) are an example of performance learners, while decision

trees (§2.1.2) are an example of explanatory learners. Treatment learners (§2.1.5) are also

explanatory learners.

2.1.2 Decision Tree Learning

Decision tree learning uses the common divide-and-conquer approach. The ID3 decision tree

learner [111] is the most common, although other tree learners include M5 [113] and CART

9



2.1. Machine Learning Techniques

[21]. The modern incarnations of ID3 are C4.5 [112] and J4.81. A decision tree’s leaves

are classification labels and its internal nodes are attribute-value tests. The pseudocode in

Figure 2.1 describes how to classified a new instance using a decision already generated.

start at root node
repeat

follow branch that matches the instance being classified
until current node is a classification node
return classification in leaf node

Figure 2.1: Pseudocode for classifying new instances with a decision tree

1Part of the weka project, downloadable at http://www.cs.waikato.ac.nz/ml/weka/
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Figure 2.2: Example decision tree

See Figure 2.2 for an example of what a decision tree might look like after training on the

ubiquitous golf data set. Note that the classification at the root nodes does not misclassify any

of the training examples. This, of course, is not the typical performance of machine learning

algorithms.

To train a decision tree an ordering heuristic is needed to decide which attribute to use

when constructing an internal node. ID3 uses information gain [112], which is an entropy

based metric. Starting at the root node and continuing until either there are no attributes

remaining or the instances at the current location in the tree all belong to the same class, the

attribute that would most reduce the information in the resulting tree is selected.

The Boston housing data [17] is a frequently used data set that describes the median value

of homes in 506 suburbs of Boston. There are 12 continuous attributes, 1 boolean attribute,

and the target class. Figure 2.3 shows a typical decision tree learned on this data by J4.8,

where {stat, rm, lstat, dis, ptratio, nox, b} are independent variables2

and {low, medlow, medhigh, high} are the target labels. Compare the complex-

ity of this tree to the simple treatment shown in Figure 2.7. Also note that Figure 2.3 is a

classifier, which can be used to predict the class of any new instance, whereas Figure 2.7 is a

2Where rm is the average number of rooms, ptratio is the pupil-teacher ratio, and nox is the nitrogen
oxide concentration, to define a few.
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stat <= 11.66
| rm <= 6.54
| | lstat <= 7.56 THEN medhigh
| | lstat > 7.56
| | | dis <= 3.9454
| | | | ptratio <= 17.6 THEN medhigh
| | | | ptratio > 17.6
| | | | | age <= 67.6 THEN medhigh
| | | | | age > 67.6 THEN medlow
| | | dis > 3.9454 THEN medlow
| rm > 6.54
| | rm <= 7.061
| | | lstat <= 5.39 THEN high
| | | lstat > 5.39
| | | | nox <= 0.435 THEN medhigh
| | | | nox > 0.435
| | | | | ptratio <= 18.4 THEN high
| | | | | ptratio > 18.4 THEN medhigh
| | rm > 7.061 THEN high
lstat > 11.66
| lstat <= 16.21
| | b <= 378.95
| | | lstat <= 14.27 THEN medlow
| | | lstat > 14.27 THEN low
| | b > 378.95 THEN medlow
| lstat > 16.21
| | nox <= 0.585
| | | ptratio <= 20.9
| | | | b <= 392.92 THEN low
| | | | b > 392.92 THEN medlow
| | | ptratio > 20.9 THEN low
| | nox > 0.585 THEN low

Figure 2.3: Decision tree generated by J4.8 training on the Boston housing data
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contrast rule that describes the biggest difference between the higher value target classes and

the lower value target classes.

2.1.3 Naı̈ve Bayes

Bayes theorem [11] is used to calculate the probability that a hypothesis is correct, given a set

of evidence. It can be written as

P (H|E) =
P (E|H) ∗ P (H)

P (E)

where P (H|E) is the probability of the hypothesis given the evidence, P (E|H) is the prob-

ability of the evidence given the hypothesis, P (H) is the probability of the hypothesis, and

P (E) is the probability of the evidence.

The difficulty in using Bayes theorem is calculating the P (E|H) term. The theorem sug-

gests we most observe every possible combination of the different pieces of evidence.

Because of this difficulty, in machine learning a weaker form of Bayes theorem is often

used called Naı̈ve Bayes. Naı̈ve Bayes assumes that the probabilities of the different attributes

are independent of one another. This allows the P (E|H) term to be calculated multiplicatively

as

P (E|H) =
n∏

P (Ei|H)

where the P (Ei|H) terms are the probabilities of a single piece of evidence given H and n is

the number of attributes available.

To train a naı̈ve Bayes learner, frequency tables are used to count the number of instances

with each attribute value in each of the target classes. The attributes and the target class must

be discrete to keep the number of tables and the number of rows in the tables finite. For

example, if a naı̈ve Bayes learner was trained on the data in Figure 2.4, the frequency tables

might look like Figure 2.5.

To classify a new example, naı̈ve Bayes calculates the likelihood of the example belong-

ing to each target class, L(Hi). The likelihood is the similar to the probability, but is not

normalized by the P (E) term. The likelihood can be used because naı̈ve Bayes compares two
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attributes class
Make coupe : SUV Size coupe : SUV Hifi coupe : SUV coupe : SUV

Mitsubishi 1 : 1 Small 6 : 0∗ yes 6 : 0∗ 8 : 4
Toyota 2 : 1 Medium 1 : 1 no 2 : 4
Benz 1 : 1 Large 1 : 3
BMW 2 : 0∗

Ford 1 : 1
Honda 1 : 0∗

Figure 2.4: Training data. Cells indicated with a ∗ have a zero cell. In the frequency table all
cells will have one added to their counts to avoid calculating any zero likelihoods.

attributes class
Make coupe : SUV Size coupe : SUV Hifi coupe : SUV coupe SUV

Mitsubishi 2
9 : 2

5 Small 7
9 : 1

5 yes 7
9 : 1

5
9
14

5
14

Toyota 3
9 : 2

5 Medium 2
9 : 2

5 no 3
9 : 5

5

Benz 2
9 : 1

5 Large 2
9 : 4

5

BMW 3
9 : 1

5

Ford 2
9 : 2

5

Honda 2
9 : 1

5

Figure 2.5: Frequency table, P (Ei|Hj)
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probabilities, making the P (E) terms cancel out. The likelihood is calculated by

L(Hi) = P (E|Hi) ∗ P (Hi) (2.1)

The example is classified as whichever class has the highest likelihood. For example, if a new

instance was a medium sized Ford, the likelihood of it being an SUV would be

L(SUV ) = P (size = medium|SUV ) ∗ P (Make = Ford|SUV ) ∗ P (SUV )

=
2

5
∗ 2

5
∗ 5

14
= 0.057

while the likelihood of it being a coupe would be

L(coupe) = P (size = medium|coupe) ∗ P (Make = Ford|coupe) ∗ P (coupe)

=
2

9
∗ 2

9
∗ 9

14
= 0.032

For this instance, since L(SUV ) > L(coupe), the naı̈ve Bayes classifier would assign this

instance to SUV target class.

2.1.4 Contrast Set Learning

Contrast set learners are a type of association rule learners that find the greatest difference

between the target classes. Since treatment learning is an example of a contrast set learner, we

will discuss some research done with contrast set learners other than treatment learners.

STUCCO STUCCO (Search and Testing for Understandable Consistent Contrasts) [10]

uses the algorithm in Figure 2.6 to learn contrasting sets.

This algorithm builds trees (line 14) using a canonical ordering to avoid visiting the same

node twice. The tree nodes consist of different possible attribute-value pairs, so that a path

from the root to a leaf consists of several non-exclusive attribute-value pairs. The prune

function (line 11) has three criteria, any one of which causes the function to return true:
1. minimum deviation size
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initialize set of candidates, C, to the empty set
initialize set of deviations, D, to the empty set
initialize set of pruned candidates, P , to the empty set
let prune(c) return true if c should be pruned

5: repeat
scan data and count support ∀c ∈ C
for all c ∈ C do

if significant(c) ∧ large(c) then
D ← D ∪ c

10: end if
if prune(c) is true then

P ← P ∪ c
else

Cnew ← Cnew ∪ GenChildren(c, P)
15: end if

end for
C ← Cnew

until C is empty
return Surprising(D)

Figure 2.6: STUCCO algorithm
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% holding
contrast set Ph. D Bachelor
workclass = State-gov 21.0 5.4
occupation = sales 2.7 15.8

Table 2.1: Example rules learner by STUCCO from Adult Census data

2. expected cell frequencies

3. χ2 bounds

These rules together make it possible to do a complete search of the remaining branches. The

functions significant and large ensure that the proposed contrast set is both statisti-

cally significant, based on the χ2 test, and large, above a user specified threshold. Finally,

the Surprising function ensures that the proposed contrast set is not just the result of

multiplicative probabilities. For example if P (color = red | shape = square) = .76 and

P (hollow = yes | shape = square) = .45, it would not be interesting if P (hollow =

yes ∧ color = red | shape = square) = .32 since that probability is so close to probability

we would expect if the attributes were independent, i. e. .76 ∗ .45 = .34. This is only the basic

idea behind the Surprising function; a more robust method based on iterative proportional

fitting [40] was actually used in STUCCO.

Using the STUCCO learner to investigated Adult Census data [17] to answer the question

“What are the differences between people with Ph. D and Bachelor degrees?” Bay and Pazzani

[10] found 164 rules, while Apriori returned over 75,000 rules. For example the two rules in

Table 2.1 were returned by STUCCO.

MINWAL The MINWAL learners [23], MINWAL(O) and MINWAL(W), extend the Apri-

ori Gen Algorithm [3]. They are called weighted class learners, because they allow the in-

stances to have an extra attribute, weight, that records how significant the instance is. The

example used in [23] has to do with analysis of supermarket checkout baskets. If a rule learner

like Apriori Gen finds the following two rules

• Buys(baby food)⇒ Buys(diapers)
• Buys(baby food)⇒ Buys(beer)

but the profit margin on beer is much higher than on diapers, the second rule is more useful to

a business user.
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Webb et. al. [132] did a study comparing STUCCO with two other rule learners, Magnum

Opus, a commercially available tool and C4.5rules [112], which generates rules from a de-

cision tree. Although these other learners were not designed to be contrast set learners, the

authors were able to restrict the form of their theories to allow an almost direct comparison

with STUCCO. The learners were applied to aggregated data from a large Australian discount

department store taken on two different days. To their surprise they found a correspondence

between the core contrast-set-discovery task in the Magnum and STUCCO learners. They

found that the pruning rules of the learners are responsible for the difference in the theories

returned by the two learners. These different pruning rules lead the STUCCO learner to return

fewer rules than Magnum. A manual inspection of these rules found both interesting and spu-

rious rules in the list generated by Magnum, suggesting that the pruning rules of STUCCO are

possibly too strict and that the rules of Magnum are possibly too lenient. They did find that

C4.5rules missed many of the key contrasts that were found by STUCCO and Magnum.

2.1.5 Treatment Learners

The tar family of learners have been developed by Menzies et. al. The original Tarzan [95]

prototype was actually a post-processor that worked with classification tree generators (specif-

ically C4.5, discussed in §2.1.2). Tarzan constructed a set of decision trees using different

training data sets that had been generated by applying different restrictions to the software

effort estimation model [2] being studied. Tarzan then used a set of pruning rules that applied

to the individual trees, as well as rules that were applied to the ensemble of decision trees.

These rules vastly reduced the complexity of the original decision trees. This prototype was

quickly discarded as it was computationally inefficient. Tar2 was developed [63] to gener-

ate treatments quicker by training directly on the instances instead of constructing decision

trees. Tar3, used in the studies described in chapter 4, was developed to increase the efficiency

of tar2 by using stochastic sampling. Tar4 [29], used by SPY in the case studies described

in chapter 5 and chapter 6, is the next generation treatment learner that further increases the

runtime efficiency of the learner by using a Bayes style frequency table to eliminate the need

to run over the data set for each proposed treatment or even store the training instances in

memory.

18



2.1. Machine Learning Techniques

IF: rm >= 6.6 AND ptratio <= 15.9
THEN: 97% of the found houses will be high quality

3% of the found houses will be medhigh quality
BASELINE: 29% high, 29% medhigh, 21% medlow, 21% low

Figure 2.7: Treatment generated by tar3 on the Boston housing data

The form of the treatments returned by the tar family of learners is conjunctions of attribute-

value pairs. Each attribute-value pair consists of one attribute and either a range restriction,

such as 6.7 ≤ rooms ≤ 9.8 or a value assignment, such as outlook = overcast. Hence a

treatment has the form

pair1 ∧ pair2 ∧ . . . ∧ pairn ⇒ P (c1), P (c2), . . . , P (ck)

where, typically, 1 ≤ n ≤ 5 and P (ck) is the predicted probability of class ck among instances

that pass the treatment.

The tar learners are a type of contrast set learner, as discussed in §2.1.4. This means they

attempt to find treatments that select for the desired class, but do not comment on instances

that don’t pass the treatment. In receiver operator characteristics, we would say these types of

learners attempt to maximize the true positive rate of their theories, without penalizing theories

that have a high false negative rate. A treatment should be interpreted as a region where

desirable classes are more prevalent, while the region outside the treatment may not have

significantly more instances of the undesirable classes than the baseline. In other words, if an

unseen instance passes a treatment returned by a treatment learner there is a high likelihood

that the new instance belongs to the desired class. But if the new instance does not pass

the treatment, the treatment learner does not offer any guidance on what class that instance

belongs to.

Figure 2.7 shows a typical treatment for the Boston housing market data used to build

the decision tree in Figure 2.3, where {rm, ptratio} are independent variables, high

is the most desirable target class, and medhigh is the second most desirable target class.

Compare the succinctness of this theory to the complexity of the decision tree in Figure 2.3.

This is the advantage to using a treatment learner. Treatments are a compact way to convey

the differences between the higher valued target classes and the lower valued ones.
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We will discuss the details of tar3 and tar4, since they are the two treatment learners

utilized by the studies presented in chapters 4 - 6.

Tar3 The first step in tar3 is to calculate the baseline. The different possible target classes

are assigned weights. Experience has shown that these weights should be exponential. For

example, if there are four classes, they might be assigned the weights 2, 4, 8, 16. Of course,

this is all done internally in the treatment learner. All the user has to do is list the possible target

classes in the preferred order. The baseline is a normalized weighted sum of the proportions

of the target classes in the training data. This calculation has the following steps

1. multiply the proportion of each class in the training set by its weight
2. sum the products from step 1)
3. normalize the sum from step 2) by the sum of the weights

Hence, the baseline can be calculated as

baseline =

∑n
i=0(weighti ∗ propi)∑n

i=0 weighti

where n is the number of target classes, weighti is the weight assigned to the ith class, and

propi is the proportion of the ith class in the training data.

The next step is to calculate the lift1s. The lift for any treatment is the ratio of the nor-

malized weighted sum of the instances covered by that treatment to the baseline, calculated

as

lift =
treated average

baseline

=

∑n
i=0(weighti ∗ treatedi)∑n

i=0(weighti ∗ propi)

where treatedi is the proportion of the ith class among instances that pass the treatment. The

lift1s are the lifts of all possible treatments with only one attribute-value pair. The number of

attribute-value pairs in a treatment is often referred to as the treatment’s size.

Next lift1s are combined to form treatments of sizes 1 to max size,which is specified by

the user, but usually 5 works well. First the size of the treatment is picked randomly, then

different attribute-value pairs are chosen randomly, biased according to each attribute-value

pair’s lift1. The lift for each proposed treatment is calculated and after tar3 has run several

trials, it returns the treatments it found ranked by their lift. This metric might tend to produce

20



2.2. Metaheuristic Search

very overfitted theories, as treatments are learned that match only a few instances in the most

desired class. A minimum best support term is used to counter this potential cause of over-

fitting.

Tar4 Tar3 still has to run through the data to evaluate each potential treatment. This also

requires that the instances be stored in memory. Tar4 was developed to generate treatments

while requiring only one pass through the data, which also means that the training data need

not be stored in memory. During the training stage, tar4 stores the instances in frequency tables

similar to a naı̈ve Bayes classifier. The major difference between tar4’s frequency tables and

those found in a naı̈ve Bayes classifier is that tar4 uses a two-class system, regardless of how

many target classes exist in the training set. For example, if the target class is an integer from

the range [1, 5] with 5 being the best class, an instance with a class of 4 would count as 4/5

good and 1/5 bad. The lift1s are then calculated from these tables. The final lift of a treatment

is calculated by P (good) ∗ support(good), where P (good) is calculated in the same fashion

as it would in a naı̈ve Bayes classifier and support(good) is the unnormalized likelihood from

the frequency tables (see Equation 2.1).

For more complete details on tar4 see [29].

2.2 Metaheuristic Search

The most widely used metaheuristic techniques are

• gradient based techniques (§2.2.2)
• evolutionary algorithms (§2.2.3)
• tabu search (§2.2.4)

These three techniques will be discussed in this section. First some basic terminology used to

describe the characteristics of different techniques will be discussed. Then the particulars of

the techniques will be discussed.

2.2.1 Introduction and Terminology

Metaheuristic techniques are a set of high-level search techniques that are used on problems

that have input spaces too large for a complete search. The underlying assumption of these

techniques is that although there is no guarantee they will find the optimal solution, finding a

near-optimal solution is better than never finding the optimal solution. Again, it is assumed
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1: generate initial candidate solution(s)
2: repeat
3: evaluate candidate solution(s)
4: generate new candidate solution(s)
5: move to new solution(s) or keep old one(s)
6: until stopping condition is reached
7: report best candidate solution found

Figure 2.8: Metaheuristic pseudocode

that near-optimal solutions exist.

The two key components of a metaheuristic technique are

1. objective function evaluation
2. new solution(s) generation

These two steps can be thought of as 1) where the search is and 2) where the search should go.

The objective function is used to measure the value of the candidate solution(s). This function

has to decode the candidate solution(s) and evaluate its desirability. Using that information

the technique then forms its next generation candidate solution. This next generation may or

may not be an improvement in terms of the objective function. These two steps are alternated

until some stopping condition is reached. The pseudocode in Figure 2.8 describes, at a very

abstract level, how metaheuristic search techniques work.

There are several ways to describe the characteristics of these techniques. Some of the

more important characteristics are

• is the search local or global?
• how is the neighborhood determined?
• what type of solution encoding is needed?
• how are exploration and exploitation balanced?
• how robust is the technique is the presence of numerous local optima?

A search technique can be local or global, depending on whether only solutions close to the

current solution are considered when new candidate solutions are generated. The neighbor-

hood is the set of solutions that are considered before a move is made. How this set is deter-

mined may not be obvious. Higher dimensionality functions will have larger neighborhoods,

since the current solution can move in many directions. This may require restricting in which

directions the current solution can be modified when constructing its neighborhood. Mixed

typed or mixed unit inputs may require domain knowledge to decide how great a change in

one direction is equal to a change in another direction. The candidate solutions need to be

encoded in a way that the neighborhood operators can work on and the objective function
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can efficiently evaluate. Every search has to balance exploration and exploitation. A search

explores when it evaluates candidate solutions from portions of input space it hasn’t visited

before. But the search must also investigate regions of the input space where it has found

promising solutions. This is called exploiting. If a technique sends too much time exploiting

previously visited regions of the input space, it may get stuck in a local optimum. But if a

search never exploits known locations of promising candidate solutions, solution quality may

suffer. A metaheuristic search technique has to balance when it explores new regions of the

input space and when it exploits knowledge it has already learned. Regardless of how explo-

ration and exploitation are balanced, since all metaheuristic search techniques are incomplete,

they may still get stuck in local optima. Because of this each technique should have some

method for escaping from local optima.

2.2.2 Gradient Based Techniques

In mathematics the gradient operator (O) can be used to find the direction of greatest change

for a multivariate function whose partial derivatives exist. When optimizing analytic functions

the gradient can often be calculated analytically. For problem domains where the gradient

can not be calculated analytically, it must be done numerically. By evaluating the objective

function at points in the neighborhood of the current candidate solution, an estimation of the

gradient can be calculated. As discussed in §2.2.1, how to generate this neighborhood is not

always obvious and often requires some domain knowledge.

Hill climbing The simplest gradient based technique is hill climbing. A hill climber inves-

tigates the area around its current position and moves the candidate solution to a neighbor

with a better score. There are several variants of the hill climber. The climber can move to

the first candidate it finds that is better than the current solution. This is called first-ascent

hill climbing. The climber could alternatively investigate its entire neighborhood and move

the solution to the best neighbor it finds. This is called steepest-ascent hill climbing. Hill

climbers terminate when they can not find a neighbor that has a better score than the current

candidate solution. This means that the current solution is a local optimum.

Since gradient based techniques are not guaranteed to find global optima, methods that

use hill climbers often do multiple restarts. After a local optimum is found, the hill climber
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Figure 2.9: Typical simulated annealer

is restarted from a new random starting point. Using restarts usually leads to the finding of a

different optimum, increasing the likelihood that a high quality near-optimal solution is found.

Of course this still does not guarantee finding the global optimum.

Simulated annealing Simulated annealing (SA) [24, 76] is a local search algorithm very

similar to hill climbing, with one important difference. SAs will probabilistically make a

move that does not improve the objective function according to the Boltzmann factor e−(OE/T ),

where T is the temperature and OE is the change in the objective function. Note that e−(OE/T ) →
0 as T → 0, i. e. SAs converge to hill climbers in the limit T → 0. Also note that

e−(OE/T ) → 0 as OE → ∞, i. e. the worse the move, the lower the probability it will

be taken. Figure 2.9 shows a how a search might proceed in a 2-D example, if a simulated

annealer was used.

The cooling schedule (how the temperature changes during the search) is the way that SAs

control the trade-off between exploration and exploitation. At the start of an SA run, when the

temperature is high, the technique makes many bad moves and explores the search space. But

as the temperature is lowered, the technique makes fewer and fewer bad moves and exploits

what was learned (the possible location of a promising local optimum) during the exploring

phase. Hence the benefit of allowing the SA to make bad moves is that these bad moves

increase the amount of exploring done and decrease the likelihood of the search getting stuck

in low quality local optima. As with restarting hill climbers, this technique can not guarantee

that the global optimum will be found.
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2.2.3 Evolutionary Algorithms

Evolutionary algorithms (EA) are inspired by Darwinian evolution developed in biology. The

key parts of evolutionary algorithms are

• the population of candidate solutions
• the candidate solutions are scored, based on how well they solve the problem
• the candidate solutions are changed some to explore new possible solutions

Since more than one candidate solution is being considered, evolutionary algorithms are non-

local techniques. Candidate solutions in EAs are encoded as chromosomes. These chromo-

somes are usually bit vectors, where each bit represents a single attribute of the solution.

Typically the chromosomes are fixed length, but Whitley et. al. [137] has explored encoding

master genes. These master genes can turn off other genes, so that while the chromosome

stays a constant length during the search, the information expressed changes depending on

how these master genes are mutated during the search. Exploitation and exploration are bal-

anced by the values of the mutation operators. If mutation events are very common, the search

performs more exploration, since the mutations push the search into new regions of the search

space. If mutation events are not common, the search performs more exploitation, as the

search stays in same region of the search space. An EA may have static mutation rates that

don’t change during the search, although it is common to find experimentation with adaptive

mutation rates [25,143]. The two most common EAs are genetic algorithms (GAs) and genetic

programming (GPs). They will be discussed in the following section. In addition Evolutionary

Programming [46] has been developed, but it will not be discussed here.

Genetic Algorithms and Genetic Programming

The following steps compose one generation in a genetic algorithm [51, 61]

1. evaluate the individuals to determine their fitness score

2. construct a new intermediate population based on those fitness scores

3. construct the next generation by using mutator operators on the intermediate population

The evaluation of the individuals is done by the objective function (usually called the fitness

function by GA practitioners). This function must be called once for every individual in the

population, every generation, hence it must be only modestly computational intensive.
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Their are several ways that the intermediate population can be constructed, including pro-

portional selection (also known as roulette wheel selection), stochastic universal sampling,

and tournament selection. Each of these selection methods has been studied to determine

some their characteristics. For example tournament selection was studied by Miller and Gold-

berg [101], who investigated the relationship between selection pressure, tournament size, and

noisy objective functions, while stochastic universal sampling was studied by Baker [8], who

demonstrated that this method was unbiased.

The two mutation operators used are the point mutation operator and the crossover opera-

tor. The point mutation operator works by probabilistically flipping individual bits among the

chromosome population. An individual may have 0 or more bits flipped by the point mutation

operator. A pictorial representation of the point mutation operator is shown in Figure 2.10.

The crossover operator works by probabilistically exchanging information between two indi-

viduals in the population. There are several versions of the crossover operator, including the

one-point, the two-point, and the uniform. The one-point operator selects a single location

along the chromosome and exchanges the portion of the chromosome after that point from

one individual with the corresponding portion from another individual. The two-point oper-

ator selects two locations along the chromosome and swaps the information between those

two points between two individuals. The uniform operator probabilistically swaps each gene

along the chromosome. A pictorial representation of a one-point crossover operator is shown

in Figure 2.11.

There is also research on the topic of encoding schemes. Natural encoding has been advo-

cated [99] since that eliminates the need to encode and decode the individuals before scoring

them, but new mutation and cross-over operators need to be developed for each new problem.

Runtime speed ups have also been been reported with natural representation [70]. The topic

of encoding schemes will be revisited in §2.3.1.

Genetic programming [78, 106] is similar to genetic algorithms, except that the represen-

tation being “evolved” is a computer program. To ensure that all mutations are still valid

programs, the representation chosen is often an abstract syntax tree. Since this representation

is so different from the typical representation used in GA, specialized mutation operators have

to be used. For example, a crossover event in a GP search might look like Figure 2.12. Besides

specialized mutation operators, GPs use the same three basic steps discussed at the start of this

section.
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Figure 2.10: Example of a point mutation [115]

Figure 2.11: Example of a one-point crossover event [115]
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Figure 2.12: Example of crossover event in genetic programming [115]

2.2.4 Tabu Search

Tabu search [49, 50] (a type of adaptive memory programming, or AMP) attempts to use

memory in a flexible fashion, without recording the exact history of the search. Like SA, tabu

search is a local algorithm. However, its neighborhood depends on previous moves. After

each move is made a tabu list is updated based on the move. The list may contain the exact

move, or it may contain certain attributes of the move. Members of this list have some form of

tenure, so that they are eventually evicted from the list. This makes tabu search more scalable

to large problems, since it does not attempt to store a complete history of its progress. In

addition, multiple tabu lists might be maintained. For example, when solving the minimum

k-tree problem [82] it is useful to maintain a separate list for edges that are dropped from the

current solution and for edges that are added to the current solution. When constructing future

neighborhoods, moves that match a move on the list (or share an attribute that is on the list)

are not considered. That is, tabu tries to explore regions of the space that it has not visited

previously. It is left to the practitioner to decide if a move should be considered tabu if it has

any attributes that are in the tabu list or whether it must have several (or all) attributes on the

tabu list to be considered tabu. Similarly, when maintaining multiple tabu lists, a move may

be considered tabu if it has attributes on any of the lists, or if a move can be considered tabu

only if its attributes are on several (or all) of the tabu lists.

The time each move (or attribute) remains on a tabu list is called its tabu tenure. This value
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of this tenure can be very flexible. If multiple lists are being maintained, each list can have

a different tenure. The tenure for the different lists can be static or dynamic. The value of

the tenure is the main way tabu search balances exploration with exploitation. Longer tenures

forces tabu search to explore more the of the search space, as large parts will be considered

tabu. Shorter tenures increases exploitation, allowing the technique to stay in a smaller part

of the search space (without necessarily requiring it). For this reason, the tabu tenure may be

a monotonically decreasing function, making it similar to the cooling schedule in SAs. This

results in more exploration at the beginning of the search, with more exploitation as the tabu

tenure decreases.

2.3 Search Based Software Engineering

Starting in the mid-1990’s various researchers working in the field of software engineering

started looking at how the field of optimization might be applied to their field. Many other en-

gineering disciplines incorporated optimization techniques into their standard toolboxes long

ago. These include mechanical engineering [79, 118], chemical engineering [16, 74], medical

and biomedical engineering [110, 117, 135], civil engineering [7, 14, 44, 67], and electronic

engineering [13, 33, 102]. In contrast to the multitude of areas outside software engineering,

researchers in the field of software engineering are just starting to realize the applicability of

search based optimization to their problem domain. This section will first describe how to view

software engineering problems as search problems (§2.3.1). The key insight in search based

software engineering is that many standard software engineering problems are not amenable

to analytic solutions since the mathematics of the problem does not permit symbolic analysis

nor complete methods since the size of the search space is too large to make such a search

feasible. The rest of the section will review some of the research done in software engineering

that has applied optimization techniques (§2.3.2 - §2.3.4).

2.3.1 Rethinking Software Engineering as Numeric Optimization

As described in [32, 58] there are three key elements to rethinking a software engineering

problem as a search problem.
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1. The problem has to be described in a manipulatable language. The metaheuristic tech-
nique used must be able to generate new proposed solutions automatically using this
language.

2. An objective function must be developed. This function needs to map proposed solu-
tions to a single numeric output. This output then is either minimized or maximized (i.e.
optimized) by the metaheuristic technique being employed.

3. Transformation operators that work on proposed solutions also need to be developed.
This might mean defining a neighborhood function that generates solutions “close” to
another solution based on some criteria. Or it might mean taking a single proposed
solution and changing some aspects to generate a new proposed solution.

If these conditions are not met, using a metaheuristic search technique may not be possible or

may not be necessary.

Representation Solutions to the problem need to be encoded in such a way that the various

operators of the search technique being used can operate on them. Therefore, the first issue

that must be addressed when applying a search technique is to find a suitable representation

for candidate solutions.

The problem of representation can be more complex than might be first assumed, because

the most natural encoding may not be the best scheme for the search technique being used.

For instance, consider the bit encoding of an integer, as might be required when using a ge-

netic algorithm. It is possible to represent integers as “pure” binary numbers. One would

be represented as 0001, two as 0010, three as 0011, and so on. According to the rules of

arithmetic, seven can be transformed into eight through only one application of the successor

function. But in pure binary seven, 0111, must have four bits flipped to be transformed into

eight, 1000. Since the mutation operator in a genetic algorithm works on the bit representa-

tion, seven is no longer only one operation away from eight. For this reason gray encoding

is preferred. With gray encoding seven would be 0100 and eight would be 11003. Now seven

and eight are only one mutation apart. It has been reported that gray encoding outperforms

binary encoding [68, 136].

[125,133] have also pointed out that both binary and gray encoding of real or integer num-

bers that have a restricted range can lead to the mutation and crossover operators that create

out of bounds values. This means that after each mutation or crossover event the chromosome

has to be inspected and, if necessary, repaired. Or if this possibility is ignored the semantics
3Other gray encodings are possible, but this is the must popular.
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of a language with restricted range types (e. g. Ada) can be violated. They suggest using real-

valued encoding to avoid this problem. [39] also argues for using real-valued encodings with

evolutionary techniques.

Picking an encoding scheme must clearly include not only an understanding of the search

technique but domain knowledge as well.

Objective function The next problem is developing an objective function. Software engi-

neers are used to collecting software metrics, so those metrics are a ready supply of objective

functions. For example, path or branch coverage for test case generation can be used as ob-

jective functions. There are a few new issues that should be addressed before these metrics,

which were developed for other purposes, can be used as objective functions. [57] lays out

four requirements for a metric function to be used as an objective function, each of which will

be discussed in more detail below.

1. the input space of the metric function shouldn’t be small enough to allow an exhaustive
search

2. the function should have no known optimal solutions

3. the function must be computationally efficient

4. the function should be approximately continuous

Input space size and known optimal solutions Items 1 and 2 have bearing on the ques-

tion of whether a search would beneficial. If the input space of the objective function is small

enough to permit exhaustive search, then there is nothing to gain by using a incomplete search

algorithm. Exactly how big is too big will depend on the hardware available and the com-

putational costs of the objective function. For example, mission critical tasks might have the

budget to allow the use of long periods of time on large amounts of hardware to tackle very

large search spaces. Many of the case studies presented in chapter 4 have 255 (1017) or more

possible input vectors, so it is unlikely that any amount of hardware or budget would allow a

reasonable chance to do a complete search. The objective function must also have no known

optimal solution for there to be any gain to using a metaheuristic search. For example, if a

3-SAT proposition has a single unsatisfiable clause (which can be found in linear time [48]),

there would be no point in conducting an expensive search for that particular proposition. Any
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analytic solution should be preferred to a solution found through search, and any near-optimal

solution found analytically would also be preferred. For example, an analytically found near-

optimal solution might have a upper bound on its distance from the unknown optimal solution.

This type of information would not be found by a metaheuristic search technique.

Objective function efficiency and continuity Items 3 and 4 have bearing on whether an

effective search would be practical. While the exact number of times the objective function is

evaluated depends on the technique being used, it will most likely be at least 104 and possibly

more than 107. One of the main driving forces behind the development of ITL is reducing

the needed number of evaluations of the objective function. As a search technique moves

around the input space it must have some hint that it is moving in an undesirable or desirable

direction. For that reason, the more continuous the objective function, the more efficiently

we can expect the search to progress. If there exist many near-optimal solutions at points

of high discontinuity, the probability that any search technique will find them approaches the

probability that a random search would find them, as the discontinuity of the objective function

increases. We encountered this problem in the studies presented in chapter 5 and chapter 6.

The next three sections will discuss the application of search-based software engineering

to the fields of testing (§2.3.2), cost estimation (§2.3.3), and requirements analysis (§2.3.4).

These fields are reviewed because cost estimation and requirements analysis are early life

cycle activities, similar to the study presented in chapter 4, and testing is a late life cycle

activity, similar to the studies presented in chapter 5).

2.3.2 Testing

One of the first areas in software engineering to use optimization techniques was test case

generation. Test case generation has a few properties that make it uniquely suited for search-

based optimization. First, there are many metrics that have already been developed by the

testing community that serve as ready-made candidates for objective functions. There are

static measures like the McCabe complexity values [84], and dynamic measures like path or

branch coverage. Second, the input space to even the most trivial programs is far too large for

any exhaustive search. Third, static program analysis is difficult for most real world programs.

It is a well known result that it is not computationally possible to decide even the simplest
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program properties4 for any Turing-complete language. Fourth, manual construction of test

data is quite expensive. Testing often accounts for up to 50% of the cost for typical software

projects [12]. For these reasons there has been much work on applying search techniques to

the problem of automatic test case generation.

An early work using search based techniques on automatic test case generation is [140].

Since then there have been improvements to the original work [68, 77, 86] by removing the

need for a human tester to select a path and by changing the way the objective function is

calculated for conditional branches. For example, control dependence graph analysis has been

included in the objective function [109]. If the search is trying to execute branch c, which is

dominated by branch b, which in turn is dominated by branch a, the objective function reflects

how many of the branches a, b, or c are executed. However, this type of function suffers

because the objective function has a large plateau in the areas of the input space that don’t

execute branch a. The objective function doesn’t provide any distance guidance as to how

to execute any particular branch. Even with this disadvantage [109] still reported significant

speed ups when compared to a purely random search. Later other researchers, [125, 129],

added a distance metric to the objective function to remove some of the discontinuity of the

function.

Early work using EA techniques to generate test data using a Z specification (see [122] for

a full discussion of the Z specification) can be found in [69]. They used the canonical triangle

classification problem and developed a Z specification for that program. The specification

consisted of predicate statement in disjunctive normal form. Each disjunct was considered a

path through the program. The objective function measured how close an input set came to

satisfying one of the disjuncts. Success was reported for covering all nominal cases. More

recent work on using specification driven test data generation has been done in [126, 129].

[134] investigated the objective landscape for timing behavior. They found that GAs out-

performed SAs and they explained this difference by looking at the topology of the objective

landscape. Recall that GAs perform global searches, since each individual in the population

is initialized to a different location and cross-over events can generate individuals in radically

different locations than their parents. The objective landscape had discontinuities wherever

different paths through the control flow graph were taken. If the different paths had signif-

icantly different execution times, this creates a discontinuity at that location in the objective

4For example, the halting property
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landscape. The landscape also had many plateaus. If different input values led to the same ex-

act path being executed, their execution times were usually very close. These discontinuities

and plateaus were less likely to deteriorate the performance of a global search algorithm like

a GA.

Simulated Annealing (SA) is also a popular metaheuristic technique in automatic test data

generation. For instance, [127, 128] investigate using SAs to find the worst case execution

time and maximizing structural coverage. [126] uses pre/post conditions written in disjunctive

normal form. The objective function was a distance metric that measures how close a given

input comes during execution to violating the pre/post conditions.

Note the importance the objective function plays in all the work described in this section.

The contributions of these publications are not new search techniques or even modifications

to existing techniques, but rather new ways to formulate the objective function to allow the

search to proceed more efficiently. Also note that symbolic analysis of the source code is

necessary for the distance measures of branch points. The case studies presented by this thesis

(chapter 5 and chapter 6) highlight the importance of a objective function that follows the

advice laid out in §2.3.1.

For a broader survey of search based automatic test case generation see [87].

2.3.3 Cost Estimation

While a high quality estimate of a project’s cost would be very useful to software planners,

software cost estimations can be notoriously inaccurate. For example, [19] reports that 60%

of large projects significantly overrun their estimates and 15% of software projects are never

completed due to gross misestimation of development effort. A very popular technique for

software cost estimation is the COCOMO [18] linear regression method5. The rest of this

section will describe some efforts to improve software cost estimation by applying search-

based techniques.

In [4] a sequential covering evolutionary algorithm was used to generate management rules

to reduce the likelihood of effort and time overruns. This technique is a “divide-and-conquer”

technique as rules are adjusted according to data points not already covered. Once a data

point is covered by the rule it is removed from the pool of remaining points. The data points

5Citeseer reports over 2000 citations to this work.
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used in this study came from a dynamic model that had 12 numeric and ordinal inputs with

restricted ranges. The two outputs of this model were development effort (developer-days)

and development time (days to complete). The objective function combined the error for a

rule, the support for the rule6, and the coverage of the input space by the rule.

Although the technique can be generalized to any number of target classes, in this study

the data points were split into two classes, GOOD and BAD. Those points that had both a

development effort and time below a nominal value were labeled GOOD, all other points

were labeled BAD. The nominal values for development effort and time were generated in the

following fashion. An initial estimate of development effort and time was generated assigning

values to the various inputs based on discussions with the project manager. The outputs of this

initial run of the dynamic model were used as the nominal values. After finding the nominal

values for time and effort, the simulator was then run randomly choosing inputs. The results

of these runs were entered into a database. The database then became the source of the data

points used by their sequential covering algorithm. They present several rules generated by

their algorithm that the dynamic model predicts would have led to a 6% reduction in effort

and a 9% reduction in time.

Similar to this thesis, [6] investigated using data mining techniques for software effort

estimation. The work presented differs in a significant way from the current work. In [6]

a dynamic model is used to generate data, but there is no feedback from the learner to the

model. All records generated from the model are stored to a database and then the learner

works on those records, after the simulation has ended. They do acknowledge that smaller

rules should be preferred, but leave that advice to the user. In other words, their learner does

not systematically search for smaller solutions. They also have the problem of needing to

discretize the output parameters of the model for their learner. Their solution is for the project

manager to define a “cutting-section”. The cutting-section defines the maximum allowed val-

ues for each of the three outputs of the model (cost, development time, and quality). If any of

the those three limits is exceeded the record is labeled “bad”, otherwise the record is labeled

“good”. Their objective function (adapted from [4]) is slightly complex, taking into account

the uniformity of the region, the coverage of the region, and the total hyper-volume7 of the

region. No attempt is made to demonstrate the superiority of the induced rules, rather just a

6The absolute number of correct classifications
7Called amplitude in the original paper
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validation of the data mining technique. Other modeling work with software cost estimation

includes [37, 45, 120, 131].

Extreme sampling (discussed in §3.1.4) was developed independently of [4, 6] and fol-

lows a similar logic, but with a different motivation. The discretization methods in [4, 6]

are used to guide the search towards acceptable solutions, because business restrictions made

some solutions unacceptable. The extreme sampling discretization method was developed to

complement the search heuristic used by ITL. §3.1.4 contains a fuller description of extreme

sampling.

Other techniques not discussed in §2.1 and §2.2 are used in cost estimation. For instance

in [36] linear regression, neural nets8, and genetic programming were used to build cost es-

timators. They studied 46 student projects developed by a total of 148 students. All projects

were accounting information systems for hypothetical firms. Different groups had different

hypothetical firms with different requirements. In addition all the projects studied were devel-

oped in the same language. They found that neural nets slightly outperformed GP, and linear

regression performed slightly worse.

2.3.4 Requirements Engineering

Since all software projects have a limited set of resources (money, staff, hardware, etc. ),

project managers must balance the expenditures of these resources to meet the specific goals

of their projects. Additionally, it is an accepted fact that the earlier a fault is discovered, the less

costly it will be to correct it [18,22,85,105]. For these two reasons (and others) organizations

have been spending more attention on the field of requirements engineering (RE). Search

techniques have not been applied to requirements engineering as extensively as they have

been in other fields. For instance, [107] does not even mention search-based techniques in its

requirements engineering road map. To pick an example from that road map, [142] discusses

model building and their argument for building models early in the requirements phase9. There

is no discussion of, or even citation to, the application of search techniques to requirements

engineering.

This lack of a large body of work in applying search to RE does not reflect any inherent

8Neural nets are a another machine learning technique not discussed in this thesis, see [60] for a complete
description.

9As opposed to late in or after the end of the requirements phase

36



2.3. Search Based Software Engineering

inapplicability of search techniques to the problem of requirements engineering. Researchers

in requirements engineering have already developed numeric metrics that can be easily used

as objective functions. Most of these are some combination of projected cost of the project,

risk inherent in the project, the value of the achieved requirements, defect injection rate, and

expected development time. As in the field of cost estimation, dynamic models can be used

to model the interactions between the elements a requirements engineer is trying to study. For

example, DDP (see §4.1) is a tool that facilities the development and analysis of risk-cost

models.

The input space of a typical requirements problem is very large. Even if the input vec-

tor is boolean, a few dozen requirements can not reasonably be searched exhaustively. Some

techniques have been explored, e. g. the Analytic Hierarchy Process [116] and Multi-criteria

Decision Making, that are solvable by analytic techniques. But these techniques have some

restrictions that limit their applicability. They have trouble dealing with dependency and or-

dering properties of requirements and costs. The use of dynamic modeling eliminates the

possibility of using one of these analytic techniques. But dynamic models can be used to

capture complex features, such as interdependent requirements or mitigations. The DDP tool

already mentioned is capable of handling such dependencies.

Finally it should be noted that model building can be quite expensive (see discussion

of DDP in §4.1), so developing high-quality solutions will help maximize the return-on-

investment.

Analytic Hierarchy Process The Analytic Hierarchy Process (AHP) [116] is a method that

uses pairwise comparisons to calculate the relative importance of any criterion. If n alter-

natives are possible, a square matrix of size n is built. Each element in the matrix is the

comparative importance of the alternative in the row to the alternative in the column. If the

alternative in the row is more important an integer [1,9] is used, the reciprocals being used if

the column is more important than the row. The matrix should have 1’s along the diagonal.

Various matrix operations are then performed which lead to a relative ranking of the alterna-

tives and a consistency ratio. Advocates of the AHP claim that pairwise comparisons reduce

the error common to this type of human judgment, when compared to absolute scores [81].

Since there has been little work applying search, we will discuss some related work on
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requirements engineering that doesn’t utilize search based techniques. [73] developed a cost-

value technique that uses the AHP to inform managers of the most cost effective requirements.

They present two case studies from Ericsson Radio Systems, a telecommunications manufac-

turer. They had a group of project members develop the high level requirements for two

projects (one currently in development, the other a mature product that had already had three

major public releases). The group then filled in the pairwise matrix, first for the the value of

each requirement, and then for the cost of implementing those requirements. The different

requirements were then plotted, on a cost vs value graph. It is then very easy to see which

requirements have the lowest cost-to-value ratio and which have the highest. Dropping the

three requirements (out of 14) with the highest ratios still captured 94% of the value for only

78% of the cost in the first project; while dropping the three requirements (out of 11) with the

highest ratios in the second project led to 95% of the value for only 75% of the cost. This

is a archetypal example of requirements analysis balancing two or more competing goals. A

simple technique like AHP can be used with these examples in large part because the models

studied do not allow interdependencies. It is unlikely that it is possible for a group of ex-

perts to develop a completely orthogonal set of requirements. Developing an orthogonal set

of requirements will get more difficult as the set of requirements grows larger10. In a later

paper [72] they compare six different methods for prioritizing. None of the six techniques

deal with the possibility of dependencies between the requirements.

10Due to the exponential growth of the number of possible edges as the number of nodes increases.
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CHAPTER 3
ELEMENTS OF ITERATIVE TREATMENT LEARNING

This chapter describes Iterative Treatment Learning (ITL) in detail. First we will discuss

topics related to ITL’s use as a metaheuristic search technique (§3.1). Next we will discuss

topics related to ITL’s use as a model-based development tool (§3.2).

3.1 ITL as Search Technique

Iterative Treatment Learning has been previously introduced by Menzies et. al. [89, 90]. But

this previous work has not placed ITL in the context of metaheuristic search. This section

will introduce the reader to several important features of ITL as they relate to ITL’s use as a

metaheuristic search technique.

3.1.1 Search Components

ITL has the following three key steps

1. objective function evaluation
2. discretization
3. treatment learning

The three steps together make an iteration. Figure 3.1 shows these steps, as well as the types

of inputs to each step.

partial descriptionGF
input vector selection informed

by partial description

��

input selection
~i

// obj func
instance

set
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instance

set

// learner

ED
new treatment

oo

Figure 3.1: Diagrammatic view of ITL
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3.1. ITL as Search Technique

task number schedule position
task1 6
task2 7
task3 32
task4 2

. . .
taskn 41

Table 3.1: Complete description for a hypothetical scheduling problem

The objective function decodes candidate solutions and scores each instance according to

some criteria the user has decided on. As with the other search techniques described, the only

restriction on the form of the objective function is that it outputs a single numeric value. Since

treatment learning only targets ordinal target classes, ITL must discretize the output of the

objective function before calling the treatment learner. The discretizer used by ITL will be

discussed in §3.1.4. The treatment learner is responsible for generating the small theories that

ITL accumulates as the last step of each iteration. It is the conjunction of these theories that

constitutes ITL’s solution when it finishes searching.

3.1.2 Solution Form

Recall from §2.1.5 that the theories returned by treatment learners comment on only a few of

the available attributes. This means that after several iterations the candidate solution found

by ITL does not comment on all the available attributes. We call this a partial description.

Contrast this with the complete descriptions returned by the search techniques discussed in

§2.2. These complete descriptions comment on all the available attributes. For example, when

solving a scheduling problem they would return an exact schedule, like the one shown in

Table 3.1. A partial description only assigns values or ranges to some of the attributes. In the

scheduling example a partial description would resemble the one shown in Table 3.2.

We assert that these partial descriptions have value, particularly for management decisions.

Because partial descriptions don’t comment on all available attributes and don’t necessarily

assign a specific value to the attributes it does comment on, the descriptions are intrinsically

more flexible. If new design constraints arise at a later date, they will be less likely to con-

tradict a partial description. Put another way, if a single attribute of a complete description
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task number schedule position
task1 6 ≤ p1 ≤ 10
task2 unassigned
task3 unassigned
task4 p4 > 36

. . .
taskn 40 ≤ pn ≤ 41

Table 3.2: Partial description for a hypothetical scheduling problem

cannot be assigned the way it was assigned in the solution, there is no way to know its effect on

solution quality without re-evaluating the new solution and possibly conducting a new search.

Since a change to the allowed attribute values may not invalidate the entire region describe by

the partial description, solutions in the set of solutions allowed by the partial description can

still be used. The difficulty of conducting a new search should not be understated. Expertise in

metaheuristic search is not likely to ever become a common skill among business managers. If

the expert who conducted the original search is not available to the business user, a complete

description that is no longer possible becomes worthless.

A possible drawback of partial descriptions is that, since they don’t describe a single

solution, but rather a set of solutions, the variance in that set could be so high that the

partial description is not usable. Without going into the particulars of feature subset selec-

tion [55, 96, 139], the success of techniques that throw away attributes before training on the

remaining attributes is indisputable. Building theories without commenting on all the available

attributes is exactly what ITL does, so we have good reason to conjecture that it is possible

that the variance of partial descriptions will be low. We investigate this conjecture in §4.4.

This concern may seem at odds with Miller’s work [100], which suggests that removing

attributes reduces the variance when using machine learners. But Miller is concerned with the

learned theories from machine learners and whether the exact form of theories learned from

different slices of the same data set will be similar to each other. The variance in the theories

is reduced because by removing attributes available to the learner, the learned theory is less

over-fit to the particularities of the data set. §4.4 investigates the variance of the performance

of partial descriptions, not the variance of the different partial descriptions themselves.
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3.1. ITL as Search Technique

3.1.3 ITL’s Metaheuristic Search Characteristics

Since ITL is being presented as a metaheuristic search technique, ITL should also be described

in the same terms as the metaheuristic techniques presented in §2.2. Some of the deficiencies

mentioned in this section will be discussed further in chapter 8. These characteristics are

1. global search strategy
2. neighborhood defined by partial description
3. solution is encoded as a conjunction of attribute-value pairs
4. no turning knob for exploration vs. exploitation
5. no explicit mechanism to escape from local optima

Since ITL initially samples from the entire search space and only modestly reduces the size

of the portion of that space each iteration, it should be considered a global search strategy.

Although the neighborhood of the current solution is never enumerated during ITL’s search, it

can be thought of as all possible solutions that agree with the current partial description. This

means that only points that agree with the current partial description are explored in the next

iteration. As discussed earlier in this chapter, the candidate solution for ITL is encoded as a

conjunction of attribute-value pairs. The most undesirable characteristic of ITL at the current

time is the absence of some way to tune the exploration vs. exploitation trade-off to a specific

domain. Nor is there any way for the technique to dynamically adjust the trade-off during its

search. Instead, ITL becomes monotonically more exploitative as treatments are added to the

candidate solution and the search space is reduced in size each iteration.

Once a treatment is added to the partial solution there is no operation that might remove

that treatment, so there is no mechanism for ITL to escape from local optima. This is not as

big a problem for ITL as it for some other techniques, such as hill climbing. Recall that hill

climbing is a local search, therefore if a local optimum has a large basin of attraction any initial

solution starting in that basin will get stuck in that local optimum. ITL is a global search and

hence is less suspectible to the presence of local optimum. Furthermore, since each iteration

only reduces the size of the search space by a small amount (recall from §2.1.5 the small size

of typical treatments), it is unlikely that many near-optimal solutions will be excluded from

the search. See Figure 3.2 for a simple 2-D example of how the search space might be reduced

during a typical search by ITL.
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3.1. ITL as Search Technique

first iteration
second iteration

third iteration
fourth iteration

Figure 3.2: Search space sampling

3.1.4 Extreme Sampling

Treatment learners (§2.1.5) produces theories that predict for ordinal classes (discrete classes

that have an ordering), but since most useful objective functions produce real valued outputs,

ITL must have some type of discretization policy. Note that while most discretization policies

are applied to the input attributes, ITL needs a policy that discretizes the target class.

The original ITL work on cost/benefit models used a striping discretization policy. Four

zones were demarcated by parallel lines drawn at 45◦ from the cost-axis. The zones were given

exponentially increasing values, going from high cost/low benefit solutions to low cost/high

benefit solutions. Figure 3.3 shows this policy graphically. Note that the diagonal lines are

lines of constant benefit-to-cost ratios.
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Figure 3.3: Diagonal striping
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3.1. ITL as Search Technique

In this thesis we introduce a new discretization policy called extreme sampling. The in-

tuition behind this idea is that, if treatment learning is going to be used as a search heuristic,

having multiple target classes is unnecessary. There are only two classes, those that are close

to the current best solution, good, and those that are not, bad. We developed a two-step pro-

cess that takes a set of output vectors, {~o}, and labels some or all of them good or bad, shown

in Figure 3.4. The first step is to take the n-dimensional ~o and map it to a single real number.

We choose the euclidean distance function, which is simple and efficient and can work with

any number of dimensions. The value for each coordinate is normalized by the maximum

value for that coordinate to eliminate unit effects in the distance calculation. The distance is

calculated from the theoretical best solution, which in our cost-benefit model is the point (0, 1)

in the cost-benefit plane (remember our coordinates have been normalized at this point). Now

the distance values have to be mapped to our two classes, good and bad.

~o
objective // [0− 1] selector // good, bad

Figure 3.4: Extreme sampling

We developed three extreme sampling variants, which we call selectors, to map the dis-

tance values to our two classes shown in Figure 3.5. Each of our selectors has two control

parameters, M and N. M is the batch size, i. e. the number of instances generated during each

iteration. The first selector we developed, Best Or REst, bore, takes the N instances with

the smallest distance and labels them good (shown in Figure 3.5a). The rest of the instances

are labeled bad. After some initial experiments we developed two additional selectors. bore′

(Figure 3.5b) puts N instances in the good class and a random sample of N instances from the

rest and puts them in the bad class. It was thought this would allow M to be scaled up without

increasing the runtime needed by the underlying learner (since the learner would only see 2N

instances, instead of M instances). wob (Figure 3.5c), Worst Or Best, labels the N instances

with the smallest distance measure as good and the N instances with the largest distance as

bad. This selector was motived by the idea that the worst and the best instances might have

the greatest contrast. And similar to bore′, wob only passes 2N instances to the underlying

learner.
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Figure 3.5: Three selectors developed

3.1.5 Search Strategy

In the original work on ITL it was imagined that a human expert would want to validate each

treatment. In keeping with recasting ITL as a search heuristic, no human expert was used in

the current implementation of ITL (see figure 3.1). Instead a simple greedy strategy was used

to decide what treatment to use at the end of each iteration. The treatment learner suggests

several treatments each time it is run, but ranks them according to their lift (with ties being

broken by support). The best treatment returned by the treatment learner each iteration was

used to constrain the next iteration. This strategy is also a strictly forward search; there is no

back-tracking currently in ITL. Once a treatment is added to the partial description it cannot

be removed by the search strategy.

Investigation into alternative search strategies

Initially we were concerned that search strategies that explore more might perform better than

our simple greedy search. Therefore, we conducted a short study into using two different

strategies, benchmarking them against our greedy search. The first alternative strategy com-

pletely ignored the current candidate solution when generating half the instances during each

iteration. For example, if the current batch size was 500, 250 instances would be generated

according to the current partial description, while another 250 would be drawn from the entire

search space. The second alternative strategy was designed to allow ITL to search through

multiple hyper-rectangles in the search space. At the end of each iteration, when the treatment

learner returned several treatments, instead of just using the top treatment, all treatments that
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iteration1 iteration2 iteration3 iteration4

treatment1a
,,YYYYYYYY treatment2a

// treatment3a
,,YYYYYYYY treatment4a

treatment1b treatment2b
,,YYYYYYYY treatment3b treatment4b

treatment1c

55lllllllllllllll
treatment2c treatment3c

55lllllllllllllll

treatment1d treatment3d

Figure 3.6: Maintaining multiple lists of treatments. Notice that not all iterations find the same
number of treatments that pass the restriction for inclusion into the table.

had a lift (see §2.1.5 for a definition of lift) within 20% of the lift of the best treatment were

written to a list. Each iteration created a new list of treatments, and each list was remembered

for the entire search. Only points that passed at least one treatment from each of the previous

iterations were searched during the current iteration. Figure 3.6 shows these lists with two

example paths through the lists. Each path through the lists was randomly generated, biased

according the individual treatment’s lift.

This study utilized the circuit model, which has a cursory description below. For a com-

plete description of the model see [89].

Circuit model A qualitative model, previously developed in [89], was used to see if

either of the new strategies developed could outperform the original greedy search. The model

is built from switches, bulbs, openers and closers. A basic element was built using three bulbs

and three switches. Elements were then connected using the openers and closers. The openers

and closers connected a bulb from one element to a switch from another and forced the switch

open or closed depending on whether the bulb was lit or dark. Figure 3.7 shows a three element

circuit. In this study we used two different sized models, one with three elements and one with

six elements. In addition each model could be optimized in one dimension, maximizing the

total number of shining bulbs, or in two dimensions, maximizing the ratio of shining bulbs to

closed switches.

When compared to the original greedy search neither alternative strategy did well. The

greedy search converged faster in all four versions of the circuit model, and found a higher

quality solution in three of them.
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Figure 3.7: A qualitative network: Swi, Bi denote switches and bulbs. The network repeats
the structure three times with labels {A, B, C}. Between each repetition are connectors that
open or close switches depending on whether or not some bulb is lit or dark.

Possible explanation for the performance of the greedy search Why does our greedy

search seem to work so well? Figure 3.8a is a depiction of our greedy search through the

treatments returned by our learner. But this is not the only searching being done by ITL.

Recall from §2.1.5 that our treatment learner searches through dozens or hundreds of potential

treatments according to its own ordering heuristic, lift1. Figure 3.8b is a depiction of ITL’s

search including the heuristic search done by the treatment learner in between each iteration.

Because the lift1 heuristic works so well and the treatment learner does its own searching

according to this heuristic, the search through the treatments can perform well without any

additional exploring.

third iteration

second iteration

first iteration

(a) greedy search between iterations

search by treatment

second iteration

first iteration

greedy selection

search by treatment

search by treatment

third iteration

learner during

learner during

learner during

(b) search done by ITL including learner search

Figure 3.8: Different views of ITL’s search
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3.2 ITL in Model Based Development

After putting ITL in a search context, we want to show how ITL can be used with model

based development, to search through the models generated according to this development

methodology. This section describes some of additional issues relating to ITL that come with

using it in a model based environment.

3.2.1 Searching Through Models

With model based development, models are used by software engineering researchers to in-

vestigate different problems in different stages of the software life cycle. Earlier life stages

might be modeled with a cost/benefit model, like DDP (described in §4.1), or a quality model

like COQUALMO [27]. Later life stages like testing might be modeled with a digital logic

circuit design (like these in §5.2). The purpose of using a model is to find which input settings

of the model lead to certain desired behaviors. These inputs need to be controllable or observ-

able quantities so that information gained from exploring the model is actionable outside the

model. For example, a researcher might use a quality model to inform a business manager of

the minimum level of expertise needed by a development team to reach an acceptable level

of quality. Or a researcher might use a cost/benefit model to develop a plan that balances the

projected cost of a project with its projected value.

Using ITL for early stage life cycle models can also reduces one of the potential drawbacks

of ITL’s partial descriptions. The earlier a model is constructed the more likely there will be

changes before project completion. But since the earlier potential problems are found the

greater the saving, postponing analysis would be a self-defeating solution. So the uncertainty

inherent in ITL’s solution due to the variance of a partial solution will be partially washed out

by the uncertainty in the initial estimates made during model construction.

But what if the model has many uncertain inputs? This is when reformulating the original

software engineering problem as a search problem is most useful. The model now becomes

something that is executed thousands (or hundreds of thousands) of times, rather than some-

thing used to evaluate a single set of input values.
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Figure 3.9: Diagrammatic view of ITL as a model controller

3.2.2 ITL as Model Controller

If we want to use ITL as a model controller to use with model based development, some

changes have to be made in how ITL is implemented. Using ITL to control model execution

breaks the objective function into two parts (see Figure 3.9). The objective function doesn’t

decode the candidate solutions, instead the model takes the candidate solution as an input

vector and returns an output vector. The objective function takes that output vector and returns

a single numeric value. The reason we do this has to do with the assumptions we make about

the model (which will be discussed in §3.2.3). Now the theories returned by the treatment

learner are used to restrict which input vectors are given to the model. Again, when ITL

finishes searching, the conjunction of these theories constitutes ITL’s solution.

3.2.3 Models

There are a few important assumptions we made about the models that would be used with

ITL, which are

1. they have a well-defined input vector,~i, that can be supplied by ITL
2. they are black boxes, i. e. their internals can not be modified
3. they have a well-defined output vector, ~o, that can be accessed by ITL

ITL must be able to control the region sampled by the model, so there must be some mecha-

nism for ITL to direct the selection of input vectors. For example, the models used in chapter 4

can be given a file listing the points in the input space that should be visited, so ITL only has

to generate that file in the correct format. Since ITL must have a low overhead for use, it can-

not need access to any model’s internals. This way the model can simply be a pre-compiled

application. This greatly lowers the cost of using ITL with a model developed without any

consideration given to the possible use of ITL. Finally the model must have an output that

can be accessed by ITL, because the learner and discretizer must be able to read all the points
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generated by the model. The model could output something to the file system in a format that

can be decoded by ITL, for instance.
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CHAPTER 4
REQUIREMENTS ENGINEERING

The main case study presented in this thesis uses ITL to optimize cost/benefit models. In this

chapter we describe our models and their execution framework, DDP, (§4.1), investigate the

effect of different parameter settings on the performance of extreme sampling (§4.2), investi-

gate the stability of the partial descriptions (§4.3), investigate the variance of the partial de-

scriptions (§4.4), compare the performance of the original discretization policy with extreme

sampling (§4.5), compare the performance of extreme sampling with the original simulated

annealer in DDP (§4.6), and summarize the lessons learned from this study (§4.7).

4.1 Defect Detection and Prevention

The case studies in this chapter use models developed with the Defect Detection and Preven-

tion (DDP) [34, 42] application. To familiarize the reader with this application, this section

will describe DDP.

DDP is used at NASA’s Jet Propulsion Laboratory to record a group’s qualitative knowl-

edge about design options of future deep-space satellite missions, their associated risks, and

the costs of mitigations that can reduce those risks.

In DDP, a “design” is a decision about which set of mitigations to apply. One such “design”

is better than another when it costs less, reduces the risks more, or achieves more requirements

than some alternative design.

The design of DDP reflects the reality of group decision-making at JPL. Six to twenty

experts are gathered together for short, intensive knowledge acquisition sessions, typically

three or four half-day sessions. These sessions must be short since it is hard to gather together

these busy experts for more than a very short period of time.

In those sessions, the DDP tool supports a graphical interface for the rapid entry of the

assertions. Such rapid entry is essential, lest using the tool slow up the debate. Assertions
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from the experts are expressed by using an ultra-lightweight decision ontology. The ontology

must be ultra-lightweight since:

• Only brief assertions can be collected in short knowledge acquisition sessions.

• If the assertions get more elaborate, then experts may be unable to understand technical
arguments from outside their own field of expertise.

• Design rationale research cautions against elaborate notation languages since they can
confuse the users [103]. Successful rational languages (e.g. QOC [121], DDP, etc. ) all
use very simple notations.

Hence, DDP assertions are either:

• Requirements (free text) describing the objectives & constraints of the mission and its
development process;

• Weights (numbers) of requirements, reflecting their importance;

• Risks (free text), i.e. events that damage requirements;

• Mitigations (free text) describing actions that can reduce risks;

• Costs (numbers) of mitigations, i. e. the repair costs for correcting risks with these mit-
igations;

• Mappings that connect requirements, mitigations, and risks; or

• Part-of relations, which structure the collections of requirements, risks and mitigations.

This ontology is deliberately quite restrictive but even in this limited form, it has been

useful for structuring and simplifying debates between NASA experts. For example, DDP

has been applied to over a dozen applications to study advanced technologies such as (1)

a computer memory device; (2) gyroscope design; (3) software code generation; (4) a low

temperature experiment’s apparatus; (5) an imaging device; (6) circuit board like fabrication;

(7) micro electromechanical devices; (8) a sun sensor; (9) a motor controller; (10) photonics;

and (11) interferometry. The DDP sessions have found cost savings exceeding $1 million in at

least two of these studies, and lesser amounts (exceeding $100,000) in the other studies. These

meetings have also generated numerous design improvements such as a savings of power or

mass and a shifting of risks from uncertain architecture to better understood design. Also, at

these meetings, some non-obvious significant risks have been identified and mitigated.

Specifically in this thesis, we will study three DDP models: aero , holo , and cob. Full

details of these models cannot be disclosed (since they are proprietary) but some brief notes
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follow.

Aero is a “portfolio” level-model, where each of the mitigations is a research program

rather than an activity. The overall aero program was a complex system involving hardware,

software and operators. Further, the risks (challenges) described in aero span technical and

organizational concerns.

Cob and holo are two non-portfolio models. Both are examples of JPL Technology Infu-

sion Maturity Assessment (TIMA) studies. Such TIMA sessions involve over a dozen stake-

holders whose total experience spans the domains of systems engineering, space experiments,

avionics, materials, packaging, manufacturing, testing, experimental design, failure analysis,

quality assurance, mission technologies, MEMS research, and program management. A typi-

cal TIMA session might call together a set of stakeholders to discuss whether or not the MEMS

technology was suitably mature and appropriate for the intended applications, and to construct

a cost-effective development and testing plan. Specifically, holo was a study to identify risks

that would arise in maturing a particular piece of technology to flight readiness.

After a model is developed, the major design decision is what set of mitigations to apply.

Recall that mitigations cost money and affect the total benefit of a project1. The goal then is

to balance cost and benefit. This will be our main performance metric. The holo, aero, and

cob models have 99, 83, and 58 mitigations respectively. This leads to design spaces with a

cardinalities of 1029, 1024, and 1017 respectively. Clearly then, the set of possible designs can

not be exhaustively searched, or even enumerated.

Note that DDP can model interdependency between the objectives and mitigations. Re-

call from §2.3.4 that some earlier work on prioritizing requirements (which is just a different

terminology for objectives) [73] used a simpler matrix based approach that could not capture

interdependencies.

4.2 Investigating Different Extreme Sampling Policies

Since this is the first use of extreme sampling we wanted to investigate the effects of different

parameter settings on solution quality. This study made use of the three DDP models discussed

in §4.1. Recall from §3.1 that our discretization method uses two parameters; M , which

1Some mitigations decrease the expected benefit in some way, e. g. increased vibration testing might damage
circuit boards
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controls the length of the iteration, and N , which controls how the instances are labeled good

and bad. Also recall from §3.1 that we formulated three different selectors. We investigated

different values of these control parameters to see what effect they had on the performance of

ITL. Previous informal work had suggested M could be in the hundreds, so we used M equal

to 100, 300, and 500. For the value of N we used 25, 50, and 75, although the case where M

= 100, N = 75 was omitted because for the wob selector it was unclear how to handle cases

when N > M
2

. We used all three selectors in this study to see if they effected the performance

of ITL. This gives us 24 ((3 ∗ 3 − 1) ∗ 3) different parameter combinations. Each parameter

combination was used to optimize each model, giving us 72 parameter-model combinations.

Finally we ran ten trials for each of the 72 different parameter-model settings, to give a total

of 720 data sets. Each trial in this study was run for 10 iterations and then stopped; we did not

investigate formulating an automatic stopping condition. The total time needed to collect these

data sets was about 5 weeks, running on two single processor desktop Windows © machines.

4.2.1 Comparison Methodology

When attempting to compare two techniques it can be difficult to define what metric should be

used for comparison. In this section we use delta comparisons. A delta is the simple difference

between any two trials that are different according to the effect being isolated, but have the

same value for all other parameters. The metric used for this difference is the normalized

euclidean distance (from §3.1.4). Using this metric allows deltas from different models to

be compared, since our euclidean distance function normalizes each coordinate. Also, since

ITL attempts to minimize this distance function, it would not be useful to then study ITL’s

performance according to another metric. When we present the deltas that highlight the effects

of M , for example, three lists of deltas are made, one each for the three different settings of M

studied. The deltas for M = 100 are calculated by comparing each trial where M = 100 with

every other trial where M 6= 100, when the other three important parameters are the same

(N , selector, model). This isolates the effect of M from the effect of the other parameters.

All deltas for M = 100 are added to the same list so that we can see the effect of M across

all the other parameter settings. The lists of deltas are then sorted, so that we can identify

the quartiles. Positive deltas indicate that the setting being isolated outperforms the other

possible settings, whereas a negative delta indicates that the setting is outperformed by the
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other possible settings. In this section we present only the median results for space reasons.

The 1st, 2nd, and 3rdquartile plots can be found in appendix A.1.

We prefer this method to admittedly simpler statistical methods, because this method is

non-parametric, i. e. it makes no assumptions about the form of the underlying data. For

example, the commonly used t-tests are a parametric method that assume that the underling

population distribution is Gaussian. Recent results suggest that there are many statistical issues

left to explore regarding how to best to apply those t-tests for summarizing cross-validation

studies [20].

4.2.2 Experimental Effects of M

In this section we present the results of our trials with the effects of M isolated. First, we will

discuss the comparative performance of the three M values studied by plotting their perfor-

mance after certain numbers of iterations had been completed by the search, i. e. after certain

search depths had been reached by ITL. This comparison is shown in Figure 4.1. Second,

we will discuss the comparative performance of the three M values studied by plotting their

performance after certain numbers of points had been generated by the dynamic model, i. e.

after certain numbers of evaluations of the objective function. This comparison is shown in

Figure 4.2.

Figure 4.1 shows the median deltas after the trials had completed 3, 5, 8, and 10 iterations.

It is clear that the trials with larger M values perform better than those with smaller M val-

ues. M = 500 outperforms M = 300, which outperforms M = 100, and the magnitude of

this difference increases through all ten iterations. Examining Figure A.1 demonstrates that

the difference between the 1stand 3rdquartiles is even larger for small numbers of iterations

completed, but the differences between the M values decreases after 5 to 8 iterations. This

suggests that searches with small M values are not getting stuck in local optima, but require

more iterations to construct high quality-partial descriptions.

Of course it should not be surprising that a search with a much larger batch size finds

higher quality solutions. But given a fixed number of objective function evaluations, does ITL

perform better by learning over many small batches or a few large batches? Figure 4.2 shows

the median deltas after 300, 600, 1000, 1200, 1600, 1900, 2400, 2900, and 3500 evaluations

of the objective function. These values correspond to iteration (learning) boundaries for M
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Figure 4.1: Effects of batch size, M , versus search depth

values of 300 and 500. Notice that the M = 100 and M = 300 lines do not extend to the right

side of the graph. Recall that each trial was run for 10 iterations, so trials with M = 100 only

evaluated the objective function 1000 times. Hence the M = 100 line stops at 1000 objective

function evaluations and the M = 300 line stops at 3000 objective function evaluations. It is

clear from this figure that for a fixed number of objective function evaluations, ITL performs

much better by learning over a larger number of smaller batches. The M = 100 trials signif-

icantly outperform the two other M settings, and the M = 300 trials outperform M = 500,

although to a lesser degree.

4.2.3 Experimental Effects of N

In this section we present the results of our trials with the effects of N isolated, shown in

Figure 4.3. The graph showing performance versus search depth is the only graph shown

because the value of N does not effect the number of times the objective function is evaluated.

For this parameter the effect is not so pronounced. While N = 25 is clearly an underperformer,

the magnitude difference between N = 50 and N = 75 is not so large, with N = 75 being

slightly higher performing. This difference in performance shows that it is important for there

56



4.2. Investigating Different Extreme Sampling Policies

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

3529241916121063

re
la

tiv
e 

de
lta

objective function evaluations x 100

median delta

M=100
M=300
M=500

Figure 4.2: Effects of batch size, M , versus objective function evaluations

to be enough instances labeled good for the treatment learner to find useful contrasts between

the good and bad instances.

4.2.4 Experimental Effects of M/N Combinations

In this section we present the results of our trials with respect to M/N combinations. As in

§4.2.2, we first show the deltas after certain numbers of iterations (Figure 4.4), and after a

certain number of objective function evaluations, (Figure 4.5). Note that lines with the same

M value have the same line style (light dashed, dark dashed, light solid), while lines with the

same N value have the marker (asterisk, X, or cross).

The most interesting effect in Figure 4.4 is that while 500/75 and 500/50 (light dashed with

an asterisk or X) clearly outperform the other combinations, 300/75 and 300/50 (dark dashed

with an asterisk or X) out perform 500/25 (light dashed with a cross). In fact, 500/25, 300/25,

and 100/50 all perform at about the same level, with 100/25 significantly underperforming

compared to all other M/N values. This shows that having a large batch size is important

to performance, but almost as important is to have a large enough fraction of the instances

labeled good.
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Figure 4.3: Effects of good/bad ratio, N

Figure 4.5 repeats the result from Figure 4.2; using smaller batch sizes for a fixed number

of objective functions evaluations leads to a higher quality solution. Figure 4.5 also shows that

this effect is more important than the value of N , since the lines with the same M value (same

color) cluster together.

4.2.5 Experimental Effects of Selector

In this section we present the results of our trials isolating the effects of the selector used,

shown in Figure 4.6. Recall that wob was an attempt to maximize the contrast between the

good and bad instances, while both wob and bore′ pass only 2N instances to the learner rather

than M instances (in our study it is always the case that M > 2N ). Figure 4.6 clearly shows

that wob is an underperformer in our study. The difference between bore and bore′ is smaller,

but bore performs slightly better than bore′. wob’s inferior performance can likely be attributed

to the same cause as the inferior performance of the smaller values of N . There must be a

certain amount of contrast between the good and bad classes for ITL to build useful partial

descriptions. Small values of N reduce the amount of useful contrast by reducing the number

of good of instances. Since the wob selector lowers the performance of ITL, we conjecture
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Figure 4.4: Effects of M/N combinations, versus search depth

that there is useful information being hidden by only passing on the worst instances to the

learning stage of ITL. In other words, we conjecture that the bad instances used by wob are

more similar to each than the bad instances used by bore′. It is this similarity that reduces the

ability of the treatment learner to find highly valuable treatments. Since the bore′ selector also

performs worse than the bore selector, we can conjecture that the smaller number of instances

utilized by the wob selector is also partially responsible for its degraded performance, but

since the wob selector performs significantly worse than the bore′ selector, the primary reason

is likely the exact nature of the instances utilized. The difference between the N instances with

lowest distance score and the N instances with the highest distance score seems to be smaller

than the difference between the best N instances and the N instances spread out among the

M −N instances picked by bore′.

4.3 Stability of Repeated Trials

The last section showed the performance of our different trials aggregated across all ten trials.

But are we sure that ITL produces stable results? If, in a time sensitive setting, we run only one

trial, can we be sure that the solution found by this trial won’t be significantly outperformed

by another run. In this section we present the results previously discussed by displaying the
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Figure 4.5: Effects of M/N combinations, versus objective function evaluations

search trajectories for all ten trials. A search trajectory is the path the search takes through

the output space. The outputs from DDP are cost and benefit, so the search trajectory can be

plotted as 2-D line. The x-axis is the normalized mean cost and the y-axis is the normalized

mean benefit. These means were calculated by averaging the costs and benefits of the instances

that were generated by DDP each iteration. Hence each point represents one iteration. The

lines are the successive iterations from a single trial.

Since we can not aggregate this data across models or selectors, as we did in the last

section, this section will not present the results of all parameter-model combinations. Instead

we will focus on the trials with M/N values of 500/75 and the bore selector, since these

were the best combinations found in §4.2. When there is something interesting to comment

on, other combinations or selectors will be discussed. See §A.2 for a complete listing of the

results from this section.

The rest of this section will break down the results by model, first aero, then holo and

finally cob.
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Figure 4.6: Effects of selector

4.3.1 aero

First we present some results from the aero model. We display the 500/75 and 500/25 trials

using the bore selector in Figure 4.7. First note that both combinations shown find the same

approximate benefit ceiling, slightly above .55 units. But the superior performance of 500/75

is evident. More trials find a lower cost, between .42 and .44 units, and if you look closely at

the point (.45,.20) on the 500/25 graph there is an outlier which did not find the benefit ceiling

(the trial represented by the plus sign).

Examining the results from all combinations with the bore selector, we see the same pattern

as the performance based comparison demonstrated in §4.2. Larger values of M show less

variability run-to-run than do smaller values. But a large value of M coupled with a small

value of N (like the 500/25 graph in Figure 4.7) does poorly when compared to medium

values of M coupled with large values of N (specifically, the 300/75 trials show less variability

than the 500/25 trials, see Figure A.7). We can also see a model specific pattern in these

comparisons. The final average benefit of the partial descriptions is very similar for almost all

M/N combinations; the performance difference in the trials comes almost entirely from their

differing costs.
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500-75 500-25

Figure 4.7: Stability of cost and benefit in the aero model with the bore selector

500-75 500-25

Figure 4.8: Stability of cost and benefit in the aero model with the wob selector

Figure 4.8 displays the same M/N settings as Figure 4.7, but from trials with the wob se-

lector. Figure 4.8 clearly shows the inferior performance of the wob selector that we discussed

in §4.2. These graphs also clearly shows that in addition to inferior performance, the wob

selector also has a lower stability in solution quality. The end of points of the trajectories have

significant outliers for all parameter settings shown, even for the parameter combination that

showed the most stability with the bore selector (500/75). The difference between 500/75 and

500/25 is also greater with the wob selector, suggesting that wob is more sensitive to changes

in the M/N values.
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500-75 500-25

Figure 4.9: Stability of cost and benefit in the holo model with the bore selector

4.3.2 holo

There was much less variation between the three different selectors in the holo model. There-

fore, we only present the results of using the bore selector. Figure 4.9 shows the trials that

used M/N combinations of 500/75 and 500/25 with the bore selector. The endpoints of the

500/75 trials are much closer together and this is a pattern repeated for all values of M in

the holo model. Notice that trajectories follow different paths through the cost/benefit plane,

unlike the trajectories in Figure 4.7 which all followed the same path. All trajectories lowered

the average cost during each iteration, but some initially raised the average benefit, while some

lowered the average benefit.

4.3.3 cob

Finally we present some results from the cob model. The cob model shows even less variabil-

ity between the trials than the holo model, for different M/N combinations and for the dif-

ferent selectors. To illustrate the similar variance, Figure 4.10 shows the M/N values 500/75,

500/25, 100/50, and 100/25, all from the bore selector. There is little to no difference between

the 500/75 and 500/25 trials and while the 100/50 trials cluster at a slightly higher cost, the

trajectories do not show any more variability than the trajectories for the 500/75 combination.

The 100/25 combination, which has been the worst performer in all comparisons shown as far,

shows a wider spread of trajectories, but still clusters tightly after ten iterations. In particular
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notice how tightly clustered all the trials are for 500/75.

500-75 500-25

100-50 100-25

Figure 4.10: Stability of cost and benefit in the cob model with the bore selector

4.4 Variance of Partial Descriptions

In §4.3 we looked at the variability between each trial; in this section we will look at the

variability within the trials. Recall from §3.1.2 that a partial description actually forms a

set of solutions, comprising all solutions that pass the treatments in the partial description.

These solutions will naturally be scored differently according to the objective function. A key

question then is: what amount of variability can we expect from a partial description returned

by ITL?

To address this question we present some results that show the estimated variance based on

the standard deviation of the points generated during each iteration. The figures in this section
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show the average cost and benefit side by side. The averages were calculated in the same way

as in §4.3, with a small amount of horizontal jitter added to separate the ten different trials.

The standard deviation of the points in each iteration are shown as error bars. Also as in §4.3,

we will focus on the results from the 500/75 combination and the bore selector. §A.3 has a

complete set of results.

4.4.1 aero

Figure 4.11 displays the per-iteration average of the 500/75 combination for the bore and bore′

selectors. The wob selector (shown in §A.3), which has been shown to find lower quality

solutions, also has a much higher variance due to the partial description. This is in line with

the results from §4.2 and §4.3 which also showed similar poor performance (according to the

criteria used in those sections) of the wob selector.

Looking at the bore and bore′ results we see some of the patterns seen in §4.2 and §4.3

repeated and some contradicted. Using the bore selector it appears the least variable trials are

from the combinations where N = 75. Both the M = 500 and M = 300 cases (the M = 300

cases can be found in §A.3) have only one outlier that takes 3-5 more iterations to converge

to the average benefit seen in the other nine trials. But after these “late” trials do converge

they have small standard deviations similar to the other trials. This is similar to the pattern we

saw in §4.2 and §4.3 where N = 25 combinations are underperformers compared to N =75

combinations.

Something that we have not seen in previous sections is the apparently superior perfor-

mance of the bore′ selector for M = 500 combinations. Figure 4.11 shows faster convergence

in the average benefit, as well as lower variance. It is not clear why this is the case for this

particular model, because this pattern is not seen in the other models (discussed below).

4.4.2 holo

For the holo model all three selectors show a similar pattern of decreasing variance, therefore

we will only display the bore selector. Figure 4.12 shows the 500/75 and 500/25 combinations.

This figure shows an extremely low variance in the cost, with a decreasing, but higher variance

in the benefit, for the 500/75 combination. The 500/25 has a higher variance in both the

average cost and average benefit. The M = 300 cases are similar and the M = 100 cases
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bore
cost benefit

bore′

cost benefit

Figure 4.11: Cost and Benefit in the aero model with M/N values set to 500/75. Error bars
represent the standard deviation of the points in each iteration.

show a significantly higher variance, particularly in the average benefit.

4.4.3 cob

The cob model seems to have a particularly low variance inherent in its structure. This is simi-

lar to the high stability we saw in the cob model in §4.3. For all selectors and all combinations

the variance in both the average cost and benefit quickly diminishes and by the fourth to sixth

iteration is quite low. The bore and wob selector are shown in Figure 4.13 to demonstrate how

the usually underperforming wob selector has the same level of variance as the bore selector.

Both selectors show a steadily reducing variance as the search proceeds, with the cob selector

taking just 1-3 more iterations for the variance in the average cost to reach the level seen in

the bore selector.
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500-75
cost benefit

500-25
cost benefit

Figure 4.12: Cost and Benefit in the holo model with the bore selector. Error bars represent
the standard deviation of the points in each iteration.

The familiar patterns, with regard to the M/N values, from §4.2 and §4.3 are seen in

the cob results, although with reduced significance. That is, we see higher variance in lower

values of M and in the lower values of N , but the 300/75 combination performs slightly better

than the 500/25 combination.

4.5 Extreme Sampling Performance Compared to Diagonal Striping

Having investigated the performance characteristics of extreme sampling in §4.2 - §4.4, this

section compares the performance of extreme sampling with the previous discretization method.

As mentioned in §3.1, the original discretization method used with ITL [26, 43, 89] was a di-

agonal striping discretization. We will compare this older method with our best-performing
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bore
cost benefit

wob
cost benefit

Figure 4.13: Cost and Benefit in the cob model with M/N values set to 500/75. Error bars
represent the standard deviation of the points in each iteration.

extreme sampling method, i. e. the bore selector with M/N set to 500/75. Figure 4.14 com-

pares diagonal discretization with the bore method as a reminder from §3.1.

Figure 4.15 shows the search trajectories for diagonal striping and bore discretization in

the aero and holo models. For the bore trajectory this figure uses the best of the ten trials

from each of the models, based on benefit/cost ratio. For the diagonal trajectory this figure

uses the best of the 30 trials from each of the models, based on benefit/cost ratio. In addition,

the original diagonal experiments required batch sizes (i. e. the value of M ) of 2000. Even

with this larger batch size and more trials to choose from, Figure 4.15 makes it clear that bore

outperforms diagonal striping significantly in both models shown.

For the aero model, bore found a solution with a much higher expected benefit and a

slightly lower cost. In the holo model, bore found a solution with a much lower cost and only
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Figure 4.14: Diagonal striping and bore

Figure 4.15: Comparison of bore to diagonal striping

a slightly lower expected benefit. Table 4.1 gives the exact values of the endpoints for the cost,

benefit, and normalized benefit/cost ratio.

4.6 Extreme Sampling Performance Compared to Simulated Annealing

So far in this chapter we have investigated the performance characteristics of extreme sam-

pling using different parameters and compared extreme sampling to our previous discretiza-

tion method, diagonal striping. In this section we will compare ITL to the previously used

search strategy, simulated annealing (see §2.2.2 for a description of simulated annealing).
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bore diagonal
model cost benefit normalized ratio cost benefit normalized ratio

aero .366 .569 1.55 .392 .392 1.00
holo .198 .0869 .439 .343 .0898 .262

Table 4.1: Normalized benefit/cost ratios in bore and diagonal striping

Original Search Technique Used by DDP As part of the DDP environment a simulated

annealer can be used to maximize the benefit/cost ratio. In DDP’s simulated annealer, the

current best solution is mutated as follows. The candidate solution is a boolean vector repre-

senting whether to apply each mitigation. Each boolean has a 10% chance of flipping to the

other boolean value. The user specifies the number of objective function evaluations desired

so DDP can automatically set the cooling schedule.

Comparison of ITL to Simulated Annealing Figure 4.16 shows the trajectories of DDP’s

simulated annealer using 30,000 objective function evaluations, and the trajectories of the best

trial using the bore selector with M/N values of 500/75. (Hence 5000 objective function

evaluations were done during the bore search.) Table 4.2 lists the normalized endpoints of

the six different searches in Figure 4.16. (Remember that the normalized benefit/cost ratio is

our objective function.) We can see that extreme sampling outperforms SA in the cob model,

finds a solution with almost the same value for the objective function for the aero model, and

underperforms on the holo model.

Notice also that ITL seems to systematically find solutions with higher benefit and cost

(with the exception of the cost of the solution found for the cob model). In personal commu-

nication with an experienced DDP user it was suggested that this was due to the nature of a

typical DDP model. A typical DDP model has some high-cost mitigations with large benefits

and many more low-cost mitigations that have small benefits. The simulated annealer can find

a subset of low-cost mitigations that together have a high benefit. But this subset will likely

be much larger than a few treatments (as previously discussed, ITL uses treatments with a

maximum size of five attribute-value pairs). Since ITL only searches one treatment deep per

iteration, it cannot find this type of subset. Instead the treatment learner finds the few miti-

gations that most greatly effect the normalized ratio. But obviously this search bias does not

stop ITL from finding high quality solutions, as discussed in the previous paragraph.
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Figure 4.16: Comparison of bore to SA
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bore SA
model cost benefit normalized ratio cost benefit normalized ratio

aero .366 .569 1.55 .302 .482 1.60
holo .198 .0869 .439 .153 .0845 .552
cob .197 .829 4.21 .220 .776 3.53

Table 4.2: Normalized benefit/cost ratios in bore and SA

4.7 Conclusions from the DDP Studies

This chapter has used requirements engineering to investigate several important characteristics

of ITL. First we investigated different possible policy settings to extreme sampling, a key part

of ITL. Then we compared ITL’s performance with extreme sampling to its performance with

diagonal striping. Lastly, we compared the performance of ITL with extreme sampling to

simulated annealing, a well studied and frequently used metaheuristic search technique.

There are several conclusions we can draw from all these experiments. Extreme sampling

works best with the bore selector. While we hoped that bore′ or wob could be used to reduce

the amount time needed by the learner, by reducing the number of instances trained on, both

bore′ and wob caused a degradation in the performance of ITL when compared to the bore

selector. Our intuition that the wob selector might perform better by highlighting the difference

between the instances with a high objective score and those with a low objective score also

turned out to be incorrect.

Learning on large batch sizes positively effects solution quality when the search is iteration

limited, but if the search is limited by the number of times the objective function can be eval-

uated, smaller batches positively effects solution quality. The experiments in this chapter did

not use a wide enough range of M values to hint at the value of M at which ITL’s performance

stops increasing with increasing values of M .

We found that reducing the number of instances labeled good negatively affects solution

quality. Extreme sampling needs a certain percentage of instances in each iteration to be

labeled good. The ratio of N to M appears to be at least 15% to 25% (75/500 to 75/300). The

experiments in this chapter did not use a wide enough range of N values to hint at the upper

limit to this ratio.

Sections 4.3 and 4.4 demonstrated that ITL with extreme sampling has both stable perfor-

mance (restarting a search does not significantly change the performance of the method) and
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that the variance inherent in partial descriptions is low after several iterations.

In §4.5 we demonstrated the clear superiority of the bore version of extreme sampling to

our previous discretization method, diagonal striping. Averaged over the two models, bore

found a solution with an objective score 161% of the average found by diagonal striping.

Finally §4.6 showed that extreme sampling can find higher, equal, or lower quality solu-

tions than simulated annealing, but in many fewer objective function evaluations. Averaged

over the three models, ITL found a solution with an objective score 98.6% of the average

found by the simulated annealer.

The next set of case studies have to do with the SPY framework. Like ITL, SPY finds

range restrictions to model input variables by using a treatment learner. However, SPY takes

a different approach to integrating the search algorithm with the model. The models used

by SPY are written in the SPY language, which was specifically designed to make the model-

learner interface as smooth as possible. These studies highlight a problem we discussed earlier

in §2.3.1; using a nearly continuous objective function is critical for a metaheuristic search to

be successful. Chapter 5 will use SPY to validate temporal properties in NASA flight models

and chapter 6 will investigate restricting the behavior modes of biomathematical models.
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CHAPTER 5
MODEL PROPERTY CHECKING

In the last chapter we saw how ITL with a new discretizer was able to perform at the same

level as a well respected metaheuristic technique. An important feature of that work was the

continuous nature of the objective function used by ITL (the normalized benefit/cost ratio). In

this chapter and the next we will present results from experiments using the SPY framework

(described in §5.1), which will demonstrate how important this feature is.

The first case study with SPY uses NASA flight models. We attempt to verify temporal

model properties in production flight models used by NASA contractors. Property validation

was the original motivation for developing the SPY framework. Although there have been

several breakthroughs in static verification and validation (V & V) techniques such as model

checking, the usefulness in verifying properties of software systems has been limited because

important classes of software systems involve large input domains (e. g. unbounded integer

variables and real valued variables) as well as interrelated numeric constraints over the vari-

ables in the input domain. These characteristics severely limit the usefulness of verification

techniques like model checking. There are several modifications to model checking that can

be used to allow model checkers to work with models that have unbounded numeric inputs.

Bounded model checking [15, 30] can be used to check a model with discrete inputs, by ex-

haustively checking the model using a narrow range of values for the model inputs. Models

can also be abstracted to remove or isolate the effect of numeric inputs. The drawback of this

technique is that the model checker correctness and completeness depend on the abstraction

technique. It may not be possible to develop an abstraction that preserves the essential seman-

tics of the model being checked. The SPY framework was designed to give analysts a tool that

didn’t suffer that limitation. The price an analyst has to pay to get around these limitations is

the incomplete nature of SPY’s search. Many model checkers have a completeness guarantee,

so if the checker reports no violations, the model is guaranteed to never violate the properties
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checked. With SPY if a property violation is not found, the random nature of its search means

that a violation may still occur, if different inputs are feed to the model.

Throughout §5.2 we will mention a commercial tool, Reactis, that was used by our collab-

orators at the University of Minnesota (UMN) as a baseline in a comparison with SPY. Reactis

was used because because it is a common commercial tool that was available in-house to our

collaborators at UMN. The advantage of Reactis is that it performs a random and heuristic

search through a model, without any restriction on the type of the model inputs. This means

that this technique can be used to check models with real valued inputs without any prepro-

cessing of the model, just like SPY. The random nature of Reactis’s search means that it does

not have a completeness guarantee, as discussed in the previous paragraph.

5.1 SPY

The essential question the SPY framework tries to answer is: what input range restrictions are

most likely to constrain the state of the model to states that are considered more desirable?

SPY does not use formal methods to investigate the models under question. Instead the SPY

framework includes an execution engine for driving the models under examination. SPY

executes the model a prescribed number of times generating a set of input-output pairs. The

desirability of these pairs is evaluated by an objective function. SPY then finds correlations

between input-output pairs and their desirability by using tar4 (see §2.1.5 for a description

of tar4). This cycle of executing the model, objective function evaluation, and data mining is

called an iteration. The SPY framework runs for several iterations, with the learner finding

treatments in between each iteration. Notice this is the same work flow as ITL’s work flow,

discussed in chapter 3, in particular in Figure 3.9.

During each iteration the SPY framework randomly chooses inputs for the models ac-

cording to range restrictions on the input variables. These restrictions are initially described

by the analyst, but after the first iteration are modified by SPY’s learning process. The re-

strictions take the form of upper and lower bounds for each input value. SPY reduces the

space it searches by increasing the lower bound and/or decreasing the upper bound according

to the treatments returned at the end of each iteration. Hence the points that are randomly

sampled during one iteration are always from a space smaller than the space sampled from

during the previous iteration. However, rather than just using the treatments themselves as the

75



5.2. Using SPY on NASA Flight Models

upper and lower bounds (as the ITL method used in chapter 4 did), the bounds are adjusted in

the direction suggested by the treatments, but not necessarily in the amount suggested by the

treatments.

The selection of input points from the search space is completely random; SPY attempts no

symbolic analysis of the model’s source code. This is different from other random tools, such

as Reactis, which use heuristic analysis of the model’s source code (such as path coverage)

when picking input points. Refer to [29] for a complete description of the SPY framework.

In addition to introducing SPY, [29] also applies the framework to a “magic” bus that tries

to transport passengers the farthest it can before running out of fuel. While this artificial model

was useful in demonstrating the capability of SPY to learn model input constraints, the next

section returns to the original motivation for developing SPY: verifying temporal properties in

models with real valued inputs. To do so we will investigate three NASA flight models and

ten properties the the original model developers describe in the requirements documentation

available to us.

5.2 Using SPY on NASA Flight Models

The original purpose for developing the SPY framework was to give NASA’s IV&V (indepen-

dent verification and validation) facility a new method to check model properties. Since, as

discussed in §5.1, SPY allows any data type in the models being analyzed, it can be used to

verify properties in models that would defeat techniques with completeness guarantees, like

model checking.

Recall from §5.1 that SPY does not perform any symbolic analysis of the model’s source

code. Some other tools, like our baseline tool Reactis, use heuristic analysis of the model’s

source code, such as trying to achieve full path coverage, when picking input points. SPY’s

selection of input points is completely random, but it uses partial descriptions to restrict the

region of the search space that these points are chosen from.

This section describes the models analyzed (§5.2.1), the experimental goals of this analysis

(§5.2.2), and the results of these experiments (§5.2.3).
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5.2.1 Models Under Consideration

The models used in this section were originally developed in Simulink1. The models were

translated to the SPY language by a LUSTRE-based translator [54] developed as part of the

SPY framework development, at the University of Minnesota.

To gauge the effectiveness of SPY in verifying properties and uncovering defects, we

analyzed three different models

• Sensor Voting
• Dual FGS
• Altitude Switch

This section will describe some of the particulars of the models.

Sensor Voting

The Sensor Voting model2 is a generic triplex voter. The voter takes inputs from three redun-

dant sensors and synthesizes a single reliable sensor output. Each of the redundant sensors

produces both a measured data value and self-check bit (validity flag) indicating whether or

not the sensor considers itself to be operational. The output of a sensor is amplitude limited in

hardware by the A/D conversion.

The functionality of the triplex voter is as follows:

• Sample digitized signals of each sensor measurement at a fixed rate appropriate for the
control loop, e. g. 20 Hz. A valid flag supplied by sensor hardware indicating its status
is also sampled at the same rate.

• Use the valid flag and comparison of redundant sensor measurements to detect and iso-
late failed sensors.

• Output at a specified sample rate a signal value computed as a composite average of the
signals of non-faulty sensors. Also output, at the same specified rate, the status of the
composite output by setting an “outputValid” flag.

• Tolerate “false alarms” due to noise, transients, and small differences in sensor measure-
ments. Sensors are not marked failed if they are operating within acceptable tolerances
and noise levels.

• Maximize the availability of valid output by providing an output whenever possible,
even with two failed sensors.

1Available from The MathWorks Inc, at www.mathworks.com.
2Developed at Honeywell Laboratories.
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• The algorithm is not required to deal with simultaneous sensor failures since this is a
very low probability event.

The operation of the sensor voter algorithm is as follows. All valid sensor signals are

combined to produce the voter output. If three sensors are available, a weighted average is

used in which the outlying sensor value is given less weight than those that are in closer

agreement. If only two sensors are available a simple average is used. If only one sensor is

available, it becomes the output. There are two mechanisms whereby a faulty sensor may be

detected and no longer considered valid; either by comparison of the redundant sensor signals

or by the validity flags produced by the sensors themselves.

Dual FGS

A Flight Guidance System is a component of the overall Flight Control System (FCS) in a

commercial aircraft. The FGS compares the measured state of the aircraft (position, speed, and

attitude) to the desired state and generates pitch and roll guidance commands to minimize the

difference between the measured and desired state. The FGS subsystem accepts input about

the aircraft’s state from the Air Data System (ADS) and Flight Management System (FMS).

Using this information, it computes pitch and roll guidance commands that are provided to

the autopilot (AP). When engaged, the autopilot translates these commands into movement of

the aircraft’s control surfaces necessary to achieve the desired changes about the lateral and

vertical axes.

The flight crew interacts with the FGS primarily through the Flight Control Panel (FCP).

The FGS has two physical sides corresponding to the left and right sides of the aircraft. These

provide redundant implementations that communicate with each other over a cross-channel

bus. Normally, only one FGS (the pilot flying side) is active, with the other FGS operating

as a silent, hot spare. In this dependent mode of operation, the active FGS provides guidance

values to the AP and the Flight Director (FD). The pilot and copilot can switch which side

is the pilot flying side by pressing the Transfer Switch on the FCP. This is frequently done

when switching to a different navigation source. However, in some critical modes, such as

Approach and Go Around, both sides are active and independently generate guidance values

for their own FD. In this independent mode of operation, both sets of guidance values are

provided to the AP, which first verifies that they agree within a predefined tolerance value.
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If in agreement, the values are averaged and executed. If not in agreement, the situation is

annunciated to the pilot and the AP disconnects.

Altitude Switch

The Altitude Switch (ASW) is a re-usable component that turns power on to a Device Of

Interest (DOI) when the aircraft descends below a threshold altitude above ground level. If

the altitude cannot be determined for more than two seconds, the ASW indicates a fault. The

detection of a fault turns on an indicator lamp within the cockpit. The DOI is turned back off

again if the aircraft ascends above the threshold altitude plus some hysteresis value. The ASW

receives a status indication from the DOI indicating whether the DOI is powered on. If the

DOI does not indicate that it is powered on within two seconds after power is applied, a fault is

indicated. The ASW does not apply power to the DOI if the DOI is already powered on. The

ASW is not in complete control of the DOI, since the DOI may be turned on and off by other

systems or the pilot. If the DOI is turned off after the aircraft descends below the threshold

altitude, the ASW does not reapply power to the DOI unless the aircraft again descends below

the threshold altitude. The ASW also accepts an inhibit signal that prevents it from turning on

power to the DOI or indicating a fault. All other ASW functions are unaffected by the inhibit

signal. The ASW also accepts a reset signal that returns it to its initial state.

5.2.2 Experimental Goals

This section will describe the properties we want to verify in each of the models described in

§5.2.1.

Sensor Voting

The Sensor Voting model combines the output from three sensors to produce a high quality

output. It operates in such a fashion as to tolerate transient errors or multiple failures in

the sensors, to detect significant differences in the signals, and to isolate that difference (if

possible) to a single faulty sensor. The full details of this model are given in §5.2.1.

For the Sensor Voting model we checked the following properties
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1. If sensor valid flag goes bad 3 time steps in a row, then the sensor output shall be flagged
as bad. This sensor will stayed flagged as bad even if the sensor valid flag becomes good
at a later time.

2. If a persistent threshold violation is detected by the model, the sensor output shall be
flagged as bad. This sensor will stayed flagged as bad even if the persistent threshold
violation disappears at a later time.

Both these properties were applied separately for each of the three sensors.

The first property was implemented in SPY using a trio of simple accumulators that tracked

the number of consecutive time steps that a sensor valid flag was bad. If any of the accumu-

lators exceeded the 3 time steps allowed, that sensor was recorded as bad by SPY, and if the

model ever reported that sensor as good a property violation was reported.

The second property, which measures disagreement between the values reported by the

different sensors, was a bit more complicated to implement. Two sensors had to disagree by

an amount above a certain threshold (Sensor Magnitude Threshold) for a time exceeding an-

other threshold (Sensor Persistence Threshold). In addition, since with only two valid sensors

it would be impossible to determine which sensor was faulty, all three sensors had to be con-

sidered valid by the model for it to isolate which sensor was producing the disagreeing value.

If the objective function detected a persistent threshold violation that was not reported by the

model, a property violation was reported by SPY.

Together these two properties were also checked in the other direction. That is, if the

objective function decided a sensor was valid according to both criteria, but the model reported

the sensor as invalid, a property violation was reported by SPY.

Dual FGS

The FGS compares the measured state of the aircraft (position, speed, and attitude) to the

desired state and generates pitch and roll guidance commands to minimize the difference be-

tween the measured and desired state. §5.2.1 gives a more detailed description of the Dual

FGS.

For the Dual FGS model, we checked the following properties

1. At least one FGS side shall always be active

2. Exactly one side shall be the pilot flying side. This property was stated in two forms
(a) It is always the case that property 2 holds
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(b) It is always the case that when property 2 is false then in the next step property 2
is true

3. If the system is in independent mode (defined in §5.2.1), both sides shall be active. This
property was stated in two forms:

(a) It is always the case that property 3 holds

(b) It is always the case that when property 3 is false then in the next step property 3
is true

4. If the system is in dependent mode, it shall not be the case that both sides are active.
This property was stated in two forms:

(a) It is always the case that property 4 holds

(b) Property 4 cannot be false for more than two consecutive time steps

5. Pressing the transfer switch shall cause the system to change PF sides. This property is
expressed in two parts:

(a) It is always the case that if the Left FGS is not the pilot flying side and the transfer
switch is not pressed, then in the next step if the transfer switch is pressed, Left
FGS shall become the pilot flying side.

(b) It is always the case that if the Right FGS is not the pilot flying side and the transfer
switch is not pressed, then in the next step if the transfer switch is pressed, Right
FGS shall become the pilot flying side.

Properties 2b, 3b, and 4b capture the properties the developers intended the models to

have. We checked properties 2a, 3a, and 4a to ensure that SPY checked for some properties

that did not hold in the model.

The first property was easy to implement by checking the two boolean variables used to

record the status of each side of the FGS. One side had to be active at every time step.

The second property checked the two boolean variables that recorded which side of the

FGS was giving input to the AP, i. e. the “flying” side. An accumulator was used to count the

number of time steps that both sides of the FGS were flying. When checking property 2a, if

this accumulator was ever greater than 0, a violation was reported. When checking property

2b, if this accumulator was ever greater than 1, a violation was reported.

The third property checked that if the system was in independent mode (defined in §5.2.1)

both boolean variables that recorded if a FGS side is active were set to true. An accumulator

was used to count the number of time steps this was false. When checking property 3a, if this

accumulator was ever greater than 0, a violation was reported. When checking property 3b, if

this accumulator was ever greater than 1, a violation was reported.
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The fourth property was implemented in a way similar to property 3. The accumulator was

incremented if the FGS was in dependent mode and both FGS sides were active. When check-

ing property 4a, if this accumulator was ever greater than 0, a violation was reported. When

checking property 4b, if this accumulator was ever greater than 2, a violation was reported.

The final property was checked for both sides of the FGS. If the side being checked was

the flying side and the transfer switch wasn’t pressed during the current time step, but was

pressed during the previous step and the side was the flying side in the last step, a violation

was reported.

Altitude Switch

The Altitude Switch(ASW) is a re-usable component that turns power on to a Device of Inter-

est (DOI) when the aircraft descends below a threshold altitude above ground level. Refer to

§5.2.1 for a more detailed description of the Altitude Switch.

For the Altitude Switch, we checked the following properties:

1. The ASW shall command the DOI to be turned on if and only if the following conditions

are satisfied
(a) The aircraft descends below the threshold altitude (nominally 2000 ft)

(b) The DOI is not already on

(c) The ASW is not inhibited

(d) The ASW is not reset

2. The ASW shall command the DOI to be turned off if and only if all of the following
conditions are satisfied

(a) The aircraft has attained an altitude greater than the threshold plus hysteresis.
(Hysteresis is assumed to be 0.1 * Threshold)

(b) The DOI is not already OFF

(c) The ASW is not inhibited

(d) The ASW is not reset

3. The ASW shall indicate a fault, if any of the following conditions are satisfied:
(a) ASW is not able to determine the altitude for more than 2 seconds

(b) DOI does not indicate that it is powered ON within 2 seconds after ASW applies
power to it
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(c) Altimeter indicates that the Altitude Quality is bad

(d) ASW is not inhibited

The first two properties were very similar and checked in the same way. They list four

conditions that must exist for the DOI to be turned on or off. Both simply check that all four

conditions hold when ever the DOI is turned on or off.

The third property checks that the ASW has not been inhibited or reset and then checks

that if any of the three alarm modes (properties 3a - 3c) are true indicating that the alarm signal

should be activated.

5.2.3 Experimental Results

In this section we present the results of the experiments in which we tried to verify the prop-

erties described in §5.2.2. Each of the models was run for 10 iterations, with each iteration

having a 100 instances batch size, and each instance running the model for 40 discrete time

steps.

Sensor Voting model

Both properties formulated for the Sensor Voting model were not expected to be violated,

and SPY did not detect a violation of either property. Recall from §5.2.2 that property 1 said

that the sensor valid flag had to be bad 3 time steps in a row for the model to invalidate that

sensor. Internally in the SPY code this threshold was stored in numBadFlags. Additional

experiments were run with the Sensor Voting model, with numBadFlags set to have different

values. Whenever this number differed from the 3 (the formulation desired by the original

model developers) SPY reported a property violation, showing that it could detect differences

between the property formulations and the implementation of the models. These results are

summarized in Table 5.1.

There was one subtle bug that SPY missed which was discovered by manual inspection

. The Sensor Voting model detects a persistent threshold violation (property 2 in §5.2.2) by

accumulating the time that any sensor differs (above a set threshold) from any of the other sen-

sors (provided that the sensors are still considered valid by the model). This accumulator value

was stored in a floating-point variable. At each time step this accumulator is checked against
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Property SPY Result Expected Result
Property 1 Not Violated Not Violated
Property 2 Not Violated Not Violated

numBadFlags = 2 Violated Violated
numBadFlags = 4 Violated Violated

Table 5.1: Sensor Voting property check results

the allowed time for a sensor to miscompare with the other sensors. However, when accumu-

lating .05 seconds (since the model runs at 20 Hz) ten times, the sum was actually just below

.5 seconds. But since both the model and the code used to check the model suffered from this

form of numeric creep, SPY did not recorded a failure. Hence a property violation escaped

SPY’s notice. Our collaborators at the University of Minnesota (who developed the transla-

tion system discussed in §5.2.1) independently checked this violation using our commercial

tool Reactis. That tool also failed to detected this numeric creep. Since both tools failed to

detected this violation, this example demonstrates the danger in using floating-point variables

for some applications. After manual inspection detected this error, the property checking code

in SPY was re-written to use an integer accumulator to count the number of time steps that

two sensors miscompared. Using this integer accumulator, SPY detected the property viola-

tion, demonstrating that the original failure of SPY was due to the numeric creep issue. This

means that SPY, when the objective function was properly implemented, found a subtle bug

that apparently had not been previously discovered.

Dual FGS

Table 5.2 shows the different properties and their expected results for the Dual FGS model.

The results we obtained from SPY differ from the expected results for only one of the nine

properties checked, property 4.b. The FGS system was also independently check by our UMN

collaborators. Reactis also reported that property 4.b was violated. Since this model has been

in production use for some time, it is likely that the property is formulated incorrectly in the

requirements documentation we had access to. Even if the property formulation is incorrect

and there are no faults in the model, having consistent requirements is obviously valuable.

Discovering inconsistent requirements, while not the stated goal of the SPY framework, is

always possible when testing requirements against a development artifact.
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Property SPY Result Expected Result
Property 1 Not Violated Not Violated

Property 2.a Violated Violated
Property 2.b Not Violated Not Violated
Property 3.a Violated Violated
Property 3.b Not Violated Not Violated
Property 4.a Violated Violated
Property 4.b Violated Not Violated
Property 5.a Not Violated Not Violated
Property 5.b Not Violated Not Violated

Table 5.2: FGS property check results

Property SPY Result Expected Result
Property 1 Violated Violated
Property 2 Violated Violated
Property 3 Not Violated Not Violated

Table 5.3: ASW property check results

Altitude switch model

Table 5.3 shows the results of our experiments with the altitude switch model. When these

experiments were started it was thought that properties 1 and 2 should not be violated, but

when Reactis was used as an independent check, it also reported properties 1 and 2 violated

by the model. This led to a closer examination of the requirements documentation. It became

apparent that the model’s behavior was not fully encapsulated in the properties, as the proper-

ties were recorded. Since the original developers were not available to us, this was as far as

our investigation could go.

5.3 Conclusions from NASA Flight Models

This chapter has shown, through comparative analysis, that our current methodology for veri-

fying temporal properties in real valued models has much potential. We showed that

• the translation framework preserves the semantics of our models
• SPY agrees with Reactis on which properties are violated in our models
• SPY was able to find defects in the models that were either

– already present in the models
– injected into the formulation of the properties.
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A difficulty we encountered in this chapter that was not seen in chapter 4 was the interface

between the learner and the model input variables. In chapter 4 ITL could learn directly on

the input variables because the requirement models were non-temporal. With the temporal

models studied in this chapter, SPY could not learn directly on the model input variables,

because they changed during the execution of the model. In two of our flight models, ASW

and Dual FGS, the model inputs represented the states of control inputs that were expected

to change during the course of a simulation. In our third flight model, Sensor Voting, we had

some real value inputs that changed during the simulation, namely the values reported by the

individual sensors, as well as discrete control inputs, namely the validity flags reported by each

sensor. In fact, the properties explicitly detailed how the model was supposed to react when

the control states changed. Presenting SPY with the exact value that each input took during

each discrete time step was not desirable for two reasons. First, presenting the learner with

that many input variables, the number of model inputs times the number of discrete time steps,

would overwhelm the learner’s ability to find correlations between the inputs and the objective

function evaluation. Second, if the learner were presented with the value of each input at

each time step, the learner would return treatments suggesting value assignments to particular

inputs at particular time steps. For our purposes these would not be useful suggestions. For

these reasons we parameterized the model’s control inputs as probabilities. These probabilities

were constant during a simulation and were the values that the SPY framework learned on.

This meant when a defect was discovered by SPY, its advice would be to decrease or increase

the probability of some of the control inputs being in one state or the other. In the models

studied in this chapter, the learner would reduce some of these probabilities to zero, effectively

saying not to use that control input. This advice might not be particularly useful to the model

developers.

Since we would like to investigate SPY’s ability to find useful range restrictions, we de-

cided to investigate another class of temporal models whose inputs were all real valued, but

whose values did not change during the execution of the model. The next chapter investigates

SPY’s ability to find useful range restrictions with biomathematical models. These models

have the above-mentioned advantage of having all real valued inputs that do not change dur-

ing the execution of the model. In addition, the models we chose have had previous analysis

work, so we can compare the results of using SPY with previous results.
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CHAPTER 6
VALIDATING SPY ON BIOMATHEMATICAL MODELS

The previous chapter introduced SPY and demonstrated its ability to check certain types of

properties in NASA flight models. We discussed how the nature of the model inputs made val-

idating a useful feature of SPY difficult. The nature of the range restrictions offered by SPY, e.

g. the pilot should never press the transfer switch, were not practically useful. To demonstrate

SPY’s ability to find useful range restrictions we investigated a class of models that have been

developed and reviewed in research fields outside of machine learning or metaheuristic search.

SPY will attempt to find input range restrictions to these new models, described in §6.1.1,

that confine the behavior of the model outputs to specified modes.

6.1 Using ITL in Biomathematical Models

This section discusses two biomathematical models that have been analyzed using techniques

outside of the machine learning field. The models will be introduced, along with a description

of the experimental goals and results of the experiments using the SPY framework.

6.1.1 Models Under Consideration

Competitive Exclusion

[104] develops dozens of biomathematical models. Dynamic population models are one of

the classic types of biomathematical models. Populations are modeled using coupled differ-

ential equations. The first derivatives (in time) are constructed from first principles. These

derivatives usually contain several parameters. These parameters can be studied analytically

to define different types of behaviors of the model. We will be studying a system of 2 different

species that compete in some way in the same niche. We can think of this competition in terms

of food supply, space, toxicity, or anything else that would lower the carrying capacity of the
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niche for both species. This system is called competitive exclusion because analytic analysis

shows that under most conditions, one species will be driven to extinction. The general form

of the population equations is

dN1

dt
= r1N1

(
1− N1

K1

− b12
N2

K1

)
(6.1)

dN2

dt
= r2N2

(
1− N2

K2

− b21
N1

K2

)
(6.2)

where N1 and N2 are the size of the two species, K1 and K2 are the carrying capacities for

the two species in the absence of the other species, r1 and r2 are the growth rates of the

species, and b12 and b21 measure the degree to which the two species effect each other. All

these constants are positive and real-valued. Following the methodology of [104] we rewrite

Equations 6.1 and 6.2 in dimensionless terms as

du1

dτ
= u1(1− u1 − a12u2) (6.3)

du2

dτ
= ρu2(1− u2 − a21u1) (6.4)

where u1 = N1

K1
, u2 = N2

K2
, a12 = b12

K2

K1
, a21 = b21

K1

K2
, ρ = r2

r1
, and τ = r1t. We have eliminated

one term (we scaled r1 to one and redefined r2 to a ratio) and normalized our population sizes

so that the carrying capacity of each species is 1.

Animal Neurons

A simple model of animal neurons was developed in [65]. This model has the advantages

of being computationally efficient, while also being able to simulate most of the behaviors

of much more complex models. Its main drawback is that its parameters have no physical

significance. The model is a pair of coupled ordinary differential equations. The entire model
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has the form

dv

dt
= 0.04v2 + 5v + 140− u + I (6.5)

du

dt
= a(bv − u) (6.6)

if v ≥ 30mV, then v ← c and u← u + d

Where v and u are dimensionless variables, a, b, c, d are dimensionless parameters, and I is

an input DC signal. The variable v represents the membrane potential of the neuron and is the

experimentally observable quantity in this model. The variable u is a recovery variable, which

models the rate at which K+ and Na+ channels can open and close in the neuron.

[65] and [66] state that almost all behaviors seen in real neurons can be modeled using

this model, depending on the settings of the different parameters. There is matlab program

available for download1 that lists the different values of the parameters that lead to different

classes of behavior.

6.1.2 Previous Analytic Work with Models

Competitive Exclusion

The dynamic population model we are using is simple enough to be analyzed using a number

of different techniques. Here we simply summarize the linear algebra based technique used

in [104]. First we construct the matrix A around a point where du1

dτ
= du2

dτ
= 0. Then the

sign of the eigenvalues of the matrix A determine whether the equilibrium points are stable

or unstable. After finding the eigenvalues at the four different equilibrium points, it turns

out there is only a single set of conditions that will lead to a stable equilibrium point where

N1, N2 6= 0. If 0 ≤ a12 ≤ 1 and 0 ≤ a21 ≤ 1 then there will be a stable equilibrium

point at (u∗
1, u

∗
2), where 0 < u∗

1 < 1 and 0 < u∗
2 < 1 (recall equations 6.3 and 6.4 were

nondimensionalized, so the carrying capacity for the two different species is 1).

1http://vesicle.nsi.edu/users/izhikevich/publications/izhikevich.m
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Animal Neurons

Our neuron model is much harder to analyze symbolically, both because it is not first-order

(recall the v2 term in equation 6.5) and because of the reset condition. Izhikevich has spent

much time describing some of the analytic properties of different models of animal neurons

[64]. All of these discussion are beyond the scope of this thesis. It should be noted that this

analysis takes dozens of pages and a high degree of mathematical training to discover. The

various parameter settings that lead to the different behaviors are published, but no explanation

is given as to how they were found (which suggests a simple trial-and-error search).

6.1.3 Experimental Goals

There are two slightly different goals we have in mind for our experiments. We would like our

framework to find the relevant range restrictions and we would like it to NOT offer any range

restrictions on parameters that are irrelevant.

Competitive Exclusion

For the dynamic population model we want to discover the conditions that create a stable

equilibrium point where N1, N2 6= 0, as discussed in 6.1.2. The range restrictions that lead to

this behavior are 0 ≤ a12 ≤ 1 and 0 ≤ a21 ≤ 1. Since symbolic analysis shows that the value

of ρ and the initial populations do not affect the location or existence of equilibrium points,

we hope that SPY will not offer any range restrictions on those variables.

Animal Neurons

Of all the different behaviors described in [66], three were chosen because it was easy to

describe them in mathematical terms. First, phasic spiking, Figure 6.1a, which is a single

spike and reset. Second, tonic bursting, Figure 6.1b, which is several spikes close together in

time, followed by a quiescent state, repeated several times. Third, phasic bursting, Figure 6.1c,

is several spikes close together in time, followed by a quiescent state without any repeats. We

attempted to find the input value ranges that lead to these different behaviors.
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(a) phasic spiking (b) tonic bursting (c) phasic bursting

Figure 6.1: Behavior modes of animal neuron

6.1.4 Methodology

Competitive exclusion model in the SPY language

To highlight some of the interesting features of the SPY language we will discuss the partic-

ulars of the competitive exclusion model, as it was developed in SPY. The SPY code for the

competitive exclusion model is listed in Figure 6.2 - Figure 6.4.

Figure 6.2 shows the use of the Choice function. This function is the main interface

between the model and the learner. The Choice function maintains a cache of all the values

it has returned during an iteration, and these values are what the learner takes as training data.

At the start of each run through the model, the function picks a new value and always returns

the same value until the start of another run. Currently SPY interacts with its learner best

if the values remembered by the Choice function are all [0 − 1], hence the five functions

after the Choice functions in Figure 6.2 rescale the numbers [0 − 1] to [0 − 15]. This range

was chosen to include the values that would lead to our desired behavior, [0 − 1], as well as

many values that wouldn’t. The initial populations are chosen from [.04 − 2.04]. Zero was

disallowed because (0, 0) is a trivial stable state in the model.

Figure 6.3 shows the model appropriately formulated in the SPY language. The change

in the current populations of the two species is calculated and returned to the main model

executing code. Notice that the two functions call the functions described in Figure 6.2.

Figure 6.4 shows the main control loop for the competitive exclusion model. It first sets the

values that will be used for the current simulation, lines 2-4. Then it initializes the populations,

line 6. Lines 8, 9, and 12 write some useful information to disk. Lines 15 and 16 call the two

functions that comprise this model, shown in Figure 6.3. Lines 17 and 18 adjust the current
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1 Choice(a1SpyVal,=,n){
return linear(a1SpyVal_min,a1SpyVal_max,n); }

Choice(k1SpyVal,=,n) {
return linear(k1SpyVal_min, k1SpyVal_max,n); }

5 Choice(k2SpyVal,=,n) {
return linear(k2SpyVal_min, k2SpyVal_max,n); }

Choice(alphaSpyVal,=,n){
return linear(alphaSpyVal_min,alphaSpyVal_max,n); }

Choice(betaSpyVal,=,n) {
10 return linear(betaSpyVal_min,betaSpyVal_max,n); }

function rho( tmp) {
tmp = a1SpyVal();
#split 0-1 in half and then rescale

15 if(tmp>.5) return 28*tmp-13;
else return tmp*2;

}
function a12( tmp){

tmp = alphaSpyVal();
20 #split 0-1 in half and then rescale to 0-1 and 1-15

if(tmp>.5) return 28*tmp-13;
else return tmp*2;

}
function a21( tmp) {

25 tmp = betaSpyVal();
#split 0-1 in half and then rescale to 0-1 and 1-15
if(tmp>.5) return 28*tmp-13;
else return tmp*2;

}
30 # don’t allow initial populations of zero

function X0() {
return (k1SpyVal()+.02)*2;

}
function Y0() {

35 return (k2SpyVal()+.02)*2;
}

Figure 6.2: Picking model variables in the competitive exclusion model
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1 # Model:
# dx/dt = x * (1 - x - a12*y)
# dy/dt = rho*y * (1 - y - a21*x)

4
function dx(x,y) {

return x*(1-x-a12()*y);
}

8 function dy(x,y) {
return rho()*y*(1-y-a21()*x);

}

Figure 6.3: Competitive exclusion model, adapted from [104]

1 function main(warmup, n,delx,dely,xt,yt) {
a1SpyVal(n);
k1SpyVal(n);k2SpyVal(n);

4 alphaSpyVal(n);betaSpyVal(n);

xt=X0();yt=Y0();
REDO=0

8 if (!warmup) {print "# new experiment" >> "points.dat";
print count++ " " a12() " " a21() >> "parameters.dat";}

do {
REDO++;

12 if (!warmup) print xt " " yt " " sumworth >> "points.dat";

# calculate change to populations
delx = dx(xt,yt)/UNITSTEP;

16 dely = dy(xt,yt)/UNITSTEP;
xt += delx;xt=(xt<SMALL?0:xt);
yt += dely;yt=(yt<SMALL?0:yt);
totalChange = (abs(delx)<SMALL?0:delx) + (abs(dely)<SMALL?0:dely);

20 } while (totalChange != 0 || REDO<10)
return ((xt>.SMALL?1:0)+(yt>.SMALL?1:0));

}

Figure 6.4: Model execution code in the competitive exclusion model
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sizes of the two species. Lines 19 and 20 ensure that model runs for at least REDO time

steps, but then stops when the populations approach a steady state. Finally line 21 is the

worth function, which will be described below. This function is SPY’s version of the objective

function.

Worth Functions

One practical detail of using SPY that turned out to be more challenging than expected was

how to code the worth function. The worth function is what SPY uses to decide whether an

instance belongs to the preferred class or not, and hence plays the role of the objective func-

tion. Tar4 needs discrete classes, but since tar4 has a built-in discretizer, worth functions can

generate numeric class labels. The worth function then must produce a single numeric value

that describes how close to the preferred class any instance is. The difficulty in formulating

these functions should be familiar to anyone who works at an interface between natural lan-

guages and mathematics. While it may be easy to describe a certain type of behavior in a

natural language, developing a mathematical formulation can be difficult.

Competitive exclusion As mentioned above, in the dynamic population model we were

looking for a single behavior, both species surviving at the equilibrium point. So our worth

function was

worth = (if N1 > 0 then 1 else 0) + (if N2 > 0 then 1 else 0) (6.7)

Note that the analytic analysis in [104] shows if N0
1 > 0 and N0

2 > 0, one species will always

survive. Equation 6.7 therefore will only return 1 or 2.

Animal neurons The worth function used in the animal neuron model depended on which

behavior we wanted SPY to look for.

Phasic spiking A neuron exhibits phasic spiking when its membrane potential (v from

equation 6.5) spikes once and is then quiescent. The model increments the reset counter every
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time the reset condition is reached during each run. The worth function used was

worth = if reset = 1 then 1 else 0 (6.8)

Tonic bursting A neuron exhibits tonic bursting when its membrane potential spikes

in repeated groups, where each group has a very high frequency, but there is a long quiescent

period between each burst. To classify this behavior the time between each reset was recorded.

If the time since the last reset was below a threshold, low, the counter fast was incremented.

If the time since the last reset was above a higher threshold, high, (some times were therefore

ignored completely), the counter slow was incremented. Finally at the end of the run the

following worth function was used

worth = if (fast > 10 and slow > 2) then 1 else 0 (6.9)

The small number of slow resets delineated the groups, while the large number of fast resets

ensured that each group had several resets.

Phasic bursting Phasic bursting is similar to tonic bursting, except there is only a single

group of high frequency spikes. Using the same counters as in the tonic bursting case, the

worth function was

worth =

if (fast > 4 and slow = 0 and last spike > high) then 1 else 0 (6.10)

where last spike was the time since the last reset when the simulation ended. This worth

function was particularly hard to develop. Recall that the definition of slow was based on the

time between two resets. With phasic bursting the quiescent period should last until the end of

the simulation, so there would be no reset to cause the slow counter to be incremented. This

last detail was difficult to formulate.
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name lower bounds upper bounds speed
a12 0.0(10) 0.2(6), 0.6(2), 0.8(2) 1.8
a21 0.0(10) 0.2(3), 0.3, 0.4(4), 0.8(2) 1.2

Table 6.1: Relevant parameters in competitive exclusion model

name lower bounds upper bounds speed
ρ 0.0(10) 15.0(10) 1.0
u0

1 0.04(10) 2.04(10) 1.0
u0

2 0.04(10) 2.04(10) 1.0

Table 6.2: Irrelevant parameters in competitive exclusion model

6.1.5 Experimental Results

Competitive Exclusion

We ran 10 repeats with each repeat lasting 10 iterations. Each iteration used only 100 in-

stances. The results of these experiments are summarized in Table 6.1 and Table 6.2. Table 6.1

shows the bounds that SPY found on the parameters that our analytic analysis showed were

relevant (a12 and a21). Table 6.2 shows the bounds found on the irrelevant parameters (ρ, u0
1,

and u0
2). If there is a number in parentheses after the bound, it indicates the number of times

that particular bound was found. The final column shows the average number of iterations

before SPY stopped adjusting the bounds on a particular parameter (lower or upper). The

original bounds on a12, a21 and ρ were [0, 15], while the original bounds on u0
1 and u0

2 were

[0.04, 2.04] (0 could not be allowed because (0, 0) is a trivial stable state).

Table 6.1 shows that SPY was successful in finding ranges that restrict the model to our

desired behavior. Every repeat found restrictions that would always lead to our preferred

behavior (both species surviving in the stable state). The speed to convergence was also very

fast. It took SPY only slightly more than 1 iteration to settle on the range restrictions for a21

and just under 2 iterations for a12. Analytically there is no difference between the influence of

a12 and a21, so we suspect the difference in the speed of convergence for the two parameters is

an artifact of the way SPY utilizes the treatments returned by tar4 or an artifact of the random

search. We can’t call this experiment a complete success though, because the range restrictions

were, for the most part, too restrictive. That is, the ranges SPY suggested eliminated a large

part of the parameter space that would lead to the preferred class.
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parameter lower bound upper bound
a 0 .1
b 0 1
c -80 -40
d 0 10

Table 6.3: Original bounds on parameters for animal neuron model

Table 6.2 shows that SPY was completely successful in ignoring irrelevant parameters. Of

the six irrelevant bounds SPY could have adjusted, not a single one in ten trials was moved by

SPY.

Animal Neurons

In this section we will discuss the results of the experiments with the animal neuron model.

All experiments were run for 10 iterations, with 10 repeats for each behavior. For this set of

experiments a much larger batch size, 400, was needed to allow SPY to converge to reasonable

answers.

There is a pair of figures for each behavior. The first figure shows the average worth at the

end of each iteration for the ten iterations ran during the search for all repeats that had a final

average worth above .3 (in practice all repeats either had a final average worth close to 1 or

close to 0). (Recall a worth of 0 means that the behavior was not observed and a worth of 1

means that the behavior was observed.) The second figure shows the range restrictions that

SPY found by the last iteration for all repeats that had a final average worth above .3. Going

from left to right, the four columns represent the four independent variables in our model,

a, b, c and d. Going from the bottom to the top, the different rows represent the different

successful repeats. The top row shows the original bounds on the independent variables. This

makes it easy to see how much SPY restricted the range for each variable. The original bounds

of the variables are given in Table 6.3. The same original bounds were used for all behaviors.

These bounds were set after reviewing all the values used in [66] for the 20 different behaviors

demonstrated. The parameter settings used in [66] and [65] for the different behaviors we are

interested in are listed in Table 6.4.

97



6.1. Using ITL in Biomathematical Models

parameter name
behavior a b c d
phasic spiking .02 .25 -65 6
tonic bursting .02 .20 -50 2
phasic bursting .02 .25 -55 .05

Table 6.4: Published parameter settings [66]

Phasic spiking Only four of the ten repeats found range restrictions that exhibited phasic

spiking. The speed of convergence, when the search was successful, was moderately fast.

Figure 6.5 shows that for the four successful searches, convergence happened after 6-8 itera-

tions. A few qualitative statements can be made about Figure 6.6, which shows the final range

restrictions found by SPY. The value of the b parameter seems critical, because all successful

repeats found the same narrow range. The values of the c and d parameters seem less critical,

as a wide range (covering almost the entire range in the case of parameter d) of range restric-

tions was successful. It is harder to say something about parameter a. All successful repeats

found very restrictive bounds for a, but the bounds found do not coincide. There may be a

dependence between a, c, and d that SPY is finding, but this is only a conjecture.

Figure 6.5: Average worth for 10 repeated trials, trying to find phasic spiking

98



6.1. Using ITL in Biomathematical Models

Figure 6.6: Final bounds for all successful repeats, trying to find phasic spiking
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Figure 6.7: Average worth for 10 repeated trials, trying to find tonic bursting

Tonic bursting SPY was more successful at finding range restrictions that exhibited tonic

bursting. Eight of the ten repeats ended with an average worth very close to 1. The speed of

convergence was also faster while trying to find tonic bursting. It ranged from only 2 iterations

to 5 iterations, as seen in Figure 6.7. The larger number of successful repeats makes it easier to

make qualitative statements about the range restrictions found, which are shown in Figure 6.8.

First, we see something that was not observed with phasic spiking: some of the bounds were

not changed at all by SPY. For instance, many of the successful repeats never lowered the

upper bound on the d parameter. The same is true of the lower bound on the c parameter

and the upper bound on the b parameter. As with phasic spiking, the d parameter has wide

range restrictions, covering slightly more than half the original range. Tonic bursting is also

less sensitive to the b parameter than phasic spiking. The noncoincidence of the found range

restrictions on the a and b parameters again might be evidence of some dependence between

the parameters.
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Figure 6.8: Final bounds for all successful repeats, trying to find tonic bursting
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Phasic bursting SPY was more successful at finding good range restriction for phasic burst-

ing than it was at finding phasic spiking, although not as successful as with tonic bursting. Six

of the ten repeats ended with an average worth close to 1. The speed of convergence was

slightly slower than the speed for tonic bursting, 3-4 iterations, with one outlier needing 8

iterations, as can be seen in Figure 6.9. Phasic bursting appears to be very sensitive to the a

parameter, with all successful repeats finding the same narrow range, see Figure 6.10. The

other three parameters show a wide range of bounds, although it is difficult to say anything

specific, other than to note that the 2ndsuccessful trial has the highest bounds on the parameters

b, c, and d.

Figure 6.9: Average worth for 10 repeated trials, trying to find phasic bursting

6.2 Conclusions from Biomathematical Models

Recall that in §2.3.1 we discussed the desirability of using a continuous objective function.

The work presented in this section violates that advice. In other words, if an instance was

close to, but not in, a portion of the parameter space that had a positive worth value, the

objective function would return 0 for that instance. In the work presented in chapter 4 we had

a continuous objective function, but this was our first experience trying to optimize what was

essentially a boolean function. We believe this is a general problem when trying to identify

types of behaviors when there is no concept of being “close to” the desired behavior.

This discontinuity of the objective function causes what should be a heuristically driven
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Figure 6.10: Final bounds for all successful repeats, trying to find phasic bursting

Figure 6.11: Example of discontinuous functions

search to degrade to a purely random search. If the objective function is discontinuous, then,

during the first few iterations, SPY won’t be able to find treatments that restrict future iterations

to portions of the input space that have promising values. In addition, the more discontinuous

the objective, i. e. the smaller the region with a high objective evaluations, the harder it will be

for SPY (or any other stochastic search method) to find these promising regions. This can be

seen in Figure 6.11. All three lines are discontinuous, but the likelihood of finding the optimal

solution in the impossible line is so much smaller than the likelihood of finding the optimal

solution in the easy line, that no heuristic could outperform a purely random search.

In some problem domains the objective function can be made more continuous through

domain specific knowledge. In §2.3.2 we saw how some researchers trying to automatically
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generate test cases modified the objective function through symbolic analysis of the source

code being tested. This particular technique might be adapted to the experiments presented

in this chapter by including the value of some the intermediate variables used in the objective

function (§6.1.4) as part of the value returned by the objective function. For example, the

original objective function for tonic bursting was

worth = if (fast > 10 and slow > 2) then 1 else 0

perhaps this could be modified to

if (fast > 10 and slow > 2) then
return 1

else
return -(|10− fast| + |2− slow|)

end if

This function would return 1 when tonic bursting was present. But when tonic bursting wasn’t

present it would return a negative number, whose value approaches zero as the intermediate

values used by the objective function, fast and slow, approach the values that indicate the

presence of tonic bursting. This type of modification might not work because we can not

be sure that small changes in the value of the independent variables will only cause small

effects on the intermediate values used in the new proposed objective function, i. e. we can

not be sure that the values of fast and slow are approximately continuous in the independent

variables. Experimentation with objective functions of this type would reveal how useful this

modification is. Of course it is possible that this will be a domain specific feature: some

intermediate values may be approximately continuous and some not depending on the model

being analyzed.

Regardless of the continuousness of the objective function, the search bias of SPY’s un-

derlying learner, tar4, can lead to over-restrictive bounds, of the type we saw in §6.1.5. To

see why imagine that the true bound for some parameter q is (x, y). If the largest value for q

sampled that exhibited the desired behavior was r (r < y) and the smallest value that didn’t

exhibit the desired behavior was s (s > y), no learner could reliably say anything about the

range (r, s) (particularly if the objective function is undifferentiable). Because tar4 favors
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true-positives over true-negatives, it will always pick a range with an upper bound of r. Then

in future iterations the range (r, y) will never be sampled from, and the upper bound will have

no chance to increase to y. This problem is similar to, but distinct from, getting trapped in a

local optimum. While both may be solved by randomly sampling outside the current range

restrictions, reporting overly restrictive bounds to the analyst that still constrain the model to

optimal behavior modes is not the same as reporting bounds to the analyst that constrain the

behavior of the model to sub-optimal modes. This problem in particular should be the focus

of our future work.
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CHAPTER 7
CONCLUSIONS

This thesis addresses the question of whether ITL can be successfully used as a metaheuris-

tic search technique for model-based development. To address this question we investigated

models from two stages of the software life cycle. Chapter 4 experimented with requirements

models, often used in the earlier life stages of the software life cycle. Chapter 5 experimented

with digital logic circuit models, often used during the testing stage, i. e. late stage, of the soft-

ware life cycle. This chapter we will discuss conclusions from our work with requirements

models, §7.1, and conclusions from our work with the SPY framework, §7.2.

7.1 Conclusion from Early Life Cycle Models

We did a comprehensive study of three requirements models to investigate some preference

characteristics of ITL and our new discretization method, extreme sampling. We found

• repeated success with holo model and extended success to aero and cob models

• bore is currently the best version of extreme sampling

• larger batch sizes, up to 500, increase performance on requirements models

• the good/bad ratio should be in the range 15% to 25%, or possibly higher

• bore has high stability and low variance

• bore clearly outperforms diagonal striping on

– solution quality
– speed of convergence

• bore outperforms simulated annealing on speed of convergence, while finding similar
quality solutions
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7.2 Conclusions from Late Life Cycle Models

We used five models written in the SPY language, two by hand and three translated from

Simulink, to investigate the capabilities of the SPY framework. We found that

• SPY could find property violations in temporal models with real-valued inputs

• SPY is able to find range restrictions that constrain model behavior

– SPY found these restrictions quickly, often only 2-5 iterations
– SPY could tell the difference between relevant and irrelevant parameters

• the search bias of the underlying learner can lead to over restrictive bounds

• discrete worth functions reduce learning efficiency. Worth may need to

– be augmented with additional heuristics, like path coverage
– include hints as to how close intermediate variables were to correct values

• translation framework preserves model semantics

The availability of analytic techniques for one of our models allows us to say conclusively

that SPY may find overly restrictive bounds on input variables, but that the bounds were always

correct. While this is a result of the search bias of the underlying learner (maximizing true

positives without penalizing false negatives), an improved search strategy in SPY may correct

this.

The discrete nature of behavior mode identification caused significant problems in one of

our models. Optimizing low cardinality discrete functions, particularly boolean functions, will

be a problem for any stochastic search. Addressing this problem will involve new methodolo-

gies for developing objective functions, rather than a change to the search strategy.

The only area where domain knowledge or apriori mathematical knowledge was needed

was in picking the original bounds on the parameters.
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CHAPTER 8
FUTURE WORK

In the future we would like to see more acceptance of ITL as a general metaheuristic search

technique as well as see its use in model-based software development. For ITL to become a

well respected techniques, such as those described in §2.2 and §2.3, the following research

would have to be completed

1. ITL should be applied to instructive toy problems

2. ITL should be used to solve other software engineering problems

3. the conjecture that ITL’s use of partial solutions prevents it from getting stuck in local
optima should be verified

4. a more rigorous study of alternative search strategies for ITL should be conducted

5. a downloadable, ready-to-use implementation of ITL should be made available to the
public

6. methodologies for dealing with low-cardinality discrete functions should be investigated

7. different automatic stopping conditions could be investigated

The list’s length reflects the short time that has elapsed since ITL was developed and the even

shorter time that ITL has been considered a metaheuristic search technique, rather than any

intrinsic difficulty foreseen in completing the proposed work.

Toy problems New techniques are often applied to simple problems when first introduced.

This thesis introduced ITL as a metaheuristic search technique, but skipped the step of proving

ITL could be effective on simple problems. For example, ITL could be used to find satisfying

assignments for propositional logic statements, e. g. in LSAT problems, to find maxima in

piecewise-linear functions, or to find function approximators.

108



Other software engineering problems As shown in §2.3, metaheuristic search techniques

have been applied to numerous problem domains in software engineering. It would bolster

the case for ITL if it was used to solve problems in domains other than requirements analysis,

chapter 4, and model property verification, chapter 5.

ITL robustness in the face of local optima It was conjectured in chapter 3 that the use

of partial solutions makes ITL unlikely to get stuck in local optima. This claim should be

investigated, most likely through the use of toy problems have have a variable amount of

deceptiveness. This question has great bearing on the issue of search strategy. If ITL is cur-

rently, as conjectured, robust in the presence of numerous local optima, then improvements

to the search strategy would not have to be tailored to this problem. If, however, this conjec-

ture turns out to be incorrect, then new search strategies specifically designed to combat the

presence of local optima need to be developed.

Improved search strategy As discussed in chapter 3, ITL currently uses a simple greedy

forward select without any backtracking. Investigation into more sophisticated strategies

should be done. There are at least two features that the search strategy could use. First,

the search should be able to proceed backwards as well as forwards, i. e. ITL should be able to

retract some of the previous treatments according to some rule. Second, the search should have

some parameter that controls the amount of exploration and exploitation done. This could be

set by the user at the start of the search or could be dynamically adjusted during the search.

Another feature that might prove useful is allowing ITL to maintain multiple partial de-

scriptions so that multiple hyper-rectangles be searched each iteration. This is shown in

Figure 8.1. While some attempt was made to conduct this type of search, as described

in §3.1.5, that search strategy did not maintain multiple hyper-rectangles. While searching

points that passed any treatment found during each iteration, ITL did not keep track of which

treatments were actually responsible for increasing the objective score. Searching only one

hyper-rectangle makes the assumption that there are not multiple locations in the input space

that have equal quality near-optimal solutions. A traditional metaheuristic search technique

would not necessarily try to capture multiple near-optimal solutions, even if they were of the

same quality, since the user only wants a single high-quality solution. But ITL, particular

when viewed as a model controller, attempts to restrict output behavior, so if a model exhibits
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first iteration
second iteration

third iteration
fourth iteration

first iteration
second iteration

third iteration

single hyper-rectangle multiple hyper-rectangles

Figure 8.1: Restricting search to a single vs. multiple hyper-rectangles

highly desirable behavior in more than one location in the input space, ITL should try to find

all such locations to provide the user with a more flexible set of advice.

Public availability Our current implementation of ITL1 grew out of a GUI developed for

instructional purposes. While adherence to OO design principles has made extension of the

code base possible, it is probably time for the prototype to be thrown away now that we have

gained valuable insight into what works and what needs to be tried. This next version of the

code should be as portable and ready to use as the GA package gac2 or the machine learning

weka package3. In particular, the code should be developed with the possibility of replacing

certain parts of the algorithm easily; for instance, we have already mentioned that the search

strategy might need improvement. This code also needs to have a publicly accessible location

so that other researchers can access it without needing to get in contact with its developers.

New methodologies for objective function development The difficulties we saw ITL have

with the models in chapter 6 might be solved with improved methodologies for developing ob-

jective functions. While objective function development will always require a certain amount

of domain-specific knowledge, it is possible that certain methodologies tailored for use with

ITL can be found that offer general guidance to analysts faced with discrete objective func-

tions.
1Internally called surfer.
2Found at http://www.cs.uwyo.edu/˜wspears/freeware.html.
3Found at http://www.cs.waikato.ac.nz/ml/weka/.
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Automatic stopping conditions All the studies in this thesis ran the ITL search for a fixed

number of iterations, i. e. a fixed search depth. The size of partial descriptions that will be use-

ful is a domain specific feature. Different models with input spaces with different cardinalities

will require different sized partial descriptions to constrain output behavior. So that users of

ITL do not have to experiment with different search depths to determine the size of useful par-

tial descriptions, different automatic stopping conditions should be developed. These stopping

conditions might be based on the average values of the partial descriptions or the variance of

the partial descriptions.
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APPENDIX A
EXTREME SAMPLING RESULTS

In chapter 4 we presented the results of our experimentation with extreme sampling. For space

reasons not all the results were presented. This appendix contains all the data analyzed from

that experimentation.

A.1 Results of Solution Quality

§4.2 displayed only the median delta comparisons This section displays the 1st, 2nd, and

3rdquartiles for the delta comparisons.
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Figure A.1: The effects of batch size, M , versus search depth
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Figure A.2: The effects of batch size, M , versus objective function evaluations

1stquartile 2ndquartile 3rdquartile

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

10853

re
la

tiv
e 

de
lta

search depth

median delta

N=25
N=50
N=75

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

10853

re
la

tiv
e 

de
lta

search depth

median delta

 0

 0.05

 0.1

 0.15

 0.2

 0.25

10853

re
la

tiv
e 

de
lta

search depth

median delta

Figure A.3: The effects of the good/bad ratio, N
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Figure A.4: The effects of the M/N combinations, versus search depth
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Figure A.5: The effects of the M/N combinations, versus objective function evaluations
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Figure A.6: The effects of the selector
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A.2. Stability of Repeated Trials

A.2 Stability of Repeated Trials

§4.3 did not display the stability results from all selectors and all M/N combinations. This

section displays the search trajectories for all 720 trials described in §4.2.
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Figure A.7: Cost vs. Benefit in the aero model with the bore selector
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A.2. Stability of Repeated Trials

Figure A.8: Cost vs. Benefit in the aero model with the bore′ selector

118



A.2. Stability of Repeated Trials

Figure A.9: Cost vs. Benefit in the aero model with the wob selector
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A.2. Stability of Repeated Trials

Figure A.10: Cost vs. Benefit in the holo model with the bore selector
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A.2. Stability of Repeated Trials

Figure A.11: Cost vs. Benefit in the holo model with the bore′ selector
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A.2. Stability of Repeated Trials

Figure A.12: Cost vs. Benefit in the holo model with the wob selector
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A.2. Stability of Repeated Trials

Figure A.13: Cost vs. Benefit in the cob model with the bore selector
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A.2. Stability of Repeated Trials

Figure A.14: Cost vs. Benefit in the cob model with the bore′ selector
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A.2. Stability of Repeated Trials

Figure A.15: Cost vs. Benefit in the cob model with the wob selector
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A.3. Variance of Partial Descriptions

A.3 Variance of Partial Descriptions

§4.4 did not display the varience results from all selectors and all M/N combinations. This

section displays the standard deviations for all 720 trials described in §4.2.
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Figure A.16: Cost and Benefit in the aero model with the bore selector
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A.3. Variance of Partial Descriptions

Figure A.17: Cost and Benefit in the aero model with the bore′ selector
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A.3. Variance of Partial Descriptions

Figure A.18: Cost and Benefit in the aero model with the wob selector
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A.3. Variance of Partial Descriptions

Figure A.19: Cost and Benefit in the holo model with the bore selector
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A.3. Variance of Partial Descriptions

Figure A.20: Cost and Benefit in the holo model with the bore′ selector
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A.3. Variance of Partial Descriptions

Figure A.21: Cost and Benefit in the holo model with the wob selector
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A.3. Variance of Partial Descriptions

Figure A.22: Cost and Benefit in the cob model with the bore selector
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A.3. Variance of Partial Descriptions

Figure A.23: Cost and Benefit in the cob model with the bore′ selector
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A.3. Variance of Partial Descriptions

Figure A.24: Cost and Benefit in the cob model with the wob selector
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