
ABSTRACT

An abstract of the thesis of Jeremy Greenwald for the Master of Science in Computer

Science presented February 15, 2007

Title: A Novel Metaheuristic Search Technique: Iterative Treatment Learning

Increasingly modeling is being used in all the software life cycle stages studied

in the field of software engineering. By using models from two such stages, the re-

quirements stage and the testing stage, we show that our machine learning based meta-

heuristic search technique can be used to optimize these models. This technique is

called Iterative Treatment Learning, ITL. We apply ITL to three NASA cost/benefit

models used during the requirements stage and two biomathemitical and three NASA

flight models used during the testing stage. These last five models are investigated us-

ing an integrated development and testing framework, SPY, that has built-in ITL search

capabilities.

These studies improve upon previous work done with ITL by Menzies et. al. by

1) discussing ITL’s characteristics in metaheuristic search terminology 2) increasing

the number and complexity of the models studied 3) exploring the option space of

ITL, including a new discretizer and 4) investigating the stability and variance of ITL’s

solutions.

With the cost/benefit models we show how our new method for discretizing the

model’s dependent variables 1) outperforms the previous discretizing method, both on

solution quality and convergence speed and 2) outperforms a simulated annealer, a

commonly used metaheuristic search technique, on convergence speed while finding

the same quality solutions. With the biomathematical models we show that SPY can

find potentially useful range restrictions to model inputs that restrict the model’s output

to specified behavior modes. Finally, with the NASA flight models we show that SPY

can verify temporal properties in models with real valued inputs, comparing SPY’s

performance to a commercially available tool, Reactis, that uses a random and heuristic

search strategy.

2

A NOVEL METAHEURISTIC SEARCH TECHNIQUE: ITERATIVE

TREATMENT LEARNING

by

JEREMY GREENWALD

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
2007

I dedicate this thesis to my mother and father, and all my teachers who

took the time to explain ideas.

ACKNOWLEDGMENTS

I would like to acknowledge the two people who most contributed to my development

as a scientist. Dr. Steven Dytman from the University of Pittsburgh, my adviser for

four years and Dr. Tim Menzies without whom this thesis would never exist.

Of course there are numerous other people who, through their friendship and un-

derstanding, helped make this work possible, but there isn’t space to enumerate them

all. They know who they are and I thank them.

iii

CONTENTS

Acknowledgments iii

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Search Based Software Engineering 1

1.2 Model Based Development . 4

1.3 Metaheuristics . 6

1.4 Machine Learning as a Search Heuristic 7

1.5 Machine Learning . 8

1.6 Problem Statement . 9

1.6.1 Rethinking ITL as metaheuristic search 9

1.6.2 Improved methodology demonstrating ITL’s ability to opti-

mize early stage models in requirements engineering 9

1.6.3 Can SPY be used in late stage life cycles? 10

iv

1.7 Previous Work on Problem Statement 10

1.8 Contribution . 11

2 Literature Review 13

2.1 Machine Learning Techniques . 14

2.1.1 Introduction and Terminology 14

2.1.2 Decision Tree Learning . 16

2.1.3 Naı̈ve Bayes . 19

2.1.4 Contrast Set Learning . 23

2.1.5 Treatment Learners . 27

2.2 Metaheuristic Search . 32

2.2.1 Introduction and Terminology 32

2.2.2 Gradient Based Techniques 35

2.2.3 Evolutionary Algorithms . 38

2.2.4 Tabu Search . 43

2.3 Search Based Software Engineering 44

2.3.1 Rethinking Software Engineering as Numeric Optimization . 45

2.3.2 Testing . 50

2.3.3 Cost Estimation . 53

2.3.4 Requirements Engineering 57

v

3 Elements of Iterative Treatment Learning 61

3.1 ITL as Search Technique . 61

3.1.1 Search Components . 61

3.1.2 Solution Form . 63

3.1.3 ITL’s Metaheuristic Search Characteristics 65

3.1.4 Extreme Sampling . 67

3.1.5 Search Strategy . 70

3.2 ITL in Model Based Development 74

3.2.1 Searching Through Models 75

3.2.2 ITL as Model Controller . 76

3.2.3 Models . 77

4 Requirements Engineering 79

4.1 Defect Detection and Prevention . 79

4.2 Investigating Different Extreme Sampling Policies 83

4.2.1 Comparison Methodology 84

4.2.2 Experimental Effects of M 86

4.2.3 Experimental Effects of N 88

4.2.4 Experimental Effects of M/N Combinations 89

4.2.5 Experimental Effects of Selector 91

vi

4.3 Stability of Repeated Trials . 93

4.3.1 aero . 94

4.3.2 holo . 96

4.3.3 cob . 97

4.4 Variance of Partial Descriptions . 99

4.4.1 aero . 99

4.4.2 holo . 101

4.4.3 cob . 102

4.5 Extreme Sampling Performance Compared to Diagonal Striping . . . 104

4.6 Extreme Sampling Performance Compared to Simulated Annealing . 106

4.7 Conclusions from the DDP Studies 109

5 Model Property Checking 112

5.1 SPY . 114

5.2 Using SPY on NASA Flight Models 116

5.2.1 Models Under Consideration 117

5.2.2 Experimental Goals . 121

5.2.3 Experimental Results . 127

5.3 Conclusions from NASA Flight Models 131

vii

6 Validating SPY on Biomathematical Models 134

6.1 Using ITL in Biomathematical Models 134

6.1.1 Models Under Consideration 135

6.1.2 Previous Analytic Work with Models 138

6.1.3 Experimental Goals . 139

6.1.4 Methodology . 141

6.1.5 Experimental Results . 147

6.2 Conclusions from Biomathematical Models 155

7 Conclusions 159

7.1 Conclusion from Early Life Cycle Models 159

7.2 Conclusions from Late Life Cycle Models 160

8 Future Work 162

References 167

A Extreme Sampling Results 191

A.1 Results of Solution Quality . 191

A.2 Stability of Repeated Trials . 195

A.3 Variance of Partial Descriptions . 205

viii

LIST OF TABLES

2.1 Example rules learner by STUCCO from Adult Census data 25

3.1 Complete description for a hypothetical scheduling problem 63

3.2 Partial description for a hypothetical scheduling problem 64

4.1 Normalized benefit/cost ratios in bore and diagonal striping 106

4.2 Normalized benefit/cost ratios in bore and SA 109

5.1 Sensor Voting property check results 128

5.2 FGS property check results . 130

5.3 ASW property check results . 130

6.1 Relevant parameters in competitive exclusion model 148

6.2 Irrelevant parameters in competitive exclusion model 148

6.3 Original bounds on parameters for animal neuron model 149

6.4 Published parameter settings [66] . 150

ix

LIST OF FIGURES

2.1 Pseudocode for classifying new instances with a decision tree 16

2.2 Example decision tree . 17

2.3 Decision tree generated by J4.8 training on the Boston housing data . 18

2.4 Naı̈ve Bayes training data . 21

2.5 Frequency table, P (Ei|Hj) . 21

2.6 STUCCO algorithm . 24

2.7 Treatment generated by tar3 on the Boston housing data 29

2.8 Metaheuristic pseudocode . 33

2.9 Typical simulated annealer . 37

2.10 Example of a point mutation [115] 41

2.11 Example of a one-point crossover event [115] 41

2.12 Example of crossover event in genetic programming [115] 42

3.1 Diagrammatic view of ITL . 62

3.2 Search space sampling . 67

3.3 Diagonal striping . 68

x

3.4 Extreme sampling . 69

3.5 Three selectors developed . 70

3.6 Maintaining multiple lists of treatments 72

3.7 A qualitative network . 73

3.8 Different views of ITL’s search . 74

3.9 Diagrammatic view of ITL as a model controller 77

4.1 Effects of batch size, M , versus search depth 87

4.2 Effects of batch size, M , versus objective function evaluations 88

4.3 Effects of good/bad ratio, N . 89

4.4 Effects of M/N combinations, versus search depth 90

4.5 Effects of M/N combinations, versus objective function evaluations . 91

4.6 Effects of selector . 92

4.7 Stability of cost and benefit in the aero model with the bore selector . 95

4.8 Stability of cost and benefit in the aero model with the wob selector . 96

4.9 Stability of cost and benefit in the holo model with the bore selector . 97

4.10 Stability of cost and benefit in the cob model with the bore selector . . 98

4.11 Cost and Benefit in the aero model with M/N values set to 500/75 . . 100

4.12 Cost and Benefit in the holo model with the bore selector 102

4.13 Cost and Benefit in the cob model with M/N values set to 500/75 . . 103

xi

4.14 Diagonal striping and bore . 104

4.15 Comparison of bore to diagonal striping 105

4.16 Comparison of bore to SA . 108

6.1 Behavior modes of animal neuron 140

6.2 Picking model variables in the competitive exclusion model 142

6.3 Competitive exclusion model, adapted from [104] 143

6.4 Model execution code in the competitive exclusion model 143

6.5 Average worth for 10 repeated trials, trying to find phasic spiking . . . 151

6.6 Final bounds for all successful repeats, trying to find phasic spiking . 151

6.7 Average worth for 10 repeated trials, trying to find tonic bursting . . . 153

6.8 Final bounds for all successful repeats, trying to find tonic bursting . . 153

6.9 Average worth for 10 repeated trials, trying to find phasic bursting . . 154

6.10 Final bounds for all successful repeats, trying to find phasic bursting . 155

6.11 Example of discontinuous functions 156

8.1 Restricting search to a single vs. multiple hyper-rectangles 165

xii

CHAPTER 1

INTRODUCTION

Two methodologies that are becoming increasingly popular in software engineering are

model based development and search based software engineering. The work presented

in this thesis attempts to apply search based techniques to model based development.

We apply a new metaheuristic search technique, Iterative Treatment Learning, ITL,

to NASA requirements models and NASA flight models. These two types of models

represent early life cycle stages and late stages, respectively.

1.1 Search Based Software Engineering

Software engineering is concerned with the process of software construction. The

software construction process is commonly decomposed into the following parts: re-

quirements, design, implementation, testing, and maintenance. Software engineering

researchers have produced work on all of the above life stages. The overall goal of this

body of work is to improve the quality of software. This might mean improving cost

estimation for software projects, developing tools that make implementation easier, or

1

1.1. Search Based Software Engineering

automatically generating a suite of test cases that verify requirements.

Compared to the amount of research done in applying metaheuristic search tech-

niques to combinatorial problems and to other engineering fields, the amount of work

done with metaheuristic search in software engineering is quite small. Beginning in the

mid-1990’s some researchers in the software engineering field have argued for the ap-

plication of common metaheuristic search techniques to classical software engineering

problems [32,57,58]. This idea is accepted by this thesis as an important breakthrough

in problem formulation for the field of software engineering. It is also beginning to be

accepted by the software engineering field. For example, in a review completed in

2004 Rela [114] found at least 123 publications in the field of search-based software

engineering that used evolutionary algorithms (evolutionary algorithms will be dis-

cussed in §2.2). Of the 123 publications 44% (54) were related to testing, while only

7% (8) were related to early project planning. In §2.3 we discuss these two topics, be-

cause much of the work presented in this thesis deals with early project planning, such

as requirements engineering (chapter 4), and testing using model based verification

(chapter 5).

The first step towards the application of metaheuristic search techniques to soft-

ware engineering problems is the realization that many of these problems are already

2

1.1. Search Based Software Engineering

or could easily become a type of optimization problem. All that is needed is to re-

formulate the goal of the research as an objective function1. The objective function is

a function that evaluates the desirability of a given candidate solution. This function

can evaluate any property of the solution that the practitioner wishes to use, as long as

the output is numeric. For example, the objective function could be path coverage or

estimated project cost. Besides development of an objective function, a manipulatable

language, as well as the operators that manipulate that language, need to be developed.

A more complete discussion of these steps can be found in §2.3.1.

Once an objective function is formulated, a software engineering researcher does

not have to develop their own optimization technique. Rather, researchers can bor-

row techniques developed for other problems that can be easily adapted to their own

problem domain. While current research on metaheuristic search techniques may fo-

cus on complex issues such as robustness to noise, local optimum escaping, or hybrid

approaches, software engineering researchers can use simple versions of many meta-

heuristic search techniques that have be shown to be effective, despite their simplicity.

In fact, for some languages and platforms, all the researcher has to do is develop their

objective function in a particular language and use a framework already developed2.

1Sometimes called a cost, fitness, or worth function in the literature
2For example, see http://www.cs.uwyo.edu/˜wspears/freeware.html for William

Spears’s C implementation of a genetic algorithm

3

1.2. Model Based Development

This change in approach will facilitate the the adding of metaheuristic search tech-

niques to the toolbox of all software engineering researchers.

1.2 Model Based Development

Software engineers build models at every phase of the life cycle. Some are paper-based

and some are executable but all these artifacts are models, which are defined in [88] as

“elements describing something (for example, a system, bank, phone, or

train) built for some purpose that is amenable to a particular form of anal-

ysis, such as communication of ideas between people and machines; com-

pleteness checking; test case generation; etc.”

The benefits of modeling include increasing productivity and reduced time-to-market

for software products [119] and the imposition of “structure and common vocabularies

so that artifacts are useful for their main purpose in their particular stage in the life

cycle” [53]. The current ubiquity of the term model-driven software engineering is

both a recognition of these benefits and an appreciation of the reality that we are not

using these models as effectively as we may hope.

Model based software engineering has been put into practice by many groups. The

Object Management Group [108], Microsoft [52], and Lockhead Martin [130], have

4

1.2. Model Based Development

all adopted model based development as part of their software engineering process.

And just as their are search based tools available to researchers, tools to support model

based development have been developed. These include tools for distributed agent-

based simulations [28], discrete-event simulation [59, 75, 80], continuous simulation

(also called system dynamics) [1, 123], state-based simulation [5, 56, 83], and rule-

based simulations [98]. One can find models used in the requirements phase (see

§4.1 for a description of such a tool, DDP), refactoring of designs using patterns [47],

software integration [35], model-based security [71], and performance assessment [9].

Recently, AI has been successful applied to model based software engineering. For

example, Whittle uses deductive learners to generate lower-level UML designs (state

charts) from higher-level constructs (use case diagrams) [138]. More generally, the

field of search based software engineering augments model based development with

metaheuristic techniques, like those discussed in §1.3 and §2.2, to explore a model.

Such heuristic methods are hardly complete but as remarked in [31]: “...software engi-

neers face problems which consist, not in finding the solution, but rather, in engineer-

ing an acceptable or near optimal solution from a large number of alternatives.”

5

1.3. Metaheuristics

1.3 Metaheuristics

Metaheuristic search is the catch-all phrase for a set of high-level heuristics that are

abstract enough to be applied to many different fields. A central idea to all metaheuris-

tic search techniques is that most interesting real-world problems are far too difficult

to solve exactly. Therefore heuristic techniques must be used to find near-optimal

solutions. Since heuristics techniques have no performance or convergence guaran-

tees several different techniques have been developed, so that if a problem defeats one

technique another may be used.

The most commonly used metaheuristic search techniques are simulated annealing,

evolutionary algorithms, and tabu search. These techniques will be discussed in §2.2.

This section will also discuss important ways to characterize metaheuristic techniques,

such as mechanisms for escaping local optima and candidate solution encoding. These

characteristics will be revisited in §3.1.3 to see how they can be applied to our new

metaheuristic search technique, Iterative Treatment Learning. Occasionally we will

review techniques from statistics and linear algebra that are used on some problems,

which will be discussed in §2.3 and as they relate to search based software engineering.

6

1.4. Machine Learning as a Search Heuristic

1.4 Machine Learning as a Search Heuristic

It will be shown in this thesis that a machine learning technique has been successfully

used as search heuristic. The machine learning technique used is treatment learn-

ing [91] and the search technique we call Iterative Treatment Learning (ITL), since the

treatment learner is called in an iterative fashion. ITL has some characteristics that dif-

ferentiate it from other mainstream metaheuristic search techniques. Most metaheuris-

tics’ base heuristic have a statistical or geometric interpretation. The base heuristic for

ITL is treatment learning, which is considered a machine learning algorithm. Another

important difference is that ITL’s near-optimal solution is a partial description rather

than a complete description. The difference between these two types of solutions is

that partial descriptions do not comment on all the available attributes and these com-

ments are not exact value assignments, but are value range assignments (see §3.1.2 for

a more complete discussion of partial descriptions).

Menzies et. al. introduced ITL [89] as an alternative search heuristic in require-

ments engineering. While their work was interesting and novel, the methodology used

to demonstrate the performance of ITL could use much improvement. A single model

was used in their study, they did not explore design options within ITL, and ITL was

not placed in the context of metaheuristic search.

Another version of ITL called SPY has also been introduced by Clarke [29]. SPY

7

1.5. Machine Learning

is an integrated model development and search environment. The search algorithm

used by SPY is an ITL method with a slightly different search strategy and a more

efficient treatment learner. SPY finds range restrictions to the model’s inputs to confine

model output behavior to specified modes. The original use case for SPY was that

these behavior modes would be temporal properties in models with real valued inputs.

In [29] SPY was only applied to a small number of simple models. In addition, there

was no comparative analysis of SPY to benchmark it against other tools or analysis

methods And like the original work on ITL, SPY was not presented in a search context.

SPY will be described in more detail in §5.1.

1.5 Machine Learning

Machine learning is any algorithmic process that generalizes from a specific data set

to a theory that can be applied to new unseen data. One type of machine learner is the

classifier; §2.1 will describe several different classifiers, including treatment learning.

Classifiers build theories that can be used to assign one of the target labels to unseen

examples. Contrast this with the typical use of metaheuristic search techniques. Search

techniques produce near-optimal solutions without attempting to generalize anything

learned during their search. Even when viewing ITL as a search technique, which

seeks a near-optimal solution, its solution is in a form that captures generalizations

8

1.6. Problem Statement

that can be used after the search.

1.6 Problem Statement

Can ITL be used as a search technique for models from different stages of the

software life cycle?

To address that question the following topics will be discussed in the rest of this

thesis.

1.6.1 Rethinking ITL as metaheuristic search

ITL has previously been presented as a machine learning technique. In this thesis we

argue that ITL should be considered a metaheuristic search technique that has novel

characteristics not common in other metaheuristic search techniques.

1.6.2 Improved methodology demonstrating ITL’s ability to optimize early stage

models in requirements engineering

The use of ITL to investigate early project requirements engineering has been limited

to a single model. Other uses of ITL have focused on models with a small number of

independent variables (fewer than 40). This thesis uses three models for early project

9

1.7. Previous Work on Problem Statement

requirements engineering that have 99, 83, and 58 independent variables, respectively.

The new methodology also includes the development of extreme sampling, a new dis-

cretization method for ITL.

1.6.3 Can SPY be used in late stage life cycles?

Previous work with the SPY framework only used toy models which didn’t have any

previous analysis. This thesis uses the SPY framework on models that have been

used elsewhere in the literature, hence a comparison of previous results with results

generated by SPY is possible. We will investigate the use of SPY on real world models

from the aerospace industry and compare the performance of SPY with a commercial

tool. Lastly, we will investigate biomathematical models, using SPY to restrict the

output behavior modes of these models.

1.7 Previous Work on Problem Statement

Treatment learning has been developed and tested extensively by Menzies, Hu, Clarke,

et. al. [62, 92, 93, 124]. The machine learning properties of treatment learning will no

be explored further in this thesis. ITL has been previously developed by Menzies et.

al. [41,94]. That work focused on either models not presented in this thesis or just one

10

1.8. Contribution

of the requirements models, aero, used in chapter 4. In addition, the SPY framework

has developed by Clarke and Menzies [29]. That work focused on the validation of

the SPY framework’s methodology using small toy problems developed for testing

purposes.

1.8 Contribution

This thesis makes the following novel contributions towards addressing the problem

statement

• Presents ITL in a metaheuristic search context.

• Introduces the concept of an extreme sampling discretizer, and develops three
variants of a discretizer.

• Three cost/benefit models, including two not previously analyzed, are used to

– Conduct a study of the effect of parameter settings to extreme sampling’s
performance according to numerous criteria

– Compare performance of ITL with extreme sampling discretizer vs. diago-
nal striping discretizer

– Compare performance of ITL vs. simulated annealer

• A total of five models, from varied domains and with a higher complexity than
models previously studied, are analyzed by SPY to find range restrictions that
restrict the models’ output behavior to specified modes.

11

1.8. Contribution

The rest of this thesis will be structured around these contributions in the following

manner: ITL will be placed in the context of metaheuristic search in §2.2 and chap-

ter 3, extreme sampling and its three variants will be discussed in chapter 3, the three

cost/benefit models will be studied, along with extreme sampling, in chapter 4, and the

five models analyzed by SPY will be spread over chapter 5 and chapter 6.

12

CHAPTER 2

LITERATURE REVIEW

This chapter describes past and related work that has been done to date on topics

discussed later in the thesis. The review will focus on three related topics

• General Machine Learning Techniques (§2.1)

• General Metaheuristic Search (§2.2)

• Search Based Software Engineering (§2.3)

The first 2 sections of this review are meant to give the reader an introduction to com-

mon techniques in machine learning and metaheuristic search. This introduction will

allow the reader to appreciate how treatment learning differs from other machine learn-

ing techniques and how ITL differs from other metaheuristic techniques. These sec-

tions also serve to demonstrate some of the differences and similarities between ma-

chine learning and metaheuristic search. The last section is a more in-depth look at

how metaheuristic search is used in software engineering.

13

2.1. Machine Learning Techniques

2.1 Machine Learning Techniques

Since ITL utilizes a machine learning technique, a treatment learner, this section will

introduce the field of machine learning. First some basic terminology used in the field

will be defined, as well as some common characteristics used to describe different

learners (§2.1.1). Then two popular techniques will be discussed (§2.1.2 and §2.1.3).

These two techniques are described to highlight the differences between the form and

usability of their theories and the form and usability of treatment learners. Before

treatment learners (§2.1.5) are discussed, we discuss contrast set learners (§2.1.4) since

treatment learners are a type of contrast set learner.

2.1.1 Introduction and Terminology

Machine learning deals with algorithmic processes that attempt to generalize knowl-

edge learned form past examples to future, unseen, examples. The past examples

are often called instances, records, or input data. Each record has a number of at-

tributes. These attributes entirely describe the record, i. e. all information presented

to the learner is in the form of attributes. Attributes can be continuous, e. g. the real

numbers 0 to 10, or discrete. Discrete attributes can be ordinal, e. g. the integers 1-10

or categorical, e. g. the primary colors. For many problems there is a special attribute

14

2.1. Machine Learning Techniques

which labels its type. This attribute is called the class or the target class. Not all

problems have a target class. The target class can also be real, ordinal or categorical.

Learners take the input records provided and build a theory that describes what they

learned. The learner is said to train on the input data to produce a theory. When try-

ing to predict continuous classes the theory may be an equation, or a decision tree or

probability table when trying to predict discrete classes. Other types of theories are

possible.

Learners are often classified by what type of inputs they can use and what type of

outputs their theories can predict for. Some learners, e. g. a naı̈ve Bayes learner, (see

§2.1.3) only work with discrete input data and can only predict for a discrete target

class. Any learner can be adapted to handle continuous data by discretizing the data

in a pre-processing step. The performance characteristics of different discretization

methods are an active area of research [38, 97, 141] but a detailed description of these

methods is beyond the scope of this review. Discretization is most commonly used on

the independent attributes, but can be applied to the dependent attributes as well. Our

extreme sampling discretizer, described in §3.1.4, is one that works on the dependent

attributes.

Another way to describe machine learners is whether they are performance or ex-

planatory systems. Performance learners only attempt to maximize their predictive

15

2.1. Machine Learning Techniques

performance according to some criterion, such as accuracy or precision. Explanatory

learners also attempt to maximize their predictive performance, but their theories are

in a form that can offer insight to human users. Naı̈ve Bayes (§2.1.3) are an example

of performance learners, while decision trees (§2.1.2) are an example of explanatory

learners. Treatment learners (§2.1.5) are also explanatory learners.

2.1.2 Decision Tree Learning

Decision tree learning uses the common divide-and-conquer approach. The ID3 de-

cision tree learner [111] is the most common, although other tree learners include

M5 [113] and CART [21]. The modern incarnations of ID3 are C4.5 [112] and J4.81.

A decision tree’s leaves are classification labels and its internal nodes are attribute-

value tests. The pseudocode in Figure 2.1 describes how to classified a new instance

using a decision already generated.

start at root node
repeat

follow branch that matches the instance being classified
until current node is a classification node
return classification in leaf node

Figure 2.1: Pseudocode for classifying new instances with a decision tree

1Part of the weka project, downloadable at http://www.cs.waikato.ac.nz/ml/weka/

16

2.1. Machine Learning Techniques

Figure 2.2: Example decision tree

See Figure 2.2 for an example of what a decision tree might look like after training

on the ubiquitous golf data set. Note that the classification at the root nodes does not

misclassify any of the training examples. This, of course, is not the typical perfor-

mance of machine learning algorithms.

To train a decision tree an ordering heuristic is needed to decide which attribute to

use when constructing an internal node. ID3 uses information gain [112], which is an

entropy based metric. Starting at the root node and continuing until either there are no

attributes remaining or the instances at the current location in the tree all belong to the

same class, the attribute that would most reduce the information in the resulting tree is

selected.

17

2.1. Machine Learning Techniques

stat <= 11.66
| rm <= 6.54
| | lstat <= 7.56 THEN medhigh
| | lstat > 7.56
| | | dis <= 3.9454
| | | | ptratio <= 17.6 THEN medhigh
| | | | ptratio > 17.6
| | | | | age <= 67.6 THEN medhigh
| | | | | age > 67.6 THEN medlow
| | | dis > 3.9454 THEN medlow
| rm > 6.54
| | rm <= 7.061
| | | lstat <= 5.39 THEN high
| | | lstat > 5.39
| | | | nox <= 0.435 THEN medhigh
| | | | nox > 0.435
| | | | | ptratio <= 18.4 THEN high
| | | | | ptratio > 18.4 THEN medhigh
| | rm > 7.061 THEN high
lstat > 11.66
| lstat <= 16.21
| | b <= 378.95
| | | lstat <= 14.27 THEN medlow
| | | lstat > 14.27 THEN low
| | b > 378.95 THEN medlow
| lstat > 16.21
| | nox <= 0.585
| | | ptratio <= 20.9
| | | | b <= 392.92 THEN low
| | | | b > 392.92 THEN medlow
| | | ptratio > 20.9 THEN low
| | nox > 0.585 THEN low

Figure 2.3: Decision tree generated by J4.8 training on the Boston housing data

18

2.1. Machine Learning Techniques

The Boston housing data [17] is a frequently used data set that describes the me-

dian value of homes in 506 suburbs of Boston. There are 12 continuous attributes, 1

boolean attribute, and the target class. Figure 2.3 shows a typical decision tree learned

on this data by J4.8, where {stat, rm, lstat, dis, ptratio, nox, b}

are independent variables2 and {low, medlow, medhigh, high} are the tar-

get labels. Compare the complexity of this tree to the simple treatment shown in Fig-

ure 2.7. Also note that Figure 2.3 is a classifier, which can be used to predict the class

of any new instance, whereas Figure 2.7 is a contrast rule that describes the biggest

difference between the higher value target classes and the lower value target classes.

2.1.3 Naı̈ve Bayes

Bayes theorem [11] is used to calculate the probability that a hypothesis is correct,

given a set of evidence. It can be written as

P (H|E) =
P (E|H) ∗ P (H)

P (E)

where P (H|E) is the probability of the hypothesis given the evidence, P (E|H) is

the probability of the evidence given the hypothesis, P (H) is the probability of the

2Where rm is the average number of rooms, ptratio is the pupil-teacher ratio, and nox is the
nitrogen oxide concentration, to define a few.

19

2.1. Machine Learning Techniques

hypothesis, and P (E) is the probability of the evidence.

The difficulty in using Bayes theorem is calculating the P (E|H) term. The the-

orem suggests we most observe every possible combination of the different pieces of

evidence.

Because of this difficulty, in machine learning a weaker form of Bayes theorem

is often used called Naı̈ve Bayes. Naı̈ve Bayes assumes that the probabilities of the

different attributes are independent of one another. This allows the P (E|H) term to be

calculated multiplicatively as

P (E|H) =
n∏

P (Ei|H)

where the P (Ei|H) terms are the probabilities of a single piece of evidence given H

and n is the number of attributes available.

To train a naı̈ve Bayes learner, frequency tables are used to count the number of

instances with each attribute value in each of the target classes. The attributes and

the target class must be discrete to keep the number of tables and the number of rows

in the tables finite. For example, if a naı̈ve Bayes learner was trained on the data in

Figure 2.4, the frequency tables might look like Figure 2.5.

To classify a new example, naı̈ve Bayes calculates the likelihood of the example

belonging to each target class, L(Hi). The likelihood is the similar to the probability,

20

2.1. Machine Learning Techniques

attributes class
Make coupe : SUV Size coupe : SUV Hifi coupe : SUV coupe : SUV

Mitsubishi 1 : 1 Small 6 : 0∗ yes 6 : 0∗ 8 : 4
Toyota 2 : 1 Medium 1 : 1 no 2 : 4
Benz 1 : 1 Large 1 : 3
BMW 2 : 0∗

Ford 1 : 1
Honda 1 : 0∗

Figure 2.4: Training data. Cells indicated with a ∗ have a zero cell. In the frequency
table all cells will have one added to their counts to avoid calculating any zero likeli-
hoods.

attributes class
Make coupe : SUV Size coupe : SUV Hifi coupe : SUV coupe SUV

Mitsubishi 2
9 : 2

5 Small 7
9 : 1

5 yes 7
9 : 1

5
9
14

5
14

Toyota 3
9 : 2

5 Medium 2
9 : 2

5 no 3
9 : 5

5

Benz 2
9 : 1

5 Large 2
9 : 4

5

BMW 3
9 : 1

5

Ford 2
9 : 2

5

Honda 2
9 : 1

5

Figure 2.5: Frequency table, P (Ei|Hj)

21

2.1. Machine Learning Techniques

but is not normalized by the P (E) term. The likelihood can be used because naı̈ve

Bayes compares two probabilities, making the P (E) terms cancel out. The likelihood

is calculated by

L(Hi) = P (E|Hi) ∗ P (Hi) (2.1)

The example is classified as whichever class has the highest likelihood. For example,

if a new instance was a medium sized Ford, the likelihood of it being an SUV would

be

L(SUV) = P (size = medium|SUV) ∗ P (Make = Ford|SUV) ∗ P (SUV)

=
2

5
∗ 2

5
∗ 5

14

= 0.057

while the likelihood of it being a coupe would be

L(coupe) = P (size = medium|coupe) ∗ P (Make = Ford|coupe) ∗ P (coupe)

=
2

9
∗ 2

9
∗ 9

14

= 0.032

For this instance, since L(SUV) > L(coupe), the naı̈ve Bayes classifier would assign

22

2.1. Machine Learning Techniques

this instance to SUV target class.

2.1.4 Contrast Set Learning

Contrast set learners are a type of association rule learners that find the greatest differ-

ence between the target classes. Since treatment learning is an example of a contrast

set learner, we will discuss some research done with contrast set learners other than

treatment learners.

STUCCO STUCCO (Search and Testing for Understandable Consistent Contrasts)

[10] uses the algorithm in Figure 2.6 to learn contrasting sets.

This algorithm builds trees (line 14) using a canonical ordering to avoid visiting

the same node twice. The tree nodes consist of different possible attribute-value pairs,

so that a path from the root to a leaf consists of several non-exclusive attribute-value

pairs. The prune function (line 11) has three criteria, any one of which causes the

function to return true:
1. minimum deviation size

2. expected cell frequencies

3. χ2 bounds

These rules together make it possible to do a complete search of the remaining branches.

The functions significant and large ensure that the proposed contrast set is both

23

2.1. Machine Learning Techniques

initialize set of candidates, C, to the empty set
initialize set of deviations, D, to the empty set
initialize set of pruned candidates, P , to the empty set
let prune(c) return true if c should be pruned

5: repeat
scan data and count support ∀c ∈ C
for all c ∈ C do

if significant(c) ∧ large(c) then
D ← D ∪ c

10: end if
if prune(c) is true then

P ← P ∪ c
else

Cnew ← Cnew ∪ GenChildren(c, P)
15: end if

end for
C ← Cnew

until C is empty
return Surprising(D)

Figure 2.6: STUCCO algorithm

24

2.1. Machine Learning Techniques

% holding
contrast set Ph. D Bachelor
workclass = State-gov 21.0 5.4
occupation = sales 2.7 15.8

Table 2.1: Example rules learner by STUCCO from Adult Census data

statistically significant, based on the χ2 test, and large, above a user specified thresh-

old. Finally, the Surprising function ensures that the proposed contrast set is not

just the result of multiplicative probabilities. For example if P (color = red | shape =

square) = .76 and P (hollow = yes | shape = square) = .45, it would not be inter-

esting if P (hollow = yes ∧ color = red | shape = square) = .32 since that prob-

ability is so close to probability we would expect if the attributes were independent,

i. e. .76 ∗ .45 = .34. This is only the basic idea behind the Surprising function;

a more robust method based on iterative proportional fitting [40] was actually used in

STUCCO.

Using the STUCCO learner to investigated Adult Census data [17] to answer the

question “What are the differences between people with Ph. D and Bachelor degrees?”

Bay and Pazzani [10] found 164 rules, while Apriori returned over 75,000 rules. For

example the two rules in Table 2.1 were returned by STUCCO.

MINWAL The MINWAL learners [23], MINWAL(O) and MINWAL(W), extend

the Apriori Gen Algorithm [3]. They are called weighted class learners, because they

25

2.1. Machine Learning Techniques

allow the instances to have an extra attribute, weight, that records how significant the

instance is. The example used in [23] has to do with analysis of supermarket checkout

baskets. If a rule learner like Apriori Gen finds the following two rules

• Buys(baby food)⇒ Buys(diapers)

• Buys(baby food)⇒ Buys(beer)

but the profit margin on beer is much higher than on diapers, the second rule is more

useful to a business user.

Webb et. al. [132] did a study comparing STUCCO with two other rule learners,

Magnum Opus, a commercially available tool and C4.5rules [112], which generates

rules from a decision tree. Although these other learners were not designed to be

contrast set learners, the authors were able to restrict the form of their theories to allow

an almost direct comparison with STUCCO. The learners were applied to aggregated

data from a large Australian discount department store taken on two different days.

To their surprise they found a correspondence between the core contrast-set-discovery

task in the Magnum and STUCCO learners. They found that the pruning rules of the

learners are responsible for the difference in the theories returned by the two learners.

These different pruning rules lead the STUCCO learner to return fewer rules than

Magnum. A manual inspection of these rules found both interesting and spurious rules

in the list generated by Magnum, suggesting that the pruning rules of STUCCO are

possibly too strict and that the rules of Magnum are possibly too lenient. They did

26

2.1. Machine Learning Techniques

find that C4.5rules missed many of the key contrasts that were found by STUCCO and

Magnum.

2.1.5 Treatment Learners

The tar family of learners have been developed by Menzies et. al. The original Tarzan

[95] prototype was actually a post-processor that worked with classification tree gen-

erators (specifically C4.5, discussed in §2.1.2). Tarzan constructed a set of decision

trees using different training data sets that had been generated by applying different

restrictions to the software effort estimation model [2] being studied. Tarzan then used

a set of pruning rules that applied to the individual trees, as well as rules that were

applied to the ensemble of decision trees. These rules vastly reduced the complexity

of the original decision trees. This prototype was quickly discarded as it was com-

putationally inefficient. Tar2 was developed [63] to generate treatments quicker by

training directly on the instances instead of constructing decision trees. Tar3, used in

the studies described in chapter 4, was developed to increase the efficiency of tar2 by

using stochastic sampling. Tar4 [29], used by SPY in the case studies described in

chapter 5 and chapter 6, is the next generation treatment learner that further increases

the runtime efficiency of the learner by using a Bayes style frequency table to eliminate

the need to run over the data set for each proposed treatment or even store the training

27

2.1. Machine Learning Techniques

instances in memory.

The form of the treatments returned by the tar family of learners is conjunctions

of attribute-value pairs. Each attribute-value pair consists of one attribute and either a

range restriction, such as 6.7 ≤ rooms ≤ 9.8 or a value assignment, such as outlook =

overcast. Hence a treatment has the form

pair1 ∧ pair2 ∧ . . . ∧ pairn ⇒ P (c1), P (c2), . . . , P (ck)

where, typically, 1 ≤ n ≤ 5 and P (ck) is the predicted probability of class ck among

instances that pass the treatment.

The tar learners are a type of contrast set learner, as discussed in §2.1.4. This means

they attempt to find treatments that select for the desired class, but do not comment on

instances that don’t pass the treatment. In receiver operator characteristics, we would

say these types of learners attempt to maximize the true positive rate of their theories,

without penalizing theories that have a high false negative rate. A treatment should

be interpreted as a region where desirable classes are more prevalent, while the region

outside the treatment may not have significantly more instances of the undesirable

classes than the baseline. In other words, if an unseen instance passes a treatment

returned by a treatment learner there is a high likelihood that the new instance belongs

to the desired class. But if the new instance does not pass the treatment, the treatment

28

2.1. Machine Learning Techniques

IF: rm >= 6.6 AND ptratio <= 15.9
THEN: 97% of the found houses will be high quality

3% of the found houses will be medhigh quality
BASELINE: 29% high, 29% medhigh, 21% medlow, 21% low

Figure 2.7: Treatment generated by tar3 on the Boston housing data

learner does not offer any guidance on what class that instance belongs to.

Figure 2.7 shows a typical treatment for the Boston housing market data used to

build the decision tree in Figure 2.3, where {rm, ptratio} are independent vari-

ables, high is the most desirable target class, and medhigh is the second most de-

sirable target class. Compare the succinctness of this theory to the complexity of the

decision tree in Figure 2.3. This is the advantage to using a treatment learner. Treat-

ments are a compact way to convey the differences between the higher valued target

classes and the lower valued ones.

We will discuss the details of tar3 and tar4, since they are the two treatment learners

utilized by the studies presented in chapters 4 - 6.

Tar3 The first step in tar3 is to calculate the baseline. The different possible target

classes are assigned weights. Experience has shown that these weights should be ex-

ponential. For example, if there are four classes, they might be assigned the weights

2, 4, 8, 16. Of course, this is all done internally in the treatment learner. All the user

has to do is list the possible target classes in the preferred order. The baseline is a

29

2.1. Machine Learning Techniques

normalized weighted sum of the proportions of the target classes in the training data.

This calculation has the following steps

1. multiply the proportion of each class in the training set by its weight

2. sum the products from step 1)

3. normalize the sum from step 2) by the sum of the weights

Hence, the baseline can be calculated as

baseline =

∑n
i=0(weighti ∗ propi)∑n

i=0 weighti

where n is the number of target classes, weighti is the weight assigned to the ith class,

and propi is the proportion of the ith class in the training data.

The next step is to calculate the lift1s. The lift for any treatment is the ratio of the

normalized weighted sum of the instances covered by that treatment to the baseline,

calculated as

lift =
treated average

baseline

=

∑n
i=0(weighti ∗ treatedi)∑n

i=0(weighti ∗ propi)

where treatedi is the proportion of the ith class among instances that pass the treatment.

The lift1s are the lifts of all possible treatments with only one attribute-value pair. The

number of attribute-value pairs in a treatment is often referred to as the treatment’s

30

2.1. Machine Learning Techniques

size.

Next lift1s are combined to form treatments of sizes 1 to max size,which is spec-

ified by the user, but usually 5 works well. First the size of the treatment is picked

randomly, then different attribute-value pairs are chosen randomly, biased according

to each attribute-value pair’s lift1. The lift for each proposed treatment is calculated

and after tar3 has run several trials, it returns the treatments it found ranked by their lift.

This metric might tend to produce very overfitted theories, as treatments are learned

that match only a few instances in the most desired class. A minimum best support

term is used to counter this potential cause of over-fitting.

Tar4 Tar3 still has to run through the data to evaluate each potential treatment. This

also requires that the instances be stored in memory. Tar4 was developed to generate

treatments while requiring only one pass through the data, which also means that the

training data need not be stored in memory. During the training stage, tar4 stores the

instances in frequency tables similar to a naı̈ve Bayes classifier. The major difference

between tar4’s frequency tables and those found in a naı̈ve Bayes classifier is that tar4

uses a two-class system, regardless of how many target classes exist in the training

set. For example, if the target class is an integer from the range [1, 5] with 5 being the

best class, an instance with a class of 4 would count as 4/5 good and 1/5 bad. The

lift1s are then calculated from these tables. The final lift of a treatment is calculated by

31

2.2. Metaheuristic Search

P (good)∗support(good), where P (good) is calculated in the same fashion as it would

in a naı̈ve Bayes classifier and support(good) is the unnormalized likelihood from the

frequency tables (see Equation 2.1).

For more complete details on tar4 see [29].

2.2 Metaheuristic Search

The most widely used metaheuristic techniques are

• gradient based techniques (§2.2.2)

• evolutionary algorithms (§2.2.3)

• tabu search (§2.2.4)

These three techniques will be discussed in this section. First some basic terminology

used to describe the characteristics of different techniques will be discussed. Then the

particulars of the techniques will be discussed.

2.2.1 Introduction and Terminology

Metaheuristic techniques are a set of high-level search techniques that are used on

problems that have input spaces too large for a complete search. The underlying as-

sumption of these techniques is that although there is no guarantee they will find the

32

2.2. Metaheuristic Search

1: generate initial candidate solution(s)
2: repeat
3: evaluate candidate solution(s)
4: generate new candidate solution(s)
5: move to new solution(s) or keep old one(s)
6: until stopping condition is reached
7: report best candidate solution found

Figure 2.8: Metaheuristic pseudocode

optimal solution, finding a near-optimal solution is better than never finding the opti-

mal solution. Again, it is assumed that near-optimal solutions exist.

The two key components of a metaheuristic technique are

1. objective function evaluation

2. new solution(s) generation

These two steps can be thought of as 1) where the search is and 2) where the search

should go. The objective function is used to measure the value of the candidate so-

lution(s). This function has to decode the candidate solution(s) and evaluate its desir-

ability. Using that information the technique then forms its next generation candidate

solution. This next generation may or may not be an improvement in terms of the

objective function. These two steps are alternated until some stopping condition is

reached. The pseudocode in Figure 2.8 describes, at a very abstract level, how meta-

heuristic search techniques work.

There are several ways to describe the characteristics of these techniques. Some of

the more important characteristics are

33

2.2. Metaheuristic Search

• is the search local or global?

• how is the neighborhood determined?

• what type of solution encoding is needed?

• how are exploration and exploitation balanced?

• how robust is the technique is the presence of numerous local optima?

A search technique can be local or global, depending on whether only solutions close

to the current solution are considered when new candidate solutions are generated. The

neighborhood is the set of solutions that are considered before a move is made. How

this set is determined may not be obvious. Higher dimensionality functions will have

larger neighborhoods, since the current solution can move in many directions. This

may require restricting in which directions the current solution can be modified when

constructing its neighborhood. Mixed typed or mixed unit inputs may require domain

knowledge to decide how great a change in one direction is equal to a change in another

direction. The candidate solutions need to be encoded in a way that the neighborhood

operators can work on and the objective function can efficiently evaluate. Every search

has to balance exploration and exploitation. A search explores when it evaluates candi-

date solutions from portions of input space it hasn’t visited before. But the search must

also investigate regions of the input space where it has found promising solutions. This

is called exploiting. If a technique sends too much time exploiting previously visited

regions of the input space, it may get stuck in a local optimum. But if a search never

exploits known locations of promising candidate solutions, solution quality may suffer.

34

2.2. Metaheuristic Search

A metaheuristic search technique has to balance when it explores new regions of the

input space and when it exploits knowledge it has already learned. Regardless of how

exploration and exploitation are balanced, since all metaheuristic search techniques are

incomplete, they may still get stuck in local optima. Because of this each technique

should have some method for escaping from local optima.

2.2.2 Gradient Based Techniques

In mathematics the gradient operator (O) can be used to find the direction of greatest

change for a multivariate function whose partial derivatives exist. When optimizing an-

alytic functions the gradient can often be calculated analytically. For problem domains

where the gradient can not be calculated analytically, it must be done numerically. By

evaluating the objective function at points in the neighborhood of the current candidate

solution, an estimation of the gradient can be calculated. As discussed in §2.2.1, how

to generate this neighborhood is not always obvious and often requires some domain

knowledge.

Hill climbing The simplest gradient based technique is hill climbing. A hill climber

investigates the area around its current position and moves the candidate solution to

a neighbor with a better score. There are several variants of the hill climber. The

35

2.2. Metaheuristic Search

climber can move to the first candidate it finds that is better than the current solution.

This is called first-ascent hill climbing. The climber could alternatively investigate

its entire neighborhood and move the solution to the best neighbor it finds. This is

called steepest-ascent hill climbing. Hill climbers terminate when they can not find a

neighbor that has a better score than the current candidate solution. This means that

the current solution is a local optimum.

Since gradient based techniques are not guaranteed to find global optima, methods

that use hill climbers often do multiple restarts. After a local optimum is found, the hill

climber is restarted from a new random starting point. Using restarts usually leads to

the finding of a different optimum, increasing the likelihood that a high quality near-

optimal solution is found. Of course this still does not guarantee finding the global

optimum.

Simulated annealing Simulated annealing (SA) [24, 76] is a local search algorithm

very similar to hill climbing, with one important difference. SAs will probabilistically

make a move that does not improve the objective function according to the Boltzmann

factor e−(OE/T), where T is the temperature and OE is the change in the objective

function. Note that e−(OE/T) → 0 as T → 0, i. e. SAs converge to hill climbers in the

limit T → 0. Also note that e−(OE/T) → 0 as OE →∞, i. e. the worse the move, the

lower the probability it will be taken. Figure 2.9 shows a how a search might proceed

36

2.2. Metaheuristic Search

Fitness

local
optima

global
optima

start

Figure 2.9: Typical simulated annealer

in a 2-D example, if a simulated annealer was used.

The cooling schedule (how the temperature changes during the search) is the way

that SAs control the trade-off between exploration and exploitation. At the start of an

SA run, when the temperature is high, the technique makes many bad moves and ex-

plores the search space. But as the temperature is lowered, the technique makes fewer

and fewer bad moves and exploits what was learned (the possible location of a promis-

ing local optimum) during the exploring phase. Hence the benefit of allowing the SA

to make bad moves is that these bad moves increase the amount of exploring done and

decrease the likelihood of the search getting stuck in low quality local optima. As with

restarting hill climbers, this technique can not guarantee that the global optimum will

be found.

37

2.2. Metaheuristic Search

2.2.3 Evolutionary Algorithms

Evolutionary algorithms (EA) are inspired by Darwinian evolution developed in biol-

ogy. The key parts of evolutionary algorithms are

• the population of candidate solutions

• the candidate solutions are scored, based on how well they solve the problem

• the candidate solutions are changed some to explore new possible solutions

Since more than one candidate solution is being considered, evolutionary algorithms

are non-local techniques. Candidate solutions in EAs are encoded as chromosomes.

These chromosomes are usually bit vectors, where each bit represents a single attribute

of the solution. Typically the chromosomes are fixed length, but Whitley et. al. [137]

has explored encoding master genes. These master genes can turn off other genes,

so that while the chromosome stays a constant length during the search, the informa-

tion expressed changes depending on how these master genes are mutated during the

search. Exploitation and exploration are balanced by the values of the mutation opera-

tors. If mutation events are very common, the search performs more exploration, since

the mutations push the search into new regions of the search space. If mutation events

are not common, the search performs more exploitation, as the search stays in same

region of the search space. An EA may have static mutation rates that don’t change

38

2.2. Metaheuristic Search

during the search, although it is common to find experimentation with adaptive mu-

tation rates [25, 143]. The two most common EAs are genetic algorithms (GAs) and

genetic programming (GPs). They will be discussed in the following section. In addi-

tion Evolutionary Programming [46] has been developed, but it will not be discussed

here.

Genetic Algorithms and Genetic Programming

The following steps compose one generation in a genetic algorithm [51, 61]

1. evaluate the individuals to determine their fitness score

2. construct a new intermediate population based on those fitness scores

3. construct the next generation by using mutator operators on the intermediate

population

The evaluation of the individuals is done by the objective function (usually called the

fitness function by GA practitioners). This function must be called once for every

individual in the population, every generation, hence it must be only modestly compu-

tational intensive.

Their are several ways that the intermediate population can be constructed, includ-

ing proportional selection (also known as roulette wheel selection), stochastic universal

sampling, and tournament selection. Each of these selection methods has been studied

39

2.2. Metaheuristic Search

to determine some their characteristics. For example tournament selection was stud-

ied by Miller and Goldberg [101], who investigated the relationship between selection

pressure, tournament size, and noisy objective functions, while stochastic universal

sampling was studied by Baker [8], who demonstrated that this method was unbiased.

The two mutation operators used are the point mutation operator and the crossover

operator. The point mutation operator works by probabilistically flipping individual

bits among the chromosome population. An individual may have 0 or more bits flipped

by the point mutation operator. A pictorial representation of the point mutation oper-

ator is shown in Figure 2.10. The crossover operator works by probabilistically ex-

changing information between two individuals in the population. There are several

versions of the crossover operator, including the one-point, the two-point, and the uni-

form. The one-point operator selects a single location along the chromosome and

exchanges the portion of the chromosome after that point from one individual with the

corresponding portion from another individual. The two-point operator selects two lo-

cations along the chromosome and swaps the information between those two points be-

tween two individuals. The uniform operator probabilistically swaps each gene along

the chromosome. A pictorial representation of a one-point crossover operator is shown

in Figure 2.11.

40

2.2. Metaheuristic Search

Figure 2.10: Example of a point mutation [115]

Figure 2.11: Example of a one-point crossover event [115]

41

2.2. Metaheuristic Search

Figure 2.12: Example of crossover event in genetic programming [115]

There is also research on the topic of encoding schemes. Natural encoding has been

advocated [99] since that eliminates the need to encode and decode the individuals

before scoring them, but new mutation and cross-over operators need to be developed

for each new problem. Runtime speed ups have also been been reported with natural

representation [70]. The topic of encoding schemes will be revisited in §2.3.1.

Genetic programming [78, 106] is similar to genetic algorithms, except that the

representation being “evolved” is a computer program. To ensure that all mutations

are still valid programs, the representation chosen is often an abstract syntax tree.

Since this representation is so different from the typical representation used in GA,

specialized mutation operators have to be used. For example, a crossover event in a

GP search might look like Figure 2.12. Besides specialized mutation operators, GPs

use the same three basic steps discussed at the start of this section.

42

2.2. Metaheuristic Search

2.2.4 Tabu Search

Tabu search [49, 50] (a type of adaptive memory programming, or AMP) attempts to

use memory in a flexible fashion, without recording the exact history of the search.

Like SA, tabu search is a local algorithm. However, its neighborhood depends on

previous moves. After each move is made a tabu list is updated based on the move.

The list may contain the exact move, or it may contain certain attributes of the move.

Members of this list have some form of tenure, so that they are eventually evicted from

the list. This makes tabu search more scalable to large problems, since it does not

attempt to store a complete history of its progress. In addition, multiple tabu lists might

be maintained. For example, when solving the minimum k-tree problem [82] it is useful

to maintain a separate list for edges that are dropped from the current solution and for

edges that are added to the current solution. When constructing future neighborhoods,

moves that match a move on the list (or share an attribute that is on the list) are not

considered. That is, tabu tries to explore regions of the space that it has not visited

previously. It is left to the practitioner to decide if a move should be considered tabu

if it has any attributes that are in the tabu list or whether it must have several (or all)

attributes on the tabu list to be considered tabu. Similarly, when maintaining multiple

tabu lists, a move may be considered tabu if it has attributes on any of the lists, or if

a move can be considered tabu only if its attributes are on several (or all) of the tabu

43

2.3. Search Based Software Engineering

lists.

The time each move (or attribute) remains on a tabu list is called its tabu tenure.

This value of this tenure can be very flexible. If multiple lists are being maintained,

each list can have a different tenure. The tenure for the different lists can be static or

dynamic. The value of the tenure is the main way tabu search balances exploration

with exploitation. Longer tenures forces tabu search to explore more the of the search

space, as large parts will be considered tabu. Shorter tenures increases exploitation,

allowing the technique to stay in a smaller part of the search space (without necessarily

requiring it). For this reason, the tabu tenure may be a monotonically decreasing func-

tion, making it similar to the cooling schedule in SAs. This results in more exploration

at the beginning of the search, with more exploitation as the tabu tenure decreases.

2.3 Search Based Software Engineering

Starting in the mid-1990’s various researchers working in the field of software en-

gineering started looking at how the field of optimization might be applied to their

field. Many other engineering disciplines incorporated optimization techniques into

their standard toolboxes long ago. These include mechanical engineering [79, 118],

chemical engineering [16, 74], medical and biomedical engineering [110, 117, 135],

civil engineering [7,14,44,67], and electronic engineering [13,33,102]. In contrast to

44

2.3. Search Based Software Engineering

the multitude of areas outside software engineering, researchers in the field of software

engineering are just starting to realize the applicability of search based optimization to

their problem domain. This section will first describe how to view software engineer-

ing problems as search problems (§2.3.1). The key insight in search based software

engineering is that many standard software engineering problems are not amenable

to analytic solutions since the mathematics of the problem does not permit symbolic

analysis nor complete methods since the size of the search space is too large to make

such a search feasible. The rest of the section will review some of the research done in

software engineering that has applied optimization techniques (§2.3.2 - §2.3.4).

2.3.1 Rethinking Software Engineering as Numeric Optimization

As described in [32,58] there are three key elements to rethinking a software engineer-

ing problem as a search problem.

1. The problem has to be described in a manipulatable language. The metaheuristic
technique used must be able to generate new proposed solutions automatically
using this language.

2. An objective function must be developed. This function needs to map proposed
solutions to a single numeric output. This output then is either minimized or
maximized (i.e. optimized) by the metaheuristic technique being employed.

3. Transformation operators that work on proposed solutions also need to be de-
veloped. This might mean defining a neighborhood function that generates so-
lutions “close” to another solution based on some criteria. Or it might mean
taking a single proposed solution and changing some aspects to generate a new

45

2.3. Search Based Software Engineering

proposed solution.

If these conditions are not met, using a metaheuristic search technique may not be

possible or may not be necessary.

Representation Solutions to the problem need to be encoded in such a way that the

various operators of the search technique being used can operate on them. Therefore,

the first issue that must be addressed when applying a search technique is to find a

suitable representation for candidate solutions.

The problem of representation can be more complex than might be first assumed,

because the most natural encoding may not be the best scheme for the search technique

being used. For instance, consider the bit encoding of an integer, as might be required

when using a genetic algorithm. It is possible to represent integers as “pure” binary

numbers. One would be represented as 0001, two as 0010, three as 0011, and so

on. According to the rules of arithmetic, seven can be transformed into eight through

only one application of the successor function. But in pure binary seven, 0111, must

have four bits flipped to be transformed into eight, 1000. Since the mutation operator

in a genetic algorithm works on the bit representation, seven is no longer only one

operation away from eight. For this reason gray encoding is preferred. With gray

encoding seven would be 0100 and eight would be 11003. Now seven and eight are

3Other gray encodings are possible, but this is the must popular.

46

2.3. Search Based Software Engineering

only one mutation apart. It has been reported that gray encoding outperforms binary

encoding [68, 136].

[125, 133] have also pointed out that both binary and gray encoding of real or

integer numbers that have a restricted range can lead to the mutation and crossover

operators that create out of bounds values. This means that after each mutation or

crossover event the chromosome has to be inspected and, if necessary, repaired. Or if

this possibility is ignored the semantics of a language with restricted range types (e. g.

Ada) can be violated. They suggest using real-valued encoding to avoid this problem.

[39] also argues for using real-valued encodings with evolutionary techniques.

Picking an encoding scheme must clearly include not only an understanding of the

search technique but domain knowledge as well.

Objective function The next problem is developing an objective function. Software

engineers are used to collecting software metrics, so those metrics are a ready supply

of objective functions. For example, path or branch coverage for test case generation

can be used as objective functions. There are a few new issues that should be addressed

before these metrics, which were developed for other purposes, can be used as objec-

tive functions. [57] lays out four requirements for a metric function to be used as an

objective function, each of which will be discussed in more detail below.

47

2.3. Search Based Software Engineering

1. the input space of the metric function shouldn’t be small enough to allow an
exhaustive search

2. the function should have no known optimal solutions

3. the function must be computationally efficient

4. the function should be approximately continuous

Input space size and known optimal solutions Items 1 and 2 have bearing on

the question of whether a search would beneficial. If the input space of the objective

function is small enough to permit exhaustive search, then there is nothing to gain by

using a incomplete search algorithm. Exactly how big is too big will depend on the

hardware available and the computational costs of the objective function. For example,

mission critical tasks might have the budget to allow the use of long periods of time

on large amounts of hardware to tackle very large search spaces. Many of the case

studies presented in chapter 4 have 255 (1017) or more possible input vectors, so it

is unlikely that any amount of hardware or budget would allow a reasonable chance

to do a complete search. The objective function must also have no known optimal

solution for there to be any gain to using a metaheuristic search. For example, if a

3-SAT proposition has a single unsatisfiable clause (which can be found in linear time

[48]), there would be no point in conducting an expensive search for that particular

proposition. Any analytic solution should be preferred to a solution found through

search, and any near-optimal solution found analytically would also be preferred. For

48

2.3. Search Based Software Engineering

example, an analytically found near-optimal solution might have a upper bound on its

distance from the unknown optimal solution. This type of information would not be

found by a metaheuristic search technique.

Objective function efficiency and continuity Items 3 and 4 have bearing on

whether an effective search would be practical. While the exact number of times the

objective function is evaluated depends on the technique being used, it will most likely

be at least 104 and possibly more than 107. One of the main driving forces behind

the development of ITL is reducing the needed number of evaluations of the objective

function. As a search technique moves around the input space it must have some hint

that it is moving in an undesirable or desirable direction. For that reason, the more

continuous the objective function, the more efficiently we can expect the search to

progress. If there exist many near-optimal solutions at points of high discontinuity,

the probability that any search technique will find them approaches the probability

that a random search would find them, as the discontinuity of the objective function

increases. We encountered this problem in the studies presented in chapter 5 and

chapter 6.

The next three sections will discuss the application of search-based software en-

gineering to the fields of testing (§2.3.2), cost estimation (§2.3.3), and requirements

analysis (§2.3.4). These fields are reviewed because cost estimation and requirements

49

2.3. Search Based Software Engineering

analysis are early life cycle activities, similar to the study presented in chapter 4, and

testing is a late life cycle activity, similar to the studies presented in chapter 5).

2.3.2 Testing

One of the first areas in software engineering to use optimization techniques was test

case generation. Test case generation has a few properties that make it uniquely suited

for search-based optimization. First, there are many metrics that have already been

developed by the testing community that serve as ready-made candidates for objective

functions. There are static measures like the McCabe complexity values [84], and

dynamic measures like path or branch coverage. Second, the input space to even the

most trivial programs is far too large for any exhaustive search. Third, static program

analysis is difficult for most real world programs. It is a well known result that it is

not computationally possible to decide even the simplest program properties4 for any

Turing-complete language. Fourth, manual construction of test data is quite expensive.

Testing often accounts for up to 50% of the cost for typical software projects [12]. For

these reasons there has been much work on applying search techniques to the problem

of automatic test case generation.

An early work using search based techniques on automatic test case generation

4For example, the halting property

50

2.3. Search Based Software Engineering

is [140]. Since then there have been improvements to the original work [68, 77, 86]

by removing the need for a human tester to select a path and by changing the way

the objective function is calculated for conditional branches. For example, control

dependence graph analysis has been included in the objective function [109]. If the

search is trying to execute branch c, which is dominated by branch b, which in turn

is dominated by branch a, the objective function reflects how many of the branches

a, b, or c are executed. However, this type of function suffers because the objective

function has a large plateau in the areas of the input space that don’t execute branch a.

The objective function doesn’t provide any distance guidance as to how to execute any

particular branch. Even with this disadvantage [109] still reported significant speed

ups when compared to a purely random search. Later other researchers, [125, 129],

added a distance metric to the objective function to remove some of the discontinuity

of the function.

Early work using EA techniques to generate test data using a Z specification (see

[122] for a full discussion of the Z specification) can be found in [69]. They used the

canonical triangle classification problem and developed a Z specification for that pro-

gram. The specification consisted of predicate statement in disjunctive normal form.

Each disjunct was considered a path through the program. The objective function

measured how close an input set came to satisfying one of the disjuncts. Success

51

2.3. Search Based Software Engineering

was reported for covering all nominal cases. More recent work on using specification

driven test data generation has been done in [126, 129].

[134] investigated the objective landscape for timing behavior. They found that

GAs outperformed SAs and they explained this difference by looking at the topology

of the objective landscape. Recall that GAs perform global searches, since each indi-

vidual in the population is initialized to a different location and cross-over events can

generate individuals in radically different locations than their parents. The objective

landscape had discontinuities wherever different paths through the control flow graph

were taken. If the different paths had significantly different execution times, this cre-

ates a discontinuity at that location in the objective landscape. The landscape also had

many plateaus. If different input values led to the same exact path being executed,

their execution times were usually very close. These discontinuities and plateaus were

less likely to deteriorate the performance of a global search algorithm like a GA.

Simulated Annealing (SA) is also a popular metaheuristic technique in automatic

test data generation. For instance, [127, 128] investigate using SAs to find the worst

case execution time and maximizing structural coverage. [126] uses pre/post condi-

tions written in disjunctive normal form. The objective function was a distance metric

that measures how close a given input comes during execution to violating the pre/post

conditions.

52

2.3. Search Based Software Engineering

Note the importance the objective function plays in all the work described in this

section. The contributions of these publications are not new search techniques or even

modifications to existing techniques, but rather new ways to formulate the objective

function to allow the search to proceed more efficiently. Also note that symbolic anal-

ysis of the source code is necessary for the distance measures of branch points. The

case studies presented by this thesis (chapter 5 and chapter 6) highlight the importance

of a objective function that follows the advice laid out in §2.3.1.

For a broader survey of search based automatic test case generation see [87].

2.3.3 Cost Estimation

While a high quality estimate of a project’s cost would be very useful to software

planners, software cost estimations can be notoriously inaccurate. For example, [19]

reports that 60% of large projects significantly overrun their estimates and 15% of soft-

ware projects are never completed due to gross misestimation of development effort.

A very popular technique for software cost estimation is the COCOMO [18] linear

regression method5. The rest of this section will describe some efforts to improve

software cost estimation by applying search-based techniques.

5Citeseer reports over 2000 citations to this work.

53

2.3. Search Based Software Engineering

In [4] a sequential covering evolutionary algorithm was used to generate manage-

ment rules to reduce the likelihood of effort and time overruns. This technique is a

“divide-and-conquer” technique as rules are adjusted according to data points not al-

ready covered. Once a data point is covered by the rule it is removed from the pool

of remaining points. The data points used in this study came from a dynamic model

that had 12 numeric and ordinal inputs with restricted ranges. The two outputs of this

model were development effort (developer-days) and development time (days to com-

plete). The objective function combined the error for a rule, the support for the rule6,

and the coverage of the input space by the rule.

Although the technique can be generalized to any number of target classes, in this

study the data points were split into two classes, GOOD and BAD. Those points that

had both a development effort and time below a nominal value were labeled GOOD, all

other points were labeled BAD. The nominal values for development effort and time

were generated in the following fashion. An initial estimate of development effort and

time was generated assigning values to the various inputs based on discussions with

the project manager. The outputs of this initial run of the dynamic model were used as

the nominal values. After finding the nominal values for time and effort, the simulator

was then run randomly choosing inputs. The results of these runs were entered into

a database. The database then became the source of the data points used by their

6The absolute number of correct classifications

54

2.3. Search Based Software Engineering

sequential covering algorithm. They present several rules generated by their algorithm

that the dynamic model predicts would have led to a 6% reduction in effort and a 9%

reduction in time.

Similar to this thesis, [6] investigated using data mining techniques for software

effort estimation. The work presented differs in a significant way from the current

work. In [6] a dynamic model is used to generate data, but there is no feedback from

the learner to the model. All records generated from the model are stored to a database

and then the learner works on those records, after the simulation has ended. They do

acknowledge that smaller rules should be preferred, but leave that advice to the user.

In other words, their learner does not systematically search for smaller solutions. They

also have the problem of needing to discretize the output parameters of the model for

their learner. Their solution is for the project manager to define a “cutting-section”.

The cutting-section defines the maximum allowed values for each of the three outputs

of the model (cost, development time, and quality). If any of the those three limits is

exceeded the record is labeled “bad”, otherwise the record is labeled “good”. Their

objective function (adapted from [4]) is slightly complex, taking into account the uni-

formity of the region, the coverage of the region, and the total hyper-volume7 of the

region. No attempt is made to demonstrate the superiority of the induced rules, rather

just a validation of the data mining technique. Other modeling work with software cost

7Called amplitude in the original paper

55

2.3. Search Based Software Engineering

estimation includes [37, 45, 120, 131].

Extreme sampling (discussed in §3.1.4) was developed independently of [4,6] and

follows a similar logic, but with a different motivation. The discretization methods

in [4, 6] are used to guide the search towards acceptable solutions, because business

restrictions made some solutions unacceptable. The extreme sampling discretization

method was developed to complement the search heuristic used by ITL. §3.1.4 contains

a fuller description of extreme sampling.

Other techniques not discussed in §2.1 and §2.2 are used in cost estimation. For

instance in [36] linear regression, neural nets8, and genetic programming were used

to build cost estimators. They studied 46 student projects developed by a total of 148

students. All projects were accounting information systems for hypothetical firms.

Different groups had different hypothetical firms with different requirements. In ad-

dition all the projects studied were developed in the same language. They found that

neural nets slightly outperformed GP, and linear regression performed slightly worse.

8Neural nets are a another machine learning technique not discussed in this thesis, see [60] for a
complete description.

56

2.3. Search Based Software Engineering

2.3.4 Requirements Engineering

Since all software projects have a limited set of resources (money, staff, hardware, etc.

), project managers must balance the expenditures of these resources to meet the spe-

cific goals of their projects. Additionally, it is an accepted fact that the earlier a fault

is discovered, the less costly it will be to correct it [18, 22, 85, 105]. For these two

reasons (and others) organizations have been spending more attention on the field of

requirements engineering (RE). Search techniques have not been applied to require-

ments engineering as extensively as they have been in other fields. For instance, [107]

does not even mention search-based techniques in its requirements engineering road

map. To pick an example from that road map, [142] discusses model building and

their argument for building models early in the requirements phase9. There is no dis-

cussion of, or even citation to, the application of search techniques to requirements

engineering.

This lack of a large body of work in applying search to RE does not reflect any

inherent inapplicability of search techniques to the problem of requirements engineer-

ing. Researchers in requirements engineering have already developed numeric metrics

that can be easily used as objective functions. Most of these are some combination

of projected cost of the project, risk inherent in the project, the value of the achieved

9As opposed to late in or after the end of the requirements phase

57

2.3. Search Based Software Engineering

requirements, defect injection rate, and expected development time. As in the field of

cost estimation, dynamic models can be used to model the interactions between the

elements a requirements engineer is trying to study. For example, DDP (see §4.1) is a

tool that facilities the development and analysis of risk-cost models.

The input space of a typical requirements problem is very large. Even if the input

vector is boolean, a few dozen requirements can not reasonably be searched exhaus-

tively. Some techniques have been explored, e. g. the Analytic Hierarchy Process [116]

and Multi-criteria Decision Making, that are solvable by analytic techniques. But these

techniques have some restrictions that limit their applicability. They have trouble deal-

ing with dependency and ordering properties of requirements and costs. The use of

dynamic modeling eliminates the possibility of using one of these analytic techniques.

But dynamic models can be used to capture complex features, such as interdependent

requirements or mitigations. The DDP tool already mentioned is capable of handling

such dependencies.

Finally it should be noted that model building can be quite expensive (see discus-

sion of DDP in §4.1), so developing high-quality solutions will help maximize the

return-on-investment.

Analytic Hierarchy Process The Analytic Hierarchy Process (AHP) [116] is a method

that uses pairwise comparisons to calculate the relative importance of any criterion. If

58

2.3. Search Based Software Engineering

n alternatives are possible, a square matrix of size n is built. Each element in the

matrix is the comparative importance of the alternative in the row to the alternative in

the column. If the alternative in the row is more important an integer [1,9] is used,

the reciprocals being used if the column is more important than the row. The ma-

trix should have 1’s along the diagonal. Various matrix operations are then performed

which lead to a relative ranking of the alternatives and a consistency ratio. Advocates

of the AHP claim that pairwise comparisons reduce the error common to this type of

human judgment, when compared to absolute scores [81].

Since there has been little work applying search, we will discuss some related work

on requirements engineering that doesn’t utilize search based techniques. [73] devel-

oped a cost-value technique that uses the AHP to inform managers of the most cost

effective requirements. They present two case studies from Ericsson Radio Systems,

a telecommunications manufacturer. They had a group of project members develop

the high level requirements for two projects (one currently in development, the other a

mature product that had already had three major public releases). The group then filled

in the pairwise matrix, first for the the value of each requirement, and then for the cost

of implementing those requirements. The different requirements were then plotted, on

a cost vs value graph. It is then very easy to see which requirements have the lowest

cost-to-value ratio and which have the highest. Dropping the three requirements (out

59

2.3. Search Based Software Engineering

of 14) with the highest ratios still captured 94% of the value for only 78% of the cost

in the first project; while dropping the three requirements (out of 11) with the highest

ratios in the second project led to 95% of the value for only 75% of the cost. This is a

archetypal example of requirements analysis balancing two or more competing goals.

A simple technique like AHP can be used with these examples in large part because

the models studied do not allow interdependencies. It is unlikely that it is possible for

a group of experts to develop a completely orthogonal set of requirements. Develop-

ing an orthogonal set of requirements will get more difficult as the set of requirements

grows larger10. In a later paper [72] they compare six different methods for prioritiz-

ing. None of the six techniques deal with the possibility of dependencies between the

requirements.

10Due to the exponential growth of the number of possible edges as the number of nodes increases.

60

CHAPTER 3

ELEMENTS OF ITERATIVE TREATMENT LEARNING

This chapter describes Iterative Treatment Learning (ITL) in detail. First we will dis-

cuss topics related to ITL’s use as a metaheuristic search technique (§3.1). Next we

will discuss topics related to ITL’s use as a model-based development tool (§3.2).

3.1 ITL as Search Technique

Iterative Treatment Learning has been previously introduced by Menzies et. al. [89,90].

But this previous work has not placed ITL in the context of metaheuristic search. This

section will introduce the reader to several important features of ITL as they relate to

ITL’s use as a metaheuristic search technique.

3.1.1 Search Components

ITL has the following three key steps

1. objective function evaluation

2. discretization

61

3.1. ITL as Search Technique

partial descriptionGF
input vector selection informed

by partial description

��

input selection
~i

// obj func
instance

set

// discretizer
instance

set

// learner

ED
new treatment

oo

Figure 3.1: Diagrammatic view of ITL

3. treatment learning

The three steps together make an iteration. Figure 3.1 shows these steps, as well as the

types of inputs to each step.

The objective function decodes candidate solutions and scores each instance ac-

cording to some criteria the user has decided on. As with the other search techniques

described, the only restriction on the form of the objective function is that it outputs

a single numeric value. Since treatment learning only targets ordinal target classes,

ITL must discretize the output of the objective function before calling the treatment

learner. The discretizer used by ITL will be discussed in §3.1.4. The treatment learner

is responsible for generating the small theories that ITL accumulates as the last step

of each iteration. It is the conjunction of these theories that constitutes ITL’s solution

when it finishes searching.

62

3.1. ITL as Search Technique

task number schedule position
task1 6
task2 7
task3 32
task4 2

. . .
taskn 41

Table 3.1: Complete description for a hypothetical scheduling problem

3.1.2 Solution Form

Recall from §2.1.5 that the theories returned by treatment learners comment on only

a few of the available attributes. This means that after several iterations the candidate

solution found by ITL does not comment on all the available attributes. We call this

a partial description. Contrast this with the complete descriptions returned by the

search techniques discussed in §2.2. These complete descriptions comment on all

the available attributes. For example, when solving a scheduling problem they would

return an exact schedule, like the one shown in Table 3.1. A partial description only

assigns values or ranges to some of the attributes. In the scheduling example a partial

description would resemble the one shown in Table 3.2.

We assert that these partial descriptions have value, particularly for management

decisions. Because partial descriptions don’t comment on all available attributes and

don’t necessarily assign a specific value to the attributes it does comment on, the de-

scriptions are intrinsically more flexible. If new design constraints arise at a later date,

63

3.1. ITL as Search Technique

task number schedule position
task1 6 ≤ p1 ≤ 10
task2 unassigned
task3 unassigned
task4 p4 > 36

. . .
taskn 40 ≤ pn ≤ 41

Table 3.2: Partial description for a hypothetical scheduling problem

they will be less likely to contradict a partial description. Put another way, if a single

attribute of a complete description cannot be assigned the way it was assigned in the

solution, there is no way to know its effect on solution quality without re-evaluating

the new solution and possibly conducting a new search. Since a change to the allowed

attribute values may not invalidate the entire region describe by the partial descrip-

tion, solutions in the set of solutions allowed by the partial description can still be

used. The difficulty of conducting a new search should not be understated. Expertise

in metaheuristic search is not likely to ever become a common skill among business

managers. If the expert who conducted the original search is not available to the busi-

ness user, a complete description that is no longer possible becomes worthless.

A possible drawback of partial descriptions is that, since they don’t describe a

single solution, but rather a set of solutions, the variance in that set could be so high

that the partial description is not usable. Without going into the particulars of feature

subset selection [55, 96, 139], the success of techniques that throw away attributes

64

3.1. ITL as Search Technique

before training on the remaining attributes is indisputable. Building theories without

commenting on all the available attributes is exactly what ITL does, so we have good

reason to conjecture that it is possible that the variance of partial descriptions will be

low. We investigate this conjecture in §4.4.

This concern may seem at odds with Miller’s work [100], which suggests that

removing attributes reduces the variance when using machine learners. But Miller is

concerned with the learned theories from machine learners and whether the exact form

of theories learned from different slices of the same data set will be similar to each

other. The variance in the theories is reduced because by removing attributes available

to the learner, the learned theory is less over-fit to the particularities of the data set. §4.4

investigates the variance of the performance of partial descriptions, not the variance of

the different partial descriptions themselves.

3.1.3 ITL’s Metaheuristic Search Characteristics

Since ITL is being presented as a metaheuristic search technique, ITL should also be

described in the same terms as the metaheuristic techniques presented in §2.2. Some of

the deficiencies mentioned in this section will be discussed further in chapter 8. These

characteristics are

1. global search strategy

65

3.1. ITL as Search Technique

2. neighborhood defined by partial description

3. solution is encoded as a conjunction of attribute-value pairs

4. no turning knob for exploration vs. exploitation

5. no explicit mechanism to escape from local optima

Since ITL initially samples from the entire search space and only modestly reduces the

size of the portion of that space each iteration, it should be considered a global search

strategy. Although the neighborhood of the current solution is never enumerated during

ITL’s search, it can be thought of as all possible solutions that agree with the current

partial description. This means that only points that agree with the current partial

description are explored in the next iteration. As discussed earlier in this chapter, the

candidate solution for ITL is encoded as a conjunction of attribute-value pairs. The

most undesirable characteristic of ITL at the current time is the absence of some way

to tune the exploration vs. exploitation trade-off to a specific domain. Nor is there any

way for the technique to dynamically adjust the trade-off during its search. Instead,

ITL becomes monotonically more exploitative as treatments are added to the candidate

solution and the search space is reduced in size each iteration.

Once a treatment is added to the partial solution there is no operation that might

remove that treatment, so there is no mechanism for ITL to escape from local optima.

This is not as big a problem for ITL as it for some other techniques, such as hill

climbing. Recall that hill climbing is a local search, therefore if a local optimum has a

66

3.1. ITL as Search Technique

first iteration
second iteration

third iteration
fourth iteration

Figure 3.2: Search space sampling

large basin of attraction any initial solution starting in that basin will get stuck in that

local optimum. ITL is a global search and hence is less suspectible to the presence of

local optimum. Furthermore, since each iteration only reduces the size of the search

space by a small amount (recall from §2.1.5 the small size of typical treatments), it

is unlikely that many near-optimal solutions will be excluded from the search. See

Figure 3.2 for a simple 2-D example of how the search space might be reduced during

a typical search by ITL.

3.1.4 Extreme Sampling

Treatment learners (§2.1.5) produces theories that predict for ordinal classes (discrete

classes that have an ordering), but since most useful objective functions produce real

valued outputs, ITL must have some type of discretization policy. Note that while

67

3.1. ITL as Search Technique

most discretization policies are applied to the input attributes, ITL needs a policy that

discretizes the target class.

The original ITL work on cost/benefit models used a striping discretization policy.

Four zones were demarcated by parallel lines drawn at 45◦ from the cost-axis. The

zones were given exponentially increasing values, going from high cost/low benefit

solutions to low cost/high benefit solutions. Figure 3.3 shows this policy graphically.

Note that the diagonal lines are lines of constant benefit-to-cost ratios.

2

1

0
0

be
ne

fi
t

costs 1

goal=<0,1>

2

8

4

16

Figure 3.3: Diagonal striping

In this thesis we introduce a new discretization policy called extreme sampling.

The intuition behind this idea is that, if treatment learning is going to be used as a

search heuristic, having multiple target classes is unnecessary. There are only two

classes, those that are close to the current best solution, good, and those that are not,

bad. We developed a two-step process that takes a set of output vectors, {~o}, and labels

68

3.1. ITL as Search Technique

some or all of them good or bad, shown in Figure 3.4. The first step is to take the n-

dimensional ~o and map it to a single real number. We choose the euclidean distance

function, which is simple and efficient and can work with any number of dimensions.

The value for each coordinate is normalized by the maximum value for that coordinate

to eliminate unit effects in the distance calculation. The distance is calculated from the

theoretical best solution, which in our cost-benefit model is the point (0, 1) in the cost-

benefit plane (remember our coordinates have been normalized at this point). Now the

distance values have to be mapped to our two classes, good and bad.

~o
objective // [0− 1] selector // good, bad

Figure 3.4: Extreme sampling

We developed three extreme sampling variants, which we call selectors, to map

the distance values to our two classes shown in Figure 3.5. Each of our selectors has

two control parameters, M and N. M is the batch size, i. e. the number of instances

generated during each iteration. The first selector we developed, Best Or REst, bore,

takes the N instances with the smallest distance and labels them good (shown in Fig-

ure 3.5a). The rest of the instances are labeled bad. After some initial experiments

we developed two additional selectors. bore′ (Figure 3.5b) puts N instances in the

good class and a random sample of N instances from the rest and puts them in the bad

69

3.1. ITL as Search Technique

class. It was thought this would allow M to be scaled up without increasing the run-

time needed by the underlying learner (since the learner would only see 2N instances,

instead of M instances). wob (Figure 3.5c), Worst Or Best, labels the N instances with

the smallest distance measure as good and the N instances with the largest distance as

bad. This selector was motived by the idea that the worst and the best instances might

have the greatest contrast. And similar to bore′, wob only passes 2N instances to the

underlying learner.

rest1

0
0

be
ne
fit

costs 1

goal=<0,1>
best

(a) bore

1

0
0

be
ne

fit

costs 1

goal=<0,1>
best sample

of rest

(b) bore′

best
1

0
0

be
ne
fit

costs 1

goal=<0,1>
worst

(c) wob

Figure 3.5: Three selectors developed

3.1.5 Search Strategy

In the original work on ITL it was imagined that a human expert would want to val-

idate each treatment. In keeping with recasting ITL as a search heuristic, no human

expert was used in the current implementation of ITL (see figure 3.1). Instead a simple

70

3.1. ITL as Search Technique

greedy strategy was used to decide what treatment to use at the end of each iteration.

The treatment learner suggests several treatments each time it is run, but ranks them

according to their lift (with ties being broken by support). The best treatment returned

by the treatment learner each iteration was used to constrain the next iteration. This

strategy is also a strictly forward search; there is no back-tracking currently in ITL.

Once a treatment is added to the partial description it cannot be removed by the search

strategy.

Investigation into alternative search strategies

Initially we were concerned that search strategies that explore more might perform

better than our simple greedy search. Therefore, we conducted a short study into

using two different strategies, benchmarking them against our greedy search. The first

alternative strategy completely ignored the current candidate solution when generating

half the instances during each iteration. For example, if the current batch size was 500,

250 instances would be generated according to the current partial description, while

another 250 would be drawn from the entire search space. The second alternative

strategy was designed to allow ITL to search through multiple hyper-rectangles in the

search space. At the end of each iteration, when the treatment learner returned several

treatments, instead of just using the top treatment, all treatments that had a lift (see

71

3.1. ITL as Search Technique

iteration1 iteration2 iteration3 iteration4

treatment1a
,,YYYYYYYY treatment2a

// treatment3a
,,YYYYYYYY treatment4a

treatment1b treatment2b
,,YYYYYYYY treatment3b treatment4b

treatment1c

55lllllllllllllll
treatment2c treatment3c

55lllllllllllllll

treatment1d treatment3d

Figure 3.6: Maintaining multiple lists of treatments. Notice that not all iterations find
the same number of treatments that pass the restriction for inclusion into the table.

§2.1.5 for a definition of lift) within 20% of the lift of the best treatment were written

to a list. Each iteration created a new list of treatments, and each list was remembered

for the entire search. Only points that passed at least one treatment from each of

the previous iterations were searched during the current iteration. Figure 3.6 shows

these lists with two example paths through the lists. Each path through the lists was

randomly generated, biased according the individual treatment’s lift.

This study utilized the circuit model, which has a cursory description below. For a

complete description of the model see [89].

Circuit model A qualitative model, previously developed in [89], was used to see

if either of the new strategies developed could outperform the original greedy search.

The model is built from switches, bulbs, openers and closers. A basic element was

built using three bulbs and three switches. Elements were then connected using the

openers and closers. The openers and closers connected a bulb from one element to

72

3.1. ITL as Search Technique

A

Sw1

B1 B2

B3

Sw2

Sw3

B

Sw1

B1 B2

B3

Sw2

Sw3

C

Sw1

B1 B2

B3

Sw2

Sw3

+

+

- -

Bulb Switch + Closer-OpennerKEY:

Figure 3.7: A qualitative network: Swi, Bi denote switches and bulbs. The network
repeats the structure three times with labels {A, B, C}. Between each repetition are
connectors that open or close switches depending on whether or not some bulb is lit or
dark.

a switch from another and forced the switch open or closed depending on whether

the bulb was lit or dark. Figure 3.7 shows a three element circuit. In this study we

used two different sized models, one with three elements and one with six elements.

In addition each model could be optimized in one dimension, maximizing the total

number of shining bulbs, or in two dimensions, maximizing the ratio of shining bulbs

to closed switches.

When compared to the original greedy search neither alternative strategy did well.

The greedy search converged faster in all four versions of the circuit model, and found

a higher quality solution in three of them.

Possible explanation for the performance of the greedy search Why does our

greedy search seem to work so well? Figure 3.8a is a depiction of our greedy search

73

3.2. ITL in Model Based Development

through the treatments returned by our learner. But this is not the only searching

being done by ITL. Recall from §2.1.5 that our treatment learner searches through

dozens or hundreds of potential treatments according to its own ordering heuristic,

lift1. Figure 3.8b is a depiction of ITL’s search including the heuristic search done by

the treatment learner in between each iteration. Because the lift1 heuristic works so

well and the treatment learner does its own searching according to this heuristic, the

search through the treatments can perform well without any additional exploring.

third iteration

second iteration

first iteration

(a) greedy search between iterations

search by treatment

second iteration

first iteration

greedy selection

search by treatment

search by treatment

third iteration

learner during

learner during

learner during

(b) search done by ITL including learner search

Figure 3.8: Different views of ITL’s search

3.2 ITL in Model Based Development

After putting ITL in a search context, we want to show how ITL can be used with

model based development, to search through the models generated according to this

development methodology. This section describes some of additional issues relating

74

3.2. ITL in Model Based Development

to ITL that come with using it in a model based environment.

3.2.1 Searching Through Models

With model based development, models are used by software engineering researchers

to investigate different problems in different stages of the software life cycle. Earlier

life stages might be modeled with a cost/benefit model, like DDP (described in §4.1),

or a quality model like COQUALMO [27]. Later life stages like testing might be

modeled with a digital logic circuit design (like these in §5.2). The purpose of using

a model is to find which input settings of the model lead to certain desired behaviors.

These inputs need to be controllable or observable quantities so that information gained

from exploring the model is actionable outside the model. For example, a researcher

might use a quality model to inform a business manager of the minimum level of

expertise needed by a development team to reach an acceptable level of quality. Or a

researcher might use a cost/benefit model to develop a plan that balances the projected

cost of a project with its projected value.

Using ITL for early stage life cycle models can also reduces one of the potential

drawbacks of ITL’s partial descriptions. The earlier a model is constructed the more

75

3.2. ITL in Model Based Development

likely there will be changes before project completion. But since the earlier poten-

tial problems are found the greater the saving, postponing analysis would be a self-

defeating solution. So the uncertainty inherent in ITL’s solution due to the variance of

a partial solution will be partially washed out by the uncertainty in the initial estimates

made during model construction.

But what if the model has many uncertain inputs? This is when reformulating

the original software engineering problem as a search problem is most useful. The

model now becomes something that is executed thousands (or hundreds of thousands)

of times, rather than something used to evaluate a single set of input values.

3.2.2 ITL as Model Controller

If we want to use ITL as a model controller to use with model based development,

some changes have to be made in how ITL is implemented. Using ITL to control model

execution breaks the objective function into two parts (see Figure 3.9). The objective

function doesn’t decode the candidate solutions, instead the model takes the candidate

solution as an input vector and returns an output vector. The objective function takes

that output vector and returns a single numeric value. The reason we do this has to do

with the assumptions we make about the model (which will be discussed in §3.2.3).

Now the theories returned by the treatment learner are used to restrict which input

76

3.2. ITL in Model Based Development

partial
descriptionGF

input vector selection informed

by partial description

��

learner
new

treatment

oo

input
selection

~i
// model

~o
// obj func

instance

set

// discretizer

instance set

OO

Figure 3.9: Diagrammatic view of ITL as a model controller

vectors are given to the model. Again, when ITL finishes searching, the conjunction

of these theories constitutes ITL’s solution.

3.2.3 Models

There are a few important assumptions we made about the models that would be used

with ITL, which are

1. they have a well-defined input vector,~i, that can be supplied by ITL

2. they are black boxes, i. e. their internals can not be modified

3. they have a well-defined output vector, ~o, that can be accessed by ITL

ITL must be able to control the region sampled by the model, so there must be some

mechanism for ITL to direct the selection of input vectors. For example, the models

used in chapter 4 can be given a file listing the points in the input space that should

be visited, so ITL only has to generate that file in the correct format. Since ITL must

have a low overhead for use, it cannot need access to any model’s internals. This way

the model can simply be a pre-compiled application. This greatly lowers the cost of

77

3.2. ITL in Model Based Development

using ITL with a model developed without any consideration given to the possible use

of ITL. Finally the model must have an output that can be accessed by ITL, because

the learner and discretizer must be able to read all the points generated by the model.

The model could output something to the file system in a format that can be decoded

by ITL, for instance.

78

CHAPTER 4

REQUIREMENTS ENGINEERING

The main case study presented in this thesis uses ITL to optimize cost/benefit models.

In this chapter we describe our models and their execution framework, DDP, (§4.1),

investigate the effect of different parameter settings on the performance of extreme

sampling (§4.2), investigate the stability of the partial descriptions (§4.3), investigate

the variance of the partial descriptions (§4.4), compare the performance of the orig-

inal discretization policy with extreme sampling (§4.5), compare the performance of

extreme sampling with the original simulated annealer in DDP (§4.6), and summarize

the lessons learned from this study (§4.7).

4.1 Defect Detection and Prevention

The case studies in this chapter use models developed with the Defect Detection and

Prevention (DDP) [34, 42] application. To familiarize the reader with this application,

this section will describe DDP.

DDP is used at NASA’s Jet Propulsion Laboratory to record a group’s qualitative

79

4.1. Defect Detection and Prevention

knowledge about design options of future deep-space satellite missions, their associ-

ated risks, and the costs of mitigations that can reduce those risks.

In DDP, a “design” is a decision about which set of mitigations to apply. One such

“design” is better than another when it costs less, reduces the risks more, or achieves

more requirements than some alternative design.

The design of DDP reflects the reality of group decision-making at JPL. Six to

twenty experts are gathered together for short, intensive knowledge acquisition ses-

sions, typically three or four half-day sessions. These sessions must be short since it is

hard to gather together these busy experts for more than a very short period of time.

In those sessions, the DDP tool supports a graphical interface for the rapid entry

of the assertions. Such rapid entry is essential, lest using the tool slow up the debate.

Assertions from the experts are expressed by using an ultra-lightweight decision on-

tology. The ontology must be ultra-lightweight since:

• Only brief assertions can be collected in short knowledge acquisition sessions.

• If the assertions get more elaborate, then experts may be unable to understand
technical arguments from outside their own field of expertise.

• Design rationale research cautions against elaborate notation languages since
they can confuse the users [103]. Successful rational languages (e.g. QOC [121],
DDP, etc.) all use very simple notations.

Hence, DDP assertions are either:

80

4.1. Defect Detection and Prevention

• Requirements (free text) describing the objectives & constraints of the mission
and its development process;

• Weights (numbers) of requirements, reflecting their importance;

• Risks (free text), i.e. events that damage requirements;

• Mitigations (free text) describing actions that can reduce risks;

• Costs (numbers) of mitigations, i. e. the repair costs for correcting risks with
these mitigations;

• Mappings that connect requirements, mitigations, and risks; or

• Part-of relations, which structure the collections of requirements, risks and mit-
igations.

This ontology is deliberately quite restrictive but even in this limited form, it has

been useful for structuring and simplifying debates between NASA experts. For exam-

ple, DDP has been applied to over a dozen applications to study advanced technologies

such as (1) a computer memory device; (2) gyroscope design; (3) software code gener-

ation; (4) a low temperature experiment’s apparatus; (5) an imaging device; (6) circuit

board like fabrication; (7) micro electromechanical devices; (8) a sun sensor; (9) a mo-

tor controller; (10) photonics; and (11) interferometry. The DDP sessions have found

cost savings exceeding $1 million in at least two of these studies, and lesser amounts

(exceeding $100,000) in the other studies. These meetings have also generated numer-

ous design improvements such as a savings of power or mass and a shifting of risks

from uncertain architecture to better understood design. Also, at these meetings, some

non-obvious significant risks have been identified and mitigated.

Specifically in this thesis, we will study three DDP models: aero , holo , and cob.

81

4.1. Defect Detection and Prevention

Full details of these models cannot be disclosed (since they are proprietary) but some

brief notes follow.

Aero is a “portfolio” level-model, where each of the mitigations is a research pro-

gram rather than an activity. The overall aero program was a complex system involv-

ing hardware, software and operators. Further, the risks (challenges) described in aero

span technical and organizational concerns.

Cob and holo are two non-portfolio models. Both are examples of JPL Technology

Infusion Maturity Assessment (TIMA) studies. Such TIMA sessions involve over a

dozen stakeholders whose total experience spans the domains of systems engineering,

space experiments, avionics, materials, packaging, manufacturing, testing, experimen-

tal design, failure analysis, quality assurance, mission technologies, MEMS research,

and program management. A typical TIMA session might call together a set of stake-

holders to discuss whether or not the MEMS technology was suitably mature and ap-

propriate for the intended applications, and to construct a cost-effective development

and testing plan. Specifically, holo was a study to identify risks that would arise in

maturing a particular piece of technology to flight readiness.

After a model is developed, the major design decision is what set of mitigations to

apply. Recall that mitigations cost money and affect the total benefit of a project1. The

1Some mitigations decrease the expected benefit in some way, e. g. increased vibration testing might
damage circuit boards

82

4.2. Investigating Different Extreme Sampling Policies

goal then is to balance cost and benefit. This will be our main performance metric. The

holo, aero, and cob models have 99, 83, and 58 mitigations respectively. This leads

to design spaces with a cardinalities of 1029, 1024, and 1017 respectively. Clearly then,

the set of possible designs can not be exhaustively searched, or even enumerated.

Note that DDP can model interdependency between the objectives and mitigations.

Recall from §2.3.4 that some earlier work on prioritizing requirements (which is just

a different terminology for objectives) [73] used a simpler matrix based approach that

could not capture interdependencies.

4.2 Investigating Different Extreme Sampling Policies

Since this is the first use of extreme sampling we wanted to investigate the effects of

different parameter settings on solution quality. This study made use of the three DDP

models discussed in §4.1. Recall from §3.1 that our discretization method uses two

parameters; M , which controls the length of the iteration, and N , which controls how

the instances are labeled good and bad. Also recall from §3.1 that we formulated three

different selectors. We investigated different values of these control parameters to see

what effect they had on the performance of ITL. Previous informal work had suggested

M could be in the hundreds, so we used M equal to 100, 300, and 500. For the value

of N we used 25, 50, and 75, although the case where M = 100, N = 75 was omitted

83

4.2. Investigating Different Extreme Sampling Policies

because for the wob selector it was unclear how to handle cases when N > M
2

. We used

all three selectors in this study to see if they effected the performance of ITL. This gives

us 24 ((3 ∗ 3− 1) ∗ 3) different parameter combinations. Each parameter combination

was used to optimize each model, giving us 72 parameter-model combinations. Finally

we ran ten trials for each of the 72 different parameter-model settings, to give a total

of 720 data sets. Each trial in this study was run for 10 iterations and then stopped; we

did not investigate formulating an automatic stopping condition. The total time needed

to collect these data sets was about 5 weeks, running on two single processor desktop

Windows © machines.

4.2.1 Comparison Methodology

When attempting to compare two techniques it can be difficult to define what metric

should be used for comparison. In this section we use delta comparisons. A delta is

the simple difference between any two trials that are different according to the effect

being isolated, but have the same value for all other parameters. The metric used for

this difference is the normalized euclidean distance (from §3.1.4). Using this metric

allows deltas from different models to be compared, since our euclidean distance func-

tion normalizes each coordinate. Also, since ITL attempts to minimize this distance

function, it would not be useful to then study ITL’s performance according to another

84

4.2. Investigating Different Extreme Sampling Policies

metric. When we present the deltas that highlight the effects of M , for example, three

lists of deltas are made, one each for the three different settings of M studied. The

deltas for M = 100 are calculated by comparing each trial where M = 100 with every

other trial where M 6= 100, when the other three important parameters are the same

(N , selector, model). This isolates the effect of M from the effect of the other param-

eters. All deltas for M = 100 are added to the same list so that we can see the effect

of M across all the other parameter settings. The lists of deltas are then sorted, so that

we can identify the quartiles. Positive deltas indicate that the setting being isolated

outperforms the other possible settings, whereas a negative delta indicates that the set-

ting is outperformed by the other possible settings. In this section we present only the

median results for space reasons. The 1st, 2nd, and 3rdquartile plots can be found in

appendix A.1.

We prefer this method to admittedly simpler statistical methods, because this method

is non-parametric, i. e. it makes no assumptions about the form of the underlying data.

For example, the commonly used t-tests are a parametric method that assume that the

underling population distribution is Gaussian. Recent results suggest that there are

many statistical issues left to explore regarding how to best to apply those t-tests for

summarizing cross-validation studies [20].

85

4.2. Investigating Different Extreme Sampling Policies

4.2.2 Experimental Effects of M

In this section we present the results of our trials with the effects of M isolated. First,

we will discuss the comparative performance of the three M values studied by plot-

ting their performance after certain numbers of iterations had been completed by the

search, i. e. after certain search depths had been reached by ITL. This comparison is

shown in Figure 4.1. Second, we will discuss the comparative performance of the

three M values studied by plotting their performance after certain numbers of points

had been generated by the dynamic model, i. e. after certain numbers of evaluations of

the objective function. This comparison is shown in Figure 4.2.

Figure 4.1 shows the median deltas after the trials had completed 3, 5, 8, and 10

iterations. It is clear that the trials with larger M values perform better than those with

smaller M values. M = 500 outperforms M = 300, which outperforms M = 100,

and the magnitude of this difference increases through all ten iterations. Examining

Figure A.1 demonstrates that the difference between the 1stand 3rdquartiles is even

larger for small numbers of iterations completed, but the differences between the M

values decreases after 5 to 8 iterations. This suggests that searches with small M

values are not getting stuck in local optima, but require more iterations to construct

high quality-partial descriptions.

Of course it should not be surprising that a search with a much larger batch size

86

4.2. Investigating Different Extreme Sampling Policies

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

10853

re
la

tiv
e

de
lta

search depth

median delta

M=100
M=300
M=500

Figure 4.1: Effects of batch size, M , versus search depth

finds higher quality solutions. But given a fixed number of objective function evalu-

ations, does ITL perform better by learning over many small batches or a few large

batches? Figure 4.2 shows the median deltas after 300, 600, 1000, 1200, 1600, 1900,

2400, 2900, and 3500 evaluations of the objective function. These values correspond to

iteration (learning) boundaries for M values of 300 and 500. Notice that the M = 100

and M = 300 lines do not extend to the right side of the graph. Recall that each trial

was run for 10 iterations, so trials with M = 100 only evaluated the objective function

1000 times. Hence the M = 100 line stops at 1000 objective function evaluations and

the M = 300 line stops at 3000 objective function evaluations. It is clear from this

figure that for a fixed number of objective function evaluations, ITL performs much

87

4.2. Investigating Different Extreme Sampling Policies

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

3529241916121063

re
la

tiv
e

de
lta

objective function evaluations x 100

median delta

M=100
M=300
M=500

Figure 4.2: Effects of batch size, M , versus objective function evaluations

better by learning over a larger number of smaller batches. The M = 100 trials sig-

nificantly outperform the two other M settings, and the M = 300 trials outperform

M = 500, although to a lesser degree.

4.2.3 Experimental Effects of N

In this section we present the results of our trials with the effects of N isolated, shown

in Figure 4.3. The graph showing performance versus search depth is the only graph

shown because the value of N does not effect the number of times the objective func-

tion is evaluated. For this parameter the effect is not so pronounced. While N = 25 is

88

4.2. Investigating Different Extreme Sampling Policies

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

10853

re
la

tiv
e

de
lta

search depth

median delta

N=25
N=50
N=75

Figure 4.3: Effects of good/bad ratio, N

clearly an underperformer, the magnitude difference between N = 50 and N = 75 is

not so large, with N = 75 being slightly higher performing. This difference in perfor-

mance shows that it is important for there to be enough instances labeled good for the

treatment learner to find useful contrasts between the good and bad instances.

4.2.4 Experimental Effects of M/N Combinations

In this section we present the results of our trials with respect to M/N combinations.

As in §4.2.2, we first show the deltas after certain numbers of iterations (Figure 4.4),

and after a certain number of objective function evaluations, (Figure 4.5). Note that

89

4.2. Investigating Different Extreme Sampling Policies

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

10853

re
la

tiv
e

de
lta

search depth

median delta

 100-25
 100-50
 300-25
 300-50
 300-75
 500-25
 500-50
 500-75

Figure 4.4: Effects of M/N combinations, versus search depth

lines with the same M value have the same line style (light dashed, dark dashed, light

solid), while lines with the same N value have the marker (asterisk, X, or cross).

The most interesting effect in Figure 4.4 is that while 500/75 and 500/50 (light

dashed with an asterisk or X) clearly outperform the other combinations, 300/75 and

300/50 (dark dashed with an asterisk or X) out perform 500/25 (light dashed with a

cross). In fact, 500/25, 300/25, and 100/50 all perform at about the same level, with

100/25 significantly underperforming compared to all other M/N values. This shows

that having a large batch size is important to performance, but almost as important is

to have a large enough fraction of the instances labeled good.

Figure 4.5 repeats the result from Figure 4.2; using smaller batch sizes for a fixed

90

4.2. Investigating Different Extreme Sampling Policies

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

3529241916121063

re
la

tiv
e

de
lta

objective function evaluations x 100

median delta

100-25
100-50
300-25
300-50
300-75
300-25
500-50
500-75

Figure 4.5: Effects of M/N combinations, versus objective function evaluations

number of objective functions evaluations leads to a higher quality solution. Figure 4.5

also shows that this effect is more important than the value of N , since the lines with

the same M value (same color) cluster together.

4.2.5 Experimental Effects of Selector

In this section we present the results of our trials isolating the effects of the selector

used, shown in Figure 4.6. Recall that wob was an attempt to maximize the contrast

between the good and bad instances, while both wob and bore′ pass only 2N instances

to the learner rather than M instances (in our study it is always the case that M > 2N).

Figure 4.6 clearly shows that wob is an underperformer in our study. The difference

91

4.2. Investigating Different Extreme Sampling Policies

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

10853

re
la

tiv
e

de
lta

search depth

median delta

BOR
BOR’
WOB

Figure 4.6: Effects of selector

between bore and bore′ is smaller, but bore performs slightly better than bore′. wob’s

inferior performance can likely be attributed to the same cause as the inferior perfor-

mance of the smaller values of N . There must be a certain amount of contrast between

the good and bad classes for ITL to build useful partial descriptions. Small values of

N reduce the amount of useful contrast by reducing the number of good of instances.

Since the wob selector lowers the performance of ITL, we conjecture that there is use-

ful information being hidden by only passing on the worst instances to the learning

stage of ITL. In other words, we conjecture that the bad instances used by wob are

more similar to each than the bad instances used by bore′. It is this similarity that re-

duces the ability of the treatment learner to find highly valuable treatments. Since the

92

4.3. Stability of Repeated Trials

bore′ selector also performs worse than the bore selector, we can conjecture that the

smaller number of instances utilized by the wob selector is also partially responsible

for its degraded performance, but since the wob selector performs significantly worse

than the bore′ selector, the primary reason is likely the exact nature of the instances

utilized. The difference between the N instances with lowest distance score and the N

instances with the highest distance score seems to be smaller than the difference be-

tween the best N instances and the N instances spread out among the M−N instances

picked by bore′.

4.3 Stability of Repeated Trials

The last section showed the performance of our different trials aggregated across all

ten trials. But are we sure that ITL produces stable results? If, in a time sensitive

setting, we run only one trial, can we be sure that the solution found by this trial won’t

be significantly outperformed by another run. In this section we present the results

previously discussed by displaying the search trajectories for all ten trials. A search

trajectory is the path the search takes through the output space. The outputs from DDP

are cost and benefit, so the search trajectory can be plotted as 2-D line. The x-axis

is the normalized mean cost and the y-axis is the normalized mean benefit. These

means were calculated by averaging the costs and benefits of the instances that were

93

4.3. Stability of Repeated Trials

generated by DDP each iteration. Hence each point represents one iteration. The lines

are the successive iterations from a single trial.

Since we can not aggregate this data across models or selectors, as we did in the last

section, this section will not present the results of all parameter-model combinations.

Instead we will focus on the trials with M/N values of 500/75 and the bore selector,

since these were the best combinations found in §4.2. When there is something inter-

esting to comment on, other combinations or selectors will be discussed. See §A.2 for

a complete listing of the results from this section.

The rest of this section will break down the results by model, first aero, then holo

and finally cob.

4.3.1 aero

First we present some results from the aero model. We display the 500/75 and 500/25

trials using the bore selector in Figure 4.7. First note that both combinations shown

find the same approximate benefit ceiling, slightly above .55 units. But the superior

performance of 500/75 is evident. More trials find a lower cost, between .42 and .44

units, and if you look closely at the point (.45,.20) on the 500/25 graph there is an

outlier which did not find the benefit ceiling (the trial represented by the plus sign).

Examining the results from all combinations with the bore selector, we see the

94

4.3. Stability of Repeated Trials

500-75 500-25

Figure 4.7: Stability of cost and benefit in the aero model with the bore selector

same pattern as the performance based comparison demonstrated in §4.2. Larger val-

ues of M show less variability run-to-run than do smaller values. But a large value of

M coupled with a small value of N (like the 500/25 graph in Figure 4.7) does poorly

when compared to medium values of M coupled with large values of N (specifically,

the 300/75 trials show less variability than the 500/25 trials, see Figure A.7). We can

also see a model specific pattern in these comparisons. The final average benefit of the

partial descriptions is very similar for almost all M/N combinations; the performance

difference in the trials comes almost entirely from their differing costs.

Figure 4.8 displays the same M/N settings as Figure 4.7, but from trials with the

wob selector. Figure 4.8 clearly shows the inferior performance of the wob selector

that we discussed in §4.2. These graphs also clearly shows that in addition to inferior

performance, the wob selector also has a lower stability in solution quality. The end of

95

4.3. Stability of Repeated Trials

500-75 500-25

Figure 4.8: Stability of cost and benefit in the aero model with the wob selector

points of the trajectories have significant outliers for all parameter settings shown, even

for the parameter combination that showed the most stability with the bore selector

(500/75). The difference between 500/75 and 500/25 is also greater with the wob

selector, suggesting that wob is more sensitive to changes in the M/N values.

4.3.2 holo

There was much less variation between the three different selectors in the holo model.

Therefore, we only present the results of using the bore selector. Figure 4.9 shows the

trials that used M/N combinations of 500/75 and 500/25 with the bore selector. The

endpoints of the 500/75 trials are much closer together and this is a pattern repeated

for all values of M in the holo model. Notice that trajectories follow different paths

96

4.3. Stability of Repeated Trials

500-75 500-25

Figure 4.9: Stability of cost and benefit in the holo model with the bore selector

through the cost/benefit plane, unlike the trajectories in Figure 4.7 which all followed

the same path. All trajectories lowered the average cost during each iteration, but some

initially raised the average benefit, while some lowered the average benefit.

4.3.3 cob

Finally we present some results from the cob model. The cob model shows even less

variability between the trials than the holo model, for different M/N combinations

and for the different selectors. To illustrate the similar variance, Figure 4.10 shows the

M/N values 500/75, 500/25, 100/50, and 100/25, all from the bore selector. There

is little to no difference between the 500/75 and 500/25 trials and while the 100/50

trials cluster at a slightly higher cost, the trajectories do not show any more variability

97

4.3. Stability of Repeated Trials

than the trajectories for the 500/75 combination. The 100/25 combination, which has

been the worst performer in all comparisons shown as far, shows a wider spread of

trajectories, but still clusters tightly after ten iterations. In particular notice how tightly

clustered all the trials are for 500/75.

500-75 500-25

100-50 100-25

Figure 4.10: Stability of cost and benefit in the cob model with the bore selector

98

4.4. Variance of Partial Descriptions

4.4 Variance of Partial Descriptions

In §4.3 we looked at the variability between each trial; in this section we will look at

the variability within the trials. Recall from §3.1.2 that a partial description actually

forms a set of solutions, comprising all solutions that pass the treatments in the par-

tial description. These solutions will naturally be scored differently according to the

objective function. A key question then is: what amount of variability can we expect

from a partial description returned by ITL?

To address this question we present some results that show the estimated variance

based on the standard deviation of the points generated during each iteration. The

figures in this section show the average cost and benefit side by side. The averages

were calculated in the same way as in §4.3, with a small amount of horizontal jitter

added to separate the ten different trials. The standard deviation of the points in each

iteration are shown as error bars. Also as in §4.3, we will focus on the results from the

500/75 combination and the bore selector. §A.3 has a complete set of results.

4.4.1 aero

Figure 4.11 displays the per-iteration average of the 500/75 combination for the bore

and bore′ selectors. The wob selector (shown in §A.3), which has been shown to find

99

4.4. Variance of Partial Descriptions

bore
cost benefit

bore′

cost benefit

Figure 4.11: Cost and Benefit in the aero model with M/N values set to 500/75. Error
bars represent the standard deviation of the points in each iteration.

lower quality solutions, also has a much higher variance due to the partial description.

This is in line with the results from §4.2 and §4.3 which also showed similar poor

performance (according to the criteria used in those sections) of the wob selector.

Looking at the bore and bore′ results we see some of the patterns seen in §4.2

and §4.3 repeated and some contradicted. Using the bore selector it appears the least

variable trials are from the combinations where N = 75. Both the M = 500 and M =

100

4.4. Variance of Partial Descriptions

300 cases (the M = 300 cases can be found in §A.3) have only one outlier that takes

3-5 more iterations to converge to the average benefit seen in the other nine trials.

But after these “late” trials do converge they have small standard deviations similar to

the other trials. This is similar to the pattern we saw in §4.2 and §4.3 where N = 25

combinations are underperformers compared to N =75 combinations.

Something that we have not seen in previous sections is the apparently superior

performance of the bore′ selector for M = 500 combinations. Figure 4.11 shows faster

convergence in the average benefit, as well as lower variance. It is not clear why this is

the case for this particular model, because this pattern is not seen in the other models

(discussed below).

4.4.2 holo

For the holo model all three selectors show a similar pattern of decreasing variance,

therefore we will only display the bore selector. Figure 4.12 shows the 500/75 and

500/25 combinations. This figure shows an extremely low variance in the cost, with a

decreasing, but higher variance in the benefit, for the 500/75 combination. The 500/25

has a higher variance in both the average cost and average benefit. The M = 300 cases

are similar and the M = 100 cases show a significantly higher variance, particularly

in the average benefit.

101

4.4. Variance of Partial Descriptions

500-75
cost benefit

500-25
cost benefit

Figure 4.12: Cost and Benefit in the holo model with the bore selector. Error bars
represent the standard deviation of the points in each iteration.

4.4.3 cob

The cob model seems to have a particularly low variance inherent in its structure. This

is similar to the high stability we saw in the cob model in §4.3. For all selectors and

all combinations the variance in both the average cost and benefit quickly diminishes

and by the fourth to sixth iteration is quite low. The bore and wob selector are shown

in Figure 4.13 to demonstrate how the usually underperforming wob selector has the

102

4.4. Variance of Partial Descriptions

bore
cost benefit

wob
cost benefit

Figure 4.13: Cost and Benefit in the cob model with M/N values set to 500/75. Error
bars represent the standard deviation of the points in each iteration.

same level of variance as the bore selector. Both selectors show a steadily reducing

variance as the search proceeds, with the cob selector taking just 1-3 more iterations

for the variance in the average cost to reach the level seen in the bore selector.

The familiar patterns, with regard to the M/N values, from §4.2 and §4.3 are

seen in the cob results, although with reduced significance. That is, we see higher

variance in lower values of M and in the lower values of N , but the 300/75 combination

103

4.5. Extreme Sampling Performance Compared to Diagonal Striping

performs slightly better than the 500/25 combination.

4.5 Extreme Sampling Performance Compared to Diagonal Striping

Having investigated the performance characteristics of extreme sampling in §4.2 -

§4.4, this section compares the performance of extreme sampling with the previous

discretization method. As mentioned in §3.1, the original discretization method used

with ITL [26,43,89] was a diagonal striping discretization. We will compare this older

method with our best-performing extreme sampling method, i. e. the bore selector

with M/N set to 500/75. Figure 4.14 compares diagonal discretization with the bore

method as a reminder from §3.1.

2

1

0
0

be
ne

fi
t

costs 1

goal=<0,1>

2

8

4

16

rest1

0
0

be
ne
fit

costs 1

goal=<0,1>
best

Figure 4.14: Diagonal striping and bore

Figure 4.15 shows the search trajectories for diagonal striping and bore discretiza-

tion in the aero and holo models. For the bore trajectory this figure uses the best of

104

4.5. Extreme Sampling Performance Compared to Diagonal Striping

Figure 4.15: Comparison of bore to diagonal striping

the ten trials from each of the models, based on benefit/cost ratio. For the diagonal

trajectory this figure uses the best of the 30 trials from each of the models, based on

benefit/cost ratio. In addition, the original diagonal experiments required batch sizes

(i. e. the value of M) of 2000. Even with this larger batch size and more trials to choose

from, Figure 4.15 makes it clear that bore outperforms diagonal striping significantly

in both models shown.

For the aero model, bore found a solution with a much higher expected benefit

and a slightly lower cost. In the holo model, bore found a solution with a much lower

cost and only a slightly lower expected benefit. Table 4.1 gives the exact values of the

endpoints for the cost, benefit, and normalized benefit/cost ratio.

105

4.6. Extreme Sampling Performance Compared to Simulated Annealing

bore diagonal
model cost benefit normalized ratio cost benefit normalized ratio

aero .366 .569 1.55 .392 .392 1.00
holo .198 .0869 .439 .343 .0898 .262

Table 4.1: Normalized benefit/cost ratios in bore and diagonal striping

4.6 Extreme Sampling Performance Compared to Simulated Annealing

So far in this chapter we have investigated the performance characteristics of extreme

sampling using different parameters and compared extreme sampling to our previous

discretization method, diagonal striping. In this section we will compare ITL to the

previously used search strategy, simulated annealing (see §2.2.2 for a description of

simulated annealing).

Original Search Technique Used by DDP As part of the DDP environment a sim-

ulated annealer can be used to maximize the benefit/cost ratio. In DDP’s simulated

annealer, the current best solution is mutated as follows. The candidate solution is a

boolean vector representing whether to apply each mitigation. Each boolean has a 10%

chance of flipping to the other boolean value. The user specifies the number of objec-

tive function evaluations desired so DDP can automatically set the cooling schedule.

106

4.6. Extreme Sampling Performance Compared to Simulated Annealing

Comparison of ITL to Simulated Annealing Figure 4.16 shows the trajectories of

DDP’s simulated annealer using 30,000 objective function evaluations, and the trajec-

tories of the best trial using the bore selector with M/N values of 500/75. (Hence

5000 objective function evaluations were done during the bore search.) Table 4.2 lists

the normalized endpoints of the six different searches in Figure 4.16. (Remember that

the normalized benefit/cost ratio is our objective function.) We can see that extreme

sampling outperforms SA in the cob model, finds a solution with almost the same value

for the objective function for the aero model, and underperforms on the holo model.

Notice also that ITL seems to systematically find solutions with higher benefit

and cost (with the exception of the cost of the solution found for the cob model). In

personal communication with an experienced DDP user it was suggested that this was

due to the nature of a typical DDP model. A typical DDP model has some high-cost

mitigations with large benefits and many more low-cost mitigations that have small

benefits. The simulated annealer can find a subset of low-cost mitigations that together

have a high benefit. But this subset will likely be much larger than a few treatments

(as previously discussed, ITL uses treatments with a maximum size of five attribute-

value pairs). Since ITL only searches one treatment deep per iteration, it cannot find

this type of subset. Instead the treatment learner finds the few mitigations that most

greatly effect the normalized ratio. But obviously this search bias does not stop ITL

107

4.6. Extreme Sampling Performance Compared to Simulated Annealing

Figure 4.16: Comparison of bore to SA

108

4.7. Conclusions from the DDP Studies

bore SA
model cost benefit normalized ratio cost benefit normalized ratio

aero .366 .569 1.55 .302 .482 1.60
holo .198 .0869 .439 .153 .0845 .552
cob .197 .829 4.21 .220 .776 3.53

Table 4.2: Normalized benefit/cost ratios in bore and SA

from finding high quality solutions, as discussed in the previous paragraph.

4.7 Conclusions from the DDP Studies

This chapter has used requirements engineering to investigate several important char-

acteristics of ITL. First we investigated different possible policy settings to extreme

sampling, a key part of ITL. Then we compared ITL’s performance with extreme sam-

pling to its performance with diagonal striping. Lastly, we compared the performance

of ITL with extreme sampling to simulated annealing, a well studied and frequently

used metaheuristic search technique.

There are several conclusions we can draw from all these experiments. Extreme

sampling works best with the bore selector. While we hoped that bore′ or wob could

be used to reduce the amount time needed by the learner, by reducing the number of

instances trained on, both bore′ and wob caused a degradation in the performance of

ITL when compared to the bore selector. Our intuition that the wob selector might per-

form better by highlighting the difference between the instances with a high objective

109

4.7. Conclusions from the DDP Studies

score and those with a low objective score also turned out to be incorrect.

Learning on large batch sizes positively effects solution quality when the search

is iteration limited, but if the search is limited by the number of times the objective

function can be evaluated, smaller batches positively effects solution quality. The

experiments in this chapter did not use a wide enough range of M values to hint at

the value of M at which ITL’s performance stops increasing with increasing values of

M .

We found that reducing the number of instances labeled good negatively affects

solution quality. Extreme sampling needs a certain percentage of instances in each

iteration to be labeled good. The ratio of N to M appears to be at least 15% to 25%

(75/500 to 75/300). The experiments in this chapter did not use a wide enough range

of N values to hint at the upper limit to this ratio.

Sections 4.3 and 4.4 demonstrated that ITL with extreme sampling has both sta-

ble performance (restarting a search does not significantly change the performance of

the method) and that the variance inherent in partial descriptions is low after several

iterations.

In §4.5 we demonstrated the clear superiority of the bore version of extreme sam-

pling to our previous discretization method, diagonal striping. Averaged over the two

models, bore found a solution with an objective score 161% of the average found by

110

4.7. Conclusions from the DDP Studies

diagonal striping.

Finally §4.6 showed that extreme sampling can find higher, equal, or lower quality

solutions than simulated annealing, but in many fewer objective function evaluations.

Averaged over the three models, ITL found a solution with an objective score 98.6%

of the average found by the simulated annealer.

The next set of case studies have to do with the SPY framework. Like ITL, SPY

finds range restrictions to model input variables by using a treatment learner. However,

SPY takes a different approach to integrating the search algorithm with the model. The

models used by SPY are written in the SPY language, which was specifically designed

to make the model-learner interface as smooth as possible. These studies highlight a

problem we discussed earlier in §2.3.1; using a nearly continuous objective function is

critical for a metaheuristic search to be successful. Chapter 5 will use SPY to validate

temporal properties in NASA flight models and chapter 6 will investigate restricting

the behavior modes of biomathematical models.

111

CHAPTER 5

MODEL PROPERTY CHECKING

In the last chapter we saw how ITL with a new discretizer was able to perform at the

same level as a well respected metaheuristic technique. An important feature of that

work was the continuous nature of the objective function used by ITL (the normalized

benefit/cost ratio). In this chapter and the next we will present results from experiments

using the SPY framework (described in §5.1), which will demonstrate how important

this feature is.

The first case study with SPY uses NASA flight models. We attempt to verify

temporal model properties in production flight models used by NASA contractors.

Property validation was the original motivation for developing the SPY framework.

Although there have been several breakthroughs in static verification and validation

(V & V) techniques such as model checking, the usefulness in verifying properties

of software systems has been limited because important classes of software systems

involve large input domains (e. g. unbounded integer variables and real valued vari-

ables) as well as interrelated numeric constraints over the variables in the input domain.

112

These characteristics severely limit the usefulness of verification techniques like model

checking. There are several modifications to model checking that can be used to allow

model checkers to work with models that have unbounded numeric inputs. Bounded

model checking [15,30] can be used to check a model with discrete inputs, by exhaus-

tively checking the model using a narrow range of values for the model inputs. Models

can also be abstracted to remove or isolate the effect of numeric inputs. The drawback

of this technique is that the model checker correctness and completeness depend on the

abstraction technique. It may not be possible to develop an abstraction that preserves

the essential semantics of the model being checked. The SPY framework was designed

to give analysts a tool that didn’t suffer that limitation. The price an analyst has to pay

to get around these limitations is the incomplete nature of SPY’s search. Many model

checkers have a completeness guarantee, so if the checker reports no violations, the

model is guaranteed to never violate the properties checked. With SPY if a property

violation is not found, the random nature of its search means that a violation may still

occur, if different inputs are feed to the model.

Throughout §5.2 we will mention a commercial tool, Reactis, that was used by

our collaborators at the University of Minnesota (UMN) as a baseline in a comparison

with SPY. Reactis was used because because it is a common commercial tool that was

available in-house to our collaborators at UMN. The advantage of Reactis is that it

113

5.1. SPY

performs a random and heuristic search through a model, without any restriction on

the type of the model inputs. This means that this technique can be used to check

models with real valued inputs without any preprocessing of the model, just like SPY.

The random nature of Reactis’s search means that it does not have a completeness

guarantee, as discussed in the previous paragraph.

5.1 SPY

The essential question the SPY framework tries to answer is: what input range restric-

tions are most likely to constrain the state of the model to states that are considered

more desirable? SPY does not use formal methods to investigate the models under

question. Instead the SPY framework includes an execution engine for driving the

models under examination. SPY executes the model a prescribed number of times

generating a set of input-output pairs. The desirability of these pairs is evaluated by an

objective function. SPY then finds correlations between input-output pairs and their

desirability by using tar4 (see §2.1.5 for a description of tar4). This cycle of executing

the model, objective function evaluation, and data mining is called an iteration. The

SPY framework runs for several iterations, with the learner finding treatments in be-

tween each iteration. Notice this is the same work flow as ITL’s work flow, discussed

in chapter 3, in particular in Figure 3.9.

114

5.1. SPY

During each iteration the SPY framework randomly chooses inputs for the models

according to range restrictions on the input variables. These restrictions are initially

described by the analyst, but after the first iteration are modified by SPY’s learning

process. The restrictions take the form of upper and lower bounds for each input value.

SPY reduces the space it searches by increasing the lower bound and/or decreasing the

upper bound according to the treatments returned at the end of each iteration. Hence

the points that are randomly sampled during one iteration are always from a space

smaller than the space sampled from during the previous iteration. However, rather

than just using the treatments themselves as the upper and lower bounds (as the ITL

method used in chapter 4 did), the bounds are adjusted in the direction suggested by

the treatments, but not necessarily in the amount suggested by the treatments.

The selection of input points from the search space is completely random; SPY

attempts no symbolic analysis of the model’s source code. This is different from other

random tools, such as Reactis, which use heuristic analysis of the model’s source code

(such as path coverage) when picking input points. Refer to [29] for a complete de-

scription of the SPY framework.

In addition to introducing SPY, [29] also applies the framework to a “magic” bus

that tries to transport passengers the farthest it can before running out of fuel. While

this artificial model was useful in demonstrating the capability of SPY to learn model

115

5.2. Using SPY on NASA Flight Models

input constraints, the next section returns to the original motivation for developing

SPY: verifying temporal properties in models with real valued inputs. To do so we

will investigate three NASA flight models and ten properties the the original model

developers describe in the requirements documentation available to us.

5.2 Using SPY on NASA Flight Models

The original purpose for developing the SPY framework was to give NASA’s IV&V

(independent verification and validation) facility a new method to check model prop-

erties. Since, as discussed in §5.1, SPY allows any data type in the models being

analyzed, it can be used to verify properties in models that would defeat techniques

with completeness guarantees, like model checking.

Recall from §5.1 that SPY does not perform any symbolic analysis of the model’s

source code. Some other tools, like our baseline tool Reactis, use heuristic analysis of

the model’s source code, such as trying to achieve full path coverage, when picking

input points. SPY’s selection of input points is completely random, but it uses partial

descriptions to restrict the region of the search space that these points are chosen from.

This section describes the models analyzed (§5.2.1), the experimental goals of this

analysis (§5.2.2), and the results of these experiments (§5.2.3).

116

5.2. Using SPY on NASA Flight Models

5.2.1 Models Under Consideration

The models used in this section were originally developed in Simulink1. The models

were translated to the SPY language by a LUSTRE-based translator [54] developed as

part of the SPY framework development, at the University of Minnesota.

To gauge the effectiveness of SPY in verifying properties and uncovering defects,

we analyzed three different models

• Sensor Voting

• Dual FGS

• Altitude Switch

This section will describe some of the particulars of the models.

Sensor Voting

The Sensor Voting model2 is a generic triplex voter. The voter takes inputs from three

redundant sensors and synthesizes a single reliable sensor output. Each of the redun-

dant sensors produces both a measured data value and self-check bit (validity flag)

indicating whether or not the sensor considers itself to be operational. The output of a

sensor is amplitude limited in hardware by the A/D conversion.

The functionality of the triplex voter is as follows:

1Available from The MathWorks Inc, at www.mathworks.com.
2Developed at Honeywell Laboratories.

117

5.2. Using SPY on NASA Flight Models

• Sample digitized signals of each sensor measurement at a fixed rate appropriate
for the control loop, e. g. 20 Hz. A valid flag supplied by sensor hardware
indicating its status is also sampled at the same rate.

• Use the valid flag and comparison of redundant sensor measurements to detect
and isolate failed sensors.

• Output at a specified sample rate a signal value computed as a composite average
of the signals of non-faulty sensors. Also output, at the same specified rate, the
status of the composite output by setting an “outputValid” flag.

• Tolerate “false alarms” due to noise, transients, and small differences in sen-
sor measurements. Sensors are not marked failed if they are operating within
acceptable tolerances and noise levels.

• Maximize the availability of valid output by providing an output whenever pos-
sible, even with two failed sensors.

• The algorithm is not required to deal with simultaneous sensor failures since this
is a very low probability event.

The operation of the sensor voter algorithm is as follows. All valid sensor signals

are combined to produce the voter output. If three sensors are available, a weighted

average is used in which the outlying sensor value is given less weight than those that

are in closer agreement. If only two sensors are available a simple average is used.

If only one sensor is available, it becomes the output. There are two mechanisms

whereby a faulty sensor may be detected and no longer considered valid; either by

comparison of the redundant sensor signals or by the validity flags produced by the

sensors themselves.

118

5.2. Using SPY on NASA Flight Models

Dual FGS

A Flight Guidance System is a component of the overall Flight Control System (FCS)

in a commercial aircraft. The FGS compares the measured state of the aircraft (po-

sition, speed, and attitude) to the desired state and generates pitch and roll guidance

commands to minimize the difference between the measured and desired state. The

FGS subsystem accepts input about the aircraft’s state from the Air Data System (ADS)

and Flight Management System (FMS). Using this information, it computes pitch and

roll guidance commands that are provided to the autopilot (AP). When engaged, the

autopilot translates these commands into movement of the aircraft’s control surfaces

necessary to achieve the desired changes about the lateral and vertical axes.

The flight crew interacts with the FGS primarily through the Flight Control Panel

(FCP). The FGS has two physical sides corresponding to the left and right sides of the

aircraft. These provide redundant implementations that communicate with each other

over a cross-channel bus. Normally, only one FGS (the pilot flying side) is active, with

the other FGS operating as a silent, hot spare. In this dependent mode of operation,

the active FGS provides guidance values to the AP and the Flight Director (FD). The

pilot and copilot can switch which side is the pilot flying side by pressing the Transfer

Switch on the FCP. This is frequently done when switching to a different navigation

source. However, in some critical modes, such as Approach and Go Around, both

119

5.2. Using SPY on NASA Flight Models

sides are active and independently generate guidance values for their own FD. In this

independent mode of operation, both sets of guidance values are provided to the AP,

which first verifies that they agree within a predefined tolerance value. If in agreement,

the values are averaged and executed. If not in agreement, the situation is annunciated

to the pilot and the AP disconnects.

Altitude Switch

The Altitude Switch (ASW) is a re-usable component that turns power on to a Device

Of Interest (DOI) when the aircraft descends below a threshold altitude above ground

level. If the altitude cannot be determined for more than two seconds, the ASW indi-

cates a fault. The detection of a fault turns on an indicator lamp within the cockpit.

The DOI is turned back off again if the aircraft ascends above the threshold altitude

plus some hysteresis value. The ASW receives a status indication from the DOI indi-

cating whether the DOI is powered on. If the DOI does not indicate that it is powered

on within two seconds after power is applied, a fault is indicated. The ASW does not

apply power to the DOI if the DOI is already powered on. The ASW is not in complete

control of the DOI, since the DOI may be turned on and off by other systems or the

pilot. If the DOI is turned off after the aircraft descends below the threshold altitude,

the ASW does not reapply power to the DOI unless the aircraft again descends below

120

5.2. Using SPY on NASA Flight Models

the threshold altitude. The ASW also accepts an inhibit signal that prevents it from

turning on power to the DOI or indicating a fault. All other ASW functions are unaf-

fected by the inhibit signal. The ASW also accepts a reset signal that returns it to its

initial state.

5.2.2 Experimental Goals

This section will describe the properties we want to verify in each of the models de-

scribed in §5.2.1.

Sensor Voting

The Sensor Voting model combines the output from three sensors to produce a high

quality output. It operates in such a fashion as to tolerate transient errors or multiple

failures in the sensors, to detect significant differences in the signals, and to isolate

that difference (if possible) to a single faulty sensor. The full details of this model are

given in §5.2.1.

For the Sensor Voting model we checked the following properties

1. If sensor valid flag goes bad 3 time steps in a row, then the sensor output shall
be flagged as bad. This sensor will stayed flagged as bad even if the sensor valid
flag becomes good at a later time.

121

5.2. Using SPY on NASA Flight Models

2. If a persistent threshold violation is detected by the model, the sensor output
shall be flagged as bad. This sensor will stayed flagged as bad even if the persis-
tent threshold violation disappears at a later time.

Both these properties were applied separately for each of the three sensors.

The first property was implemented in SPY using a trio of simple accumulators

that tracked the number of consecutive time steps that a sensor valid flag was bad. If

any of the accumulators exceeded the 3 time steps allowed, that sensor was recorded

as bad by SPY, and if the model ever reported that sensor as good a property violation

was reported.

The second property, which measures disagreement between the values reported

by the different sensors, was a bit more complicated to implement. Two sensors had

to disagree by an amount above a certain threshold (Sensor Magnitude Threshold)

for a time exceeding another threshold (Sensor Persistence Threshold). In addition,

since with only two valid sensors it would be impossible to determine which sensor

was faulty, all three sensors had to be considered valid by the model for it to isolate

which sensor was producing the disagreeing value. If the objective function detected a

persistent threshold violation that was not reported by the model, a property violation

was reported by SPY.

Together these two properties were also checked in the other direction. That is, if

the objective function decided a sensor was valid according to both criteria, but the

122

5.2. Using SPY on NASA Flight Models

model reported the sensor as invalid, a property violation was reported by SPY.

Dual FGS

The FGS compares the measured state of the aircraft (position, speed, and attitude)

to the desired state and generates pitch and roll guidance commands to minimize the

difference between the measured and desired state. §5.2.1 gives a more detailed de-

scription of the Dual FGS.

For the Dual FGS model, we checked the following properties

1. At least one FGS side shall always be active

2. Exactly one side shall be the pilot flying side. This property was stated in two
forms

(a) It is always the case that property 2 holds

(b) It is always the case that when property 2 is false then in the next step
property 2 is true

3. If the system is in independent mode (defined in §5.2.1), both sides shall be
active. This property was stated in two forms:

(a) It is always the case that property 3 holds

(b) It is always the case that when property 3 is false then in the next step
property 3 is true

4. If the system is in dependent mode, it shall not be the case that both sides are
active. This property was stated in two forms:

(a) It is always the case that property 4 holds

(b) Property 4 cannot be false for more than two consecutive time steps

5. Pressing the transfer switch shall cause the system to change PF sides. This
property is expressed in two parts:

123

5.2. Using SPY on NASA Flight Models

(a) It is always the case that if the Left FGS is not the pilot flying side and the
transfer switch is not pressed, then in the next step if the transfer switch is
pressed, Left FGS shall become the pilot flying side.

(b) It is always the case that if the Right FGS is not the pilot flying side and the
transfer switch is not pressed, then in the next step if the transfer switch is
pressed, Right FGS shall become the pilot flying side.

Properties 2b, 3b, and 4b capture the properties the developers intended the models

to have. We checked properties 2a, 3a, and 4a to ensure that SPY checked for some

properties that did not hold in the model.

The first property was easy to implement by checking the two boolean variables

used to record the status of each side of the FGS. One side had to be active at every

time step.

The second property checked the two boolean variables that recorded which side

of the FGS was giving input to the AP, i. e. the “flying” side. An accumulator was

used to count the number of time steps that both sides of the FGS were flying. When

checking property 2a, if this accumulator was ever greater than 0, a violation was

reported. When checking property 2b, if this accumulator was ever greater than 1, a

violation was reported.

The third property checked that if the system was in independent mode (defined in

§5.2.1) both boolean variables that recorded if a FGS side is active were set to true.

An accumulator was used to count the number of time steps this was false. When

checking property 3a, if this accumulator was ever greater than 0, a violation was

124

5.2. Using SPY on NASA Flight Models

reported. When checking property 3b, if this accumulator was ever greater than 1, a

violation was reported.

The fourth property was implemented in a way similar to property 3. The accu-

mulator was incremented if the FGS was in dependent mode and both FGS sides were

active. When checking property 4a, if this accumulator was ever greater than 0, a vio-

lation was reported. When checking property 4b, if this accumulator was ever greater

than 2, a violation was reported.

The final property was checked for both sides of the FGS. If the side being checked

was the flying side and the transfer switch wasn’t pressed during the current time step,

but was pressed during the previous step and the side was the flying side in the last

step, a violation was reported.

Altitude Switch

The Altitude Switch(ASW) is a re-usable component that turns power on to a Device

of Interest (DOI) when the aircraft descends below a threshold altitude above ground

level. Refer to §5.2.1 for a more detailed description of the Altitude Switch.

For the Altitude Switch, we checked the following properties:

1. The ASW shall command the DOI to be turned on if and only if the following

125

5.2. Using SPY on NASA Flight Models

conditions are satisfied
(a) The aircraft descends below the threshold altitude (nominally 2000 ft)

(b) The DOI is not already on

(c) The ASW is not inhibited

(d) The ASW is not reset

2. The ASW shall command the DOI to be turned off if and only if all of the
following conditions are satisfied

(a) The aircraft has attained an altitude greater than the threshold plus hystere-
sis. (Hysteresis is assumed to be 0.1 * Threshold)

(b) The DOI is not already OFF

(c) The ASW is not inhibited

(d) The ASW is not reset

3. The ASW shall indicate a fault, if any of the following conditions are satisfied:
(a) ASW is not able to determine the altitude for more than 2 seconds

(b) DOI does not indicate that it is powered ON within 2 seconds after ASW
applies power to it

(c) Altimeter indicates that the Altitude Quality is bad

(d) ASW is not inhibited

The first two properties were very similar and checked in the same way. They list

four conditions that must exist for the DOI to be turned on or off. Both simply check

that all four conditions hold when ever the DOI is turned on or off.

The third property checks that the ASW has not been inhibited or reset and then

checks that if any of the three alarm modes (properties 3a - 3c) are true indicating that

the alarm signal should be activated.

126

5.2. Using SPY on NASA Flight Models

5.2.3 Experimental Results

In this section we present the results of the experiments in which we tried to verify the

properties described in §5.2.2. Each of the models was run for 10 iterations, with each

iteration having a 100 instances batch size, and each instance running the model for 40

discrete time steps.

Sensor Voting model

Both properties formulated for the Sensor Voting model were not expected to be vi-

olated, and SPY did not detect a violation of either property. Recall from §5.2.2 that

property 1 said that the sensor valid flag had to be bad 3 time steps in a row for the

model to invalidate that sensor. Internally in the SPY code this threshold was stored in

numBadFlags. Additional experiments were run with the Sensor Voting model, with

numBadFlags set to have different values. Whenever this number differed from the

3 (the formulation desired by the original model developers) SPY reported a property

violation, showing that it could detect differences between the property formulations

and the implementation of the models. These results are summarized in Table 5.1.

There was one subtle bug that SPY missed which was discovered by manual in-

spection . The Sensor Voting model detects a persistent threshold violation (property

127

5.2. Using SPY on NASA Flight Models

Property SPY Result Expected Result
Property 1 Not Violated Not Violated
Property 2 Not Violated Not Violated

numBadFlags = 2 Violated Violated
numBadFlags = 4 Violated Violated

Table 5.1: Sensor Voting property check results

2 in §5.2.2) by accumulating the time that any sensor differs (above a set threshold)

from any of the other sensors (provided that the sensors are still considered valid by the

model). This accumulator value was stored in a floating-point variable. At each time

step this accumulator is checked against the allowed time for a sensor to miscompare

with the other sensors. However, when accumulating .05 seconds (since the model runs

at 20 Hz) ten times, the sum was actually just below .5 seconds. But since both the

model and the code used to check the model suffered from this form of numeric creep,

SPY did not recorded a failure. Hence a property violation escaped SPY’s notice. Our

collaborators at the University of Minnesota (who developed the translation system

discussed in §5.2.1) independently checked this violation using our commercial tool

Reactis. That tool also failed to detected this numeric creep. Since both tools failed

to detected this violation, this example demonstrates the danger in using floating-point

variables for some applications. After manual inspection detected this error, the prop-

erty checking code in SPY was re-written to use an integer accumulator to count the

number of time steps that two sensors miscompared. Using this integer accumulator,

128

5.2. Using SPY on NASA Flight Models

SPY detected the property violation, demonstrating that the original failure of SPY

was due to the numeric creep issue. This means that SPY, when the objective function

was properly implemented, found a subtle bug that apparently had not been previously

discovered.

Dual FGS

Table 5.2 shows the different properties and their expected results for the Dual FGS

model. The results we obtained from SPY differ from the expected results for only one

of the nine properties checked, property 4.b. The FGS system was also independently

check by our UMN collaborators. Reactis also reported that property 4.b was violated.

Since this model has been in production use for some time, it is likely that the property

is formulated incorrectly in the requirements documentation we had access to. Even

if the property formulation is incorrect and there are no faults in the model, having

consistent requirements is obviously valuable. Discovering inconsistent requirements,

while not the stated goal of the SPY framework, is always possible when testing re-

quirements against a development artifact.

129

5.2. Using SPY on NASA Flight Models

Property SPY Result Expected Result
Property 1 Not Violated Not Violated

Property 2.a Violated Violated
Property 2.b Not Violated Not Violated
Property 3.a Violated Violated
Property 3.b Not Violated Not Violated
Property 4.a Violated Violated
Property 4.b Violated Not Violated
Property 5.a Not Violated Not Violated
Property 5.b Not Violated Not Violated

Table 5.2: FGS property check results

Property SPY Result Expected Result
Property 1 Violated Violated
Property 2 Violated Violated
Property 3 Not Violated Not Violated

Table 5.3: ASW property check results

Altitude switch model

Table 5.3 shows the results of our experiments with the altitude switch model. When

these experiments were started it was thought that properties 1 and 2 should not be vi-

olated, but when Reactis was used as an independent check, it also reported properties

1 and 2 violated by the model. This led to a closer examination of the requirements

documentation. It became apparent that the model’s behavior was not fully encapsu-

lated in the properties, as the properties were recorded. Since the original developers

were not available to us, this was as far as our investigation could go.

130

5.3. Conclusions from NASA Flight Models

5.3 Conclusions from NASA Flight Models

This chapter has shown, through comparative analysis, that our current methodology

for verifying temporal properties in real valued models has much potential. We showed

that

• the translation framework preserves the semantics of our models

• SPY agrees with Reactis on which properties are violated in our models

• SPY was able to find defects in the models that were either
– already present in the models
– injected into the formulation of the properties.

A difficulty we encountered in this chapter that was not seen in chapter 4 was the in-

terface between the learner and the model input variables. In chapter 4 ITL could learn

directly on the input variables because the requirement models were non-temporal.

With the temporal models studied in this chapter, SPY could not learn directly on the

model input variables, because they changed during the execution of the model. In

two of our flight models, ASW and Dual FGS, the model inputs represented the states

of control inputs that were expected to change during the course of a simulation. In

our third flight model, Sensor Voting, we had some real value inputs that changed dur-

ing the simulation, namely the values reported by the individual sensors, as well as

discrete control inputs, namely the validity flags reported by each sensor. In fact, the

properties explicitly detailed how the model was supposed to react when the control

131

5.3. Conclusions from NASA Flight Models

states changed. Presenting SPY with the exact value that each input took during each

discrete time step was not desirable for two reasons. First, presenting the learner with

that many input variables, the number of model inputs times the number of discrete

time steps, would overwhelm the learner’s ability to find correlations between the in-

puts and the objective function evaluation. Second, if the learner were presented with

the value of each input at each time step, the learner would return treatments suggest-

ing value assignments to particular inputs at particular time steps. For our purposes

these would not be useful suggestions. For these reasons we parameterized the model’s

control inputs as probabilities. These probabilities were constant during a simulation

and were the values that the SPY framework learned on. This meant when a defect

was discovered by SPY, its advice would be to decrease or increase the probability of

some of the control inputs being in one state or the other. In the models studied in

this chapter, the learner would reduce some of these probabilities to zero, effectively

saying not to use that control input. This advice might not be particularly useful to the

model developers.

Since we would like to investigate SPY’s ability to find useful range restrictions,

we decided to investigate another class of temporal models whose inputs were all real

valued, but whose values did not change during the execution of the model. The next

132

5.3. Conclusions from NASA Flight Models

chapter investigates SPY’s ability to find useful range restrictions with biomathemat-

ical models. These models have the above-mentioned advantage of having all real

valued inputs that do not change during the execution of the model. In addition, the

models we chose have had previous analysis work, so we can compare the results of

using SPY with previous results.

133

CHAPTER 6

VALIDATING SPY ON BIOMATHEMATICAL MODELS

The previous chapter introduced SPY and demonstrated its ability to check certain

types of properties in NASA flight models. We discussed how the nature of the model

inputs made validating a useful feature of SPY difficult. The nature of the range re-

strictions offered by SPY, e. g. the pilot should never press the transfer switch, were

not practically useful. To demonstrate SPY’s ability to find useful range restrictions

we investigated a class of models that have been developed and reviewed in research

fields outside of machine learning or metaheuristic search.

SPY will attempt to find input range restrictions to these new models, described in

§6.1.1, that confine the behavior of the model outputs to specified modes.

6.1 Using ITL in Biomathematical Models

This section discusses two biomathematical models that have been analyzed using

techniques outside of the machine learning field. The models will be introduced, along

with a description of the experimental goals and results of the experiments using the

134

6.1. Using ITL in Biomathematical Models

SPY framework.

6.1.1 Models Under Consideration

Competitive Exclusion

[104] develops dozens of biomathematical models. Dynamic population models are

one of the classic types of biomathematical models. Populations are modeled using

coupled differential equations. The first derivatives (in time) are constructed from first

principles. These derivatives usually contain several parameters. These parameters

can be studied analytically to define different types of behaviors of the model. We

will be studying a system of 2 different species that compete in some way in the same

niche. We can think of this competition in terms of food supply, space, toxicity, or

anything else that would lower the carrying capacity of the niche for both species. This

system is called competitive exclusion because analytic analysis shows that under most

conditions, one species will be driven to extinction. The general form of the population

equations is

dN1

dt
= r1N1

(
1− N1

K1

− b12
N2

K1

)
(6.1)

dN2

dt
= r2N2

(
1− N2

K2

− b21
N1

K2

)
(6.2)

135

6.1. Using ITL in Biomathematical Models

where N1 and N2 are the size of the two species, K1 and K2 are the carrying capacities

for the two species in the absence of the other species, r1 and r2 are the growth rates

of the species, and b12 and b21 measure the degree to which the two species effect each

other. All these constants are positive and real-valued. Following the methodology

of [104] we rewrite Equations 6.1 and 6.2 in dimensionless terms as

du1

dτ
= u1(1− u1 − a12u2) (6.3)

du2

dτ
= ρu2(1− u2 − a21u1) (6.4)

where u1 = N1

K1
, u2 = N2

K2
, a12 = b12

K2

K1
, a21 = b21

K1

K2
, ρ = r2

r1
, and τ = r1t. We have

eliminated one term (we scaled r1 to one and redefined r2 to a ratio) and normalized

our population sizes so that the carrying capacity of each species is 1.

Animal Neurons

A simple model of animal neurons was developed in [65]. This model has the advan-

tages of being computationally efficient, while also being able to simulate most of the

behaviors of much more complex models. Its main drawback is that its parameters

have no physical significance. The model is a pair of coupled ordinary differential

136

6.1. Using ITL in Biomathematical Models

equations. The entire model has the form

dv

dt
= 0.04v2 + 5v + 140− u + I (6.5)

du

dt
= a(bv − u) (6.6)

if v ≥ 30mV, then v ← c and u← u + d

Where v and u are dimensionless variables, a, b, c, d are dimensionless parameters,

and I is an input DC signal. The variable v represents the membrane potential of the

neuron and is the experimentally observable quantity in this model. The variable u is

a recovery variable, which models the rate at which K+ and Na+ channels can open

and close in the neuron.

[65] and [66] state that almost all behaviors seen in real neurons can be modeled

using this model, depending on the settings of the different parameters. There is matlab

program available for download1 that lists the different values of the parameters that

lead to different classes of behavior.
1http://vesicle.nsi.edu/users/izhikevich/publications/izhikevich.m

137

6.1. Using ITL in Biomathematical Models

6.1.2 Previous Analytic Work with Models

Competitive Exclusion

The dynamic population model we are using is simple enough to be analyzed using a

number of different techniques. Here we simply summarize the linear algebra based

technique used in [104]. First we construct the matrix A around a point where du1

dτ
=

du2

dτ
= 0. Then the sign of the eigenvalues of the matrix A determine whether the

equilibrium points are stable or unstable. After finding the eigenvalues at the four

different equilibrium points, it turns out there is only a single set of conditions that

will lead to a stable equilibrium point where N1, N2 6= 0. If 0 ≤ a12 ≤ 1 and 0 ≤

a21 ≤ 1 then there will be a stable equilibrium point at (u∗
1, u

∗
2), where 0 < u∗

1 < 1 and

0 < u∗
2 < 1 (recall equations 6.3 and 6.4 were nondimensionalized, so the carrying

capacity for the two different species is 1).

Animal Neurons

Our neuron model is much harder to analyze symbolically, both because it is not first-

order (recall the v2 term in equation 6.5) and because of the reset condition. Izhikevich

has spent much time describing some of the analytic properties of different models of

animal neurons [64]. All of these discussion are beyond the scope of this thesis. It

138

6.1. Using ITL in Biomathematical Models

should be noted that this analysis takes dozens of pages and a high degree of mathe-

matical training to discover. The various parameter settings that lead to the different

behaviors are published, but no explanation is given as to how they were found (which

suggests a simple trial-and-error search).

6.1.3 Experimental Goals

There are two slightly different goals we have in mind for our experiments. We would

like our framework to find the relevant range restrictions and we would like it to NOT

offer any range restrictions on parameters that are irrelevant.

Competitive Exclusion

For the dynamic population model we want to discover the conditions that create a sta-

ble equilibrium point where N1, N2 6= 0, as discussed in 6.1.2. The range restrictions

that lead to this behavior are 0 ≤ a12 ≤ 1 and 0 ≤ a21 ≤ 1. Since symbolic analysis

shows that the value of ρ and the initial populations do not affect the location or exis-

tence of equilibrium points, we hope that SPY will not offer any range restrictions on

those variables.

139

6.1. Using ITL in Biomathematical Models

(a) phasic spiking (b) tonic bursting (c) phasic bursting

Figure 6.1: Behavior modes of animal neuron

Animal Neurons

Of all the different behaviors described in [66], three were chosen because it was easy

to describe them in mathematical terms. First, phasic spiking, Figure 6.1a, which is

a single spike and reset. Second, tonic bursting, Figure 6.1b, which is several spikes

close together in time, followed by a quiescent state, repeated several times. Third,

phasic bursting, Figure 6.1c, is several spikes close together in time, followed by a

quiescent state without any repeats. We attempted to find the input value ranges that

lead to these different behaviors.

140

6.1. Using ITL in Biomathematical Models

6.1.4 Methodology

Competitive exclusion model in the SPY language

To highlight some of the interesting features of the SPY language we will discuss the

particulars of the competitive exclusion model, as it was developed in SPY. The SPY

code for the competitive exclusion model is listed in Figure 6.2 - Figure 6.4.

Figure 6.2 shows the use of the Choice function. This function is the main inter-

face between the model and the learner. The Choice function maintains a cache of

all the values it has returned during an iteration, and these values are what the learner

takes as training data. At the start of each run through the model, the function picks a

new value and always returns the same value until the start of another run. Currently

SPY interacts with its learner best if the values remembered by the Choice function

are all [0−1], hence the five functions after the Choice functions in Figure 6.2 rescale

the numbers [0−1] to [0−15]. This range was chosen to include the values that would

lead to our desired behavior, [0 − 1], as well as many values that wouldn’t. The ini-

tial populations are chosen from [.04− 2.04]. Zero was disallowed because (0, 0) is a

trivial stable state in the model.

Figure 6.3 shows the model appropriately formulated in the SPY language. The

change in the current populations of the two species is calculated and returned to the

141

6.1. Using ITL in Biomathematical Models

1 Choice(a1SpyVal,=,n){
return linear(a1SpyVal_min,a1SpyVal_max,n); }

Choice(k1SpyVal,=,n) {
return linear(k1SpyVal_min, k1SpyVal_max,n); }

5 Choice(k2SpyVal,=,n) {
return linear(k2SpyVal_min, k2SpyVal_max,n); }

Choice(alphaSpyVal,=,n){
return linear(alphaSpyVal_min,alphaSpyVal_max,n); }

Choice(betaSpyVal,=,n) {
10 return linear(betaSpyVal_min,betaSpyVal_max,n); }

function rho(tmp) {
tmp = a1SpyVal();
#split 0-1 in half and then rescale

15 if(tmp>.5) return 28*tmp-13;
else return tmp*2;

}
function a12(tmp){

tmp = alphaSpyVal();
20 #split 0-1 in half and then rescale to 0-1 and 1-15

if(tmp>.5) return 28*tmp-13;
else return tmp*2;

}
function a21(tmp) {

25 tmp = betaSpyVal();
#split 0-1 in half and then rescale to 0-1 and 1-15
if(tmp>.5) return 28*tmp-13;
else return tmp*2;

}
30 # don’t allow initial populations of zero

function X0() {
return (k1SpyVal()+.02)*2;

}
function Y0() {

35 return (k2SpyVal()+.02)*2;
}

Figure 6.2: Picking model variables in the competitive exclusion model

142

6.1. Using ITL in Biomathematical Models

1 # Model:
dx/dt = x * (1 - x - a12*y)
dy/dt = rho*y * (1 - y - a21*x)

4
function dx(x,y) {

return x*(1-x-a12()*y);
}

8 function dy(x,y) {
return rho()*y*(1-y-a21()*x);

}

Figure 6.3: Competitive exclusion model, adapted from [104]

1 function main(warmup, n,delx,dely,xt,yt) {
a1SpyVal(n);
k1SpyVal(n);k2SpyVal(n);

4 alphaSpyVal(n);betaSpyVal(n);

xt=X0();yt=Y0();
REDO=0

8 if (!warmup) {print "# new experiment" >> "points.dat";
print count++ " " a12() " " a21() >> "parameters.dat";}

do {
REDO++;

12 if (!warmup) print xt " " yt " " sumworth >> "points.dat";

calculate change to populations
delx = dx(xt,yt)/UNITSTEP;

16 dely = dy(xt,yt)/UNITSTEP;
xt += delx;xt=(xt<SMALL?0:xt);
yt += dely;yt=(yt<SMALL?0:yt);
totalChange = (abs(delx)<SMALL?0:delx) + (abs(dely)<SMALL?0:dely);

20 } while (totalChange != 0 || REDO<10)
return ((xt>.SMALL?1:0)+(yt>.SMALL?1:0));

}

Figure 6.4: Model execution code in the competitive exclusion model

143

6.1. Using ITL in Biomathematical Models

main model executing code. Notice that the two functions call the functions described

in Figure 6.2.

Figure 6.4 shows the main control loop for the competitive exclusion model. It first

sets the values that will be used for the current simulation, lines 2-4. Then it initializes

the populations, line 6. Lines 8, 9, and 12 write some useful information to disk. Lines

15 and 16 call the two functions that comprise this model, shown in Figure 6.3. Lines

17 and 18 adjust the current sizes of the two species. Lines 19 and 20 ensure that

model runs for at least REDO time steps, but then stops when the populations approach

a steady state. Finally line 21 is the worth function, which will be described below.

This function is SPY’s version of the objective function.

Worth Functions

One practical detail of using SPY that turned out to be more challenging than expected

was how to code the worth function. The worth function is what SPY uses to decide

whether an instance belongs to the preferred class or not, and hence plays the role

of the objective function. Tar4 needs discrete classes, but since tar4 has a built-in

discretizer, worth functions can generate numeric class labels. The worth function

then must produce a single numeric value that describes how close to the preferred

class any instance is. The difficulty in formulating these functions should be familiar to

144

6.1. Using ITL in Biomathematical Models

anyone who works at an interface between natural languages and mathematics. While

it may be easy to describe a certain type of behavior in a natural language, developing

a mathematical formulation can be difficult.

Competitive exclusion As mentioned above, in the dynamic population model we

were looking for a single behavior, both species surviving at the equilibrium point. So

our worth function was

worth = (if N1 > 0 then 1 else 0) + (if N2 > 0 then 1 else 0) (6.7)

Note that the analytic analysis in [104] shows if N0
1 > 0 and N0

2 > 0, one species will

always survive. Equation 6.7 therefore will only return 1 or 2.

Animal neurons The worth function used in the animal neuron model depended on

which behavior we wanted SPY to look for.

Phasic spiking A neuron exhibits phasic spiking when its membrane potential (v

from equation 6.5) spikes once and is then quiescent. The model increments the reset

counter every time the reset condition is reached during each run. The worth function

used was

worth = if reset = 1 then 1 else 0 (6.8)

145

6.1. Using ITL in Biomathematical Models

Tonic bursting A neuron exhibits tonic bursting when its membrane potential

spikes in repeated groups, where each group has a very high frequency, but there is a

long quiescent period between each burst. To classify this behavior the time between

each reset was recorded. If the time since the last reset was below a threshold, low,

the counter fast was incremented. If the time since the last reset was above a higher

threshold, high, (some times were therefore ignored completely), the counter slow was

incremented. Finally at the end of the run the following worth function was used

worth = if (fast > 10 and slow > 2) then 1 else 0 (6.9)

The small number of slow resets delineated the groups, while the large number of fast

resets ensured that each group had several resets.

Phasic bursting Phasic bursting is similar to tonic bursting, except there is only a

single group of high frequency spikes. Using the same counters as in the tonic bursting

case, the worth function was

worth =

if (fast > 4 and slow = 0 and last spike > high) then 1 else 0 (6.10)

146

6.1. Using ITL in Biomathematical Models

where last spike was the time since the last reset when the simulation ended. This

worth function was particularly hard to develop. Recall that the definition of slow

was based on the time between two resets. With phasic bursting the quiescent period

should last until the end of the simulation, so there would be no reset to cause the slow

counter to be incremented. This last detail was difficult to formulate.

6.1.5 Experimental Results

Competitive Exclusion

We ran 10 repeats with each repeat lasting 10 iterations. Each iteration used only 100

instances. The results of these experiments are summarized in Table 6.1 and Table 6.2.

Table 6.1 shows the bounds that SPY found on the parameters that our analytic analysis

showed were relevant (a12 and a21). Table 6.2 shows the bounds found on the irrelevant

parameters (ρ, u0
1, and u0

2). If there is a number in parentheses after the bound, it indi-

cates the number of times that particular bound was found. The final column shows the

average number of iterations before SPY stopped adjusting the bounds on a particular

parameter (lower or upper). The original bounds on a12, a21 and ρ were [0, 15], while

the original bounds on u0
1 and u0

2 were [0.04, 2.04] (0 could not be allowed because

(0, 0) is a trivial stable state).

147

6.1. Using ITL in Biomathematical Models

name lower bounds upper bounds speed
a12 0.0(10) 0.2(6), 0.6(2), 0.8(2) 1.8
a21 0.0(10) 0.2(3), 0.3, 0.4(4), 0.8(2) 1.2

Table 6.1: Relevant parameters in competitive exclusion model

name lower bounds upper bounds speed
ρ 0.0(10) 15.0(10) 1.0
u0

1 0.04(10) 2.04(10) 1.0
u0

2 0.04(10) 2.04(10) 1.0

Table 6.2: Irrelevant parameters in competitive exclusion model

Table 6.1 shows that SPY was successful in finding ranges that restrict the model

to our desired behavior. Every repeat found restrictions that would always lead to our

preferred behavior (both species surviving in the stable state). The speed to conver-

gence was also very fast. It took SPY only slightly more than 1 iteration to settle on

the range restrictions for a21 and just under 2 iterations for a12. Analytically there is

no difference between the influence of a12 and a21, so we suspect the difference in the

speed of convergence for the two parameters is an artifact of the way SPY utilizes the

treatments returned by tar4 or an artifact of the random search. We can’t call this ex-

periment a complete success though, because the range restrictions were, for the most

part, too restrictive. That is, the ranges SPY suggested eliminated a large part of the

parameter space that would lead to the preferred class.

Table 6.2 shows that SPY was completely successful in ignoring irrelevant param-

eters. Of the six irrelevant bounds SPY could have adjusted, not a single one in ten

148

6.1. Using ITL in Biomathematical Models

parameter lower bound upper bound
a 0 .1
b 0 1
c -80 -40
d 0 10

Table 6.3: Original bounds on parameters for animal neuron model

trials was moved by SPY.

Animal Neurons

In this section we will discuss the results of the experiments with the animal neuron

model. All experiments were run for 10 iterations, with 10 repeats for each behavior.

For this set of experiments a much larger batch size, 400, was needed to allow SPY to

converge to reasonable answers.

There is a pair of figures for each behavior. The first figure shows the average

worth at the end of each iteration for the ten iterations ran during the search for all

repeats that had a final average worth above .3 (in practice all repeats either had a final

average worth close to 1 or close to 0). (Recall a worth of 0 means that the behavior

was not observed and a worth of 1 means that the behavior was observed.) The second

figure shows the range restrictions that SPY found by the last iteration for all repeats

that had a final average worth above .3. Going from left to right, the four columns

represent the four independent variables in our model, a, b, c and d. Going from the

149

6.1. Using ITL in Biomathematical Models

parameter name
behavior a b c d
phasic spiking .02 .25 -65 6
tonic bursting .02 .20 -50 2
phasic bursting .02 .25 -55 .05

Table 6.4: Published parameter settings [66]

bottom to the top, the different rows represent the different successful repeats. The

top row shows the original bounds on the independent variables. This makes it easy to

see how much SPY restricted the range for each variable. The original bounds of the

variables are given in Table 6.3. The same original bounds were used for all behaviors.

These bounds were set after reviewing all the values used in [66] for the 20 different

behaviors demonstrated. The parameter settings used in [66] and [65] for the different

behaviors we are interested in are listed in Table 6.4.

Phasic spiking Only four of the ten repeats found range restrictions that exhibited

phasic spiking. The speed of convergence, when the search was successful, was mod-

erately fast. Figure 6.5 shows that for the four successful searches, convergence hap-

pened after 6-8 iterations. A few qualitative statements can be made about Figure 6.6,

which shows the final range restrictions found by SPY. The value of the b parameter

seems critical, because all successful repeats found the same narrow range. The values

of the c and d parameters seem less critical, as a wide range (covering almost the entire

range in the case of parameter d) of range restrictions was successful. It is harder to

150

6.1. Using ITL in Biomathematical Models

say something about parameter a. All successful repeats found very restrictive bounds

for a, but the bounds found do not coincide. There may be a dependence between a, c,

and d that SPY is finding, but this is only a conjecture.

Figure 6.5: Average worth for 10 repeated trials, trying to find phasic spiking

Figure 6.6: Final bounds for all successful repeats, trying to find phasic spiking

151

6.1. Using ITL in Biomathematical Models

Tonic bursting SPY was more successful at finding range restrictions that exhibited

tonic bursting. Eight of the ten repeats ended with an average worth very close to

1. The speed of convergence was also faster while trying to find tonic bursting. It

ranged from only 2 iterations to 5 iterations, as seen in Figure 6.7. The larger number

of successful repeats makes it easier to make qualitative statements about the range

restrictions found, which are shown in Figure 6.8. First, we see something that was

not observed with phasic spiking: some of the bounds were not changed at all by

SPY. For instance, many of the successful repeats never lowered the upper bound on

the d parameter. The same is true of the lower bound on the c parameter and the

upper bound on the b parameter. As with phasic spiking, the d parameter has wide

range restrictions, covering slightly more than half the original range. Tonic bursting

is also less sensitive to the b parameter than phasic spiking. The noncoincidence of the

found range restrictions on the a and b parameters again might be evidence of some

dependence between the parameters.

152

6.1. Using ITL in Biomathematical Models

Figure 6.7: Average worth for 10 repeated trials, trying to find tonic bursting

Figure 6.8: Final bounds for all successful repeats, trying to find tonic bursting

153

6.1. Using ITL in Biomathematical Models

Phasic bursting SPY was more successful at finding good range restriction for pha-

sic bursting than it was at finding phasic spiking, although not as successful as with

tonic bursting. Six of the ten repeats ended with an average worth close to 1. The

speed of convergence was slightly slower than the speed for tonic bursting, 3-4 it-

erations, with one outlier needing 8 iterations, as can be seen in Figure 6.9. Phasic

bursting appears to be very sensitive to the a parameter, with all successful repeats

finding the same narrow range, see Figure 6.10. The other three parameters show a

wide range of bounds, although it is difficult to say anything specific, other than to

note that the 2ndsuccessful trial has the highest bounds on the parameters b, c, and d.

Figure 6.9: Average worth for 10 repeated trials, trying to find phasic bursting

154

6.2. Conclusions from Biomathematical Models

Figure 6.10: Final bounds for all successful repeats, trying to find phasic bursting

6.2 Conclusions from Biomathematical Models

Recall that in §2.3.1 we discussed the desirability of using a continuous objective func-

tion. The work presented in this section violates that advice. In other words, if an

instance was close to, but not in, a portion of the parameter space that had a posi-

tive worth value, the objective function would return 0 for that instance. In the work

presented in chapter 4 we had a continuous objective function, but this was our first

experience trying to optimize what was essentially a boolean function. We believe

this is a general problem when trying to identify types of behaviors when there is no

concept of being “close to” the desired behavior.

This discontinuity of the objective function causes what should be a heuristically

155

6.2. Conclusions from Biomathematical Models

Figure 6.11: Example of discontinuous functions

driven search to degrade to a purely random search. If the objective function is dis-

continuous, then, during the first few iterations, SPY won’t be able to find treatments

that restrict future iterations to portions of the input space that have promising values.

In addition, the more discontinuous the objective, i. e. the smaller the region with a

high objective evaluations, the harder it will be for SPY (or any other stochastic search

method) to find these promising regions. This can be seen in Figure 6.11. All three

lines are discontinuous, but the likelihood of finding the optimal solution in the impos-

sible line is so much smaller than the likelihood of finding the optimal solution in the

easy line, that no heuristic could outperform a purely random search.

In some problem domains the objective function can be made more continuous

through domain specific knowledge. In §2.3.2 we saw how some researchers trying

to automatically generate test cases modified the objective function through symbolic

156

6.2. Conclusions from Biomathematical Models

analysis of the source code being tested. This particular technique might be adapted to

the experiments presented in this chapter by including the value of some the interme-

diate variables used in the objective function (§6.1.4) as part of the value returned by

the objective function. For example, the original objective function for tonic bursting

was

worth = if (fast > 10 and slow > 2) then 1 else 0

perhaps this could be modified to

if (fast > 10 and slow > 2) then
return 1

else
return -(|10− fast| + |2− slow|)

end if

This function would return 1 when tonic bursting was present. But when tonic burst-

ing wasn’t present it would return a negative number, whose value approaches zero as

the intermediate values used by the objective function, fast and slow, approach the

values that indicate the presence of tonic bursting. This type of modification might not

work because we can not be sure that small changes in the value of the independent

variables will only cause small effects on the intermediate values used in the new pro-

posed objective function, i. e. we can not be sure that the values of fast and slow are

157

6.2. Conclusions from Biomathematical Models

approximately continuous in the independent variables. Experimentation with objec-

tive functions of this type would reveal how useful this modification is. Of course it is

possible that this will be a domain specific feature: some intermediate values may be

approximately continuous and some not depending on the model being analyzed.

Regardless of the continuousness of the objective function, the search bias of SPY’s

underlying learner, tar4, can lead to over-restrictive bounds, of the type we saw in

§6.1.5. To see why imagine that the true bound for some parameter q is (x, y). If the

largest value for q sampled that exhibited the desired behavior was r (r < y) and the

smallest value that didn’t exhibit the desired behavior was s (s > y), no learner could

reliably say anything about the range (r, s) (particularly if the objective function is

undifferentiable). Because tar4 favors true-positives over true-negatives, it will always

pick a range with an upper bound of r. Then in future iterations the range (r, y) will

never be sampled from, and the upper bound will have no chance to increase to y. This

problem is similar to, but distinct from, getting trapped in a local optimum. While both

may be solved by randomly sampling outside the current range restrictions, reporting

overly restrictive bounds to the analyst that still constrain the model to optimal behav-

ior modes is not the same as reporting bounds to the analyst that constrain the behavior

of the model to sub-optimal modes. This problem in particular should be the focus of

our future work.

158

CHAPTER 7

CONCLUSIONS

This thesis addresses the question of whether ITL can be successfully used as a meta-

heuristic search technique for model-based development. To address this question we

investigated models from two stages of the software life cycle. Chapter 4 experimented

with requirements models, often used in the earlier life stages of the software life cy-

cle. Chapter 5 experimented with digital logic circuit models, often used during the

testing stage, i. e. late stage, of the software life cycle. This chapter we will discuss

conclusions from our work with requirements models, §7.1, and conclusions from our

work with the SPY framework, §7.2.

7.1 Conclusion from Early Life Cycle Models

We did a comprehensive study of three requirements models to investigate some pref-

erence characteristics of ITL and our new discretization method, extreme sampling.

We found

• repeated success with holo model and extended success to aero and cob models

159

7.2. Conclusions from Late Life Cycle Models

• bore is currently the best version of extreme sampling

• larger batch sizes, up to 500, increase performance on requirements models

• the good/bad ratio should be in the range 15% to 25%, or possibly higher

• bore has high stability and low variance

• bore clearly outperforms diagonal striping on

– solution quality
– speed of convergence

• bore outperforms simulated annealing on speed of convergence, while finding
similar quality solutions

7.2 Conclusions from Late Life Cycle Models

We used five models written in the SPY language, two by hand and three translated

from Simulink, to investigate the capabilities of the SPY framework. We found that

• SPY could find property violations in temporal models with real-valued inputs

• SPY is able to find range restrictions that constrain model behavior

– SPY found these restrictions quickly, often only 2-5 iterations
– SPY could tell the difference between relevant and irrelevant parameters

• the search bias of the underlying learner can lead to over restrictive bounds

• discrete worth functions reduce learning efficiency. Worth may need to

– be augmented with additional heuristics, like path coverage
– include hints as to how close intermediate variables were to correct values

• translation framework preserves model semantics

The availability of analytic techniques for one of our models allows us to say con-

clusively that SPY may find overly restrictive bounds on input variables, but that the

160

7.2. Conclusions from Late Life Cycle Models

bounds were always correct. While this is a result of the search bias of the underlying

learner (maximizing true positives without penalizing false negatives), an improved

search strategy in SPY may correct this.

The discrete nature of behavior mode identification caused significant problems in

one of our models. Optimizing low cardinality discrete functions, particularly boolean

functions, will be a problem for any stochastic search. Addressing this problem will

involve new methodologies for developing objective functions, rather than a change to

the search strategy.

The only area where domain knowledge or apriori mathematical knowledge was

needed was in picking the original bounds on the parameters.

161

CHAPTER 8

FUTURE WORK

In the future we would like to see more acceptance of ITL as a general metaheuristic

search technique as well as see its use in model-based software development. For ITL

to become a well respected techniques, such as those described in §2.2 and §2.3, the

following research would have to be completed

1. ITL should be applied to instructive toy problems

2. ITL should be used to solve other software engineering problems

3. the conjecture that ITL’s use of partial solutions prevents it from getting stuck in
local optima should be verified

4. a more rigorous study of alternative search strategies for ITL should be con-
ducted

5. a downloadable, ready-to-use implementation of ITL should be made available
to the public

6. methodologies for dealing with low-cardinality discrete functions should be in-
vestigated

7. different automatic stopping conditions could be investigated

The list’s length reflects the short time that has elapsed since ITL was developed and

the even shorter time that ITL has been considered a metaheuristic search technique,

rather than any intrinsic difficulty foreseen in completing the proposed work.

162

Toy problems New techniques are often applied to simple problems when first in-

troduced. This thesis introduced ITL as a metaheuristic search technique, but skipped

the step of proving ITL could be effective on simple problems. For example, ITL

could be used to find satisfying assignments for propositional logic statements, e. g.

in LSAT problems, to find maxima in piecewise-linear functions, or to find function

approximators.

Other software engineering problems As shown in §2.3, metaheuristic search tech-

niques have been applied to numerous problem domains in software engineering. It

would bolster the case for ITL if it was used to solve problems in domains other than

requirements analysis, chapter 4, and model property verification, chapter 5.

ITL robustness in the face of local optima It was conjectured in chapter 3 that the

use of partial solutions makes ITL unlikely to get stuck in local optima. This claim

should be investigated, most likely through the use of toy problems have have a vari-

able amount of deceptiveness. This question has great bearing on the issue of search

strategy. If ITL is currently, as conjectured, robust in the presence of numerous local

optima, then improvements to the search strategy would not have to be tailored to this

problem. If, however, this conjecture turns out to be incorrect, then new search strate-

gies specifically designed to combat the presence of local optima need to be developed.

163

Improved search strategy As discussed in chapter 3, ITL currently uses a simple

greedy forward select without any backtracking. Investigation into more sophisticated

strategies should be done. There are at least two features that the search strategy could

use. First, the search should be able to proceed backwards as well as forwards, i. e.

ITL should be able to retract some of the previous treatments according to some rule.

Second, the search should have some parameter that controls the amount of exploration

and exploitation done. This could be set by the user at the start of the search or could

be dynamically adjusted during the search.

Another feature that might prove useful is allowing ITL to maintain multiple par-

tial descriptions so that multiple hyper-rectangles be searched each iteration. This is

shown in Figure 8.1. While some attempt was made to conduct this type of search,

as described in §3.1.5, that search strategy did not maintain multiple hyper-rectangles.

While searching points that passed any treatment found during each iteration, ITL did

not keep track of which treatments were actually responsible for increasing the objec-

tive score. Searching only one hyper-rectangle makes the assumption that there are not

multiple locations in the input space that have equal quality near-optimal solutions. A

traditional metaheuristic search technique would not necessarily try to capture multiple

near-optimal solutions, even if they were of the same quality, since the user only wants

a single high-quality solution. But ITL, particular when viewed as a model controller,

164

first iteration
second iteration

third iteration
fourth iteration

first iteration
second iteration

third iteration

single hyper-rectangle multiple hyper-rectangles

Figure 8.1: Restricting search to a single vs. multiple hyper-rectangles

attempts to restrict output behavior, so if a model exhibits highly desirable behavior in

more than one location in the input space, ITL should try to find all such locations to

provide the user with a more flexible set of advice.

Public availability Our current implementation of ITL1 grew out of a GUI devel-

oped for instructional purposes. While adherence to OO design principles has made

extension of the code base possible, it is probably time for the prototype to be thrown

away now that we have gained valuable insight into what works and what needs to be

tried. This next version of the code should be as portable and ready to use as the GA

package gac2 or the machine learning weka package3. In particular, the code should

be developed with the possibility of replacing certain parts of the algorithm easily; for

1Internally called surfer.
2Found at http://www.cs.uwyo.edu/˜wspears/freeware.html.
3Found at http://www.cs.waikato.ac.nz/ml/weka/.

165

instance, we have already mentioned that the search strategy might need improvement.

This code also needs to have a publicly accessible location so that other researchers

can access it without needing to get in contact with its developers.

New methodologies for objective function development The difficulties we saw

ITL have with the models in chapter 6 might be solved with improved methodolo-

gies for developing objective functions. While objective function development will

always require a certain amount of domain-specific knowledge, it is possible that cer-

tain methodologies tailored for use with ITL can be found that offer general guidance

to analysts faced with discrete objective functions.

Automatic stopping conditions All the studies in this thesis ran the ITL search for

a fixed number of iterations, i. e. a fixed search depth. The size of partial descriptions

that will be useful is a domain specific feature. Different models with input spaces

with different cardinalities will require different sized partial descriptions to constrain

output behavior. So that users of ITL do not have to experiment with different search

depths to determine the size of useful partial descriptions, different automatic stopping

conditions should be developed. These stopping conditions might be based on the

average values of the partial descriptions or the variance of the partial descriptions.

166

REFERENCES

[1] T. Abdel-Hamid and S. Madnick. Software Project Dynamics: An Integrated

Approach. Prentice-Hall Software Series, 1991.

[2] C. Abts, B. Clark, S. Devnani-Chulani, E. Horowitz, R. Madachy, D. Reifer,

R. Selby, and B. Steece. COCOMO II model definition manual. Technical re-

port, Center for Software Engineering, USC,, 1998. http://sunset.usc.

edu/COCOMOII/cocomox.html#downloads.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In

Proceedings of the 20th International Conference on Very Large Databases,

1994. Available from http://www.almaden.ibm.com/cs/people/

ragrawal/papers/vldb94_rj.ps.

[4] Jesus S. Aguilar-Ruiz, Isabel Ramos, Jose Riquelme, and Miguel Toro. An evo-

lutionary approach to estimating software development projects. Information

and Software Technology, 43(14):875–882, 2001.

167

REFERENCES

[5] M. Akhavi and W. Wilson. Dynamic simulation of software process models. In

Proceedings of the 5th Software Engineering Process Group National Meeting

(Held at Costa Mesa, California, April 26 - 29). Software engineering Institute,

Carnegie Mellon University, 1993.

[6] J. L. Alvarez, J. Mata, Jose C. Riquelme, and I. Ramos. A data mining method

to support decision making in software development projects. In ICEIS’2003:

Fifth International Conference on Enterprise Information Systems, 2003.

[7] V. Babovic. Mining sediment transport data with genetic programming. Pro-

ceedings of the First International 10 Conference on New Information Tech-

nologies for Decision Making in Civil Engineering, pages 875–886, 1998.

[8] James E. Baker. Reducing bias and inefficiency in the selection algorithm. In

Proc. of the 2nd Intl Conf on GA, pages 14–21. Lawrence Erlbaum Associates,

Inc. Mahwah, NJ, USA, 1987.

[9] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-based perfor-

mance prediction in software development: A survey. IEEE Transactions on

Software Engineering, 30(5), May 2004.

[10] S.B. Bay and M.J. Pazzani. Detecting change in categorical data: Mining con-

trast sets. In Proceedings of the Fifth International Conference on Knowledge

168

REFERENCES

Discovery and Data Mining, 1999. Available from http://www.ics.uci.

edu/˜pazzani/Publications/stucco.pdf.

[11] T Bayes. An essay toward solving a problem in the doctrine of chances. Philo-

sophical Transactions of the Royal Society of London, 53:370–418, 1764.

[12] B. Beizer. Software Testing Techniques. Van Nostrand Rheinold, New York,

1990.

[13] Forrest H. Bennett III, Martin A. Keane, David Andre, and John R. Koza. Au-

tomatic synthesis of the topology and sizing for analog electrical circuits using

genetic programming. In Kaisa Miettinen, Marko M. Makela, Pekka Neittaan-

maki, and Jacques Periaux, editors, Evolutionary Algorithms in Engineering

and Computer Science, pages 199–229, Jyvaskyla, Finland, 30 May - 3 June

1999. John Wiley & Sons.

[14] Peter J. Bentley and Jonathan P. Wakefield. Generic reporesentation of solid-

object geometry for genetic search. Microcomputers in civil engineering, 11(3),

1996.

[15] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic

model checking without BDDs. Lecture Notes in Computer Science, 1579:193–

207, 1999.

169

REFERENCES

[16] Robert R. Birge. Protein-based optical computing and memories. Computer,

25(11):56–67, 1992.

[17] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

URL: http://www.ics.uci.edu/˜mlearn/MLRepository.html.

[18] B. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[19] M. Boraso, C. Montangero, and H. Sedehi. Software cost estimation: an ex-

perimental study of model performances. Technical Report TR-96-22, Departi-

mento Di Informatatica, Universita Di Pisa, 6, 1996.

[20] Remco Bouckaert. Choosing between two learning algorithms based on cali-

brated tests. In International Conference on Machine Learning, 2003. Available

from http://www.cs.pdx.edu/˜timm/dm/10x10way.

[21] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and

regression trees. Technical report, Wadsworth International, Monterey, CA,

1984.

[22] F. P. Brooks. The Mythical Man-Month, Anniversary edition. Addison-Wesley,

1995.

170

REFERENCES

[23] C.H. Cai, A.W.C. Fu, C.H. Cheng, and W.W. Kwong. Mining association rules

with weighted items. In Proceedings of International Database Engineering

and Applications Symposium (IDEAS 98), August 1998. Available from http:

//www.cse.cuhk.edu.hk/˜kdd/assoc_rule/paper.pdf.

[24] V. Cerny. A thermodynamical approach to the travelling salesman problem: an

efficient simulation algorithm. Journal of Optimization Theory and Applica-

tions, 45:41–51, 1985.

[25] M.-S. Chen and F. H. Liao. Crossover operators with adaptive probability. In

INTSYS ’98: Proceedings of the IEEE International Joint Symposia on Intel-

ligence and Systems, page 10, Washington, DC, USA, 1998. IEEE Computer

Society.

[26] E. Chiang and T. Menzies. Simulations for very early lifecycle quality evalu-

ations. Software Process: Improvement and Practice, 7(3-4):141–159, 2003.

Available from http://menzies.us/pdf/03spip.pdf.

[27] S. Chulani and B. Boehm. Modeling software defect introduction and removal:

COQUALMO. Technical Report USC-CSE-99-510, University of Southern

California, Center for Software Engineering, 1999.

171

REFERENCES

[28] W. Clancey, P. Sachs, M. Sierhuis, and R. van Hoof. Brahms: Simulating prac-

tice for work systems design. In P. Compton, R. Mizoguchi, H. Motoda, and

T. Menzies, editors, Proceedings PKAW ’96: Pacific Knowledge Acquisition

Workshop. Department of Artificial Intelligence, 1996.

[29] Ryan Clark. Faster treatment learning. Master’s thesis, Portland State Univer-

sity, 2006.

[30] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded

model checking using satisfiability solving. Formal Methods in System Design,

19(1):7–34, 2001.

[31] J. Clarke, J.J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,

B. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd. Reformu-

lating software engineering as a search problem. IEE Proceedings-Software,

150(3):161–175, 2003.

[32] John Clarke, Jose J. Dolado, Mark Harman, R. M. Hierons, M. Lumkin,

B. Mitchell, S. Mancoridis, K. Rees, M. Roper, M. Shepperdand, and Bryan

Jones. Reformulating software engineering as a search problem, 2003.

[33] Oscar Cordón, Francisco Herrera, and Luciano Sánchez. Evolutionary learning

processes for data analysis in electrical engineering applications. John Wiley

172

REFERENCES

and Sons, 1997.

[34] S.L. Cornford, M.S. Feather, and K.A. Hicks. DDP a tool for life-cycle risk

management. In IEEE Aerospace Conference, Big Sky, Montana, pages 441–

451, March 2001.

[35] P. Denno, M. P. Steves, D. Libes, and E. J. Barkmeyer. Model-drven integration

using existing models. IEEE Software, 20(5):59–63, Sept.-Oct. 2003.

[36] Jose J. Dolado. A validation of the component-based method for software size

estimation. IEEE Transactions on Software Engineering, 26(10):1006–1021,

October 2000.

[37] Jose J. Dolado. On the problem of the software cost function. Information and

Software Technology, 43(1):61–72, 1 January 2001.

[38] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsu-

pervised discretization of continuous features. In International Conference on

Machine Learning, pages 194–202, 1995.

[39] L. J. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and interval-

schemata. In Foundations of Genetic Algorithms-2, pages 187–202, 1993.

173

REFERENCES

[40] Brian Everitt. The Analysis of Contingency Tables. Chapman and Hall, London,

1977.

[41] M. Feather, H. In, J. Kiper, J. Kurtz, and T. Menzies. First contract: Better,

earlier decisions for software projects. In ECE UBC tech report, 2001. Available

from http://menzies.us/pdf/01first.pdf.

[42] Martin Feather and Steve Cornfordi. Quantitative risk-based requirements rea-

soning. Requirements Engineering Journal, 8(4):248–265, 2003.

[43] M.S. Feather and T. Menzies. Converging on the optimal attainment of require-

ments. In IEEE Joint Conference On Requirements Engineering ICRE’02 and

RE’02, 9-13th September, University of Essen, Germany, 2002. Available from

http://menzies.us/pdf/02re02.pdf.

[44] Chung-Wei Feng, Liang Liu, and Scott A. Burns. Using genetic algorithms to

solve construction time-cost trade-off problems. Journal of Computing in Civil

Engineering, 11(3):184–189, 1997.

[45] G. R. Finnie, G. E. Wittig, and J.-M. Desharnais. A comparison of soft-

ware effort estimation techniques: using function points with neural networks,

case-based reasoning and regression models. Journal of System and Software,

39(3):281–289, 1997.

174

REFERENCES

[46] L. Fogel. Artificial Intelligence through Simulated Evolution. Wiley and Sons,

1966.

[47] R. France, S. Ghosh, E. Song, and D. Kim. A metamodeling approach to

pattern-based moel refractoringt. IEEE Software, 20(5):52–58, Sept.-Oct. 2003.

[48] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, 1979.

[49] Fred Glover and M. Laguna. Tabu search. In C. Reeves, editor, Modern Heuris-

tic Techniques for Combinatorial Problems, Oxford, England, 1993. Blackwell

Scientific Publishing.

[50] Fred Glover and Claude McMillan. The general employee scheduling problem:

an integration of MS and AI. Comput. Oper. Res., 13(5):563–573, 1986.

[51] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, 1989.

[52] Jack Greenfield and Keith Short. Software factories : assembling applications

with patterns, models, frameworks, and tools. Wiley Publishing, Indianapolis,

IN, 2004.

175

REFERENCES

[53] B. Hailpern and P. Tarr. Model-driven develpment: the good, the bad, and the

ugly. IBM Systems Journal, 45(3):451–461, 2006.

[54] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow

programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320,

September 1991.

[55] M.A. Hall and G. Holmes. Benchmarking attribute selection techniques for

discrete class data mining. IEEE Transactions On Knowledge And Data Engi-

neering, 15(6):1437– 1447, 2003.

[56] D. Harel. Statemate: A working environment for the development of complex

reactive systems. IEEE Transactions on Software Engineering, 16(4):403–414,

April 1990.

[57] Mark Harman and John Clark. Metrics are fitness functions too. 10th Interna-

tional Software Metrics Symposium, 2004.

[58] Mark Harman and Bryan F. Jones. Search-based software engineering. Infor-

mation & Software Technology, 43(14):833–839, 2001.

[59] H. Harrell, L. Ghosh, and S. Bowden. Simulation Using ProModel. McGraw-

Hill, 2000.

176

REFERENCES

[60] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall,

1999.

[61] John Holland. Adaption in natural and artificial systems. MIT Press Cambridge,

1975.

[62] Y. Hu. Treatment learning, 2002. Masters thesis, Unviersity of British

Columbia, Department of Electrical and Computer Engineering. In preperation.

[63] Y. Hu. Treatment learning: Implementation and application, 2003. Masters

Thesis, Department of Electrical Engineering, University of British Columbia.

[64] Eugene M. Izhikevich. Neural excitability, spiking, and bursting. International

Journal of Bifurication and Chaos, 10(6):1171–1266, 2000.

[65] Eugene M. Izhikevich. Simple model of spiking neurons. IEEE Transactions

on Neural Networks, 14(6):1569–1572, November 2003.

[66] Eugene M. Izhikevich. Which model to use for cortical spiking neurons? IEEE

Transactions on Neural Networks, 15(6):1063–1070, September 2004.

[67] W. M. Jenkins. The genetic algorithm-or can we improve design by breeding.

IEE Colloquium on Artificial Intelligence in Civil Engineering, pages 1/1–1/4,

1992.

177

REFERENCES

[68] B. Jones, H. Sthamer, and D. Eyres. Automatic structural testing using genetic

algorithms. Software Engineering Journal, 11(5):299–306, 1996.

[69] B. Jones, H. Sthamer, X. Yang, and D. Eyres. The automatic generation of

software test data sets using adaptive search techniques. In Proceedings of the

3rd International Conference on Software Quality Management, pages 435–

444, 1995.

[70] C. Z. Jonikow and Z. Michalewicz. An experimental comparison of binary and

floating point representations in genetic algorithms. In International Conference

on Genetic Algorithms, pages 31–38, 1991.

[71] Jan Jrjens and Jorge Fox. Tools for model-based security engineering. In ICSE

’06: Proceeding of the 28th international conference on Software engineering,

pages 819–822, New York, NY, USA, 2006. ACM Press.

[72] J. Karlsson, C. Wohlin, and B. Regnell. An evaluation of methods for priori-

tizing software requirements. Journal of Information and Software Technology,

39(14-15):939–947, 1998.

[73] Joachim Karlsson and Kevin Ryan. A cost-value approach for prioritizing re-

quirements. IEEE Softw., 14(5):67–74, 1997.

178

REFERENCES

[74] C. L. Karr, S. K. Sharma, W. J. Hatcher, and T. R. Harper. Fuzzy control of an

exothermic chemical reaction using genetic algorithms. Engineering Applica-

tions of Artifical Intelligence, 6(6):575–582, 1993.

[75] D. Kelton, R. Sadowski, and D. Sadowski. Simulation with Arena, second edi-

tion. McGraw-Hill, 2002.

[76] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated an-

nealing. Science, 220(4598):671–680, 1983.

[77] Bogdan Korel. Automated test data generation for programs with procedures. In

ISSTA ’96: Proceedings of the 1996 ACM SIGSOFT international symposium

on Software testing and analysis, pages 209–215, New York, NY, USA, 1996.

ACM Press.

[78] John Koza. Genetic Programming: on the programming of computers by means

of natural selection. MIT Press Cambridge, 1992.

[79] J. E. Labossiere and N. Turrkan. On the optimization of the tensor polynomial

failure theory with a genetic algorithm. Transactions of the Canadian Society

for Mechinical Engineering, 16(3-4):251–265, 1992.

[80] A. Law and B. Kelton. Simulation Modeling and Analysis. McGraw Hill, 2000.

179

REFERENCES

[81] Albert L. Lederer and Jayesh Prasad. Nine management guidelines for better

cost estimating. Commun. ACM, 35(2):51–59, 1992.

[82] A. K. Lokketangen and S. Storoy. Tabu search within a pivot and complement

framework. International Transactions in Operations Research, 1(3):305–316,

1994.

[83] R.H. Martin and D. M. Raffo. A model of the software development process

using both continuous and discrete models. International Journal of Software

Process Improvement and Practice, June/July 2000.

[84] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engi-

neering, 2(4):308–320, December 1976.

[85] Steve McConnell. Code Complete, Second Edition. Microsoft Press, Redmond,

WA, USA, 2004.

[86] G. McGraw, C. Michael, and M. Schatz. Generating software test data by evo-

lution. Technical report, Reliable Software Technologies, Sterling, VA, 1997.

Submitted to IEEE Transactions on Software Engineering.

[87] P. McMinn. Search-based software test data generation: A survey. Software

Testing, Verification and Reliability, 14(2):105–156, 2004.

180

REFERENCES

[88] S.J. Mellor, A.N. Clark, and T. Futagamii. Model-driven development - guest

editor’s introduction. IEEE Software, 20(5):14– 18, Sept.-Oct. 2003.

[89] T. Menzies, E. Chiang, M. Feather, Y. Hu, and J.D. Kiper. Condensing uncer-

tainty via incremental treatment learning. In Taghi M. Khoshgoftaar, editor,

Software Engineering with Computational Intelligence. Kluwer, 2003. Avail-

able from http://menzies.us/pdf/02itar2.pdf.

[90] T. Menzies and Y. Hu. Constraining discussions in requirements engineering. In

First International Workshop on Model-based Requirements Engineering, 2001.

Available from http://menzies.us/pdf/01lesstalk.pdf.

[91] T. Menzies and Y. Hu. Data mining for very busy people. In IEEE Computer,

November 2003. Available from http://menzies.us/pdf/03tar2.

pdf.

[92] T. Menzies and Y. Hu. Just enough learning (of association rules): The TAR2

treatment learner. In Artificial Intelligence Review (to appear), 2004. Available

from http://menzies.us/pdf/02tar2.pdf.

[93] T. Menzies and J.D. Kiper. How to argue less, 2001. Available from http:

//menzies.us/pdf/01jane.pdf.

181

REFERENCES

[94] T. Menzies and J.D. Kiper. Machine learning for requirements engineering,

2001. Available from http://menzies.us/pdf/01ml4re.pdf.

[95] T. Menzies and E. Sinsel. Practical large scale what-if queries: Case studies

with software risk assessment. In Proceedings ASE 2000, 2000. Available from

http://menzies.us/pdf/00ase.pdf.

[96] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code

attributes to learn defect predictors. IEEE Transactions on Software En-

gineering, January 2007. Available from http://menzies.us/pdf/

06learnPredict.pdf.

[97] Tim Menzies and Andres Orrego. Incremental discreatization and bayes classi-

fiers handles concept drift and scaled very well. In IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, 2005. Submitted, IEEE TKDE,

Available from http://menzies.us/pdf/05sawtooth.pdf.

[98] P. Mi and W. Scacchi. A knowledge-based environment for modeling and sim-

ulation software engineering processes. IEEE Transactions on Knowledge and

Data Engineering, pages 283–294, September 1990.

[99] Zbigniew Michalewicz. Genetic algorithms + data structures = evolution pro-

grams (3rd ed.). Springer-Verlag, London, UK, 1996.

182

REFERENCES

[100] A. Miller. Subset Selection in Regression (second edition). Chapman & Hall,

2002.

[101] Brad L. Miller and David E. Goldberg. Genetic algorithms, tournament selec-

tion, and the effects of noise. Complex Systems, 9:193–212, 1995.

[102] Yuichi Miyamoto, Tatsuya Miyatake, Soh Kurosaka, and Yoshinobu Mori. A

parameter tuning for dynamic simulation of power plants using genetic algo-

rithms. Transactions of the Institute of Electrical Engineers of Japan C, 113-

D(12):1410–1415, 1993.

[103] T.P. Moran and J.M. Carroll. Design Rationale: Concepts, Techniques, and Use.

Lawerence Erlbaum Associates, 1996.

[104] J. D. Murray. Mathematical Biology. Springer-Verlag, 1980.

[105] Takeshi Nakajo and Hitoshi Kume. A case history analysis of software error

cause-effect relationships. IEEE Trans. Softw. Eng., 17(8):830–838, 1991.

[106] M. Negnevitsky. Artificial Intelligence, A Guide to Intelligent Systems.

Addison-Wesley Longman Publishing, 2002.

183

REFERENCES

[107] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a roadmap.

In ICSE ’00: Proceedings of the Conference on The Future of Software Engi-

neering, pages 35–46, New York, NY, USA, 2000. ACM Press.

[108] Object Management Group. MDA Guide Version 1.0.1, June 2003.

[109] Roy P. Pargas, Mary Jean Harrold, and Robert Peck. Test-data generation using

genetic algorithms. Software Testing, Verification & Reliability, 9(4):263–282,

1999.

[110] R. Poli, S. Cagnoni, and G. Valli. Genetic design of optimum linear and

nonlinear QRS detectors. IEEE Transactions on Biomedical Engineering,

42(11):1137–41, 1995.

[111] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[112] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, 1992.

ISBN: 1558602380.

[113] J. R. Quinlan. Learning with Continuous Classes. In 5th Australian Joint

Conference on Artificial Intelligence, pages 343–348, 1992. Available from

http://citeseer.nj.nec.com/quinlan92learning.html.

184

REFERENCES

[114] L. Rela. Evolutionary computing in search-based software engineering. Mas-

ter’s thesis, Lappeenranta University of Technology, 2004.

[115] Conor Ryan. Automatic re-engineering of software using genetic programming.

Kluwer Academic Publishers, 2000.

[116] T. L. Saaty. The Analytic Hierarchy Process. McGraw-Hill, Inc., 1980.

[117] E. Sanchez, H. Miyano, and J. P. Branchet. Optimization of fuzzy queries with

genetic algorithms. Proceding Sixth International Fuzzy Systems Association

World Congress, 2:293–296, 1995.

[118] M. Sebag, M. Schoenauer, and H. Maitournam. Parametric and non-parametric

identification of macro-mechanical models. In D. Quagliarella, J. Périaux,

C. Poloni, and G. Winter, editors, Genetic Algorithms and Evolution Strategy

in Engineering and Computer Science, pages 327–340. John Wiley and Sons,

Chichester, 1998.

[119] S. Sendall and W. Kozacaynski. Model transformation: The heart and soul of

model-driven software development. IEEE Software, 20(5):42–45, Sept.-Oct.

2003.

[120] M. Shepperd and C. Schofield. Estimating software project effort using

analogies. IEEE Transactions on Software Engineering, 23(12), November

185

REFERENCES

1997. Available from http://www.utdallas.edu/˜rbanker/SE_

XII.pdf.

[121] S. Buckingham Shum and N. Hammond. Argumentation-based design ratio-

nale: What use at what cost? International Journal of Human-Computer Stud-

ies, 40(4):603–652, 1994.

[122] Mike Spivey. The Z notation: a reference manual. Prentice Hall, 2nd edition,

1992.

[123] H. Sterman. Business Dynamics: Systems Thinking and Modeling for a Com-

plex World. Irwin McGraw-Hill, 2000.

[124] T.Menzies and Y. Hu. The TAR2 treatment learner, 2002. Avail-

able from http://www.ece.ubc.ca/twiki/pub/Softeng/

TreatmentLearner/intro.pdf.

[125] Nigel Tracey. A search-based automated test-data generation framework for

safety-critical systems. PhD thesis, University of York, 2000.

[126] Nigel Tracey, John Clark, and Keith Mander. Automated program flaw finding

using simulated annealing. In ISSTA ’98: Proceedings of the 1998 ACM SIG-

SOFT international symposium on Software testing and analysis, pages 73–81,

New York, NY, USA, 1998. ACM Press.

186

REFERENCES

[127] Nigel Tracey, John Clark, and Keith Mander. The Way Forward for Unifying

Dynamic Test Case Generation: The Optimisation-based Approach. In IFIP

International Workshop on Dependable Computing and its Applications (DCIA

98), Johannesburg, January 1998.

[128] Nigel Tracey, John Clark, Keith Mander, and John A. McDermid. An auto-

mated framework for structural test-data generation. In Automated Software

Engineering, pages 285–288, 1998.

[129] Nigel Tracey, John Clark, John McDermid, and Keith Mander. A search-based

automated test-data generation framework for safety-critical systems. Springer-

Verlag New York, Inc., New York, NY, USA, 2002.

[130] David Waddington and Patrick Lardieri. Model-centric software development.

IEEE Computer, 39(2):28–29, February. 2006.

[131] Fiona Walkerden and Ross Jeffery. An empirical study of analogy-based soft-

ware effort estimation. Empirical Softw. Engg., 4(2):135–158, 1999.

[132] Geoffrey I. Webb, Shane Butler, and Douglas Newlands. On detecting differ-

ences between groups. In KDD ’03: Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 256–

265, New York, NY, USA, 2003. ACM Press.

187

REFERENCES

[133] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test environment for

automatic structural testing. Information and Software Technology, 43(14):841–

854, 2001.

[134] Joachim Wegener, Hartmut Pohlheim, and Harmen Sthamer. Testing the tempo-

ral behavior of real-time tasks using extended evolutionary algorithms. In RTSS

’99: Proceedings of the 20th IEEE Real-Time Systems Symposium, page 270,

Washington, DC, USA, 1999. IEEE Computer Society.

[135] Ron Weiss and Thomas F. Knight, Jr. Engineered communications for microbial

robotics. Lecture Notes in Computer Science, 2054:1–15, 2001.

[136] D. Whitley. A free lunch proof for gray versus binary encodings. In Wolfgang

Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar,

Mark Jakiela, and Robert E. Smith, editors, Proceedings of the Genetic and

Evolutionary Computation Conference, volume 1, pages 726–733, Orlando,

Florida, USA, 13-17 1999. Morgan Kaufmann.

[137] D. Whitley, J. R. Beveridge, C. Guerra-Salcedo, and C. Graves. Messy genetic

algorithms for subset feature selection. In Thomas Bäck, editor, Proceedings

of the Seventh International Conference on Genetic Algorithms (ICGA97), San

Francisco, CA, 1997. Morgan Kaufmann.

188

REFERENCES

[138] J. Whittle and P. Jayaraman. Generating hierarchical state machines from use

case charts. In IEEE International Conference on Requirements Engineering

(RE2006), 2006.

[139] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Morgan Kaufmann, 1999.

[140] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and K. Karapoulios.

Application of genetic algorithms to software testing. 5th International Confer-

ence on Software Engineering and its Applications, pages 625–636, 1992.

[141] Ying Yang and Geoffrey I. Webb. A comparative study of discretization methods

for naive-bayes classifiers. In Proceedings of PKAW 2002: The 2002 Pacific Rim

Knowledge Acquisition Workshop, pages 159–173, 2002.

[142] Eric S. K. Yu. Towards modeling and reasoning support for early-phase re-

quirements engineering. In RE ’97: Proceedings of the 3rd IEEE International

Symposium on Requirements Engineering (RE’97), pages 226–235, Washing-

ton, DC, USA, 1997. IEEE Computer Society.

[143] Jun Zhang, Henry S. H. Chung, and Jinghui Zhong. Adaptive crossover and

mutation in genetic algorithms based on clustering technique. In GECCO ’05:

189

REFERENCES

Proceedings of the 2005 conference on Genetic and evolutionary computation,

pages 1577–1578, New York, NY, USA, 2005. ACM Press.

190

APPENDIX A

EXTREME SAMPLING RESULTS

In chapter 4 we presented the results of our experimentation with extreme sampling.

For space reasons not all the results were presented. This appendix contains all the

data analyzed from that experimentation.

A.1 Results of Solution Quality

§4.2 displayed only the median delta comparisons This section displays the 1st, 2nd,

and 3rdquartiles for the delta comparisons.

191

A.1. Results of Solution Quality

1stquartile 2ndquartile 3rdquartile

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

10853

re
la

tiv
e

de
lta

search depth

median delta

M=100
M=300
M=500

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

10853

re
la

tiv
e

de
lta

search depth

median delta

 0

 0.05

 0.1

 0.15

 0.2

 0.25

10853

re
la

tiv
e

de
lta

search depth

median delta

Figure A.1: The effects of batch size, M , versus search depth

1stquartile 2ndquartile 3rdquartile

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

3529241916121063

re
la

tiv
e

de
lta

objective function evaluations x 100

median delta

M=100
M=300
M=500

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

3529241916121063

re
la

tiv
e

de
lta

objective function evaluations x 100

median delta

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3529241916121063

re
la

tiv
e

de
lta

objective function evaluations x 100

median delta

Figure A.2: The effects of batch size, M , versus objective function evaluations

1stquartile 2ndquartile 3rdquartile

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

10853

re
la

tiv
e

de
lta

search depth

median delta

N=25
N=50
N=75

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

10853

re
la

tiv
e

de
lta

search depth

median delta

 0

 0.05

 0.1

 0.15

 0.2

 0.25

10853

re
la

tiv
e

de
lta

search depth

median delta

Figure A.3: The effects of the good/bad ratio, N

192

A.1. Results of Solution Quality

1stquartile 2ndquartile

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

10853

re
la

tiv
e

de
lta

search depth

median delta

100-25
100-50
300-25
300-50
300-75
500-25
500-50
500-75

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

10853

re
la

tiv
e

de
lta

search depth

median delta

3rdquartile

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

10853

re
la

tiv
e

de
lta

search depth

median delta

Figure A.4: The effects of the M/N combinations, versus search depth

193

A.1. Results of Solution Quality

1stquartile 2ndquartile

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

3529241916121063

re
la

tiv
e

de
lta

objective function evaluations x 100

100-25
100-50
300-25
300-50
300-75
300-25
500-50
500-75

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

3529241916121063

re
la

tiv
e

de
lta

objective function evaluations x 100

3rdquartile

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

3529241916121063

re
la

tiv
e

de
lta

objective function evaluations x 100

Figure A.5: The effects of the M/N combinations, versus objective function evalua-
tions

1stquartile 2ndquartile 3rdquartile

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

10853

re
la

tiv
e

de
lta

search depth

median delta

BOR
WOB
BOR’

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

10853

re
la

tiv
e

de
lta

search depth

median delta

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

10853

re
la

tiv
e

de
lta

search depth

median delta

Figure A.6: The effects of the selector

194

A.2. Stability of Repeated Trials

A.2 Stability of Repeated Trials

§4.3 did not display the stability results from all selectors and all M/N combinations.

This section displays the search trajectories for all 720 trials described in §4.2.

195

A.2. Stability of Repeated Trials

Figure A.7: Cost vs. Benefit in the aero model with the bore selector

196

A.2. Stability of Repeated Trials

Figure A.8: Cost vs. Benefit in the aero model with the bore′ selector

197

A.2. Stability of Repeated Trials

Figure A.9: Cost vs. Benefit in the aero model with the wob selector

198

A.2. Stability of Repeated Trials

Figure A.10: Cost vs. Benefit in the holo model with the bore selector

199

A.2. Stability of Repeated Trials

Figure A.11: Cost vs. Benefit in the holo model with the bore′ selector

200

A.2. Stability of Repeated Trials

Figure A.12: Cost vs. Benefit in the holo model with the wob selector

201

A.2. Stability of Repeated Trials

Figure A.13: Cost vs. Benefit in the cob model with the bore selector

202

A.2. Stability of Repeated Trials

Figure A.14: Cost vs. Benefit in the cob model with the bore′ selector

203

A.2. Stability of Repeated Trials

Figure A.15: Cost vs. Benefit in the cob model with the wob selector

204

A.3. Variance of Partial Descriptions

A.3 Variance of Partial Descriptions

§4.4 did not display the varience results from all selectors and all M/N combinations.

This section displays the standard deviations for all 720 trials described in §4.2.

205

A.3. Variance of Partial Descriptions

Figure A.16: Cost and Benefit in the aero model with the bore selector

206

A.3. Variance of Partial Descriptions

Figure A.17: Cost and Benefit in the aero model with the bore′ selector

207

A.3. Variance of Partial Descriptions

Figure A.18: Cost and Benefit in the aero model with the wob selector

208

A.3. Variance of Partial Descriptions

Figure A.19: Cost and Benefit in the holo model with the bore selector

209

A.3. Variance of Partial Descriptions

Figure A.20: Cost and Benefit in the holo model with the bore′ selector

210

A.3. Variance of Partial Descriptions

Figure A.21: Cost and Benefit in the holo model with the wob selector

211

A.3. Variance of Partial Descriptions

Figure A.22: Cost and Benefit in the cob model with the bore selector

212

A.3. Variance of Partial Descriptions

Figure A.23: Cost and Benefit in the cob model with the bore′ selector

213

A.3. Variance of Partial Descriptions

Figure A.24: Cost and Benefit in the cob model with the wob selector

214

