
From Effort Estimation to Effort Reduction

Adam Brady1, Tim Menzies1, Jacky Keung2

1Lane Department of CS&EE, West Virginia University, USA,
2NICTA, Australia,

adam.m.brady@gmail.com,tim@menzies.us,Jacky.Keung@nicta.com.au

Abstract—A major hurdle still faced by data mining practi-
tioners involves translating complex theories into actionable
items for managers. As theories and methodology becomes
more complex, business users must place more faith in the
theory assumptions rather than their own intuition. To combat
this we present an extremely simple effort reduction recom-
mendation system called “W” that maintains no underlying
parametric model and produces simple, concise theories com-
plete with explanations. “W” does this by extending the effort
estimation of case-based reasoning with the explanation power
of contrast sets. From these contrast sets we build new queries
that constrain the original effort estimates, demonstrating a
reduction in both the median effort and variance of historically-
relevant projects.
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I. INTRODUCTION

”Don’t tell me where I am, tell me where to go.”

-A very busy user

A machine learner’s purpose in life is to generate theories.

However, all theories must eventually be read by humans.

Therefore, we should consider what kinds of theories people

like to read.

If the reader is a busy person they might not need or

even be able to use the nuance of a complex theory. Rather,

a busy person might instead just want to know what will

bring the most benefit from the least effort and nothing more.

It follows that machine learning for busy people should

not strive for elaborate theories or increasing the expressive

power of the theory’s language. Rather, a better goal might

be to find the smallest theory with the most impact.

Previous work explored minimal controllers in the context

of AI search over monte-carlo analysis of software process

models using STAR [1]. A concern with that line of research

is that the more elaborate our tech, the harder it is to validate

the conclusion. In particular, reproducability is hard when

it takes 2-6 months to rebuild experimental rig discussed

in the previo us paper. Is there a simpler way to generate

simple most-effective controllers for a software project?

Another problem was the conclusions were dependent on

the parametric model used. For example, our previous work

was based on the USC COCOMO tools. The tools were built

from mostly southern-caifornia DoD aerospace contractors

and it is a valid criticism of those models that the external

validity of those models is an open question.

Therefore, in order to simplify the reproducibility of our

work and remove our dependency of possibly inappropriate

models, this paper reports an experiment in learning con-

trollers using case-based reasoning. We report a remarkably

simple CBR algorithm dubbed “W” that achieves all our

goals. “W” generates recommendations that reduce both the

median effort and the variance on the effort. The recom-

mendations are very small in the case-studies shown here,

they’re usually one change to a project with widely varying

recommendations between projects.

II. BACKGROUND

A. Modeling vs. Case-Based Reasoning by Analogy

Much work has been put forth in developing parametric

models for estimation software effort. Popular models such

as USC COCOMO [2] take the reductionist approach of

reducing any arbitrary software project to a handful of

descriptive parameters. Each parameter consists of a range

of values from 1 to 6 representing ranges from very low

to extremely high, respectively, mapped to regression values

expressing how each attribute affects effort. The result of

which can be used to model software effort using this

formula:

effort = a ∗ KSLOC
b+0.01∗

∑
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SFi ∗ (
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∏
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EMj) (1)

B. The Case for CBR

Where KSLOC represents thousands of lines of code,

SF represents exponential scale factor attributes, and EM

represents linear effort multipliers. While these parameters

were derived from historical NASA projects and have shown

their utility, an effort estimator must rely that these pa-

rameters are reflective of any given arbitrary project. As

time progresses, one can speculate that the relevance of the

underlying model will remain applicable to future cases.

Also, such models often require careful domain-specific

tuning, as is the case of the a and b linear and exponential

tuning values in 1. For the original NASA dataset [3], these

values can range anywhere from:

(2.2 ≤ a ≤ 9.18) ∧ (0.88 ≤ b ≤ 1.09) (2)



Because these tunings are arbitrary, one can see how

merely the tuning parameter a can quadruple the effort

estimation depending on its value. Given this uncertainty

and reliance on establishing a general case for all software

projects, another method, case-based reasoning, establishes

an alternative methodology for effort estimation.

The general form of case-based reasoning differs from

parametric model-based learning in that there is no attempt

to reduce complex phenomena to a general-case parametric

model. Rather, historical data is Retrieved, Reused, Revised,

and Retained [4] (the ”4 REs”) as a means of adapting the

past to reason about the future.

The intuition of CBR comes from cognitive models of

human behavior. That is, as humans we tend to base our

decisions not on complex reductive analysis, but on an

instantaneous survey of past experiences. In other words,

we don’t think, we remember. For example one not need

consider the actuarial ramifications of a kitchen grease fire,

our past experiences tells us without hesitance: Fire hot, fire

bad. While the power of simulating and modeling the world

has allowed for our success as a species, our abilities fall

apart without historical knowledge of the world.

However, for this paper we are more interested in a subset

of the CBR domain, effort estimation by analogy.

Analogy effort estimation centers around historical project

data frozen in time, referred to as cases, to reason about

new project instances. The core assumption being that given

some measurement of relevancy between cases and incoming

project instances, we can generate a query q over the

historical space that selects for the kth nearest neighbors , or

knn, most relevant to a project instance. Because the cases

are analogous to the project instance being considered, CBR

methodology states we can reason about the project instance

by examining the analogous cases.

It is important to note, unlike established models CBR

does carry the requirement of obtaining relevant and accurate

historial data that represents the problem space. While this

can limit the deployable situations for CBR, when this

data is available CBR offers an intrinsic justification of it’s

estimations that are less obvious with a parametric approach.

One need only examine the analogous cases for evidence

supporting a particular estimation.

Finally, an added benefit of reasoning from historical data

grants CBR distinct advantages over parametric models as

the learner is only exposed to conditions that happen in

practice, rather than reason about all possible theoretical pos-

sibilities. This is useful when presented with data containing

outlier behavior that might not map to a linear regression as

easily. As long as the data collection requirements are met,

CBR can be applied to any consistent and representative

means of describing a software project.

For these reasons outlined above we include CBR by

analogy as the foundation of our learning controller, “W,”

as a starting point in generating useful, actionable, simple

theories.

C. From Estimation to Planning

Upon a thorough review of CBR literature, there exists

little work beyond estimation. Famous CBR systems such

as Shepperd’s ANGEL [5] and more recent work such as

Keung’s Analogy-X [6] focus their efforts on quantifying

what is relevant in effort estimation, but remain limited in

the scope of simply estimating. While means of deciding

what cases are relevant is a fundamental problem of CBR, it

is worth persuing other possible applications of this unique

methodology. For instance, no where does there exist any

planning in CBR literature.

Our focus of this paper and “W” is not to explore the

effort estimation power of learning by analogy. Rather, we

seek to broaden the scope of CBR to include generating

theories for effort reduction. To do this, we must devise a

way to exploit the knowledge gained from the attributes of

the relevant neighborhood of projects, rather than merely

their historical effort.

Conceptually, if we query the historical space for a set of

relevant cases, we should recommend project changes that

cause our project instance to be more similar to historical

cases with the most favorable outcome. In the case of effort

reduction, a good recommendation would drive our project

away from attributes associated with worse effort outcomes

and towards projects with better effort outcomes. When

tested against unseen cases, a project with the previously

recommended attribute constraints should demonstrate a re-

duction in both the effort and variance seen in its neighbors.

From these test cases we can build successive queries, q∗i ,

that incrementally apply these attribute constraints until we

can no longer accurately predict a reduction on effort:

query∗

i = query + ∪ici (3)

Each attribute constraint ci can then be added to the query

qi in descending order of recommendation score.

III. DECIDING WITH “W”

“W” is our implementation of a effort reduction planning

system using the fundamentals of CBR. “W” consists of

three main steps:

• Defining a Project Instance

• Deciding what attributes are relevant to improving the

project

• Evaluating the effectiveness of improvements on test

cases

“W” decides based on two core assumptions: Similar

projects have similar efforts, and the the attributes that drive

effort reduction will occur more frequently in the best cases

than the worst.



“W” Project File Example

@project

@attribute ?rely 3 4 5

@attribute tool 2

@attribute cplx 4 5 6

@attribute ?time 4 5 6

Figure 1. Example project file for “W”

“W” Historical Cases

@relation NASA93

@attribute rely 1 2 3 4 5

@attribute data 2 3 4 5

@attribute cplx 1 2 3 4 5 6

@attribute time 3 4 5 6

@attribute stor 3 4 5 6

@attribute virt 2 3 4 5

@attribute turn 2 3 4 5

@attribute acap 1 2 3 4 5

@attribute aexp 1 2 3 4 5

@attribute pcap 1 2 3 4 5

@attribute vexp 1 2 3 4

@attribute lexp 1 2 3 4

@attribute modp 1 2 3 4 5

@attribute tool 1 2 3 4 5

@attribute sced 1 2 3 4 5

@attribute ksloc 8.4 10.8 24 25.2 31.2

36 72 117.6 360

@data

4 2 4 3 3 2 2 3 3 3 3 4 4 3 2 24.6 117.6

4 2 4 3 3 2 2 3 3 3 3 4 4 3 2 7.7 31.2

4 2 4 3 3 2 2 3 3 3 3 4 4 3 2 8.2 36

4 2 4 3 3 2 2 3 3 3 3 4 4 3 2 9.7 25.2

4 2 4 3 3 2 2 3 3 3 3 4 4 3 2 2.2 8.4

4 2 4 3 3 2 2 3 3 3 3 4 4 3 2 3.5 10.8

4 2 4 3 3 2 2 3 3 3 3 4 4 3 2 66.6 352.8

3 2 4 3 3 2 2 4 5 5 3 4 3 3 3 20 72

3 2 4 3 3 2 2 4 5 4 3 4 3 3 3 6 24

3 2 4 3 3 2 2 4 5 5 3 4 3 3 3 100 360

Figure 2. Example datafile for “W” consisting of a sample of NASA93
data

A. Defining Projects in “W”

Before a we can define a potential, “W” must define its

historical cases. Figure 2 demonstrates a small example

of how any arbitrary historical data is defined for use by

“W.” The first line declares the name of the dataset, fol-

lowed by all attribute (column) names and possible values.

Because of this enumeration, currently “W” only supports

discretized datasets. After the @data sigil, historical cases

are defined numerically assuming the same column order as

the attributes defined above.

The main interface between a user and “W” consists of

it’s project descriptions. A simple example file is given in

figure 1. When a project lead or manager wishes to know

what can be done to improve the effort of a future project,

“W” should only make recommendations that fall within

actionable, feasible changes. For example, the historical

projects in figure 3 define the COCOMO attribute ranges

and hard values that constrain the potential recommendations

for the project. In the case of OSP, it is outside the bounds

of reality to attempt to change the precedenedness (prec) of

a project if the project has no precedent.

To define an attribute range as controllable, the “?” char-

acter denotes this mutability. For example, in the example

Figure 3. Real-world project description from a NASA Orbital Space
Plane

project in figure 1 the reliability of this project can be set

anywhere from three to five, but for managerial reasons tool

use is locked at two. If an attribute is defined but lacks a

“?,” when generating samples for the knn calculations these

attribute ranges will be used but not recommened.

B. Finding Relevant Cases

Once a project is defined, “W” by default generates fifty

random projects consistent with the attribute constraints

defined. This stoicastic sampling solves the problem of

finding the nearest neighbors within a range. Using figure 4

as a simplified example, you can see how the attribute ranges

defined in the project files allow for a ”zone” of potential

projects to exist. In the diagram the x dimension represents

a continuum of schedule pressure attributes while the y

dimension represents a range of managerial experience. For

any case, a specific value for both of this attributes exists,

as represented by the arrows. Samples generated will always

fall within the bounds of the dotted ”controllable zone.”

From these samples, the k nearest neighbors are deter-

mined by calculating the minimum n-dimensional euclidean

distance between any case c and generated sample s:
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Figure 4. A simplified example of historical cases (arrows) and their
relation to the defined project instance ranges (dotted box)

dist(c, s) =
√

(c1 − s1)2 + (c2 − s2)2 + . . . + (cn − sn)2

(4)

From these distances, the kth smallest distances are cho-

sen as relevant examples. In the case of “W” by default the

20 nearest neighbors are chosen. These 20 nearest neighbors

reprsent our query q of the historical space.

procedure FINDKNN(Samples,Cases)

for all sample in samples do

for all case in cases do

dist = euclidianDist(sample, case)
dist = normalize(dist)

if distance[case] && distance[case] ¡ dist then

distance[case] = dist

end if

end for

end for

relevant = topK(distance)

end procedure

C. Contrasting The Neighborhood

Now that relevant case examples to our project instance

have been chosen, we can consider what causes similar

projects to present varying effort measurements. One method

presented by Menzies and Hu [7] involves building a

contrast set between attributes, separating cases into best and

rest then measuring which attributes occur more freqently

in best than rest, where the ”best” consists of the top k1

neighbors. By default “W” considers the top five of twenty

cases to be considered ”best” and the other fifteen the ”rest.”

From this dichotomy, “W” implements two such mea-

surement tools for scoring attributes most likely to occur in

best but not rest, Nomograms and the B-squared measure.

Both allow for determining which attributes show the largest

correlation with lower effort.

1) B-squared: A simple strategy to score more favorably

towards attributes that occur most often in the best case is to

square the number of times. Taking this heuristic one step

further, given an attribute x, we can penalize x’s occurance

in the ”rest” by dividing the sum of the frequency counts in

best and rest [1], the ensuring rare attributes are weighted

appropriately:

like =
freq(x|best)2

freq(x|best) + freq(x|rest)
(5)

From this measure we need only sort each attribute by

it’s like score to prioritize our recommendations.

Figure 5. Nomogram modeling survival odds on the HMS Titanic [8]

2) Nomograms: Nomograms use the simple Naive

Bayesian rule to determine whether a given attribute will

belong to the instance of the ”best” neighbors. By taking

the log of the odds ratio of an attribute appearing in

best compared to rest, we are given an individual score

for that attribute. That score allows us to determine what

the probability of a particular attribute or combination of

attributes occuring in best or rest. By taking the log, these

scores have the unique property of obeying the property of

addition.

In figure III-C2 the nomograms for survival rates of the

RMS Titanic passengers are presented. Each bar represents

a different attribute of a passenger, and the labelled marks

along that bar represent the attribute values. By adding up

the numeric values seen above each attribute value, you

can determine how strongly each attribute value predicts

for an ourcome of survival. After adding these ”points”

together, you can calculate the Bayesean probability of

survival by converting ”Total Points” to P(yes). As shown in

figure III-C2, when considering no other attributes a child

has a survival chance of slightly above 50%.

For “W,” nomograms represent another means to rank

attributes with the future potential to combine attribute

scores for ranking paired attributes.
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Figure 6. Overview of “W”

D. Generating Plans for Effort Reduction

Now that we’ve determined what attribute values are

important in the query q for reducing effort, we can apply

these attributes to an unseen testing set of data to determine

whether we’ve managed to reduce the effort estimation.

To do this, we take q and build successive queries on

test, incrementally constraining qi with the highest scoring

attribute/value from either the Nomograms or B-squared test.

query∗

i = query + ∪ici (6)

Each query will reduce the size of the testing set until

As all positively-scoring attribute constraints are applied

to q∗i , depending on the available cases a decision must be

made when to stop constraining the theory. While additional

treatments may further reduce median effort and variance,

additional constraints reduce the size of each query, reducing

the historical support for the theory.

Currently, there is future work to be done on developing

an automatic stopping rule for early termination of applying

treatments. Figure 7 demonstrates an example run of “W.”

Currently, careful human analysis is recommended to obtain

the best treatment from “W” as one can bias a theory

towards real world actionable cost or potentially greater

median effort and variance reductions. In the example run

from the NASA93 dataset, applying the first constraint,

stor = 5, results in a median reduction of effort from 360

to 170, a reduction of over half. However, this constraint

maintains a query with the same maximum effort value

as the origial q. The application of the next constraint,

time = 5, may require additional resources, but the addition

of this constraint historically precludes the case with an

effort of 4560.

IV. RESULTS AND ANALYSIS

An experiment was conducted with “W” across a va-

riety of historical Software Engineering datasets from the

PROMISE dataset repository. While the datasets use CO-

COMO’s Lines of Code (KSLOC) and Function Points for

quantifying project complexity, any representative discrete

model can be used. The datasets used were:

• NASA: effort prediction data representing 93 different

NASA projects collected in the 80s and 90s. (CO-

COMO)

• Desharnais: University of Montreal software costs

(Function Points)

• ISBSG: StandAlone and Client/Server software costs

(Function Points)
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Figure 9. Example theories generated for NASA projects, demonstrating
preliminary evidence for very small, local treatments.

• Maxwell: Finish banking data [9]

For each dataset “W” generated 50 synthetic examples,

took the 20 kth nearest neighbors, and ranked the ”best”

of these neighbors as being in the 5 lowest effort rankings.

“W” trained it’s theories on 67% of each dataset and applied

learned treatments to the other 33%. Nomograms were used

as a means of ranking treatments.

As shown in figure 8, the upper-right quadrant of the

chart consist of projects where “W” generated theories that

reduced both the median effort and th ”spread” betweeen

the 25% and 75% quartiles. On average we show a 29%

reduction in median effort along with a 54% reduction in

spread.

While we have consistent improvements across all

datasets, outliers in the Desharnais dataset present some

problems. This can possibly be attributed to only having syn-

thetic project descriptions rather than real-world representa-

tions. For the NASA datasets using USC COCOMO we see

larger improvements with the majority of projects demon-

strating improvements in both effort and spread reduction.

Also, when a decision from “W” negatively impacts either

effort or spread reduction, only one of these performance

metrics is significantly impacted. There exist no decisions

that significantly increase both the spread and effort of our

results.

Finally, figure 9 contrasts the different treatments gen-

erated within the same dataset. Three interesting patterns

emerge. First, the theories we generate are extremely small.

For all projects in the NASA93 only a single treatment

brings us the largest reduction. Second, each theory is vastly

different. Using the USC COCOMO attributes no consistent

pattern emerges in our recommendations, despite consistent

effort reduction. Finally, the majority of theories generated

include values in the middle of the possible ranges.

V. FUTURE WORK

An inherit problem with case-based reasoning involves

collecting enough data for a significant representation. We

are always collecting data, and for “W” there will always

be a need for larger, more relevant datasets. Also, there

exist multiple schools of thought as to whether lines of

code or function points offer a better measure of software

complexity. With a greater varity of datasets we may be able

to offer a better comparison of these metrics.

The theories generated in figure 9 present an interest-

ing case in explanation stability. Although we consistently

reduced median effort and spread, the treatments that did

so show no correlation in their ability to do so. Such a

result points to a potential lack of generality in software

engineering, or a deeper pattern in “W”’s internal decision

mechanisms. Given the stance of CBR as a sort of counter-

point to the search for a general theory of software cost, the

potential for a strong statement on a lack of generality may

bolster the position of CBR research.

Also, given the power of contrast sets to extract relevent

attributes, future work exists using “W” as a feature subset

selector. Nomograms have proven to be a reliable bayesian

means of ranking features, as shown in our effort reductions.

Using this knowledge to weight the euclidean distance

measure may prove a valueable tool in more accurately

defining relevance of historical cases.

VI. DISCUSSION

With “W” we’ve demonstrated how contrast sets can

be used to extend case-based reasoning by analogy into

the treatment realm. Even with the simplicity of euclidian

nearest-neighbors for measuring case relevancy we achieve

significant and consistent software effort reduction(figure 8).

We’ve demonstrated that even small, local theories may offer

meaningful improvement for the business user (figure 9).

While an automatic stopping procedure is useful, business

users may appreciate the ability for a human expert to sit

in-the-loop with “W” and shape treatment options. This flex-

ibility allows a user to easily and quickly decide themselves

what theory works best for their situation, and immediately

judge the effects of such a theory with historical backing.



These theories are small, easy to understand, and useful for

the busy reader. Compared to complex decision trees or rule

learners “W” offers a refreshing simplicity with real results.
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Figure 7. An example run of “W”

Figure 10. Description of COCOMO Scale Factors and Effort Multipliers


