
Algorithms for Software Quality Optimization

Adam Brady
Lane Department of CS&EE
West Virginia University, USA
adam.m.brady@gmail.com

Jacky Keung
NICTA

University of NSW
Sydney, Australia

Jacky.Keung@nicta.com.au

Tim Menzies
Lane Department of CS&EE

West Virginia University, USA,
tim@menzies.us

ABSTRACT
Machine learning has been incredibly successful. We are drowning
in choice as to how we can build software quality optimizers, pro-
grams that find project options that change quality measures like
defects, development effort (total staff hours), and time (elapsed
calendar months). This paper presents a general strategy and spe-
cific implementation for contrast set learning, a means of deter-
mining what separates two distinct populations. We expand upon
previous work with W , a simple, calibrationless, model-agnostic,
case-based reasoning algorithm that implements contrast-set learn-
ing.

The optimized W 2 algorithm performs as well as our previous
W algorithm, runs in linear time, and is easier to explain. We show
a worked example where W 2 is applied to a hypothetical instance
of Brooks’ Law, where a project has recently brought onboard a
large number of inexperienced programmers.

We present an extended certification of W 2’s performance across
multiple, arbitrary datasets as well a practical example of W 2’s per-
formance against drastic management decisions. We demonstrate
that W 2 performs just as well or better for reducing software cost
across multiple goals such as development effort, project defects,
and completion time.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software quality
assurance; D.2.9 [Software Engineering]: Management—Time
Estimation; I.2.6 [Artificial Intelligence]: Learning—Analogies

Keywords
Effort Estimation, Analogy, Optimization, Parametric modeling,
Software Quality, COCOMO, Case Based Reasoning
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1. INTRODUCTION
Imitation is the sincerest form of flattery. As humans we tend

to emulate our superiors in order to learn from them. For exam-
ple, a writer may read their favorite author for inspiration, an artist
may draw influence from the the works of the Renaissance, and a
programmer may subscribe to the blog of a famous startup-turned-
empire. From them we can gleam what separates the best of us
from the rest of us, so that we might repeat their successes.

Our drive to imitate translates not only to personal traits, but
software projects as well. Certainly a software project manager
also seeks to imitate past sucesses and avoid prior failures. How-
ever, just as the artist studies another artist in a similar medium, the
manager seeks guidance from projects in a similar ecosystem. One
could generalize that from these similar projects, a general strategy
is to examine the best performers, and adopt the attributes that are
most unique to the best rather than the rest. We call this strategy
contrast-set learning.

But how should we use this apriori knowledge to infer about new
instances? Should we extrapolate from old data to build a paramet-
ric model; e.g. using a Bayes net [?], or the linear equations of
COCOMO [?, ?]? Or is it best to reason directly from data, with-
out an intervening parametric model, using case-based reasoning
(CBR) [?]?

This is a difficult question to answer, unless we restrict ourselves
to a particular context. In this paper, we adopt the context of soft-
ware quality optimization; i.e. adjusting a software project such
that we improve quality attributes such as the defects (number of
delivered defects), the months (calendar time to delivery) and the
effort (staff time, in person months, required for that delivery). This
quality optimization task is different to effort estimation. Effort es-
timators just predict measures on the current project while quality
optimizers seek changes that most improve a project.

Quality optimization is a non-linear problem. Improving any one
goal can harm the others. For example:

• If management rushes projects to completion, they decrease
months but can increase defects.
• Projects that adopt elaborate quality assurance procedures

can reduce defects but at the cost of increased effort.

A quality optimizer must therefore trade-off between reducing months
and defects and effort.

Prior work [?] compared two quality optimizers:

1. SEESAW is an AI algorithm that explores parametric models
of software development, based on COCOMO.

2. W is a case-based reasoning algorithm that does the same
task as SEESAW, without using a parametric model.

SEESAW was first introduced in [?] and has been applied to nu-
merous domains [?, ?, ?, ?, ?, ?]. W was first introduced in [?] but



that report includes no comparisons with other quality optimizers.
More recent work with W presented a simple quality optimization
algorithm and compared it to SEESAW [?]. From our comparisons
between SEESAW and W in [?] we demonstrated:

• W finds similar or better optimizations.
• W is simpler to code: 200 lines of AWK as opposed to the

5000 lines of LISP code used in SEESAW.
• W is faster to run: the following experiments took minutes

for W , but hours for SEESAW.
• W is simpler to maintain since, in CBR, “maintenance” means

nothing more than “add more cases”.
• W makes no use of an underlying model and is therefore free

of all the assumptions of parametric modeling. Hence it can
be quickly applied to more data sets. For example, SEESAW
requires data to be in the COCOMO format but W has been
applied to numerous data sets in other formats [?].

In this paper we extend our work with W and SEESAW to further
the discussion on model-based vs case-based reasoning method-
ologies. We relate W and SEESAW’s implementation to the gen-
eral algorithm of contrast-set learning, and how this accessible ap-
proach is able to extract distinguishing attributes between two pop-
ulations.

We extend W into W 2, a optimization of the W algorithm. Our
discussion of W 2 offers the the following improvements over prior
work:

• Optimization - W 2 removes W ’s O(n2) nearest neighbor
calculation and replaces it with a simple linear-time filter of
the historical data. Despite this simplification, W 2 performs
as well as W (Figure 15).
• More Extensive Certification - Prior work benchmarked the

model-lite approach of W with model-dependent approach
of SEESAW. A direct comparision between W and SEESAW
required the exclusive use of the COCOMO model format.
In this paper we have extended W 2’s performance evaluation
into new, arbitrary datasets in order to gauge W 2’s usefulness
in a wide variety of instutitions and applications.
• Better Explanation - W 2 is even simpler to explain than W .

We have provided a visual example of W 2 that demonstrates
the three main steps of W 2: Relevancy Filtering, Contrast
Set Learning, and Holdout Set Performance Estimation.
• Direct Application - When a software project veers away

from perceived estimates, drastic changes may be needed to
get it back on track. We compare the impact of several dras-
tic management decisions, such as reducing functionality to
cut development effort, to alternative decisions learned with
W 2.

We conclude that, for the task of quality optimization, W 2 rep-
resents an improvement over W (Figure 15). We also recommend
W 2’s case-based reasoning over SEESAW’s parametric modeling
(Figure 17). For instances of drastic software changes, W 2 of-
fers alternatives that can be equally effective in improving software
quality (Figures 23, 24, 25, 26). Also, across multiple datasets,
W 2’s contrast-set learning demonstrates improvements in software
quality regardless of the underlying data description (Figure 21).

While we offer no conclusion on the general merits of case-
based reasoning compared to parametric modeling, we offer that
W 2, contrast-set learning, and case-based reasoning are important
tools for software quality optimization.

2. BACKGROUND

The debate between case-based reasoning and model-based meth-
ods can be conducted on at least two levels:

1. At one level, it is an engineering-based discussion that as-
sesses these approaches on criteria like ease of implementa-
tion, runtime speed, and the observed output performance.

2. At another level of assessment, we can assess case-based vs
model-based in terms of their cognitive implications.

Since most of this paper is about level (1), the rest of this section
discusses level (2).

Platonic model-based reasoning is meant to seek out universal
truths. For example, Newton’s agenda was to find a set of equa-
tions (e.g. F = ma) that can be applied universally on earth, as
well as to well as distant planets and stars. He succeeded. In 1846,
rival astronomers John Adams (in England) and Urbain Leverrier
(in France) raced to find a previously unseen planet that was dis-
turbing the orbit of Uranus. Neptune was first sighted by Adams,
then Leverrier, after both men pointed their telescopes at the precise
point in the sky indicated by Newton’s equations.

We dream of the day that our SE models will achieve the same
universality of Newton’s equations. To date, we have not been suc-
cessful. Researchers like Boehm developed parametric models that
predict development effort for software. In Boehm’s COCOMO
parametric model (the 1981 version [?]):

Effort = a ∗ Locb ∗
Y
i

βixi (1)

where xi are one of the effort multipliers shown in Figure 1 (at top)
and βi is a coefficient that controls the influence of xi.

Such learning combines expert intuition with automatic reason-
ing. Expert intuitions define the general form of the parametric
model, while automated data mining fills in the details of that model.
For example, the goal of data mining over parametric models is
to take local data and learn appropriate values for the tunable at-
tributes. In the above model, those tunable attributes are (a, b, βi).

Based on linear regression over historical data [?, ?], Boehm of-
fers values to (a, b, βi) to three significant figures. Previously [?],
we have reported that such precision is somewhat optimistic since
βi has a very large variance. The plot at the bottom of Figure 1
shows the βi values learned from twenty 66% samples (selected at
random) of the NASA93 data set from the PROMISE repository.
While some of the coefficients are stable (e.g. the white circles of
loc remains stable around 1.1), the coefficients of other attributes
are highly unstable:

• The (max −min) range of some of the coefficients is very
large; e.g. the upside down black triangles of stor ranges
from −2 ≤ βi ≤ 8.
• Consequently, nine of the coefficients in Figure 1 jump from

negative to positive.

We have seen instability in other datasets, including the COC81
data used by Boehm to derive Equation 1 [?]. This is an troubling
observation. It seems that while Newton’s equations let us pre-
cisely locate Neptune, Boehm’s equations cannot point us exactly
at which project attributes will lead to lower effort.

Parametric modeling assumes that (i) one parametric form (e.g.
Equation 1) is universal across multiple domains and (ii) that form
is tuned to the local situation by adjusting some tuning attributes.
An opposite approach to parametric models is case-based reason-
ing (CBR). In CBR, there are no universally-applicable parametric
models. Rather, every conclusion is dependent on the particulars
of the task at hand. CBR is based on a theory of reconstructive
memory. According to this theory, humans do not remember things



upper: acap: analysts capability
in theory pcap: programmers capability
β < 0 aexp: application experience

modp: modern programming practices
tool: use of software tools

vexp: virtual machine experience
lexp: language experience

middle sced: schedule constraint
data: data base size

lower: turn: turnaround time
in theory virt: machine volatility
β > 0 stor: main memory constraint

time: time constraint for cpu
rely: required software reliability
cplx: process complexity
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Figure 1: COCOMO 1 effort multipliers, and the sorted coeffi-
cients found by linear regression from twenty 66% sub-samples
(selected at random) from the NASA93 PROMISE data set;
from [?]. Prior to learning, training data was linearized in the
manner recommended by Boehm (x was changed to log(x); for
details, see [?]). During learning, a greedy back-select removed
attributes with no impact on the estimates: hence, some of the
attributes have less than 20 results. After learning, the coeffi-
cients were unlinearized.

as they actually happened. Rather, “remembering” is an inference
process, characterized by Bartlett as:

... a blend of information contained in specific traces
encoded at the time it occurred, plus (retrieval time)
inferences based on knowledge, expectations, beliefs,
and attitudes derived from other sources [?].

Bartlett’s work was ignored when first published (1932) but today

it is highly influential; e.g. experts in psychology & law caution
reconstructive memory means that leading questions can signifi-
cantly alter a report given by a human witness [?].

In AI research, Janet Kolodner [?] used reconstructive memory
to characterize expert explanations. To support her claim, she of-
fered a set of transcripts of experts explaining some effect. Her
reading of those transcripts was that the experts do not use verba-
tim recalling when discussing the past. Rather, they reconstruct
an account of their expertise, on the fly, in response to a particular
query. CBR inference is usually characterized [?] in four steps:

1. Retrieve: Find the most similar cases to the target problem.
2. Reuse: Adapt our actions conducted for the past cases to

solve the new problem.
3. Revise: Revise the proposed solution for the new problem

and verify it against the case base.
4. Retain: Retain the parts of current experience in the case base

for future problem solving.

Figure 2: Four steps of CBR, from http://www.
peerscience.com/intro_cbr.htm.

Having verified the results from our chosen adapted action on
the new case, the new case is added to the available case base. The
last step allows CBR to effectively learn from new experiences. In
this manner, a CBR system is able to automatically maintain itself.

In terms of cognitive theory, CBR challenges notions of reason-
ing as model-building. The mantra of CBR is “don’t think, remem-
ber”. That is, when faced with some new situation:

• Do not reason it out using some underlying model (e.g. New-
ton’s equations or Boehm’s parametric models).
• Rather, respond to a new situation via an on-demand survey

of past experiences [?].

CBR challenges the premise of the PROMISE conference series.
Currently, this conference bills itself as “Predictive Models in Soft-
ware Engineering”. This title assumes that model building is the
best way to analyze software engineering. However, if model-heavy
methods like COCOMO do worse than model-lite CBR methods,
then we would need to rethink the premise of PROMISE.



(Note that we call CBR model-lite, but not model-free. For more
on this distinction, see the Discussion section, below.)

3. QUALITY OPTIMIZATION
The above discussion motivates a comparison between paramet-

ric model-based methods and CBR. To make that comparison, we
need to explore the same task with two different approaches. Ac-
cordingly, this section describes the general principle of contrast
set learning behind quality optimization, then describes two spe-
cific implementations using SEESAW’s parametric models or W ’s
case-based reasoning.

3.1 Contrast Set Learning (CSL)
One process for self-improvement is to emulate those around you

that are doing well. For example, imagine a failing student seek-
ing recommendations to improve their grades. Standard parental
advice may be to simply study more. However, while such general
platitudes may indeed bring improvement, they ignore any local
lessons about their life that may bring more success with less ef-
fort.

Instead, students being social creatures, they seek out advice
from those around them. Given that close friends and colleagues
are most likely under the same pressures, it makes sense to seek
advice from those in similar circumstances. Then, a rationally-
minded student may divide their friends and colleages into two
groups: those doing well (to serve as role models), and those not
doing so well (to serve as cautionary tales). Finally, the student
adopts as many traits they perceive as unique to the role models.

Such a processes allows for multiple, targeted avenues of im-
provement compared to generic idioms such as “study more.” So,
the student finds that by avoiding Tuesday parties, asking ques-
tions after class, and sitting towards the front of the room, success
is achievable. In other words, local lessons offer a more tailored
approach to improvement.

Contrast set learning (CLS) applies this process by asking the
question "What are my role models doing that I’m not?" Formally,
this takes place in three steps:

• Relevancy Filtering - Find examples similar to the problem
at hand.
• Utility Separation - Divide the relevant examples into two

populations based on some utility measure: those I want to
imitate (the best) and those I don’t want to imitate (the rest).
• Contrast Set Generation - Perform a greedy search on at-

tributes that occur more often in best than in rest. Rank these
attributes by some score that favors contrast, biasing towards
attributes that occur often in best but rarely or never in rest.

A simple strategy to score more favorably towards attributes that
occur most often in the best case is to square the number of times
they occurs. Taking this heuristic one step further, given an at-
tribute x, we can penalize x’s occurrence in the "rest" by dividing
the sum of the frequency counts in best and rest [?], the ensuring
rare attributes are weighted appropriately:

like =
freq(x|best)2

freq(x|best) + freq(x|rest) (2)

From this measure we need only sort each attribute by it’s like
score to prioritize our recommendations. Thus, we establish a means
for finding attributes that most drive us towards our desired goal.
An alternative to Equation 2 is to log the odds ratio between an
attribute appearing in best rather than rest [?].

@project brookslaw
@attribute apex 2
@attribute plex 1 2
@attribute ltex 1 2 3
@attribute ?pmat 2 3
@attribute ?rely 3 4 5
@attribute ?data 2 3
@attribute ?cplx 4 5
@attribute ?time 4 5
@attribute ?stor 3 4 5
@attribute ?pvol 2 3 4
@attribute ?acap 3 4 5
@attribute ?pcap 3 4 5
@attribute ?tool 3 4
@attribute ?sced 2 3

Figure 3: The Brooks’ Law Query for the NASA93 dataset in
COCOMO II format.

3.2 Implementing CSL with W 2
CSL describes a general strategy for reasoning about two dis-

tinct populations. Because CSL requires no underlying model to
implement, we originally created W to add CSL decision power
to case-based reasoning software cost estimates. Upon further ex-
perimentation, we improved upon W by removing the kth nearest
neighbor calculation in favor of simply using our overlap measure
to perform relevancy filtering. The original description of W can
be found in [?]. We offer a statement on performance between W
and W 2’s in the results section and Figure 15.

W 2 answers the question: “What can I change about this project
to make it more like best cases?” In other words, “How can I best
imitate what I aspire to be?” To answer this, W 2 requires two sets
of information:

• A set of historical cases Ci with quantified attributes (say,
management experience, lines of code) and some measure
of utility (say, effort in man-months, total defects, months
for development). All attributes have been discretized into a
small number of ranges (e.g. manager experience∈ {1, 2, 3, 4, 5}
denoting very low, low, nominal, high, very high respec-
tively)
• A query q describing the current project seeking improve-

ment, with defined ranges for potential changes, as well as
any constraints that cannot be changed. For example, if we
are interested in a schedule over-run for a complex, high re-
liability project that has only minimal access to tools, then
those constraints can be expressed in the syntax of Figure 10.

W 2 is easily demonstrated visually. Figure 3 demonstrates a
query representing a project query q involving Brooks’ Law [?]
using 93 NASA project cases in COCOMO format. In the 1970’s,
Brooks noted that software production is a very human-centric ac-
tivity and managers need to be aware of the human factors that
increase/decrease productivity. For example, a common practice at
that time at IBM was to solve deadline problems by allocating more
resources. In the case of programming, this meant adding more
programmers to the team. Brooks argued that this was an inappro-
priate response since, according to Brooks’ law “adding manpower
[sic] to a late software project makes it late”. The reason for this
slowdown is two-fold:

• The more people involved the greater the communication
overhead. While this is certainly an issue if all parts of the



software system are accessible to all other parts, with an in-
telligent module design, this first issue can be mitigated.
• The second issue is more fundamental. Software construc-

tion is a complex activity. Newcomers to a project suffer
from inexperience in the tools, the platform, the problem do-
main, etc.

The query in Figure 3 models this second issue. Attributes with a
? represent controllable attributes, with apex, plex, and ltex repre-
senting the uncontrollably lower ratings of analyst experience, pro-
grammer language experience, and language and tool experience,
respectively.

First, cases are randomly separated into 67% Training and 33%
Testing sets. Then, W 2 implements the same three steps used for
CSL. Finally, W 2 estimates the impact of its recommendations:

3.2.1 Relevancy Filtering

Relevancy Filtering: Brooks’ Law Query, NASA93 Dataset

row ap
ex
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x
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pv
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ap
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effort overlap
57 3 2 2 3 4 3 5 5 5 4 3 3 3 3 38 13
56 3 2 2 3 4 3 5 5 5 4 3 3 3 3 12 13
55 3 2 2 3 4 3 5 5 5 4 3 3 3 3 480 13
53 2 1 2 2 5 2 5 5 6 2 4 3 4 3 648 13
35 4 3 3 2 4 3 4 4 4 2 3 3 3 3 370 12
26 3 3 3 3 3 3 4 4 3 3 3 3 3 3 114 12
09 4 2 1 3 3 2 4 3 3 4 4 4 3 3 215 12
40 4 3 4 3 4 3 4 4 3 2 4 4 3 3 636 11
25 3 3 3 3 3 3 4 3 3 3 3 3 3 3 42 11
23 3 3 3 3 3 3 4 3 3 3 3 3 3 3 60 11
22 3 3 3 3 4 3 4 3 3 3 3 3 3 3 42 11
17 4 3 3 3 4 3 4 3 3 3 3 4 3 3 210 11
16 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90 11
47 3 4 4 4 4 3 5 4 4 2 4 3 3 3 703 10
44 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300 10
43 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300 10
41 4 4 4 2 4 3 4 3 5 2 4 4 3 2 576 10
36 3 2 3 4 3 4 5 3 3 2 4 5 3 2 278 10
34 4 3 4 2 3 4 4 5 3 3 4 4 3 3 155 10
33 4 3 4 2 3 4 4 5 3 3 4 4 3 3 98.8 10

(39 cases omitted)
54 4 4 4 4 5 4 5 6 6 3 4 4 3 3 8211 7
52 4 4 4 4 5 4 5 6 6 3 4 4 3 3 1645.9 7
51 4 4 4 4 5 4 5 6 6 3 4 4 3 3 4178.2 7

Figure 4: Excerpt of the NASA93 dataset demonstrating over-
lap between the query and historical cases.

From Training, 20 cases are selected with the highest total over-
lap with the project query ( Figure 4). For example, if a case had
a schedule rating of high, and q defines the controllable scedule
range as potentially high or very high, then that attribute is said to
overlap with the query. This is the retrieve step in Standard CBR
nomencalature.

3.2.2 Utility Separation
The 20 cases are then sorted by some utility measurement, with

the top 5 cases placed into the best set and the remaining 15 into
the rest set ( Figure 6). For datasets with multiple goals, such as the
NASA93 and COC81 datasets that contain project effort, defects,
and months, a utility function normalizes each value into a single

BEST Set
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56 3 2 2 3 4 3 5 5 5 4 3 3 3 3 12
08 5 3 2 3 3 2 4 3 3 2 4 3 3 3 36
57 3 2 2 3 4 3 5 5 5 4 3 3 3 3 38
22 3 3 3 3 4 3 4 3 3 3 3 3 3 3 42
25 3 3 3 3 3 3 4 3 3 3 3 3 3 3 42

REST Set
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12 5 3 4 3 3 2 4 3 3 2 4 4 3 3 48
11 4 3 4 3 3 2 4 3 3 2 4 4 3 3 60
23 3 3 3 3 3 3 4 3 3 3 3 3 3 3 60
19 4 2 4 4 3 5 4 5 5 2 5 3 3 2 62
16 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90
33 4 3 4 2 3 4 4 5 3 3 4 4 3 3 98.8
26 3 3 3 3 3 3 4 4 3 3 3 3 3 3 114
17 4 3 3 3 4 3 4 3 3 3 3 4 3 3 210
09 4 2 1 3 3 2 4 3 3 4 4 4 3 3 215
44 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300
07 5 3 4 3 3 2 4 3 3 2 4 5 3 3 360
35 4 3 3 2 4 3 4 4 4 2 3 3 3 3 370
55 3 2 2 3 4 3 5 5 5 4 3 3 3 3 480
40 4 3 4 3 4 3 4 4 3 2 4 4 3 3 636
53 2 1 2 2 5 2 5 5 6 2 4 3 4 3 648

Figure 5: The "Best" and "Rest" sets. Top 5 cases with the
most desirable effort (lowest) are in Best while the remaining
15 are in Rest.

utility “score”. Other datasets simply minimize software effort in
man-months. This is the first half of the CBR reuse (or adapt) step.

3.2.3 Contrast Set Generation

Treatment b = freq(x|best) r = freq(x|rest) like (Eq 2)
(b/5)2/(b/5 + r/15)

pmat=3 5 10 60%‘
sced=3 5 13 54%
tool=3 5 14 52%
acap=3 4 7 51%
data=3 4 9 46%
rely=4 3 6 36%
time=3 3 7 34%
pvol=4 2 2 30%
stor=3 3 10 28%
cplx=5 2 3 27%
stor=5 2 3 27%
cplx=4 3 12 26%
time=5 2 4 24%
pvol=3 2 5 22%
data=2 2 5 22%
rely=3 2 9 16%
pvol=2 1 9 5%

Figure 6: Contrast between the “Best” and “Rest” sets. Con-
trast values computed by like = freq(x|best)2

freq(x|best)+freq(x|rest) rank
each attribute value according to contrast. Higher like values
for an attribute imply its association with smaller effort values.

Changes to q are ranked according to equation 2. This sorted
order S defines a set of candidate q′ queries that use the first i-th



entries in S ( Figure 5):

q′i = q ∪ S1 ∪ S2... ∪ Si

In the Brooks’ Law example, W 2 learns that pmat=3 scores the
highest for reducing development effort. This is the last half CBR
reuse (or adapt) step.

At this point, W 2 has created a list of recommendations that best
drive q towards more desirable utility measures ( Figure ??). How-
ever, we do not yet have an estimate as to the impact of applying
these recommendations. The next phase of W 2 estimates the im-
provement in software quality after applying q′i.

3.2.4 Estimating Impact

Brooks’ Law Query on Test Set
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11 5 3 4 3 3 2 4 3 3 2 4 4 3 3 24 10
15 5 3 4 3 3 2 4 3 3 2 4 4 3 3 48 10
19 5 3 4 3 3 2 4 3 3 2 4 4 3 3 48 10
18 4 3 4 3 3 2 4 3 3 2 4 4 3 3 60 10
21 3 3 4 4 4 2 4 3 3 2 3 3 3 2 60 9
10 5 3 4 3 3 2 4 3 3 2 4 5 3 3 72 10
71 4 4 4 2 3 2 4 3 5 2 4 4 3 2 72 10
24 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90 11
63 4 3 4 3 3 3 3 3 3 2 4 4 3 3 162 9
31 4 2 4 4 3 5 4 5 5 2 5 3 3 2 170 10
73 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300 10
45 4 3 4 3 4 4 3 3 3 2 3 4 3 3 400 8
79 3 4 4 4 4 3 5 4 4 2 4 3 3 3 409 10
84 5 1 1 4 4 2 5 5 6 2 5 5 4 3 430 11
67 4 3 4 3 5 3 4 4 3 2 4 4 3 3 444 11
80 3 4 4 4 4 3 5 4 4 2 4 3 3 3 703 10
60 3 4 4 3 3 2 4 3 3 2 5 5 3 3 720 10
76 4 4 4 2 4 5 4 3 5 2 4 4 3 2 756 9
46 4 3 4 2 2 3 3 3 3 2 4 5 3 3 2400 8
59 5 1 4 2 5 2 6 6 5 2 4 4 3 3 4560 10

Figure 7: Applying q∪S1 to the 20 most relevant cases from the
testing set. Here, cases highlighted represent those that include
pmat = 3, learned during training.

Brooks’ Law Query ∪ pmat=3
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11 5 3 4 3 3 2 4 3 3 2 4 4 3 3 24 10
15 5 3 4 3 3 2 4 3 3 2 4 4 3 3 48 10
19 5 3 4 3 3 2 4 3 3 2 4 4 3 3 48 10
18 4 3 4 3 3 2 4 3 3 2 4 4 3 3 60 10
10 5 3 4 3 3 2 4 3 3 2 4 5 3 3 72 10
24 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90 11
63 4 3 4 3 3 3 3 3 3 2 4 4 3 3 162 9
45 4 3 4 3 4 4 3 3 3 2 3 4 3 3 400 8
67 4 3 4 3 5 3 4 4 3 2 4 4 3 3 444 11
60 3 4 4 3 3 2 4 3 3 2 5 5 3 3 720 10

Figure 8: The testing set with all cases not containing pmat = 3
removed. The impact of applying pmat = 3 is reported as the
median effort value of the cases. In this case, 81.

Effort Effort Effort Distrubtion
Query MedianSpread 366

q (Initial) 235 508 r
q ∪ pmat = 3 (Final) 81 352 r

Figure 9: Result of applying the learned constraint pmat = 3
to the Brooks’ Law query q during testing. The median esti-
mate reduction from 235 to 81 represents a 66% reduction is
software effort by applying pmat = 3.

@project example
@attribute ?rely 3 4 5
@attribute tool 2
@attribute cplx 4 5 6
@attribute ?time 4 5 6

Figure 10: W ’s syntax for describing the input query q. Here,
all the values run 1 to 6. 4 ≤ cplx ≤ 6 denotes projects with
above average complexity. Question marks denote what can
be controlled- in this case, rely, time (required reliability and
development time)

According to Figure 2, after retrieving and reusing comes revis-
ing (this is the “verify” step). When revising q′, W 2 prunes away
irrelevant ranges using the algorithm of Figure 11.

On termination, W 2 recommends changing a project according
to the set q′−q. For example, in Figure 10, if q′−q is rely = 3 then
this treatment recommends that the best way to reduce the effort for
this project is to reject rely = 4 or 5.

Formally, the goal of W 2 is find the smallest i value such that
q′i selects cases with the more of the better estimates. The reader
might protest that the generation of some succinct human-readable
construct like q′i means that W 2 is not a “real” case-based reasoner.
In that view, the distinguishing feature of CBR is that its reasoning
is instance-based and it never generates any generalizations.

In reply, we observe that W 2 is not the only system that extends
standard CBR with some generalization tools. Watson [?] reviews
numerous CBR systems that, for example, run decision tree learn-
ers over their case library in order to automatically generate an in-
dex to the cases. Also, once a system can read a case library, com-
pute distance calculations, and generate a sorted list of the nearest
neighbors, implementing Figure 11 and Equation 2 is only a few
dozen lines of code. That is, W is such a small extension to stan-
dard CBR that it would be somewhat pedantic to declare that it is
not “real” CBR.

On termination, W recommends changing a project according to
the set q′− q. For example, in Figure 10, if q′− q is rely = 3 then

1. Set i = 0 and q′i = q
2. Let Foundi be the test cases consistent with q′i (i.e. that do not

contradict any of the attribute ranges in q′i).
3. Let Efforti be the median efforts seen in Foundi.
4. If Found is too small then terminate (due to over-fitting). After

Shepperd [?], we terminated for |Found| < 3.
5. If i > 1 and Efforti < Efforti−1, then terminate (due to

no improvement).
6. Print q′i and Efforti.
7. Set i = i+ 1 and q′i = qi−1 ∪ Si
8. Go to step 2.

Figure 11: Revising q to learn q′.



this treatment recommends that the best way to reduce the effort for
this project is to reject rely = 4 or 5.

3.3 SEESAW
Since 2007, we have applied AI algorithms over parametric mod-

els of software development (based on COCOMO) [?] to imple-
ment quality optimizers. We found this to be a challenging task
since it must execute over partial descriptions of projects and, in
the case of parametric models, over models with uncertain internal
parameters (like the ranges shown in Figure 1).

In order to address this challenge, we need to understand the
nature of those models. In parametric modeling, the predictions of
a model about a software engineering project are altered by project
variables P and tunable attribute coefficients T :

prediction = model(P, T ) (3)

In the simplified COCOMO model of Equation 4, the tuning op-
tions T are the range of (a, b) and the project options P are the
range of pmat (process maturity) and acap (analyst capability).

effort = a · LOCb+pmat · acap (4)

Based on the definitions of the COCOMO model we can say that
the ranges of the project attributes areP = 1 ≤ (pmat, acap) ≤ 5.
Further, given the cone of uncertainty associated with a particular
project p, we can identify the subset of the project options p ⊆ P
relevant to a particular project. For example, a project manager
may be unsure of the exact skill level of team members. However,
if she were to assert “my analysts are better than most”, then p
would include {acap = 4, acap = 5}.

SEESAW seeks a treatment rx ⊆ p that maximizes the value
of a model’s predictions where value is a domain-specific function
that scores model outputs according to user goals:

arg max
x

0B@AI searchz }| {
rx ⊆ p , t ⊆ T, value(model(rx, t))| {z }

Monte Carlo

1CA (5)

The intuition of Equation 5 was that, when faced with tuning vari-
ance like that seen in Figure 1, we should search for conclusions
that are stable across the space of possible tunings. SEESAW as-
sumed that the dominant influences on the prediction are the project
options p (and not the tuning options T ). Under this assumption,
the predictions can be controlled by:

• Constraining p (using some AI tool)
• Leaving T unconstrained (and sampling t ∈ T using Monte

Carlo methods)

The parametric models used by SEESAW’s models come from CO-
COMO. These attributes have a range taken from {very low, low,
nominal, high, very high, extremely high} or

{vl = 1, l = 2, n = 3, h = 4, vh = 5, xh = 6}

In COCOMO-II model [?], Boehm divided the attributes into two
sets: the effort multipliers and the scale factors. The effort multipli-
ers affect effort/cost in a linear manner. Their off-nominal ranges
{vl=1, l=2, h=4, vh=5, xh=6} change the prediction by some ratio.
The nominal range {n=3}, however, corresponds to an effort multi-
plier of 1, causing no change to the prediction. Hence, these ranges
can be modeled as straight lines y = mx + b passing through the
point (x, y)=(3, 1). Such a line has a y-intercept of b = 1 − 3m.
Substituting this value of b into y = mx+ b yields:

∀x ∈ {1..6} EMi = mα(x− 3) + 1 (6)

where mα is the effect of α on effort/cost.
We can also derive a general equation for the scale factors that

influence cost/effort in an exponential manner. These features do
not “hinge” around (3,1) but take the following form:

∀x ∈ {1..6} SFi = mβ(x− 6) (7)

where mβ is the effect of factor i on effort/cost.
Along with COCOMO-II, Boehm also defined the COQUALMO

defect predictor. COQUALMO contains equations of the same syn-
tactic form as Equation 6 and Equation 7, but with different co-
efficients. Using experience from 161 projects [?], we can find
the maximum and minimum values ever assigned to m for CO-
QUALMO and COCOMO. Hence, to explore tuning variance (the
t ∈ T term in Equation 5), all we need to do is select m values at
random from the min/max m values ever seen. An appendix to this
document lists those ranges.

Initially, we implemented the AI search of Equation 5 using sim-
ulated annealing [?, ?, ?]. Subsequent work demonstrated that the
recommendations found in this way did better than numerous stan-
dard process improvement methods [?]. Later implementations
were based on a state-of-the-art theorem prover [?]. SEESAW
searches within the ranges of project attributes to find constraints
that most reduce development effort, development time (measured
in calendar months), and defects. Figure 12 shows SEESAW’s
pseudo-code. The code is an adaption of Kautz & Selman’s MaxWalk-
Sat local search procedure [13]. The main changes are that each
solution is scored via a Monte Carlo procedure (see score in Fig-
ure 12) and that SEESAW seeks to minimize that score (since, for
our models it is some combination of defects, development effort,
and development time in months).

SEESAW first combines the ranges for all project attributes. These
constraints range from Low to High values. If a project does not
mention a feature, then there are no constraints on that feature, and
the combine function (line 4) returns the entire range of that feature.
Otherwise, combine returns only the values from Low to High. In
the case where a feature is fixed to a single value, then Low = High.
Since there is no choice to be made for this feature, SEESAW ig-
nores it. The algorithm explores only those features with a range
of Options where Low < High (line 5). In each iteration of the
algorithm, it is possible that one acceptable value for a feature X
will be discovered. If so, the range for X is reduced to that single
value, and the feature is not examined again (line 17). SEESAW
prunes the final recommendations (line 21). This function pops
off the N selections added last that do not significantly change the
final score (t-tests, 95% confidence). This culls any final irrelevan-
cies in the selections. The score function shown at the bottom of
Figure 12calls COCOMO/COQUALMO models 100 times, each
time selecting random values for each feature Options. The median
value of these 100 simulations is the score for the current project
settings. As SEESAW executes, the ranges in Options are removed
and replaced by single values (lines 16-17), thus constraining the
space of possible simulations.

While a successful prototype, SEESAW has certain drawbacks:

• Model dependency: SEESAW requires a model to generate
the estimates. Hence, the conclusions reached were only as
good as this model so using this tool requires an initial, pos-
sibly time-consuming, model validation process.
• Data Dependency: SEESAW can only process project data

in a format compatible with the underlying model. In prac-
tice, this limits the scope of the tool.
• Arbitrary Design: SEESAW handles two dozen cases using

rules designed using “engineering judgment”; i.e. they are



1 function run (AllRanges, ProjectConstraints) {
2 OutScore = -1
3 P = 0.95
4 Out = combine(AllRanges, ProjectConstraints)
5 Options = all Out features with ranges low < high
6 while Options {
7 X = any member of Options, picked at random
8 {Low, High} = low, high ranges of X
9 LowScore = score(X, Low)
10 HighScore = score(X, High)
11 if LowScore < HighScore
12 then Maybe = Low; MaybeScore = LowScore
13 else Maybe = High; MaybeScore = HighScore
14 fi
15 if MaybeScore < OutScore or P < rand()
16 then delete all ranges of X except Maybe from Out
17 delete X from Options
18 OutScore = MaybeScore
19 fi
20 }
21 return backSelect(Out)
22 }
23 function score(X, Value) {
24 Temp = copy(Out) ;; don’t mess up the Out global
25 from Temp, remove all ranges of X except Value
26 run monte carlo on Temp for 100 simulations
27 return median score from monte carlo simulations
28 }

Figure 12: Pseudocode for SEESAW

not based on any theoretical or empirical results in the lit-
erature (for example, “do not increase automatic tools usage
without increasing analyst capability”). The presence of such
ad hoc rules makes it harder to verify that the tool is correct.
• Performance: SEESAW uses tens of thousands of iterations,

with several effort estimates needed calculated for each iter-
ation. This resulted in a performance disadvantage.
• Size and Maintainability: Due to all the above factors, the

SEESAW code base has proved difficult to maintain.

We have found that these factors limit the widespread use of quality
optimizers:

• In the three years since our first paper [?], we have only coded
one software process model (COCOMO), which inherently
limits the scope of our investigations.
• No other research group has applied these techniques.

These problems motivated an exploration of alternate approaches
to quality optimization.

4. METHODOLOGY

4.1 Comparing W to SEESAW
In order to compare W and SEESAW, both systems require sim-

ilar inputs. SEESAW can only handle models in the COCOMO
format. Hence, we restrict ourselves to data in that format (see [?]
for examples of W running on a much broader set of inputs).

The inputs required for this study are:

• W needs a set of historical cases. We used the NASA93
dataset available from http://promisedata.org/data.
This dataset represents 93 different NASA projects collected
from the 1980’s and 1990’s represented as feature vectors
describing each project in COCOMO format. NASA93 data
only contains historical information for project effort. De-
velopment time (measured in calendar months) and defects
were added in using the COCOMO/COQUALMO models.

• Both SEESAW and W need an objective function that guides
their search. In this study, the objective function rewarded
minimization of the sum of defects and effort and months
(after these values had been normalized to the same range).
• Both SEESAW and W need a set of project constraints that

tune their conclusions to particular projects. We used the
project constraints of Figure 13.

Figure 13 comes from our debriefing of NASA program managers
and shows different kinds of NASA mission:

• Ground and flight represent typical ranges for most NASA
projects at the Jet Propulsion Laboratory (JPL);
• OSP represents the guidance, navigation, and control aspects

of NASA’s 1990 Orbital Space Plane;
• OSP2 represents a second, later version of OSP with a more

limited scope of COCOMO attributes.

The values column in that figure shows settings that cannot be
changed; e.g. for OSP, the required reliability is fixed at rely = 5.
On the other hand, the low and high ranges in that figure define the
space of possible recommendations for that project. For instance,
the reliability of the JPL flight software can vary from a ranking of
3 (nominal) to 5 (very high).

W used Figure 13 to set its initial query q0. SEESAW used Fig-
ure 13 to guide a set of simulations around its parametric models.
For each case study, 1000 times, inputs were selected at random,
constrained by Figure 13 (so the inputs for case studyX conformed
to the description of X shown in that figure).

In order to offer a fair comparison between SEESAW and W ,
we proceeded as follows. Recall that W has a training component
that implements retrieve, reuse, and revise (described around Fig-
ure 11). A test component was implemented that copied the code
used for retrieve. This test component was modified such that it ex-
ecuted on a different test set that contained no data used in training.

Given that rig, for each case study in Figure 13, we repeated the
following process 50 times.

• The available data (NASA93) was divided into a train and
test sets (of sizes 66%:33%). The division was random so
that each time, different instances appeared in train and test.
• The median and spread values for effort, months, and defects

were collected from the train set. These medians and spreads
were recorded as the before values.
• Each quality optimizer (W and SEESAW) was run sepa-

rately. The W algorithm used the train set while SEESAW
used its internal models. In either case, the quality optimizer
returned a set of recommendations on how to change the
project in order to reduce effort, defects, and development
time (measured in calendar months).
• These recommendation were assessed in the same way: by

passing them to W ’s test component which retrieved relevant
cases from the test set.
• The median and spread values for effort, months, and defects

were collected from the instances retrieved from the test set.
These were recorded as the after values.

The results were reported in terms of median and spread. We say
that the median of a set of numbers are the 50th-percentile value
while the spread is difference between the 75th and 25th per-
centile value. The median is a measure of central tenancy while
the spread is a measure of uncertainty around the median. Decreas-
ing the spread means that the predictions fall within a narrower
range. We report spread rather than other measures like standard
deviation since we wish to avoid any inappropriate assumptions of
symmetrical distributions.



ranges values
project feature low high feature setting

prec 1 2 data 3
OSP: flex 2 5 pvol 2

Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
rely 3 5 tool 2

JPL data 2 3 sced 3
flight cplx 3 6

software time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418

ranges values
project feature low high feature setting

prec 3 5 flex 3
OSP2 pmat 4 5 resl 4

docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 1 4 tool 2
JPL data 2 3 sced 3

ground cplx 1 4
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Figure 13: The four NASA case studies. Numeric values {1, 2,
3, 4, 5, 6} map to {very low, low, nominal, high, very high, extra
high}.

Execution Time
dataset Instances W W2 W2 speedup

telecom1 18 0.07s 0.04s 1.6x
coc81 63 0.43s 0.08s 5.3x

nasa93 93 0.69s 0.10s 6.6x
china 500 7.37s 0.42s 10.8x

Figure 14: Average execution times for the W and W2 algo-
rithms. By removing the O(n2) kth nearest neighbor calcula-
tion from W we drastically improve performance, especially on
larger datasets such as China (500 instances).

Median Spread Reduction Quartiles
Dataset Treatment Reduc Reduc 50%

kemerer W2 7% 48% r
kemerer W 0% 44% r

miyazaki* W2 75% 24% r
miyazaki W 46% 45% r
telecom1 W 92% 23% r
telecom1 W2 81% 34% r

china W2 34% 67% r
china W 1% 36% r

finnish W2 26% 28% r
finnish W 18% 29% r

Figure 15: Performance of W2’s Overlap relevancy filtering vs
W’s kth nearest-neighbor filtering for 5 unique datasets.

4.2 Comparing W to W 2

4.2.1 Effectiveness
Upon initial experimentation with W , we often followed stan-

dard CBR methodology. For example, when deciding how to per-
form relevancy filtering, we chose the standard CBR practice of
taking the euclidean distance from a defined project in n-dimensional
space with n project features [?]. While this method performed well
[?], the O(n2) runtime requirement prevented us from practically
running W on very large datasets.

To resolve this, a simpler method for relevancy was devised. In-
stead of measuring relevancy based on the distance from a case to
the project query’s hypervolume, we decided to simply test for in-
clusion within this volume. The overlap of a case is simply the
number of attributes that fall within the project query’s ranges. Be-
cause our attributes must be discretized and often rely on qualita-
tive metrics, large overlaps between a query and possible cases are
common.

The performance of this new method is shown in Figure 15. In
all but one case, W 2 performs better. However, even when W 2
performs slightly worse, it still performs better than KNN in spread
reduction. For the Miyazaki dataset, there exists a statistically sig-
nificant difference (Mann-Whitney, 95% confidence level).

4.2.2 Execution Speed
Figure 14 shows the average execution times for W and W 2

across four datasets. While the original W ’s simplicity affords it
runtimes of less than one second even on datasets with 93 instances
(NASA93), the O(n2) kth nearest neighbor calculation becomes
more significant when dealing with datasets as large as China with
500 instances. By replacing the O(n2) knn calculation with the
linear overlap calculation, we maintain runtimes of less than half a
second for larger datasets.

Runtimes of W 2



NASA93 Ground Stability
W W 2

plex=3 85% 100% plex=3
cplx=4 80% 85% stor=3
stor=3 75% 55% pmat=3

time=3 60% 45% time=3
ltex=4 20% 20% cplx=4
data=2 15% 10% apex=3
pcap=3 15% 10% rely=3
acap=3 10% 5% pcap=3
apex=3 5%
pmat=4 5%
rely=4 5%

Figure 16: How often a recommendation occured in 20 runs of
W and W 2 for the Ground query on the NASA93 dataset. W 2
generally produces more stable recommendations than W .

4.2.3 Stability
An unexpected cause for concern with W was some instabil-

ity in its recommendations. After removing the nearest neighbor
filtering, the overlap method for case relevancy filtering helps re-
duce this affect, as seen in Figure 16. Note over 20 runs, W 2
always includes plex = 3 within q′, whereas W omitted this rec-
ommendation for 3

20
runs. W 2 also recommends only 8 different

treatments compared to 11 for W . While further study is needed
regarding the stability of recommendations with W , W 2 remains
an improvement over W .

5. RESULTS

5.1 W 2 vs SEESAW
Average median and spread results over the 30 trials are shown

in Figure 17. The fourth column in each group (labeled “Median
Reduc”) shows the relative change in effort, defect, months found
by W 2 or SEESAW. A negative amount in this column denotes an
optimization failure (increased defect, effort, months). Note that
such negative results occur only in a single result.

The “Win” column indicates any member of a pair that was both
statistically and significantly different. Note that for most pairs, the
results are not statistically significantly different (Mann-Whitney,
95% confidence level).

Before commenting on SEESAW vs W 2, we first note that our
results should encourage more use of quality optimization. Observe
that, in the majority of cases, quality optimization works regardless
of how it is implemented (e.g. CBR vs parametric models). In the
48 experiments of Figure 17, positive quality improvements were
seen for 46/48 = 96% experiments (the 2 exceptions are in the
effort reductions of SEESAW for COC81 OSP2 and defect reduc-
tions of SEESAW for COC81 OSP).

Another result that should encourage more use of quality opti-
mizers is the reduction in the spreads. In all but one experiment
the amount of uncertainty in the median estimates was reduced. As
shown in Figure 18, the reduction in the spread was usually over
34%. This is an advantage of quality optimizers since uncertainty
is an serious issue that plagues the managers of software engineer-
ing projects. As shown in Figure 18, the expected median reduction
in any quality estimate was only 34%. Note that if this were oth-
erwise, then that would be a somewhat damning critique of current
software engineering practices. To see this, consider the implica-
tions of quality optimizers finding recommendations that resulted

MedianSpread Reduction Quartiles
Win Goal Treatment Reduc Reduc 50%

Nasa93 Ground
defects SEESAW 65% 35% r
defects W2 54% 24% r

effort SEESAW 68% 26% r
effort W2 61% 19% r

months SEESAW 35% 26% r
months W2 31% 15% r

Nasa93 Flight
defects SEESAW 59% 57% r
defects W2 56% 33% r

effort SEESAW 68% 43% r
effort W2 63% 24% r

months SEESAW 32% 24% r
months W2 31% 16% r

Nasa93 OSP2
defects W2 62% 26% r
defects SEESAW 53% 35% r

effort W2 58% 38% r
effort SEESAW 44% 43% r

months W2 33% 13% r
months SEESAW 27% 11% r

Nasa93 OSP
* defects W2 72% 22% r

defects SEESAW 22% 63% r
* effort W2 69% 27% r

effort SEESAW 37% 70% r
* months W2 43% 15% r

months SEESAW 13% 32% r
MedianSpread Reduction Quartiles

Win Goal Treatment Reduc Reduc 50%
Coc81 Flight

defects W2 34% 52% r
defects SEESAW 20% 70% r

effort SEESAW 56% 76% r
effort W2 31% 49% r

months W2 18% 30% r
months SEESAW 14% 30% r

Coc81 Ground
defects W2 48% 71% r
defects SEESAW 33% 63% r

effort SEESAW 51% 137% r
effort W2 40% 78% r

* months W2 26% 31% r
months SEESAW 13% 27% r

Coc81 OSP
* defects W2 35% 65% r

defects SEESAW 0% 67% r
effort SEESAW 41% 56% r
effort W2 26% 83% r

months W2 17% 34% r
months SEESAW 8% 16% r

Coc81 OSP2
defects W2 8% 37% r
defects SEESAW 1% 94% r

* effort W2 13% 45% r
effort SEESAW -94% 0% r

months SEESAW 17% 28% r
months W2 8% 17% r

Figure 17: Range of changes in median and spread generated
by applying the recommendations of either W or SEESAW.

in an order of magnitude reduction in effort and defects and de-
velopment time. That would suggest that the managers of software
engineering projects are routinely missing changes that would sig-
nificantly improve their projects.
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Figure 18: Range of changes in median and spread generated
by applying the recommendations of either W or SEESAW.
The median observed changes were (34, 34)% for (medians,
spreads), respectively. For the sake of brevity, this graph ig-
nores the -94% outlier value seen in OSP2 defects for SEESAW.

Another feature to note is that the median month optimizations
for both SEESAW and W 2 are below 20% for 7/8 = 87.5% of
cases. That is, data sets can contain an an inherent set of constraints
that cannot be changed, even by smart algorithms. Certainly, we
can fine tune the structure of a project to obtain some improvements
in effort, defects, and months but managers should not expect a
magic silver bullet that offers orders of magnitude improvement in
their software process.

We conducted statistical tests on each pair of W 2 vs SEESAW
improvements in median/spread for each query. A Mann Whitney
U test (95% confidence) was performed on the two sets of reduction
distributions from each comparison. The statistical tests are sum-
marized in Figure 19. Note that, in the majority case ( 18

24
), W 2’s

case-based reasoning performs as well as SEESAW ′s parametric
modeling.

Algorithm Wins Losses Ties
W 6 0 18
SEESAW 0 6 18

Figure 19: Win/Loss/Tie table for statistically significant reduc-
tions across all goals with the Nasa Flight, Ground, OSP, and
OSP2 projects for both the Nasa93 and Coc81 datasets.

Also, when the performance results were different, case-based
reasoning did better than parametric modeling ( 6

24
) sometimes spec-

tacularly so, Observe the median reductions for NASA93 OSP (above
the center divider of Figure 17): W 2 offered median reductions of
72%, 69%, and 43% compared to SEESAW’s 22%, 37%, 13% for
defects, effort, and months respectively.

In summary, the simple case-based reasoning of W 2 performs
just as well, or better, than SEESAW’s elaborate parametric mod-
eling.

5.2 W Performance Across Multiple Datasets
Because W makes no underlying model assumptions, we aren’t

limited to USC COCOMO for our performance evaluations. To
demonstrate the effectiveness of W in any data environment, we of-
fer median reductions for effort reduction for five arbitrary datasets
from http://promisedata.org/data. The model-agnostic
simpilicity of W made implementing these tests easy as one need

only describe a query space and a target utility measure. In the case
of these five datasets, software effort was the common target for
reduction.

Given that we did not have access to case studies as we did
with NASA93 and COC81 (ground, flight, osp, and osp2) for these
datasets, synthetic queries were developed. Three queries were
generated for each of the five datasets. The first contained the entire
space of possible project attribute values (All), representing com-
plete freedom to recommend any change within the space. The
other two queries were generated by randomly choosing 50% of
each attribute values from either the lower, middle, or upper ranges
for each project attribute (Proj1, Proj2). These queries represent
more common restrictions on possible changes for a given software
project.

Effort reductions can be seen in Figure 21 and 20. The chart
in Figure 21 shows strong improvement in median effort for the
Telecom and Miyazaki datasets, with strong performance in spread
reduction across all datasets. While the Finnish, China, and Ke-
merer datasets show only marginal or no improvement in median
effort, the certainty of their estimations is improved via a reduction
in spread.
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Figure 20: Plot showing the distribution of median and spread
reductions in software effort for five unique datasets.

Improvement
dataset query q median spread

Telecom Proj1 96% 23%
Telecom Proj2 91% 41%
Telecom All 86% 28%
Miyazaki All 78% 33%
Miyazaki Proj2 69% 21%
Miyazaki Proj1 53% 67%
Finnish All 22% 31%
Finnish Proj2 11% 27%
Finnish Proj1 4% 25%
China All 20% 55%
China Proj2 14% 43%
China Proj1 0% 13%

Kemerer Proj1 21% 61%
Kemerer Proj2 0% 49%
Kemerer All -4% 53%

median 21% 33%

Figure 21: Effort estimation improvements (100∗ initial−final
intial

)
for five unique datasets. Sorted by median improvement. Gray
cells represent no improvement in effort estimates.

5.3 Comparing Drastic Changes to W



Drastic Change Attribute Effects
1 Improve Process Maturity pmat = 5
2 Improve Tools&Techniques time = 3; stor = 3;

pvol = 2; tool = 5; site = 6
3 Reduce Functionality data = 2;

Figure 22: Examples of drastic changes to software projects.

NASA93 Ground
MedianSpread Reduction Quartiles

Win Goal Change Reduc Reduc 50%
defects ReduceFunct 64% 28% r
defects W 54% 32% r
defects Tools&Tech 51% 39% r
defects ProcMaturity 39% 73% r

effort ReduceFunct 62% 28% r
effort W 58% 32% r
effort Tools&Tech 46% 22% r
effort ProcMaturity 24% 76% r

months ReduceFunct 37% 16% r
months W 30% 16% r
months Tools&Tech 29% 26% r
months ProcMaturity 29% 33% r

Figure 23: Comparing defect, effort, and month estimation re-
duction percentages (100 ∗ initial−final

intial
of drastic business de-

cisions vs W ’s recommendations for the Ground case study.

Prior work considered explored impact of so-called drastic changes
to software projects [?]. A drastic change occurs when the recom-
mendation falls outside the defined projects ranges of a software
project. In other words, when the recommended course of action
is dramatic. For example, with the OSP NASA case study ( Fig-
ure 13), attempting to improve programmer language and tool ex-
perience (ltex) to 5 (very high, 6+ years experience), would be a
drastic change as the maximum defined value for ltex is 4 (high).

To test this, W 2’s recommendations for the four NASA case
studies ( Figure 13) in the NASA93 dataset were overridden with
the drastic changes from Figure 22. For 3 distinct drastic changes,
W 2 attempted to apply the drastic changes until no improvement
was measured, then reported the median effort, defects, and months
for that change. Note that not all changes from [?] were applicable,
due to a lack of extreme cases in the NASA93 dataset.

The results for these changes are reported in Figures 24, 23, 25, 26.
Of the 12 comparisons, in only one case does W 2 perform better
statistically and significantly better than the three drastic changes.
However, in terms of median reductions, W always performs in the
top 50% of of cases. Most importantly, even when compared to ex-
treme project recommendations, W is not constrained by the lim-
ited project attribute ranges allowed for its recommendations.

6. DISCUSSION

6.1 Search-based Software Engineering
Previously [?], we have explored the connection of SEESAW to

search-based SE (SBSE) [?]. In summary, SBSE uses optimiza-
tion techniques from operations research and meta-heuristic search
(e.g., simulated annealing and genetic algorithms) to hunt for near-
optimal solutions to complex and over-constrained software engi-
neering problems. SBSE has been applied to many problems in
software engineering (e.g., requirements engineering [?]) but most
often in the field of software testing [?]. Harman’s writing inspired

NASA93 Flight
MedianSpread Reduction Quartiles

Win Goal Change Reduc Reduc 50%
defects ReduceFunct 64% 28% r
defects W 54% 32% r
defects Tools&Tech 51% 39% r
defects ProcMaturity 39% 73% r

effort ReduceFunct 62% 28% r
effort W 58% 32% r
effort Tools&Tech 46% 22% r
effort ProcMaturity 24% 76% r

months ReduceFunct 37% 16% r
months W 30% 16% r
months Tools&Tech 29% 26% r
months ProcMaturity 29% 33% r

Figure 24: Comparing defect, effort, and month estimation re-
duction percentages (100 ∗ initial−final

intial
of drastic business de-

cisions vs W ’s recommendations for the Flight case study.

NASA93 OSP
MedianSpread Reduction Quartiles

Win Goal Change Reduc Reduc 50%
defects W 61% 31% r
defects ProcMaturity 51% 26% r
defects ReduceFunct 46% 34% r
defects Tools&Tech 39% 32% r

* effort W 60% 28% r
effort ProcMaturity 51% 29% r
effort ReduceFunct 48% 36% r
effort Tools&Tech 47% 45% r

months ProcMaturity 31% 15% r
months W 30% 17% r
months Tools&Tech 25% 17% r
months ReduceFunct 25% 9% r

Figure 25: Comparing defect, effort, and month estimation re-
duction percentages (100 ∗ initial−final

intial
of drastic business de-

cisions vs W ’s recommendations for the OSP case study.

NASA93 OSP2
MedianSpread Reduction Quartiles

Win Goal Change Reduc Reduc 50%
defects W 64% 40% r
defects Tools&Tech 57% 24% r
defects ReduceFunct 50% 29% r
defects ProcMaturity 24% 38% r

effort ReduceFunct 63% 27% r
effort W 60% 45% r
effort Toolss&Tech 57% 36% r
effort ProcMaturity 14% 49% r

months W 35% 21% r
months Toolss&Tech 30% 15% r
months ReduceFunct 26% 12% r
months ProcMaturity 12% 21% r

Figure 26: Comparing defect, effort, and month estimation re-
duction percentages (100 ∗ initial−final

intial
of drastic business de-

cisions vs W ’s recommendations for the OSP2 case study.

us to try simulated annealing (SA) to search the what-ifs in un-
tuned COCOMO models [?]. For quality optimization, however,
we found that search methods taken from the constraint satisfac-
tion literature out-perform SA [?].



6.2 Model-lite
We said above that CBR was model-lite, but not model-free. We

hesitate to call CBR model-free, lest we incur the wrath of Janet
Kolodner or Roger Shank [?]. Kolodner and Shank regard CBR
as a model of human cognition where knowledge in a context-
dependent manner, according to the task at hand. This construct
may differ from context to context but the search mechanisms by
which the construct is built (CBR) is constant.

To expand on that point, we note that “model” has at least two
definitions:

1. A hypothetical description of a complex entity or process.
2. A plan to create, according to a model or models.

The first definition is closest to Shepperd’s definition of “model-
based systems”. According to Shepperd [?] software effort estima-
tion methods separate into “human-centric” techniques and “model-
based” techniques. In the former, humans produce their recom-
mendations without using some externalizable representation. In
the latter, a variety of techniques may be used which, according
to Shepperd, divide into algorithmic/parametric models (like CO-
COMO) and induced prediction systems (which include regression,
rule induction, CBR, and many others).

We can marry Shepperd’s view with that of Kolodner and Shank
by specializing the definition of model-based systems. Extend-
ing Shepperd’s ontology, we say that model-based systems can be
sorted according to how much modeling they assume prior to in-
duction. At one end of that sort order, we have parametric mod-
els like COCOMO. We call these model-heavy since they conform
to the first definition of “model”, shown above. At the other end
of that sort are the model-lite methods like CBR. These model-
lite methods conform to the second definition of “model”. Note
that this second definition is closest to Kolodner and Shank’s view
on CBR; i.e. the CBR model is a recipe for generating context-
dependent knowledge.

7. CONCLUSION
We’ve demonstrated several improvements to our W algorithm

with W 2. Namely:

• Optimization - W 2 runs faster, can be applied to larger datasets,
and doesn’t sacrifice performance.
• Explanation - W and W 2 are simple implementations of Con-

trast Set Learning, an easy to explain, intuitive learning pro-
cess.
• Certification - W 2 performs as well or better than a multi-

tude of software quality optimization techniques. Including
parametric modelling techniques (SEESAW), drastic project
changes, and multiple data sets based on various case de-
scriptions.
• Application - W 2 can be applied to find locally learned rec-

ommendations that offer potentially unconsidered avenues
for software quality optimization. W 2 can find alternatives
to potentially dangerous situations such as the Brooks’ Law
example and drastic project changes.

In comparing the merits of a model-lite, case-based approach
to a parametric one, advocates of reconstructive memory such as
Barlett [?], Kolodner [?], or Shank [?] argue that we make it up
as we go along. In case-based reasoning (CBR), inference repeats
every time there is a new query. Our reading of the papers at this
conference is that, except for a few papers that deal with reasoning-
by-analogy (e.g. [?]), most of this community avoids the model-lite
approach of CBR.

Proponents of parametric models argue that there exist domain-
independent models which can be tuned to local details. In this
approach, reasoning can take the form of a data miner learning val-
ues for tune-able attributes of a parametric model like Equation 1.
In this way, learning can happen once and users can use the tuned
model for all future queries.

Unfortunately, these supposedly domain-independent models (like
COCOMO) suffer from massive internal variance (see Figure 1).
Previously, we have tried to manage internal variance of this prob-
lem with SEESAW: an AI algorithm that sought stable conclusions
across the space of possible tunings within a parametric model.
While a successful prototype, SEESAW has disadvantages:

• Dependency on a particular parametric model
• A requirement that all the data be in a format acceptable to

that model
• Too many arbitrary internal design decisions
• Slow runtimes
• A code base that proved too large to maintain, modify, and

add support for more models

With a result supporting CBR, this paper finds little to recommend
from SEESAW over the W 2 case-based reasoning tool. Standard
CBR applies a query q to find relevant examples from a set of cases
C using the retrieve-reuse-revise-retain loop of Figure 2. W 2 ex-
tends standard CBR by learning an adaption of q, called q′, that
retrieves better quality examples. Based on the analysis of [?] and
this paper, we recommend W 2 on several grounds:

• W 2 finds similar, or better, results than SEESAW (see Fig-
ure 19).
• W 2 is simpler to code: 200 lines of AWK as opposed to the

5000 lines of LISP code used in SEESAW.
• W 2 is faster to run: the above experiments took seconds for

W 2, but hours for SEESAW.
• W 2 is simpler to maintain since, in CBR, “maintenance”

means nothing more than “add more cases”.
• W 2 makes no use of an underlying model and is therefore

free from the assumptions of parametric modeling. Hence
it can be applied to more data sets. For example, SEESAW
requires data to be in the COCOMO format but W has been
applied to numerous data sets in other formats [?].

Having said that, there is one situation where we’d recommend
SEESAW over W . Like all CBR systems, W 2 needs cases. If
there is no local data, then SEESAW would be the preferred (only)
option.

Firstly, there is insufficient evidence in this paper to make the
conclusion that CBR always beats model-heavy methods like para-
metric models. Neverthless, these results clearly motivate further
exploration and comparison between the value of CBR and model-
heavy techniques. For example, at our lab we are exploring very
fast clustering methods to support scaling CBR to very large data
sets.

Secondly, there are at least two kinds of “models.” In the tradi-
tional model-heavy definition, models are specific products that can
be applied to multiple domains. In the CBR model-lite definition,
a model is a process that generates many products, each of which
is customized to the particulars of a local domain. In this paper
and [?] we have seen the following advantages of CBR: easy im-
plementation, fast runtimes, easy maintenance, able to be applied
to more data, and out-performance of model-heavy methods.
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APPENDIX
This appendix lists the minimum and maximum m values used for
Equation 6 and Equation 7. In the following, mα and mβ denote
COCOMO’s linear and exponential influences on effort/cost, and
mγ and mδ denote COQUALMO’s linear and exponential influ-
ences on number of defects.

Their are two sets of effort/cost multipliers:

1. The positive effort EM features, with slopesm+
α , that are pro-

portional to effort/cost. These features are: cplx, data, docu,
pvol, rely, ruse, stor, and time.

2. The negative effort EM features, with slopesm−α , are inversely
proportional to effort/cost. These features are acap, apex, ltex,
pcap, pcon, plex, sced, site, and tool.

Their m ranges, as seen in 161 projects [?], are:`
0.073 ≤ m+

α ≤ 0.21
´
∧
`
−0.178 ≤ m−α ≤ −0.078

´
(8)

In the same sample of projects, the COCOMO effort/cost scale fac-
tors (prec, flex, resl, team, pmat) have the range:

−1.56 ≤ mβ ≤ −1.014 (9)

Similarly, there are two sets of defect multipliers and scale factors:

1. The positive defect features have slopes m+
γ and are propor-

tional to estimated defects. These features are flex, data, ruse,
cplx, time, stor, and pvol.

2. The negative defect features, with slopes m−γ , that are in-
versely proportional to the estimated defects. These features
are acap, pcap, pcon, apex, plex, ltex, tool, site, sced, prec,
resl, team, pmat, rely, and docu.

COQUALMO divides into three models describing how defects
change in requirements, design, and coding. These tunings options
have the range:

requirements


0 ≤ m+

γ ≤ 0.112

−0.183 ≤ m−γ ≤ −0.035

design


0 ≤ m+

γ ≤ 0.14

−0.208 ≤ m−γ ≤ −0.048

coding


0 ≤ m+

γ ≤ 0.14

−0.19 ≤ m−γ ≤ −0.053

(10)

The tuning options for the defect removal features are:

∀x ∈ {1..6} SFi = mδ(x− 1)
requirements : 0.08 ≤ mδ ≤ 0.14

design : 0.1 ≤ mδ ≤ 0.156
coding : 0.11 ≤ mδ ≤ 0.176

(11)

where mδ denotes the effect of i on defect removal.


