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1. INTRODUCTION
Back in the 1980s, the model-based diagnosis (MBD) commu-

nity explored qualitative representations [42]. Since they are not
overly-specific, such representations can be quickly collected in
a new domain. Indeed, in domains where information is limited,
there may be no alternative to qualitative representations since their
is not enough information to build precise quantitative theories.

Qualitative theories are inherently nondeterministic [18] but, ar-
gued MBD researchers, they can generate a wider range of options
for diagnosis and repair. Creative solutions can sometimes be found
in larger space of possible qualitative behaviors than in the tighter
space of precise quantitative behaviors. To put that another way:

If you fix everything, you lose fixes for everything else.

Previosuly, we have explored tools for searching models con-
taining uncertainities [19]. Standard quantitative sensitivity anal-
ysis [16] may be inappropriate for non-linear theories or theories
containing inconsistency predicates. Motivated by work on quali-
tative simulation and non-montonic logics, we defined those tools
in terms of logical abduction [20]. Given a theory T and a goal
G, the abductive problem is to find assumptions A that lead to the
goal, without causing inconsistencies (⊥):

T ∧A ` G (1)
T ∧A 6` ⊥ (2)

Informally, equation (1) is saying “do something” and equation (2)
is saying “but don’t do dumb things”.

In the general case, equations (1) and (2) leads to the generation
of multiple worlds W of belief where each world is characterized
by incompatible assumptions (and no world is a subset of a large
world w.r.t. size). Worlds are also called extensions in Reiter’s
default logic [39], scenarios in Poole’s THEORIST system [35], or
envisionments in the ATMS [8].

In our HT4 abductive algorithm [19], a preference predicate best
selects the subset of preferred worlds. Elsewhere [21], we have
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argued that a wide-range of knowledge-level tasks can be imple-
mented via different best predicates. For example:

• Diagnosis prefers worlds that contain the greatest number of
faults, with fewest root causes (ideally, one).

• Planning prefers worlds with the least cost to traverse;
• Explanation prefers the worlds with the largest intersection

with concepts the user has already learned;
• Monitoring requires caching the generated worlds, pruning

any world that contradicts any incoming data. In this frame-
work, at any time, the remaining worlds contain the set of
possible remaining plans.

• For other applications of abduction, see [14,21,22,25,26,28,
34–38, 41, 43].

That is, once you have a good way to explore uncertainty, you have
an engine that can handle a very large number of tasks

While the generality of the above framework was compelling,
that research floundered on the computational cost of abduction.
With no inconsistency checks, abduction takes linear time for propo-
sitional theories [9]. However, the inconsistency check makes ab-
duction computation NP-hard [6]. Experimentally, HT4’s runtimes
proved to be exponential on model size and never scaled to any-
thing larger than medium-sized models.

Recent success with stochastic methods have made us revisit
abduction. We offer one case study here where a heuristic pre-
processor reduces a potentially exponential time process to linear
time. The results are preliminary (from just one set of models) but
they are promising enough to motivate further exploration.

2. “COLLARS” VARIABLES
Surprisingly, our abductive reasoner produce surprisingly few

worlds. Or, to be more precise, it produces worlds that contain
similar sets of goals. For example, in one study, the number of
goals reached in any randomly selected world was nearly the same
as the maximum number of goals found in any world [28].

We first suspected this was a quirk of the model used in that
study. However, it turns out to be a general result. A repeated con-
clusion in AI is that the behavior of a large system is determined by
a very small number of key variables, which we call the collar [30]
variables. Collars have been discovered and rediscovered in AI
many times, and given different names including variable subset
selection [17], narrows [2], master-variables [7], back doors [44],
minimal envisionments [8], just to name a few. Note that if the col-
lar contains just a few variables, then few worlds will be generated:
just one for every consistent setting to the collar variables.

Analogous results have been reported in software engineering
literature. Observe that if a system is controlled by its collar, and
the collar variables are few in number, then a stochastic sampling



of the system will soon saturate; i.e. no new states will be found
after exploring the combinations of the settings to the collar vari-
ables, Saturation has been observed in the knowledge engineering
and software engineering literature:

• Horgan & Mathur [13] document systems were most pro-
gram paths get exercised early with little further improve-
ment as testing continues.

• With Owen & Cukic [29] and Goa et.al. [12], we have shown
that the number of new states found in a stochastic search of
a formal model quickly saturates.

• Mutation testers often report that a small sample of their mu-
tations1 perform just as well as a much much larger number
of mutations [1, 5, 32, 45].

• Druzdzel [10] studied a diagnosis application for monitoring
patients in intensive care. Although the software had 525,312
possible internal states, the application reached few of them
at runtime: one of the states occurred 52 percent of the time,
and 49 states appeared 91 percent of the time.

Not only is saturation a repeated result, it can be shown math-
ematically that it is the expected behavior of any system of vari-
ables [10, 31]. Druzdel observes that if software has n variables,
each with its own assignment probability distribution of pi, then
the probability that software will fall into a particular state is

p = p1p2p3...pn =
Qn

i=1 pi.

By taking logs of both sides, this equation becomes

ln p = ln
Qn

i=1 pi =
Pn

i=1 ln pi.

The asymptotic behavior of such a sum of random variables is ad-
dressed by the central limit theorem. In the case where we know
very little about software, pi is uniform and many states are possi-
ble. However, the more we know about software the more varied
the individual distributions. Given enough variance in the individ-
ual priors and conditional probabilities or pi, the expected case is
that the frequency with which we reach states will exhibit a log-
normal distribution; i.e. a small fraction of states can be expected
to cover a large portion of the total probability space; and the re-
maining states have practically negligible probability [10]. If the
reachable states are few, then the deltas between them (the collar
settings) are also few.

3. EXPLOITING THE COLLARS
In summary, while abduction is theoretically slow, it need not be

slow in practice. The trick is to reverse the usual abductive proce-
dure of, e.g. the ATMS [8]. The ATMS was designed as a working
memory that stores the conclusions of a separate inference engine.
Inferences are passed to the ATMS along with a justification (a con-
junction) for each inference. These justifications were then woven
into a subsumption network, the roots of which are the assumptions
that select the different set of reachable beliefs (and we would call
those root assumptions the collar settings). In that approach, the
collars are found after the inference.

inference → collars → worlds

An alternative is to find the collars before the inference.

peek → collars → worlds → inference (3)

1A mutant of a program is a syntactically valid but randomly se-
lected variation to a program; e.g. swapping all plus signs to a
minus sign.

The results of §2 suggest that a stochastic sampling method could
peek at the reachable states (via some Monte Carlo simulation).
If each of the n ∈ N peeks is scored by some domain-specific
predicate, then the collars can then be identified as the variables
with very different frequency in the high scoring samples than in
the low scoring samples.

One world exists for each consistent set of settings to the col-
lars. Since worlds are internally consistent, inference within them
can be very fast. Williams et.al report that setting the collar vari-
ables (which they call backbones [44]) can reduce exponential time
inferences to polynomial time.

If inference takes time k, then after peeking, Equation 3 takes
time O(k ∗ 2C) where C is the number of ranges the collars. Since
the number C is often much less than the total number of ranges in
the entire theory, this is a win. However, it is still an exponential
time process.

We show below that, given a certain kind of best predicate, it is
possible to reduce Equation 3 to O(k). If peeking sorts the collar
settings from best to worst, the worlds and inference can be ex-
plored using a greedy search that stops when the next world scores
little better than the previous one.

4. CASE STUDY
This case study is based on the STAR algorithm. A summary of

STAR is offered below. For full details, see [27]. STAR’s current
implementation explores three software process models:

• The COQUALMO software defect predictor [4, p254-268];
• The COCOMO software effort predictor [4, p29-57];
• The THREAT predictor for software project effort & sched-

ule overrun [4, 284-291].

In standard practice, these models are tuned to local data. Un-
fortunately, the data required for such local tuning is difficult to
obtain, especially across multiple organizations [24]. This is due
to the business sensitivity associated with the data as well as dif-
ferences in how the metrics are defined, collected and archived. In
many cases the required data has not been archived at all. For ex-
ample, after two years we were only able to add 7 records to our
NASA wide software cost metrics repository.

After decades of research, the space of possible local tunings
is well defined. The above three models contain relationships be-
tween (e.g.) software process decisions and defect removal. These
are linear equations, defined by a slope m, and features learned
from the domain {a, b}. Varying {a, b, m} across the space of
known tunings will sample the space of possible behaviors.

Another source of variability in the model behavior are the input
features. Figure 1 shows the range of those inputs for the four case
studies explored in this paper:

• OSP is the GNC component of NASA’s 1990s Orbital Space
Plane experiment;

• OPS2 is a later version of OSP;
• Flight and ground systems reflect typical ranges seen at NASA’s

Jet Propulsion Laboratory.

The inputs of Figure 1 are explained in Figure 2. All these fea-
tures can range over 1 ≤ x ≤ 6.The input features either ranges (a
space of options) or are fixed to one value; e.g. line one of Figure 1
says:

• the prec input is constrained to prec ∈ {1, 2}
• the data input is fixed to data = 3.

Figure 1 does not mention all the possible inputs. For exam-
ple, COQUALMO has inputs for use of automated analysis, peer



ranges values
project feature low high feature setting

prec 1 2 data 3
OSP: flex 2 5 pvol 2

Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
prec 3 5 flex 3

OSP2 pmat 4 5 resl 4
docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 3 5 tool 2
JPL data 2 3 sced 3

flight cplx 3 6
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418
rely 1 4 tool 2

JPL data 2 3 sced 3
ground cplx 1 4

software time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Figure 1: Four case studies.

reviews, and execution-based testing tools. For all inputs not men-
tioned in Figure 1, values are picked at random 1 ≤ x ≤ 6.

STAR’s simulated annealer explores the possible inputs and {m, a, b}
values looking for constraints to these ranges that minimizes effort
(Ef ) and defects (De) and threats (Th). More precisely, the simu-
lated annealer tries to minimize the energy function:

E =

„q
Ef

2
+ De

2
+ Th

2
«

/
√

3 (4)

Here, x is a normalized value 0 ≤ x−min(x)
max(x)−min(x)

≤ 1. Hence,
our energy ranges 0 ≤ E ≤ 1 and lower energies are better.

The simulated annealing creates a log showing what attribute are
associated with higher or lower energies. STAR’s forward select al-
gorithm sorts those ranges in increasing order of associated energy.

scale prec: have we done this before?
factors flex: development flexibility
(exponentially resl: any risk resolution activities?
decrease team: team cohesion
effort) pmat: process maturity
upper acap: analyst capability
(linearly pcap: programmer capability
decrease pcon: programmer continuity
effort) aexp: analyst experience

pexp: programmer experience
ltex: language and tool experience
tool: tool use
site: multiple site development

sced: length of schedule
lower rely: required reliability
(linearly data: secondary memory storage requirements
increase cplx: program complexity
effort) ruse: software reuse

docu: documentation requirements
time: runtime pressure
stor: main memory requirements

pvol: platform volatility

Figure 2: The COCOMO II scale factors and effort multipli-
ers.

Then, for the controllable input features C, STAR imposes the top
1 ≤ X ≤ C ranked ranges and re-runs COCOMO, COQUALMO,
and THREATS 1000 times. The median energy seen in those 1000
runs is collected. Let Min be some value 1 ≤ Min ≤ C associ-
ated with minimum median energy seen in the above forward select
experiment. A policy are all the ranges see in 1..Min.

It is insightful to compare the effects of STAR’s policies with
more traditional methods. SCAT and 2CEE are effort estimation
tools developed in-house by the authors at JPL. Both SCAT and
2CEE accept inputs like Figure 1 and output a range of effort esti-
mates. SCAT uses fixed {a, b} values (derived from historical logs
of JPL systems) while 2CEE derives ranges for {a, b} based on his-
torical data. Neither of these models vary m; rather, they reuse the
m values proposed from Boehm [4].

Figure 3 compares the median effort estimate predictions found
by in SCAT, 2CEE, and STAR (defect and threat estimates are
not shown since SCAT and 2CEE only contain effort models). In
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Figure 3: Effort estimations from two standard methods
(SCAT, 2CEE) and STAR.



id features relative weight
1 Personnel/team capability 3.53
2 Product complexity 2.38
3 Time constraint 1.63
4 Required software reliability 1.54
5 Multi-site development 1.53
6 Doc. match to life cycle 1.52
7 Personnel continuity 1.51
8 Applications experience 1.51
9 Use of software tools 1.50
10 Platform volatility 1.49
11 Storage constraint 1.46
12 Process maturity 1.43
13 Language & tools experience 1.43
14 Required dev. schedule 1.43
15 Data base size 1.42
16 Platform experience 1.40
17 Arch. & risk resolution 1.39
18 Precedentedness 1.33
19 Developed for reuse 1.31
20 Team cohesion 1.29
21 Development mode 1.32
22 Development flexibility 1.26

Figure 4: Relative effects on development effort. Data from a
regression analysis of 161 projects [3].

one case, all the estimates were similar (OSP2) but for the others,
STAR’s forward select found input ranges that greatly reduced the
developed effort: e.g. for ground systems, STAR’s preferred inputs
yielded estimates that were 6.4 and 5.4 times smaller than SCAT or
2CEE, respectively.

When we first saw these results, we suspected a bug. Then we
realized that unlike SCAT and 2CEE, STAR doesn’t just make es-
timates. STAR also tries to minimize those estimates. The impact
of altering the input ranges can be quite dramatic. Figure 4 shows
the known relative productivity effects of changing project features.
The product of those productivity effects shows the total impact of
decisions regarding inputs on effort estimation:

11,022.4 = 3.53 * 2.38 * 1.63 * 1.54 * 1.53 * 1.52*1.51
* 1.51 * 1.5 * 1.49 * 1.46 * 1.43 * 1.43 * 1.43 * 1.42
* 1.4 * 1.39 * 1.33 * 1.31 * 1.29 * 1.32 * 1.26.

That is, if projects were free to do anything at all, the process de-
cisions of Figure 2 can change total effort by three orders of mag-
nitude. STAR was only able to reduce the cost of building (e.g.)
JPL’s ground systems by a factor of ≈ 6 since Figure 1 constrained
the space of possible choices.

5. DISCUSSION
Figure 3 illustrates the same effect reported in the introduction

by the model-based diagnosis community. Creative solutions can
sometimes be found in a large space of possible behaviors (STAR)
than in a tighter space of more precisely defined behaviors (SCAT,
2CEE).

These results show how the premature fixing of the options can
prevent an analysis from proposing novel fixes. For example, ob-
serve that:

• In Figure 1, OSP2’s fixed values are more extensive that the
other three cases.

• In Figure 3, STAR reduced the effort by the least amount of
the other case studies.

We speculate that if STAR had been applied earlier in the life cy-
cle of OSP2, then a different and cheaper project could have been
selected.

STAR is an abductive inference engine. The theory T is the com-
bined COCOMO, COQUALMO, THREAT models. The assump-
tions A of Equations 1 and 2 are the policies found by STAR’s
forward select. The best predicate that selects the preferred worlds
is the energy function of Equation 4 that ranks the ranges. If k is the
time required to run COCOMO,COQUALMO, and THREAT, then
STAR runs in O(k) time using its greedy search down the ranked
list of ranges. Hence, STAR runs fast (under 10 seconds for the
simulated annealing and forward select for each of the test cases in
Figure 1).

Our previous implementation of this approach was called the
TAR3 treatment learner [23]. A treatment learner finds a minimal
contrast set that distinguishes desired from undesired outcomes.
With Feather, we have used treatment learning [11] to find the key
decisions within requirements models. Treatment learning assumes
that there is very little control of the device generating the training
data. STAR was designed assuming a fine-grained integration be-
tween the data generator and the learner.

There is much to recommend STAR over TAR3. STAR gener-
ated all our case study results in less than a minute. A similar range
ranking, by TAR3, would require 20 to 30 minutes to generate fea-
ture range rankings. whose peeks rank the rank collar settings in a
best to worst order.

STAR looks nothing like a logical theorem prover. In this case
study, for example, STAR watched over a procedural system and
not a system represented as a set of clauses. As observed by Kakas
et.al. [15] abduction is a knowledge-level inference procedure [33]
which, under the hood, can be implemented by any number of
symbol-level heuristic methods.

6. CONCLUSION
Traditionally, uncertainty is viewed as a bad thing. To be sure,

there are times when unceratinty is dangerous. The software con-
troller of the ascent stage of a manned spacecraft should be a deter-
ministic algorithm with guaranteed performance properties. Using
anything else at this stage of the mission is as crazy as not using
(say) random search to assist in on-board diagnosis when the craft
is (a) in deep space and (b) in deep trouble and (c) it takes too long
to ask for help from ground control.

Previously, we have explored uncertainty analysis in an abduc-
tive framework but that work floundered on the compuational cost
of abduction. Recent success with a stochastic pre-processor to
find the “collar” variables suggest that we can return to research-
ing abduction as a general framework for software engineering and
knowledge engineering.

For future work, we need to check the generality of the STAR
algorithm. COCOMO, COQUALMO, and THREAT are simple
models and a more general STAR framework might require more
intricate forward selection methods or more some alternative to
simulated annealing. For example, Kakas has explored linear op-
timization as a symbol-level engine for abduction. Another candi-
date method might be the cross-entropy method [40].
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