
How to Avoid Drastic Software Process Change (using Stochastic Stability)

Tim Menzies∗, Steve Williams,
Oussama El-Rawas
CSEE, WVU, USA

tim@menzies.us
swilli12@mix.wvu.edu
oelrawas@mix.wvu.edu

Barry Boehm
Computer Science Dept.
Uni. S. California, USA
boehm@sunset.usc.edu

Jairus Hihn
Jet Propulsion Laboratory,

California Inst. of Technology,
California, USA

jairus.hihn@jpl.nasa.gov

Abstract

Before performing drastic changes to a project, it is
worthwhile to thoroughly explore the available options
within the current structure of a project. An alternative to
drastic change are internal changes that adjust current op-
tions within a software project. In this paper, we show that
the effects of numerous internal changes can out-weigh the
effects of drastic changes. That is, the benefits of drastic
change can often be achieved without disrupting a project.

The key to our technique is SEESAW, a novel stochastic
stability tool that (a) considers a very large set of minor
changes using stochastic sampling; and (b) carefully selects
the right combination of effective minor changes.

Our results show, using SEESAW, project managers have
more project improvement options than they currently real-
ize. This result should be welcome news to managers strug-
gling to maintain control and continuity over their project
in the face of multiple demands for drastic change.

1. Introduction

Software process control is complicated by uncertainty.
Exactly how good are our analysts? How large is the final
system? Do we understand our tools? These are some of
the questions that most managers cannot answer precisely.

For example, if asked “what is the required reliability on
this project?” a manager may reply “well, the code has to
run but this is not a safety critical system”. In terms of, say,
the COCOMO [6] five-point reliability scale, the manager’s
answer describes a range of options “low” to “high”. Some

∗Part of the research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a con-
tract with the National Aeronautics and Space Administration. Reference
herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply
its endorsement by the United States Government.

of options are controllable; e.g. the manager may offer the
customer an early delivery of the software if the customer
considers not building a “high” reliability system.

This paper compares the effects of (a) internal changes
to a project that adjust the controllables within their current
known ranges and (b) drastic changes that require moving a
project outside of current bounds. For example, for projects
with a range of reliability options “low” to “high”, an in-
ternal change would be setting reliability to a value within
“low” to “high”. On the other hand, a drastic change would
be to suddenly demand that a project becomes a “very high”
reliability project. Figure 1 lists the disruptive changes of
nine drastic changes. For example, “improve personnel”
(by firing staff and hiring new programmers) may lead to
a major union dispute. Other drastic changes like “reduce
functionality” can restrict the functionality of the next re-
lease. This, in turn, could mean less revenue if the reduced
functionality software has less market appeal.

SEESAW is a tool that seeks alternatives to drastic
change. SEESAW stochastically explores combinations of
internal changes. When controlling mission-critical soft-
ware, such stochastic methods are not desirable. However,
when studying the uncertainty associated with unknowns

Drastic change Possible undesirable impact
1 Improve personnel Firing and re-hiring personnel lead-

ing to wide-spread union unrest.
2 Improve tools, techniques, or

development platform
Changing operating systems, IDEs,
coding languages

3 Improve precedentness /
development flexibility

Changing the goals of the project and
the development method.

4 Increase architectural
analysis / risk resolution

Far more elaborate early life cycle
analysis.

5 Relax schedule Delivering the system later.
6 Improve process maturity May be expensive in the short term.
7 Reduce functionality Delivering less than expected.
8 Improve the team Requires effort on team building.
9 Reduce quality Less user approval, smaller market.

Figure 1. Nine drastic changes from [3].

Defects / KLOC
Change (normalized 0..100, min..max)

SEESAW r
Improve pcap r

Improve tool/tech/plat r
Reduce functionality r

Improve pmat r
Improve prec/flex r

Improve team r
Relax schedule r

Arch/risk resolution r
Do nothing r

Reduce quality r
50%

Figure 2. Defect predictions from changing a
project (25 to 75% percentile range from 100
simulations; median values shown as a dot).

about software processes, stochastic algorithms like SEE-
SAW are very useful. If run multiple times, stochastic sam-
pling can return multiple options so users can study the
range of possible solutions. That is, SEESAW offers both a
solution and a comment on the stability of that solution.

This paper checks the stability of predictions about
drastic change or internal changes learned by SEESAW’s
stochastic sampling. For the drastic changes of Figure 1
and four NASA case studies, our main result is that:

Combinations of internal changes usually per-
form as well or better than drastic changes.

That is, using internal changes, the benefits of drastic
change can be achieved without project disruption. For ex-
ample, Figure 2 compares defect/KLOC predictions from
SEESAW and the drastic changes of Figure 1. SEESAW’s
recommendations, comprising only internal changes, re-
sulted in the smallest defect predictions (see line 1).

The rest of this paper explains how Figure 2 was gen-
erated. After some preliminaries, we discuss the op-
tions available within the current structure of four sample
projects. Figure 1’s drastic changes will then be imple-
mented as operators on those projects. Next we describe
SEESAW and the models it operates on: the COCOMO ef-
fort and time estimator [7, p29-57]; and the COQUALMO
defect predictor [7, p254-268]. In the results that follow we
show that, for our case studies, SEESAW’s search through
the space of internal changes usually out-performs the dras-
tic changes of Figure 1.

The contribution of this paper is a demonstration
that managers have more options than they may realize.
Stochastic stability is an insightful method for discovering
useful project reconfigurations that improve a project while
avoiding requiring drastic and disruptive project change.

2. Preliminaries

The reader may wonder why we use a stochastic method
like SEESAW to explore project options. Would not a sim-
pler method suffice? For example, in the case of linear mod-
els that have been precisely tuned using local data, it is a
simple matter to check if a combination of internal changes
does better than drastic change. Many of the relationships
inside COCOMO model are linear. For such models, “what-
if” queries require just a simple linear extrapolation to as-
sess the relative effectiveness of, say, reducing functionality
versus some combination of internal changes.

Unfortunately, not all tunings are precise. Sometimes,
even after tuning, the gradient of the relationships may not
be known with certainty. For example, the COCOMO ef-
fort model predictions are affected linearly and exponen-
tially by two features a, b. Baker [2] tuned these a, b values
using data from NASA systems. After thirty 90% random
samples of that data, the a, b ranges were surprisingly large:

(2.2 ≤ a ≤ 9.18) ∧ (0.88 ≤ b ≤ 1.09) (1)

Elsewhere we have been partially successful in reduc-
ing the range of Equation 1 with feature subset selection
(FSS) [8, 14] or more data collection. FSS reduces but does
not eliminate the a, b variance. Also, further data collection
is possible, but only at great organizational expense. This
is due to data not being collected or the business sensitiv-
ity associated with the data as well as differences in how
the metrics are defined, collected and archived. For exam-
ple, after two years we were only able to add 7 records to a
NASA-wide software cost metrics repository [16]. Having
failed to generate precise tunings, we developed SEESAW
to discover what stable conclusions we could find within the
space of possible tunings.

Another drawback with simplistic linear extrapolation is
that, when optimizing for effort and time and defects, there
may be contradictory effects. For example, we show be-
low one result where effort reduced, but defects increased
dramatically. Hence, optimizing our models is not a simple
matter of moving fixed distances over some linear effect:
there are also some trade-offs to be considered (e.g. using a
tool that considers combinations of effects, like SEESAW).

3. Options Within Projects

SEESAW ranks project changes using the COCOMO
and COQUALMO effort, time, and defect predictors. The
terminology of those models is reviewed in Figure 3.

Using that terminology, Figure 4 summarizes four
NASA case studies:

• OSP is the GNC (guidance, navigation, and control)
component of NASA’s 1990s Orbital Space Plane;

Definition Low-end = {1,2} Medium ={3,4} High-end= {5,6}

Defect removal features
execution-
based testing
and tools
(etat)

all procedures and tools used for testing none basic testing at unit/ integration/
systems level; basic test data
management

advanced test oracles, assertion
checking, model-based testing

automated
analysis (aa)

e.g. code analyzers, consistency and
traceability checkers, etc

syntax checking with com-
piler

Compiler extensions for static
code analysis, Basic requirements
and design consistency, traceabil-
ity checking.

formalized specification and
verification, model checking,
symbolic execution, pre/post
condition checks

peer reviews
(pr)

all peer group review activities none well-defined sequence of prepara-
tion, informal assignment of re-
viewer roles, minimal follow-up

formal roles plus extensive
review checklists/ root cause
analysis, continual reviews,
statistical process control, user
involvement integrated with
life cycle

Scale factors:
flex development flexibility development process rigor-

ously defined
some guidelines, which can be re-
laxed

only general goals defined

pmat process maturity CMM level 1 CMM level 3 CMM level 5
prec precedentedness we have never built this kind

of software before
somewhat new thoroughly familiar

resl architecture or risk resolution few interfaces defined or
few risks eliminated

most interfaces defined or most
risks eliminated

all interfaces defined or all
risks eliminated

team team cohesion very difficult interactions basically co-operative seamless interactions

Effort multipliers
acap analyst capability worst 35% 35% - 90% best 10%
aexp applications experience 2 months 1 year 6 years
cplx product complexity e.g. simple read/write state-

ments
e.g. use of simple interface wid-
gets

e.g. performance-critical em-
bedded systems

data database size (DB bytes/SLOC) 10 100 1000
docu documentation many life-cycle phases not

documented
extensive reporting for each
life-cycle phase

ltex language and tool-set experience 2 months 1 year 6 years
pcap programmer capability worst 15% 55% best 10%
pcon personnel continuity

(% turnover per year)
48% 12% 3%

plex platform experience 2 months 1 year 6 years
pvol platform volatility

(frequency of major changes
frequency of minor changes)

12 months
1 month

6 months
2 weeks

2 weeks
2 days

rely required reliability errors are slight inconve-
nience

errors are easily recoverable errors can risk human life

ruse required reuse none multiple program multiple product lines
sced dictated development

schedule
deadlines moved to 75% of
the original estimate

no change deadlines moved back to 160%
of original estimate

site multi-site development some contact: phone, mail some email interactive multi-media
stor required % of available RAM N/A 50% 95%
time required % of available CPU N/A 50% 95%
tool use of software tools edit,code,debug integrated with life cycle

Figure 3. Features of the COCOMO and COQUALMO models used in this study.

• OSP2 is a later version of OSP;
• Flight and ground systems reflect typical ranges seen

at NASA’s Jet Propulsion Laboratory.

Some of the features in Figure 4 are known precisely (see
all the features with single values). But many of the features
in Figure 4 do not have precise values (see all the features
that range from some low to high value). Sometimes the
ranges are very narrow (e.g., the process maturity of JPL
ground software is between 2 and 3), and sometimes the
ranges are very broad. Figure 4 does not mention all the
features listed in Figure 3 inputs. For example, our defect
predictor has inputs for use of automated analysis, peer re-
views, and execution-based testing tools. For all inputs not

mentioned in Figure 4, values are picked at random from
the full range of Figure 3.

4. Imposing Drastic Changes

Using Figure 4, we can now clearly distinguish between
drastic and internal changes. Drastic changes means reor-
ganizing a project outside of the ranges shown in Figure 4,
while internal changes reorganizes a project within those
ranges. Internal changes merely move the project into some
subset of the current project assumptions. Drastic changes,
on the other hand, can completely alter those assumptions.
Take as an example the “improve process maturity” drastic

ranges values
project feature low high feature setting

prec 1 2 data 3
OSP: flex 2 5 pvol 2

Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
prec 3 5 flex 3

OSP2 pmat 4 5 resl 4
docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 3 5 tool 2
JPL data 2 3 sced 3

flight cplx 3 6
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418
rely 1 4 tool 2

JPL data 2 3 sced 3
ground cplx 1 4

software time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Figure 4. Four case studies. Nu-
meric values {1, 2, 3, 4, 5, 6} map to
{verylow, low, nominal, high, veryhigh, extrahigh}.

change from Figure 1. According to Figure 4, JPL ground
systems have process maturities in the range 2 to 3 (low to
nominal). Demanding very high CMM levels for these JPL
ground systems would likely take years, require the com-
mitment of very senior JPL management, and necessitate
extensive retraining of local staff and/or hiring of new staff.

Figure 5 defines the values we imposed on each case
study as part of each drastic change. Most of the val-
ues in Figure 5 are self-explanatory with two exceptions.

Drastic change Effects on Figure 4
1 Improve personnel acap = 5; pcap = 5; pcon = 5

apex = 5 ; plex = 5 ; ltex = 5
2 Improve tools, techniques, or devel-

opment platform
time = 3; stor = 3
pvol = 2; tool = 5
site = 6

3 Improve precedentness / develop-
ment flexibility

prec = 5; flex = 5

4 Increase architectural analysis / risk
resolution

resl = 5

5 Relax schedule sced = 5
6 Improve process maturity pmat = 5
7 Reduce

functionality
data = 2; kloc * 0.5

8 Improve the team team = 5
9 Reduce quality rely = 1 ; docu = 1

time = 3 ; cplx = 1

Figure 5. Implementing drastic changes.

Firstly, the kloc ∗ 0.5 in “reduce functionality” means that,
when imposing this drastic change, we only implement
half the system. Secondly, most of the features fall in the
range one to five. However, some have minimum values
of 2 or higher (e.g., pvol in “improve tools/tech/dev”), and
some have maximum values of 6 (e.g., site in “improve
tools/tech/dev”). This explains why some of the drastic
changes result in values other than one or five.

To impose a drastic change on a case study, if that change
refers to feature X (in the right-hand column of Figure 5),
then we first (a) removed X from the values and ranges of
the case study (if it was present); then (b) added the changes
of Figure 5 as fixed values for that case study.

5. Finding Alternatives to Drastic Change

SEESAW searches within the ranges of Figure 4 to
find constraints that most reduce development effort, de-
velopment time, and defects. Figure 6 shows SEESAW’s
pseudo-code. The code is an adaption of Kautz & Sel-
man’s MaxWalkSat local search procedure [13]. The main
changes are that each solution is scored via a Monte Carlo
procedure (see score in Figure 6) and that SEESAW seeks
to minimize that score (since, for our models it is some com-
bination of defects, development effort, and development
time). Other changes are discussed below.

SEESAW first combines the ranges for all the COCOMO
features with the known project constraints of Figure 4.
These constraints range from Low to High values. If a case
study does not mention a feature, then there are no con-
straints on that feature, and the combine function (line 4)
returns the entire range of that feature. Otherwise, combine
returns only the values from Low to High.

In the case where a feature is fixed to a single value,
then Low = High. Since there is no choice to be made
for this feature, SEESAW ignores it. The algorithm ex-

plores only those features with a range of Options where
Low < High (line 5). In each iteration of the algorithm, it
is possible that one acceptable value for a feature X will be
discovered. If so, the range for X is reduced to that single
value, and the feature is not examined again (line 17).

SEESAW prunes the final recommendations (line 21).
This function pop off the N selections added last that do
not significantly change the final score (t-tests, 95% confi-
dence). This culls any final irrelevancies in the selections.

The score function shown at the bottom of Figure 6 calls
COCOMO/COQUALMO models 100 times, each time se-
lecting random values for each feature Options. The me-
dian value of these 100 simulations is the score for the cur-
rent project settings. As SEESAW executes, the ranges in
Options are removed and replaced by single values (lines
16-17), thus constraining the space of possible simulations.

SEESAW was designed after observing experimentally
that the most interesting ranges in Options are generally
the minimum and maximum values. The reason for this
is simple: All the functions in COCOMO/COQUALMO
are monotonic, causing the most dramatic effects to oc-
cur at the extreme ends of the ranges. In fact, SEESAW
takes its name from the way the algorithm seesaws be-
tween extreme values. We have conducted experiments
with other approaches that allow intermediate values. On
comparison with the simulated annealing method used in a
prior publications [16], we found that seesawing between
{Low, High} values was adequate for our purposes.

SEESAW is a stochastic algorithm: the selection of the
next feature to explore is completely random (line 7). We
use this stochastic approach since much research from the
1990s showed the benefit of such search methods. Not only
can stochastic algorithms solve non-linear problems and es-
cape from local minima/maxima, but they can also find so-
lutions faster than complete search, and for larger prob-
lems [17]. For example, we have implemented a determin-
istic version of SEESAW that replaces the random selection
of one feature in line 7 with a search through all features
for the best {Low, High} value. That algorithm ran much
slower (runtimes were 12 times greater) with nearly identi-
cal results to those of the stochastic search.

Crawford and Baker [9] offer one explanation for the
strange success of stochastic search. For models where
the solutions are a small part of the total space, a complete
search wastes much time exploring uninformative areas of
the problem. A stochastic search, on the other hand, does
not get stuck in such uninformative areas.

SEESAW incrementally grows solutions from un-
constrained (where all features can take any value in
{Low, High}) to fully constrained (where all features are
set to a single value). This is unlike simulated annealing
or MaxWalkSat, which simultaneously offer settings to all
features at every step of their reasoning. Figure 7 shows a

1 function run (AllRanges, ProjectConstraints) {
2 OutScore = -1
3 P = 0.95
4 Out = combine(AllRanges, ProjectConstraints)
5 Options = all Out features with ranges low < high
6 while Options {
7 X = any member of Options, picked at random
8 {Low, High} = low, high ranges of X
9 LowScore = score(X, Low)

10 HighScore = score(X, High)
11 if LowScore < HighScore
12 then Maybe = Low; MaybeScore = LowScore
13 else Maybe = High; MaybeScore = HighScore
14 fi
15 if MaybeScore < OutScore or P < rand()
16 then delete all ranges of X except Maybe from Out
17 delete X from Options
18 OutScore = MaybeScore
19 fi
20 }
21 return backSelect(Out)
22 }
23 function score(X, Value) {
24 Temp = copy(Out) ;; don’t mess up the Out global
25 from Temp, remove all ranges of X except Value
26 run monte carlo on Temp for 100 simulations
27 return median score from monte carlo simulations
28 }

Figure 6. Pseudocode for SEESAW.

single run of SEESAW: each dot marks one selection (lines
16,17,18 of Figure 6). In our terminology, selecting one
value from a range is a decision on all values in the range.
For example, if Figure 4 includes a process maturity of
(3,4,5) and SEESAW selects “5”, then that is three deci-
sions. (this is why the 29 dots of Figure 7 result in 100 de-
cisions). Note how, as decisions are made, the score is mini-
mized. Score minimization is desirable since our scores are
calculated from a combination of project predictions that
we want to reduce (total effort, defects, development time).

Incremental decision making is an important property
of SEESAW. Observe how, in Figure 7, 50% of the score

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

no
rm

al
ize

d
sc

or
e

Decisions

Figure 7. Single run of SEESAW, score nor-
malized min..max to 0..1

reduction arises from around 15% of the decisions. If a
manager cannot implement all SEESAW’s recommenda-
tions and a 50% reduction is adequate, she might elect to
use just these top 15% decisions. That is, SEESAW not only
makes R recommendations, it also reports on the value of
just applying just some subset of r ⊆ R.

In order to support incremental decision making, SEE-
SAW uses a very large P value to control its reasoning. This
P value is used to delay “lose-lose” decisions until the later
iterations of the algorithm. Suppose our search has only
constrained (say) pcap = 5 so far. Our next randomly cho-
sen feature might be data, so SEESAW tries {Low, High}
values of data = 2 and data = 5. It is possible that both
of these values will result in scores that are worse than the
current score (using pcap = 5 alone). This means that data
is not a valuable feature to control, and picking either of the
{Low, High} values would be a “lose-lose” decision. Us-
ing P = 0.95, SEESAW will very likely (95% of the time)
leave data unconstrained and pick another, potentially bet-
ter, feature to constrain on the next iteration. The algo-
rithm will eventually come back to data, but if SEESAW
delays making that lose-lose decision, it has a better chance
of making good decisions early in the search.

6. The Models

This section describes the COCOMO effort Ef and time
Ti predictor and the COQUALMO defect De predictor.
SEESAW normalizes these scores 0..100 then seeks ways
to minimize the following combination of the normalized
scores:

√
Ef2 + Ti2 + De2 (this expression is the Eu-

clidean distance of normalized effort, time, defects to their
minimum possible value).

Note that, in the following, the range of possible tunings
within these models ins represented by Equations 4,5,7 and
8.

6.1. Effort Prediction with COCOMO

COCOMO predicts development effort Ef in total staff
months where one month is 152 hours (and includes de-
velopment and management hours). In COCOMO, the
scale factors SFi of Figure 3 affect effort exponentially on
KSLOC (Thousands of Source Lines of Code) while effort
multipliers EMj affect effort linearly:

Ef = months = a∗
(

KSLOC

(
b+0.01∗

∑5

i=1
SFi

))
∗

(
17∏

j=1

EMj

)
(2)

where KSLOC is estimated directly or computed from a
function point analysis; SFi and EMj are the scale factors
and effort multipliers of Figure 3; and a and b are the fea-
tures discussed in Equation 1.

For effort multipliers, off-nominal ranges {vl=1, l=2,
h=4, vh=5, xh=6} change the prediction by some ratio. The
nominal range {n=3}, however, corresponds to an effort
multiplier of 1, causing no change to the prediction. Hence,
these ranges can be modeled as straight lines y = mx + b
passing through the point {x, y}={3, 1}. Such a line has a
y-intercept of b = 1− 3m. Substituting this value of b into
y = mx + b yields:

∀x ∈ {1..6} EMi = mα(x− 3) + 1 (3)

where mα denotes the effect of effort multiplier a on effort.
The effort multipliers form into two sets:

1. The positive effort EM features, with slopes m+
α , that

are proportional to effort. These features are: cplx,
data, docu, pvol, rely, ruse, stor, and time.

2. The negative effort EM features, with slopes m−
α , are

inversely proportional to effort. These features are
acap, apex, ltex, pcap, pcon, plex, sced, site, and tool.

Based on prior work [5], we can describe the space of
known tunings for COCOMO effort multipliers to be(

0.073 ≤ m+
α ≤ 0.21

)
∧
(
−0.178 ≤ m−

α ≤ −0.078
)

(4)

Similarly, using experience from 161 projects [5], we can
say that the space of known tunings for the COCOMO scale
factors (prec, flex, resl, team, pmat) are:

∀x ∈ {1..6} SFi = mβ(x−6)∧(−1.56 ≤ mβ ≤ −1.014) (5)

where mβ denotes the effect of scale factor i on effort.
One technical detail before continuing: we represent the

space of possible tunings as minimum and maximum sloped
lines that bound the space of known past tunings. Not all the
COCOMO/COQUALMO relationships are linear; some are
intricate piecewise linear functions. For those relationships,
we extend our minimal and maximal lines such that the
piecewise linear functions fall inside the extended bounds.

6.2. Time Prediction with COCOMO

COCOMO’s effort prediction model relates to total staff
time required for a project, COCOMO’s time prediction
model relates to project duration (in calendar months).

To predict time, COCOMO starts with the effort value
Ef , removes the effect of schedule pressure, then raises the
result to a fraction of the scale factors. Finally, an adjusted
value sced2 is applied to the calculation:

Ti = c · (Ef/sced)d+0.2
∑

i
SFi · sced2

The {c, d, sced2} values come from tables of constants.

6.3. Defect Prediction with COQUALMO

COQUALMO has two core models, used three ways.
The defect introduction model is similar to Equation 2: set-
tings to Figure 3’s effort multipliers and scale factors map
to predictions about the number of defects that will be in-
troduced in a given phase of development. Also, the defect
removal model represents how various tasks (peer reviews,
execution-based testing, and automated analysis) decrease
the number of defects that flow through to the next stage of
development.

These models are repeated for each of the three devel-
opment phases of requirements, design, and coding. CO-
QUALMO follows the same convention as COCOMO for
the effort multipliers: nominal values (n = 3) do not change
the predicted number of defects. Hence:

∀x ∈ {1..6} Defectsi = mγ(x− 3) + 1 (6)

where mγ denotes the effect of i on defect introduction. The
effort multipliers and scale factors form two sets:

1. The positive defect features, with slopes m+
γ , that are

proportional to the estimated defects. These features
are flex, data, ruse, cplx, time, stor, and pvol.

2. The negative defect features, with slopes m−
γ , that are

inversely proportional to the estimated defects. These
features are acap, pcap, pcon, apex, plex, ltex, tool,
site, sced, prec, resl, team, pmat, rely, and docu.

The space of tunings for defect introducing features are:

requirements

{
0 ≤ m+

γ ≤ 0.112
−0.183 ≤ m−

γ ≤ −0.035

design

{
0 ≤ m+

γ ≤ 0.14
−0.208 ≤ m−

γ ≤ −0.048

coding

{
0 ≤ m+

γ ≤ 0.14
−0.19 ≤ m−

γ ≤ −0.053

(7)

The space of tunings for defect removal features are:

∀x ∈ {1..6} SFi = mδ(x− 1)
requirements : 0.08 ≤ mδ ≤ 0.14

design : 0.1 ≤ mδ ≤ 0.156
coding : 0.11 ≤ mδ ≤ 0.176

(8)

where mδ denotes the effect of i on defect removal.

7. Results

Our experiments compared predictions after either
(a) applying the drastic changes of Figure 1; or (b) con-
straining some internal options selected by SEESAW trying
to minimize a linear combination of normalized defects, ef-
fort, and time; or (c) doing nothing at all and just running a

Flight
Rank Change Effort

1 SEESAW r
2 Improve pcap r
3 Reduce quality r
4 Improve tool/tech/plat r
5 Reduce functionality r
6 Relax schedule r
6 Improve prec/flex r
7 Improve pmat r
8 Arch/risk resolution r
8 Improve team r
9 Do nothing r

50%

Ground
Rank Change Effort

1 SEESAW r
2 Improve pcap r
3 Improve tool/tech/plat r
4 Reduce quality r
5 Reduce functionality r
6 Relax schedule r
6 Improve prec/flex r
7 Improve pmat r
7 Improve team r
7 Arch/risk resolution r
8 Do nothing r

50%

OSP
Rank Change Effort

1 Improve pcap r
2 Reduce quality r
3 SEESAW r
4 Improve tool/tech/plat r
5 Reduce functionality r
6 Relax schedule r
7 Improve prec/flex r
8 Arch/risk resolution r
8 Improve team r
8 Improve pmat r
9 Do nothing r

50%

OSP2
Rank Change Effort

1 Reduce quality r
2 Improve pcap r
3 Reduce functionality r
4 Relax schedule r
5 SEESAW r
6 Improve prec/flex r
6 Improve tool/tech/plat r
7 Improve team r
8 Arch/risk resolution r
8 Improve pmat r
9 Do nothing r

50%

Figure 8. EFFORT: total staff months.

Monte Carlo simulation across the ranges of Figure 4. Each
experiment comprised 100 runs of Figure 6. Each time a set
of project options were scored, m values were selected at
random from Equations 4,5,7 and 8.

In Figures 8, 9, and 10, the rows are sorted by median
scores. The “Do nothing” row comes from Monte Carlo
simulations of the current ranges, without any changes. The

Flight
Rank Change Time

1 SEESAW r
2 Improve pcap r
3 Reduce quality r
4 Improve tool/tech/plat r
5 Reduce functionality r
6 Improve prec/flex r
7 Improve pmat r
7 Arch/risk resolution r
8 Improve team r
9 Do nothing r

10 Relax schedule r
50%

Ground
Rank Change Time

1 SEESAW r
2 Improve pcap r
3 Improve tool/tech/plat r
4 Reduce quality r
5 Reduce functionality r
6 Improve prec/flex r
7 Improve pmat r
7 Improve team r
8 Arch/risk resolution r
9 Do nothing r

10 Relax schedule r
50%

OSP
Rank Change Time

1 Improve pcap r
2 Reduce quality r
3 Improve tool/tech/plat r
4 SEESAW r
5 Reduce functionality r
6 Improve prec/flex r
7 Arch/risk resolution r
7 Improve pmat r
8 Improve team r
9 Do nothing r

10 Relax schedule r
50%

OSP2
Rank Change Time

1 Reduce quality r
2 Improve pcap r
3 SEESAW r
3 Reduce functionality r
4 Improve prec/flex r
4 Improve team r
5 Improve tool/tech/plat r
5 Arch/risk resolution r
6 Improve pmat r
7 Do nothing r
8 Relax schedule r

50%

Figure 9. TIME: calendar months.

ranks shown in the left-hand column are computed from
a Mann-Whitney test at 95% confidence test (this test was
chosen since (a) due to the random nature of Monte Carlo
simulations, the inputs to each run are not paired; and (b)
ranked tests make no, possibly inappropriate, assumption
about normality of the results). Two rows have the same
rank if there is no statistical difference in their distributions.

Flight
Rank Change Defects

1 SEESAW r
2 Improve pcap r
3 Improve tool/tech/plat r
4 Reduce functionality r
5 Improve pmat r
6 Arch/risk resolution r
6 Improve team r
6 Relax schedule r
6 Improve prec/flex r
7 Do nothing r
8 Reduce quality r

50%

Ground
Rank Change Defects

1 SEESAW r
2 Improve pcap r
3 Improve tool/tech/plat r
4 Reduce functionality r
5 Improve pmat r
5 Improve prec/flex r
5 Improve team r
6 Relax schedule r
6 Arch/risk resolution r
7 Do nothing r
8 Reduce quality r

50%

OSP
Rank Change Defects

1 Improve pcap r
1 SEESAW r
2 Improve tool/tech/plat r
3 Reduce functionality r
4 Improve prec/flex r
4 Arch/risk resolution r
5 Relax schedule r
5 Improve team r
5 Improve pmat r
6 Do nothing r
7 Reduce quality r

50%

OSP2
Rank Change Defects

1 Improve pcap r
1 SEESAW r
2 Reduce functionality r
3 Improve team r
3 Relax schedule r
4 Arch/risk resolution r
4 Improve prec/flex r
4 Improve pmat r
5 Improve tool/tech/plat r
6 Do nothing r
7 Reduce quality r

50%

Figure 10. Defect / KLOC.

Each row shows results from 100 runs (see Figure 6):

• All results are normalized to run 0..100, min..max.
• Each row shows the 25% to 75% quartile range of the

normalized scores collected during the simulation.
• The median result is shown as a black dot.

All the performance scores (effort, time, defects) get better

Flight Ground
acap=5 100% aexp=5 100%
aexp=5 100% cplx=1 100%
cplx=3 100% docu=1 100%
docu=1 100% flex=5 100%
flex=5 100% ltex=4 100%
ltex=4 100% pcap=5 100%
pcap=5 100% pcon=5 100%
pcon=5 100% plex=4 100%
plex=4 100% prec=5 100%
prec=5 100% pvol=2 100%
pvol=2 100% rely=4 100%
rely=5 100% resl=5 100%
resl=5 100% ruse=2 100%
ruse=2 100% site=6 100%
site=6 100% team=5 100%
team=5 100% acap=5 95%
pmat=3 95% time=3 95%
stor=3 90% data=2 85%
etat=6 85% stor=3 80%
data=2 80% pmat=3 75%
time=3 75% etat=1 60%
aa=6 55% pr=6 60%
pr=6 50% aa=1 55%
pr=1 45% aa=6 45%
aa=1 40% etat=6 35%
time=4 25% pr=1 35%
data=3 15% pmat=2 20%
etat=1 15% stor=4 20%
stor=4 10% data=3 15%
pmat=2 5% acap=3 5%

time=4 5%

Figure 11. SEESAW recommendations.

when the observed scores get smaller. Note that, usually,
SEESAW obtains the better scores.

Figures 8, 9, and 10 show results from 12 experiments:

{effort, time, defects}∗{flight, ground,OSP,OSP2}

In 12
12 (i.e., all) experiments, the median score from SEE-

SAW is better than at least half of the other changes. Better
yet, in 6

12 (i.e., half) experiments, SEESAW offers the best
predictions, and in two more experiments (the defect results
for OSP and OPS2), SEESAW ties the top rank. This result
is the justification for our claim in the introduction that in
a majority of experiments (8

12), SEESAW’s search through
the space of internal changes to current project options does
as well or better than drastic change.

Another result of interest is that the range of SEESAW
results is typically smaller than most other changes in Fig-
ures 8, 9, and 10 (observe how the 75% - 25% band in SEE-
SAW’s results are usually smaller than all the others). That
is, of all the changes proposed here, the most stable were
those generated by the stochastic search. This paradoxical
result is simple to explain: SEESAW does not just sample
a space of options; it also hunts for options that reduces the
median score within those options. For models where the
variance is proportional to the median, then reducing the
median score also reduces the variance.

Another stable feature of SEESAW are the actual recom-
mendations. An issue with stochastic sampling is that the
output recommendations can vary dramatically from one

run to another. Such variance can occur when a stochastic
methods staggers between multiple solutions of near equal
value. Figure 11 shows the recommendations made by 20
runs of SEESAW for the flight and ground projects. Note
that the majority of the recommendations occur in all 20
runs and represent the most important actions that a project
manager could make. The recommendations that occur at
low frequencies are still valid, if used in conjunction with
the other recommendations of that particular run.

The worst results from SEESAW are see in Figure 8
where the median effort found by SEESAW is near the mid-
dle of all changes. This result is hardly surprising. This re-
sult comes from OSP2 and this case study is the most con-
strained case explored by this paper (observer in Figure 4
that, for the most part, the features all have fixed values).
SEESAW works by exploring subsets of the available op-
tions. When that option space is limited, the benefits of
SEESAW are also limited. That is, we cannot find success-
ful options unless we are first given enough options to ex-
plore. Previously [15] we have expressed this as “if you fix
everything, there is nothing left to fix”.

In other cases where drastic changes wins, those changes
are often unacceptable. For example, in the effort and time
results, SEESAW is beaten by “reduce quality” in 4

12 ex-
periments. The benefits of these effort and time reductions
should be weighed against the implications on defects. Fig-
ure 10 shows that “reduce quality” results in the largest
number of defects seen in any change. While there may ex-
ist projects that permit delivering code with large numbers
of defects, we believe that usually this is unacceptable.

Another drastic change that defeats SEESAW is “im-
prove pcap” (personnel capabilities). Recalling Figure 5,
we see that improving personnel capability requires chang-
ing two analyst features, three personnel features, as well as
addressing some issues relating to language and tool expe-
rience. Of all the drastic changes studied in this paper, this
change is the most complex. It might also be the hardest to
implement since it requires dramatic change to the current
personnel working on the project (perhaps even firing old
staff in order to hire new personnel). If an organization can
handle such large-scale change, then in some cases (e.g.,
in 4

12 experiments from Figures 8, 9, and 10) the “improve
pcap” option might indeed outperform SEESAW. However,
managers might want to avoid such complex organizational
change, preferring instead to fine tune their project within
its current structure using just internal changes.

8. Discussion

Our thesis is that there exist some process models (e.g.
COCOMO/COQUALMO) that can still be used to rank
proposed process changes, even without sufficient data to
achieve precise local tunings. This is not to say that local

tuning should not be attempted. Indeed, our strong view is
that the preferred option is to use precisely tuned models.
However, in domains where such tunings are unavailable,
we recommend SEESAW.

We show that for COCOMO/COQUALMO, prediction
uncertainty can be mitigated by selecting the right project
options regardless of uncertainty in the tunings. This is not
to say that prediction uncertainty of all process models can
be mitigated in the same manner. However, the observation
that COCOMO/COQUALMO models can be controlled in
this manner is one more reason to prefer these models.

Nor do we claim that stochastic stability always beats
all drastic change for all projects. Indeed, we offer ex-
amples where extremely drastic change defeats the internal
changes proposed by SEESAW. However, in those cases,
those changes were so drastic (reduce functionality, or make
major change the personnel) that many managers may pre-
fer SEESAW’s slightly-less-then-best recommendations.

9. Related Work

Much of the related work on uncertainty in software en-
gineering uses a Bayesian analysis. For example, Pend-
harkar et.al. [18] demonstrate the utility of Bayes networks
in effort estimation while Fenton and Neil explore Bayes
nets and defect prediction [10] (but unlike this paper, nei-
ther of these teams links defect models to effort models).
We elect to take a non-Bayesian approach since most of
the industrial and government contractors we work with use
parametric models like COCOMO.

The process simulation community (e.g. Raffo [20])
studies models far more elaborate than COCOMO or CO-
QUALMO. While such models offer more detailed insight
into an organization, the effort required to tune them is non-
trivial. For example, Raffo spent two years tuning one such
model to one particular site [19].

Other related work is the search-based SE approach ad-
vocated by Harmon [11]. Search-Based Software Engineer-
ing (SBSE) uses optimization techniques from operations
research and meta-heuristic search (e.g. simulated anneal-
ing and genetic algorithms) to hunt for near optimal solu-
tions to complex and over-constrained software engineer-
ing problems. The SBSE approach can and has been ap-
plied to many problems in software engineering (e.g. re-
quirements engineering [12]) but most often in the field of
software testing [1]. Harmon’s writing inspired us try simu-
lated annealing to search the what-ifs in untuned COCOMO
models [16]. However, we found that SEESAW ran much
faster and produced results with far less variance than sim-
ulated annealing.

10. Future Work

The results of this paper assume that all the options found
by SEESAW are controllable; i.e. a manager can implement
all of SEESAW’s recommendations. Future work should
repeat this analysis assuming that only certain subsets of
the internal options are controllable.

Also, this paper only explores the drastic changes of
Figure 1 (these where defined in one of our prior publica-
tions [3]). There may be other drastic changes that defeat
the recommendations of SEESAW. Future work should ex-
plore a wider range of drastic changes.

11. Conclusion

Drastic change is highly disruptive to a project. For ex-
ample, your manager has returned from ICSE‘09 excited
about the next new thing in software engineering. “We
need to drastically alter our projects,” she says, “in order
to support (say) automatic formal methods, agile process,
etc.”. This change may entail switching from Windows to
LINUX (since there are more research prototypes for auto-
mated formal methods running on LINUX); stopping pro-
duction while engineers retrain; or, worse, firing the engi-
neers and making new hires.

An alternative to drastic change are combinations of in-
ternal changes within the current bounds of a project. Given
precise local tunings to linear software process models (e.g.
the COCOMO effort predictor and the COQUALMO defect
predictors), then simple linear extrapolation may suffice for
exploring different process options. However, when the tun-
ings are not precise, or competing goals have to be achieved,
simple linear extrapolation is insufficient.

This paper has explored the hard case of (a) ranking dif-
ferent process changes using (b) models with competing in-
fluences that (c) have not been precisely tuned using local
data. In this case, the core task is to find stability within a
very large space of possibilities. Given a project with some
variance in its process options and a model with some vari-
ance in its tunings, then the model prediction uncertainty
is some combination of the uncertainty with a project’s op-
tions and uncertainty with the model’s tunings. Local data
can be used to reduce the uncertainty in the tunings. How-
ever, as shown in Equation 1, even after tuning it is possible
tuning uncertainty remains.

Based on research dating back to 1981 [4], we assert that
the space of possible tunings for COCOMO/COQUALMO
is well defined (see Equations 4,5,7 and 8). We show here
that at least for the these models, it is possible to explore
a very large range of “what-ifs” (the space of all possible
tunings and internal project changes) to find project option
settings that improve model predictions, despite uncertainty
in the tunings.

Specifically, in studies with 4 NASA case studies and 8
drastic changes, we found that, usually, SEESAW’s stochas-
tic sampling found internal options that worked as well
or out-performed drastic change. Essential to the above
is stochastic stability. Stochastic search enables the rapid
sampling of a very wide range of options. More impor-
tantly, when studying the space of unknowns associated
with a particular project (e.g. Figure 4), stochastic sampling
can return multiple results after multiple runs. These results
can be studied to check the stability of the solutions within
the space of project options. Figures 8, 9, and 10 show that
the SEESAW stochastic stability tool typically generated
the smallest range in performance predictions. That is, of
all the changes studied here, SEESAW’s recommendations
were typically the most stable.

Our results suggest that project managers may have more
project improvement options than they currently realize.
Hence, before performing drastic changes it can be worth-
while to check for stochastically stable effects amongst the
internal changes, if only to understand better the available
options within the current structure of a project.

Acknolwedgements

Thanks to Phillip Green, Topi Haapio and Andi Marcus
and for their feedback on earlier drafts.

References

[1] J. Andrews, F. Li, and T. Menzies. Nighthawk: A two-
level genetic-random unit test data generator. In IEEE
ASE’07, 2007. Available from http://menzies.us/
pdf/07ase-nighthawk.pdf.

[2] D. Baker. A hybrid approach to expert and model-
based effort estimation. Master’s thesis, Lane Depart-
ment of Computer Science and Electrical Engineer-
ing, West Virginia University, 2007. Available from
https://eidr.wvu.edu/etd/documentdata.
eTD?documentid=5443.

[3] B.Boehm and H.In. Conflict analysis and negotiation aids
for cost-quality requirements. Software Quality Profes-
sional, 1(2):38–50, March 1999.

[4] B. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[5] B. Boehm. Safe and simple software cost analy-
sis. IEEE Software, pages 14–17, September/October
2000. Available from http://www.computer.org/
certification/beta/Boehm_Safe.pdf.

[6] B. Boehm, C. Abts, and S. Chulani. Software development
cost estimation approaches - a survey. Annals of Software
Engineering, 10:177–205, 2000.

[7] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark,
B. Steece, A. W. Brown, S. Chulani, and C. Abts. Software
Cost Estimation with Cocomo II. Prentice Hall, 2000.

[8] Z. Chen, T. Menzies, and D. Port. Feature subset selec-
tion can improve software cost estimation. In PROMISE’05,
2005. Available from http://menzies.us/pdf/05/
fsscocomo.pdf.

[9] J. Crawford and A. Baker. Experimental results on the ap-
plication of satisfiability algorithms to scheduling problems.
In AAAI ’94, 1994.

[10] N. E. Fenton and M. Neil. A critique of software
defect prediction models. IEEE Transactions on
Software Engineering, 25(5):675–689, 1999. Avail-
able from http://citeseer.nj.nec.com/
fenton99critique.html.

[11] M. Harman and J. Wegener. Getting results from search-
based approaches to software engineering. In ICSE ’04:
Proceedings of the 26th International Conference on Soft-
ware Engineering, pages 728–729, Washington, DC, USA,
2004. IEEE Computer Society.

[12] O. Jalali, T. Menzies, and M. Feather. Optimizing re-
quirements decisions with keys. In Proceedings of the
PROMISE 2008 Workshop (ICSE), 2008. Available from
http://menzies.us/pdf/08keys.pdf.

[13] H. Kautz, B. Selman, and Y. Jiang. A general stochas-
tic approach to solving problems with hard and soft con-
straints. In D. Gu, J. Du, and P. Pardalos, editors, The
Satisfiability Problem: Theory and Applications, New York,
NY, pages 573–586, 1997. Available on-line at http:
//citeseer.ist.psu.edu/168907.html.

[14] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting best
practices for effort estimation. IEEE Transactions on Soft-
ware Engineering, November 2006. Available from http:
//menzies.us/pdf/06coseekmo.pdf.

[15] T. Menzies, O. Elrawas, D. Baker, J. Hihn, and K. Lum.
On the value of stochastic abduction (if you fix everything,
you lose fixes for everything else). In International Work-
shop on Living with Uncertainty (an ASE’07 co-located
event), 2007. Available from http://menzies.us/
pdf/07fix.pdf.

[16] T. Menzies, O. Elrawas, J. Hihn, M. Feathear, B. Boehm,
and R. Madachy. The business case for automated soft-
ware engineerng. In ASE ’07: Proceedings of the twenty-
second IEEE/ACM international conference on Automated
software engineering, pages 303–312, New York, NY, USA,
2007. ACM. Available from http://menzies.us/
pdf/07casease-v0.pdf.

[17] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995. (reprinted 1997,2000).

[18] P. C. Pendharkar, G. H. Subramanian, and J. A. Rodger. A
probabilistic model for predicting software development ef-
fort. IEEE Trans. Softw. Eng., 31(7):615–624, 2005.

[19] D. Raffo. Modeling software processes quantitatively and
assessing the impact of potential process changes of process
performance, May 1996. Ph.D. thesis, Manufacturing and
Operations Systems.

[20] D. Raffo and T. Menzies. Evaluating the impact of a
new technology using simulation: The case for mining
software repositories. In Proceedings of the 6th Interna-
tional Workshop on Software Process Simulation Modeling
(ProSim’05), 2005.

