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Estimating Software Project Effort
Using Analogies

Martin Shepperd and Chris Schofield

Abstract—Accurate project effort prediction is an important goal for the software engineering community. To date most work has
focused upon building algorithmic models of effort, for example COCOMO. These can be calibrated to local environments. We
describe an alternative approach to estimation based upon the use of analogies. The underlying principle is to characterize projects
in terms of features (for example, the number of interfaces, the development method or the size of the functional requirements
document). Completed projects are stored and then the problem becomes one of finding the most similar projects to the one for
which a prediction is required. Similarity is defined as Euclidean distance in n-dimensional space where n is the number of project
features. Each dimension is standardized so all dimensions have equal weight. The known effort values of the nearest neighbors to
the new project are then used as the basis for the prediction. The process is automated using a PC-based tool known as ANGEL.
The method is validated on nine different industrial datasets (a total of 275 projects) and in all cases analogy outperforms
algorithmic models based upon stepwise regression. From this work we argue that estimation by analogy is a viable technique that,
at the very least, can be used by project managers to complement current estimation techniques.

Index Terms—Effort prediction, estimation process, empirical investigation, analogy, case-based reasoning.

——————————   ✦   ——————————

1 INTRODUCTION
N important aspect of any software development proj-
ect is to know how much it will cost. In most cases the

major cost factor is labor. For this reason estimating devel-
opment effort is central to the management and control of a
software project.

A fundamental question that needs to be asked of any
estimation method is how accurate are the predictions. Ac-
curacy is usually defined in terms of mean magnitude of
relative error (MMRE) [6] which is the mean of absolute
percentage errors:
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where there are n projects, E is the actual effort and "E  is the
predicted effort. There has been some criticism of this
measure, in particular that it is unbalanced and penalizes
overestimates more than underestimates. For this reason
Miyazaki et al. [19] propose a balanced mean magnitude of
relative error measure as follows:
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This approach has been criticized by Hughes [8], among
others, as effectively being two distinct measures that
should not be combined.

Other workers have used the adjusted R squared or coef-
ficient of determination to indicate the percentage of varia-

tion in the dependent variable that can be “explained” in
terms of the independent variables. Unfortunately, this is
not always an adequate indicator of prediction quality
where there are outlier or extreme values. Yet another ap-
proach is to use Pred(25) which is the percentage of predic-
tions that fall within 25 percent of the actual value. Clearly
the choice of accuracy measure to a large extent depends
upon the objectives of those using the prediction system.
For example, MMRE is fairly conservative with a bias
against overestimates while Pred(25) will identify those
prediction systems that are generally accurate but occasion-
ally wildly inaccurate. In this paper we have decided to
adopt MMRE and Pred(25) as prediction performance indi-
cators since these are widely used, thereby rendering our
results more comparable with those of other workers.

The remainder of this paper reviews work to date in the
field of effort prediction (both algorithmic and non-
algorithmic) before going on to describe an alternative ap-
proach to effort prediction based upon the use of analogy.
Results from this approach are compared with traditional
statistical methods using nine datasets. The paper then dis-
cusses the results of a sensitivity analysis of the analogy
method. An estimation process is then presented. The pa-
per concludes by discussing the strengths and limitations of
analogy as a means of predicting software project effort.

2 A BRIEF HISTORY OF EFFORT PREDICTION
Over the past two decades there has been considerable ac-
tivity in the area of effort prediction with most approaches
being typified as being algorithmic in nature. Well known
examples include COCOMO [4] and function points1 [2].
Whatever the exact niceties of the model, the general form
tends to be:

1. We include function points as an algorithmic method since they are di-
mensionless and therefore need to be calibrated in order to estimate effort.
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where E is effort, S is size typically measured as lines of
code (LOC) or function points, a is a productivity parame-
ter and b is an economies or diseconomies of scale parame-
ter. COCOMO represents an approach that could be re-
garded as “off the shelf.” Here the estimator hopes that the
equations contained in the cost model adequately represent
their development environment and that any variations can
be satisfactorily accounted for in terms of cost drivers or
parameters built into the model. For instance COCOMO
has 15 such drivers. Unfortunately, there is considerable
evidence that this “off the shelf” approach is not always
very successful. Kemerer [12] reports average errors (in
terms of the difference between predicted and actual proj-
ect effort) of over 600 percent in his independent study of
COCOMO. Other independent studies [14], [18] have also
reported high error rates.

Another algorithmic approach is to calibrate a model by
estimating values for the parameters (a and b in the case of
(3)). However, the most straightforward method is to as-
sume a linear model, that is set b to unity, and then use re-
gression analysis to estimate the slope (parameter a) and
possibly introduce an intercept so the model becomes:

E a a S1 2! "                                       (4)

so that a1 represents fixed development costs (for example
regression testing will consume a fixed amount of effort
irrespective of the size of the software) and a2 represents
productivity. Kok et al.[15] describes how this approach has
been successfully utilized on the Esprit MERMAID Project.

Function points [2] are also often calibrated to local envi-
ronments in order to convert size in function points to pre-
dicted effort. Again, as with COCOMO, quite mixed results
have been reported [9], [10], [12], [17]. Kitchenham and
Kansala [13] also note that better results can be obtained
through disaggregating the components of function points
and using stepwise regression to reestimate weights and
determine the significant components.

Although, most research into project effort estimation
has adopted an algorithmic approach there has been lim-
ited exploration of machine learning or nonalgorithmic
methods. For example, Karunanithi et al. [11] report the use
of neural nets for predicting software reliability, and con-
clude that both feed forward and Jordan networks with a
cascade correlation learning algorithm, out perform tradi-
tional statistical models. More recently Wittig and Finnie
[28] describe their use of back propagation learning algo-
rithms on a multilayer perceptron in order to predict devel-
opment effort. An overall error rate (MMRE) of 29 percent
was obtained which compares favorably with other meth-
ods. However, it must be stressed that the datasets were
large (81 and 136 projects, respectively) and that only a very
small number of projects were withdrawn for validation
purposes. Some outliers also appear to have been removed.
This tends to confirm the findings from Serluca [25] that
neural nets seem to require large training sets in order to
give good predictions.

Another study by Samson et al. [24] uses an Albus multi-
layer perceptron in order to predict software effort. In this
instance they use Boehm’s COCOMO dataset. The work

compares linear regression with a neural net approach us-
ing the COCOMO dataset. Both approaches seem to per-
form badly with MMREs of 520.7 and 428.1 percent, re-
spectively.

Srinivasan and Fisher [27] also report on the use of a
neural net with a back propagation learning algorithm.
They found that the neural net outperformed other tech-
niques and gave results of MMRE = 70 percent. However, it
is unclear exactly how the dataset was divided up for
training and validation purposes. Unfortunately, they also
found that the results were sensitive to the number of hid-
den units and layers. Results to date suggest that accuracy
is sensitive to decisions regarding the topology of the net,
the number of learning epochs and the initial random
weights of the neurons within the net. In addition, there is
little explanation value in a neural net, that is such models
do not help us understand software project development
effort.

There have been a number of attempts to use regression
and decision trees to predict aspects of software engineer-
ing. Srinivasan and Fisher [27] describe the use of a regres-
sion tree to predict effort using the Kemerer dataset [12].
They found that although it outperformed COCOMO and
SLIM, the results were less good than using either a statisti-
cal model derived from function points or a neural net. Bri-
and et al. [5] obtained rather better results (MMRE = 94
percent) from their tree induction analysis. In this case they
used a combination of the Kemerer and COCOMO datasets.
Porter and Selby [21], [22] describe the use of decision or
classification trees in predicting aspects of the software de-
velopment process. Results from this approach seem to be
quite mixed and, as with the neural net approach, results
are quite sensitive to aspects such as the choice of algorithm
to derive the tree and tree depth.

Finally, Mukhopadhyay et al. [20] describe some early
work using a hybrid case based reasoning (CBR) and rule
based system. They report encouraging results based,
again, upon the dataset collected by Kemerer, however,
their approach requires access to an expert in order to de-
rive estimation rules and create a case base. Our work dif-
fers in that no expert is used and a pure CBR strategy is
adopted.

Although the results from nonalgorithmic approaches
seem quite mixed they are sufficiently encouraging to war-
rant further investigation. However, we wish to stress that
we do not propose that algorithmic approaches be rejected,
merely that we search for additional and complementary
methods of software project effort prediction. The reason
for this is that in situations where pronounced linear or
curvilinear relationships are to be found the ability to
model this in terms of algorithms is important. In addition,
the use of multiple techniques can be used as a “sanity
check” upon any prediction generated.

3 ANALOGY
Estimation by analogy is a form of CBR. Cases are defined
as abstractions of events that are limited in time and space.
It is argued that estimation by analogy offers some distinct
advantages.

Authorized licensed use limited to: West Virginia University. Downloaded on September 7, 2009 at 10:06 from IEEE Xplore.  Restrictions apply. 



738 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  23,  NO.  12,  NOVEMBER  1997

• It avoids the problems associated both with knowl-
edge elicitation and extracting and codifying the
knowledge.

• Analogy-based systems only need deal with those
problems that actually occur in practice, while gen-
erative (i.e., algorithmic) systems must handle all pos-
sible problems.

• Analogy-based systems can also handle failed cases
(i.e., those cases for which an accurate prediction was
not made). This is useful as it enables users to identify
potentially high-risk situations.

• Analogy is able to deal with poorly understood do-
mains (such as software projects) since solutions are
based upon what has actually happened as opposed
to chains of rules in the case of rule based systems.

• Users may be more willing to accept solutions from
analogy based systems since they are derived from a
form of reasoning more akin to human problem
solving, as opposed to the somewhat arcane chains of
rules or neural nets. This final advantage is particu-
larly important if systems are to be not only deployed
but also have reliance placed upon them.

The key activities for estimating by analogy are the
identification of a problem as a new case, the retrieval of
similar cases from a repository, the reuse of knowledge de-
rived from previous cases and the suggestion of a solution
for the new case. This solution may be revised in the light
of actual events and the outcome retained to augment the
repository of completed cases. This approach to prediction
poses two problems. First, how do we characterize cases?
Second, how do we retrieve similar cases, indeed how do
we measure similarity?

Characterization of cases is largely a pragmatic issue of
what information is available. Variables can be continuous
(i.e., interval, ratio or absolute scale measures) or categori-
cal (i.e., nominal or ordinal measures). When designing a
new CBR system, experts should be consulted to try to es-
tablish those features of a case that are believed to be sig-
nificant in determining similarity, or otherwise, of cases.
Rich and Knight [23] describe the problem of choosing in-
sufficiently general features. Again the solution appears to
be to use an expert.

Assessing similarity is the other problem. There are a va-
riety of approaches including a number of preference heu-
ristics proposed by Kolodner [16]:

• Nearest Neighbor Algorithms. These are the most
popular and are either based upon straightforward
distance measures or the sum of squares of the differ-
ences for each variable. In either case each variable
must be first standardized (so that it has an equal in-
fluence) and then weighted according to the degree of
importance attached to the feature. A common algo-
rithm is given by Aha [1].
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where 1) the features are numeric, 2) if the features
are categorical and C1j = C2j, or 3) where the features
are categorical and, C1 % C2j, respectively.
• Manually guided induction. Here an expert manually

identifies key features, although this reduces some
of the adavantages of using a CBR system in that
an expert is required.

• Template retrieval. This functions in a similar fash-
ion to query by example database interfaces, that is
the user supplies values for ranges, and all cases
that match are retrieved.

• Goal directed preference. Select cases that have the
same goal as the current case.

• Specificity preference. Select cases that match fea-
tures exactly over those that match generally.

• frequency preference—select cases that are most
frequently retrieved.

• Recency preference. Choose recently matched cases
over those that have not been matched for a period
of time.

• Fuzzy similarity. Where concepts such as at-least-as-
similar and just-noticeable-difference are employed.

The similarity measures suffer from a number of disad-
vantages. First, they tend to be computationally intensive,
although Aha [1] has proposed a number of more efficient
algorithms that are only marginally less accurate. However,
efficiency is not an issue for project effort estimation as
typically one is dealing with less than 100 cases. Second, the
algorithms are intolerant of noise and of irrelevant features.
One strategy to overcome this problem is to build in learn-
ing so that the algorithm learns the importance of the vari-
ous features. Essentially, weights are increased for match-
ing features for successful predictions and diminished for
unsuccessful predictions. Third, symbolic or categorical
features are problematic. Although there are several algo-
rithms that have been proposed to accommodate such fea-
tures they are all fairly crude in that they adopt a Boolean
approach: features match or fail to match with no middle
ground. A fourth criticism of these similarity measures is
that they fail to take into account information which can be
derived from the structure of the data, thus, they are weak
for higher order feature relationships such as one might
expect to see exhibited in legal systems.

Our approach has been guided by the twin aims of ex-
pediency and simplicity. In essence we take a new project,
one for which we wish to predict effort, and attempt to find
other similar completed projects. Since these projects are
completed, development effort will be known and can be
used as a basis for estimating effort for the new project.
Similarity is defined in terms of project features, such as
number of interfaces, development method, application
domain and so forth. Clearly the features used will depend
upon what data is available to characterize projects. The
number of features is also flexible. We have analyzed data-
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sets with as few as one feature and as many as 29 features.
Features may be either categorical or continuous.

Similarity, defined as proximity in n-dimensional space
(where each dimension corresponds to a different feature),
is most intuitively appealing, hence we use unweighted
Euclidean distance. The most similar projects will be closest
to each other. Note that each dimension is standardized
(between 0 and 1) so that it has the same degree of influ-
ence and the method is immune to the choice of units.
Moreover, the notion of distance gives an indication of the
degree of similarity. Once the analogous projects have been
found, the known effort can be used in a variety of ways.
We use the weighted or unweighted average of up to three
analogies. No one approach is consistently more accurate so
the decision requires a certain amount of experimentation
on the part of the estimators. Because of the small datasets,
we cope with noise (that is, unhelpful features that do not
aid in the process of finding good analogies) by means of
an exhaustive search of all possible subsets of the project
features so as to obtain the optimum predictions for proj-
ects with known effort. The whole method, from storing
analogies through eliminating redundant features to finding
analogies is automated by a PC-based software tool known
as ANGEL (ANaloGy Estimation tool2). A fuller description
is to be found in Shepperd et al. [26].

4 COMPARING ESTIMATION BY ANALOGY WITH
REGRESSION MODELS

Next, we compared the accuracy of software project effort
prediction using analogy with an algorithmic approach
based upon equations derived through stepwise regres-
sion analysis.

Table 1 summarizes the datasets that were used for our
comparison of analogy based estimation with stepwise re-
gression. As can be seen from the table the datasets are
quite diverse and are drawn from many different applica-
tion domains ranging from telecommunications to com-
mercial information systems. All the data was taken from
industrial projects, that is, no academic or student projects
are included. The projects range in size from a few person
months to over 1,000 person months. It is also important to
stress that none of the data was collected with estimation
by analogy in mind, instead we were able to exploit data
that was already available. The final point is that we only
utilized information that would be available at the time the
prediction would be made, so we avoided project features
such as LOC. This is important if we wish to avoid creating
a false impression as to the efficacy of different prediction
methods.

Table 2 shows the accuracy of the respective methods
using the MMRE and Pred (25) values. A jack-knifing pro-
cedure3 was adopted for the analogy-based predictions,
since this could be automated in the ANGEL tool, the re-

2. The authors are happy to provide a simple version of ANGEL at no
cost. The zip files may be downloaded from !""#$%%&'(')*+,-*.(/0-*"!+'1+*2%
3-0#*"4(56/7/'.1!%3!.4781!-94/:)%;(5/:%;(5/:<'5/+!"0:.

3. Jack knifing is a validation technique whereby each case is removed
from the dataset and the remainder of the cases are used to predict the
removed case. The case is then returned to the dataset and the next case
removed. This procedure is repeated until all cases have been covered.

gression models were generated using the entire dataset.
This means the results are likely to be biased in favor of the
regression models. Note that we use two slightly different
regression analysis techniques. Both regression 1 and 2 use
stepwise regression, however, regression 1 restricts the pro-
cedure to the three variables most highly correlated with
the dependent variable (i.e., effort). Not surprisingly the
results are in general similar, however, occasional differ-
ences are due to the fact that the regression procedure at-
tempts to minimize the sum of the squares of the residuals,
whereas MMRE is based upon the mean of the sum of the
unsquared residuals.

Each dataset is treated separately since each one has dif-
ferent project features available and therefore we are not
able to merge all the data into a single all encompassing
dataset. This is appropriate since it is unlikely that an or-
ganization would have access to such large volumes of data
and there seems some merit in estimating using smaller,
more homogenous datasets, a point we will return to.

From Table 2 we see that for all datasets the MMRE per-
formance of estimating by analogy is better than that of the
regression methods. This suggests that analogy is capable of
yielding more accurate predictions, at least for these datasets.
An interesting problem occurs for Real-time 1 dataset. Here it
was not possible to develop an algorithmic model or to use
regression analysis since the dataset comprises only categori-
cal data, with the exception of actual project effort. Indeed
the dataset was very sparse and was made up of only three
distinguishing project features. Yet even in these highly un-
propitious circumstances the analogy method was able to
yield a predictive accuracy of 74 percent. This is indicative of
the possibility of being able to use analogy based estimation
at an extremely early stage of a project when other estimation
techniques may not be possible for the reason that analogy
does not require quantitative data. Similarly, an accuracy of
39 percent was obtained for the dataset Telecom 1 despite the
fact that only a single distinguishing feature was available.
Again, stepwise regression only achieves a result of MMRE =
86 percent by method 1 or 2.

The Pred(25) results from Table 2 are slightly more
mixed. Recall that unlike MMRE, a higher score implies
better predictive accuracy. Two datasets (Atkinson and
Desharnais) yield a higher Pred(25) score for the regression
model. In general, the results are closer than for the MMRE
analysis. One explanation lies in the fact that the ANGEL
tool explicitly tries to optimize the MMRE result so that it is
not surprising that it performs best in terms of this indica-
tor. A second explanation lies in the fact that MMRE and
Pred(25) are assessing slightly different characteristics of a
prediction system. MMRE is conservative and looks at the
mean absolute percentage error whereas Pred(25) is opti-
mistic and focuses upon the best predictions (i.e., those
within 25 percent of actual) and ignores all other predic-
tions. The choice of indicator to some extent depends upon
the objectives of the user. Nevertheless, the overall picture
suggests that estimation by analogy tends to be the more
accurate prediction method.
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In general, the best results seem to be achieved where
the data is drawn from many builds or enhancements to an
existing system, for example the Atkinson, Telecom 1, and
Telecom 2 datasets. The poorest results occur when the data
is drawn from a wide range of projects from more than one
organisation, such as the Mermaid dataset. This tendency
appears to be true for both analogy and regression analysis.

Table 3 shows the results of dividing the Desharnais and
Mermaid datasets into more homogenous subsets. The
Desharnais dataset is divided on the basis of differing de-
velopment environments. The Mermaid data is divided into
enhancement (E) and new (N) projects. We observe that this
division leads to enhanced accuracy for all estimation
methods. Overall analogy has equal or superior perform-
ance to regression based prediction for seven out of eight
comparisons, the only exception being the Desharnais 2
dataset which reveals fractionally superior performance for

4. In a previous paper [26] we reported an accuracy level of MMRE = 62
percent. The improvement is due to the use of additional project features
with which to find analogies that were not utilized during our earlier work.

regression based prediction when using the Pred (25) indi-
cator. The Mermaid N dataset is particularly interesting as
it shows a dataset for which no statistically significant rela-
tionships could be found between any of the independent
variables and effort hence no statistically significant regres-
sion equation can be derived. By contrast, the analogy
method is able to produce an overall estimation accuracy of
MMRE = 60 percent.

Finally, we note that the procedure to search for opti-
mum subsets of features for predicting effort reduced the
set of features for every dataset studied excepting, of
course, Telecom 1 which only had a single feature in the
first place. This procedure has a significant impact upon the
levels of accuracy that we were able to obtain.

5 SENSITIVITY ANALYSIS
An important question to ask about any prediction method is
how sensitive is it to any peculiar characteristics of the data
and how will it behave over time. All the datasets we studied
were historical in the sense that they described completed

TABLE 1
DATASETS USED TO COMPARE EFFORT PREDICTION METHODS

Name Source n Features Description
Albrecht [2] 24   5 IBM DP Services projects
Atkinson [3] 21 12 Builds to a large telecommunications product at

U.K. company X
Desharnais [7] 77   9 Canadian software house—commercial projects
Finnish Finnish Dataset: dataset made

available to the ESPRIT Mermaid
Project by the TIEKE organization

38 29 Data collected by the TIEKE organization from IS
projects from nine different Finnish companies.

Kemerer [12] 15 2 Large business applications
Mermaid MM2 Dataset: Dataset made

available to the ESPRIT Mermaid
Project anonymously

28 17 New and enhancement projects

Real-time 1 not in public domain 21   3 Real-time projects at U.K. company Z
Telecom 1 Appendix A 18   1 Enhancements to a U.K. telecommunication product
Telecom 2 not in public domain 33 13 Telecommunication product at U.K. company Y

TABLE 2
RELATIVE ACCURACY LEVELS OF EFFORT ESTIMATION FOR ANALOGY AND REGRESSION

Dataset

Analogy
(MMRE)

(%)

Regression 1
(MMRE)

(%)

Regression 2
(MMRE)

(%)

Analogy
(Pred 25)

(%)

Regression 1
(Pred 25)

(%)

Regression 2
(Pred 25)

(%)
Albrecht 62 90 90 33 33 33
Atkinson 39 45 40 38 43 38
Desharnais 64 66 66 36 42 42
Finnish 414 101 128 39 21 29
Kemerer 62 107 107 40 13 13
Mermaid 78 252 226 21 14 14
Real-time 1 74 N/A N/A 23 N/A N/A
Telecom 1 39 86 86 44 44 44
Telecom 2 37 142 72 51 27 42

TABLE 3
RELATIVE ACCURACY LEVELS OF HOMOGENIZED DATASETS

Dataset

Analogy
(MMRE)

(%)

Regression 1
(MMRE)

(%)

Regression 2
(MMRE)

(%)

Analogy
(Pred 25)

(%)

Regression 1
(Pred 25)

(%)

Regression 2
(Pred 25)

(%)
Desharnais 1 37 41 41 47 45 45
Desharnais 2 29 29 29 47 48 48
Desharnais 3 26 36 49 70 30 50
Mermaid E 53 62 62 39 27 27
Mermaid N 60 – – 25 – –
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projects and we conducted the analysis after the event. This
section explores the dynamic behavior of effort prediction by
simulating the growth of a dataset over time. This enables us
to answer questions such as how many data points do we
need for estimation by analogy to be viable and how stable
are the results (in other words, are the accuracy levels vul-
nerable to the addition of a single rogue project)?

Figs. 1 and 2 show the trends in estimation accuracy as
the datasets grow. The Albrecht dataset (Fig. 1) was se-
lected as an example of a dataset for which a comparatively
low level of accuracy was achieved and in contrast the
Telecom 2 dataset (Fig. 2) showed the highest level of accu-
racy. The procedure was to randomly number the projects
from 1 to n (where n is the number of projects in the data-
set). Projects are added to the dataset, one at a time, in the
random number order. Thus, the dataset grows until all
projects are added. The optimum subset of features was
recalculated as each new project was added. This involved
for each partial dataset (starting from two projects), jack
knifing the dataset by holding out each project, one at a
time, and using the remaining projects to predict effort. The
average absolute prediction error for all projects contained
in the partial dataset gives the MMRE of that partial data-
set. This procedure was repeated three times for each data-
set (hence, A1, A2, and A3 and T1, T2, and T3).

Fig. 1. Estimation accuracy over time (Albrecht dataset).

Fig. 2. Estimation accuracy over time (Telecom 2 dataset).

Overall, Figs. 1 and 2 show that the MMRE decreases as
the size of the dataset grows. There is a tendency for the
MMRE to start to stabilize at approximately 10 projects
which suggests that estimation by analogy may be a high

risk technique at below this number of projects. The Tele-
com 2 dataset shows little improvement beyond 15 projects.
On this theme, it is interesting to note that, overall, it is not
the largest datasets such as the Desharnais dataset that
have the lowest MMREs and clearly other factors, over and
above size, such as homogenity also have an impact.

An interesting feature of Fig. 1 is the sharp rise in the
MMRE values that occurs after 10 projects have been added
for random sequence A1 and 16 added for random se-
quence A2. Further investigation reveals that both of these
anomalies are linked to the introduction of the same proj-
ect. The project is third in sequence A3, when predictions
are still very poor. This suggests that the results from esti-
mating by analogy, like regression, can be influenced by
outlying projects. However, A2 demonstrates that the affect
of a rogue project is ameliorated as the size of the dataset
increases. Superficially there appears to be a similar effect in
Fig. 2 for sequences T1 and T3 and projects 4 and 7, respec-
tively. In this case, however, the peaks are caused by differ-
ent projects and the most likely explanation is the vulnerabil-
ity of finding analogous cases from very small datasets.

6 AN ESTIMATION PROCESS
This section considers how estimation by analogy can be
introduced into software development organizations. The
following are the main stages in setting up an estimation by
analogy program:

• identify the data or features to collect
• agree data definitions and collection mechanisms
• populate the case base
• tune the estimation method
• estimate the effort for a new project
The first stage, that of identifying what data to collect,

will be very dependent upon the nature of the projects for
which estimates are required. Because of these variations,
our software tool ANGEL is designed to be very flexible in
the data that is used to characterize analogies and the user
is able to define a template describing the data that will be
supplied. Factors to be taken into account include beliefs as
to what features significantly impact development effort
(and are measurable at the time the estimate is required)
and what features can easily be collected. There is little
sense in identifying huge numbers of variables that cannot
be easily or reliably collected in practice. Estimation by
analogy can cope with both continuous and categorical
data, although categorical data has to be held as binary val-
ues. For instance, programming language would be repre-
sented as a series of truth valued variables e.g., COBOL,
4GL, C++, etc. The reason for this is that the similarity
measure treats categorical features as either being the same
or different: there are no degrees of difference.

The second stage is to agree definitions as to what is being
collected. Even within an organizations there may be no
shared understanding of what is meant by effort. Any esti-
mation program will be flawed, possibly fatally, if different
projects are measuring the same features in different ways. It
is also important to identify who is responsible for the data
collection and when they should collect the data. Sometimes it
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can be beneficial to have the same person collecting the data
across projects in order to increase the level of consistency.

Next, the case base must be populated. Like all estimation
methods, other than inspired guess work, analogy requires
some data collection. Our experience suggests that a mini-
mum of 10-12 projects are required in order to provide a sta-
ble basis for estimation. In general, more data is preferable
although, in most cases, data collection will be an on-going
process as projects are completed and their effort data be-
comes available. However, there appear to exist some trade-
offs between the size of the dataset and homogeneity. Again,
our experience suggests there is merit in the strategy of di-
viding highly distinct projects into separate datasets. Often
this separation is quite straightforward using such distin-
guishing features as application type or development site.

The penultimate stage is to tune the estimation method.
The user also will need to experiment with the optimum
number of analogies searched for, and whether to use a
subset of variables, since some features may not usefully
contribute to the process of finding effective analogies.
Tuning can make quite a difference to the quality of pre-
dictions—typically tuning can yield a twofold improve-
ment in performance—and for this reason the ANGEL tool
provides automated support for this process.

The last stage is to estimate for a new project. It must be
possible to characterise the project in terms of the variables
that have been identified at the first stage of the estimation
process. From these variables, ANGEL can be used to find
similar projects and the user can make a subjective judg-
ment as to the value of the analogies. Where they are be-
lieved to be trustworthy the prediction can be relied on to
greater extent than where they are thought to be doubtful.
Here we wish to sound a note of caution. The value of esti-
mation by analogy as an independent source of prediction
will be somewhat reduced if the users discount values that
are not consistent with their prior beliefs and for this reason
there was no expert intervention or manipulation in any of
the foregoing analysis. Another indicator of likely predic-
tion quality is the average MMRE figure obtained through
jack knifing the dataset. Again a low figure will indicate
more confidence than a high figure.

7 CONCLUSIONS
Accurate estimation of software project effort at an early
stage in the development process is a significant challenge
for the software engineering community. This paper has
described a technique based upon the use of analogy some-
times referred to as case based reasoning. We have com-
pared the use of analogy with prediction models based
upon stepwise regression analysis for nine datasets, a total
of 275 projects. A striking pattern emerges in that estima-
tion by analogy produces a superior predictive perform-
ance in all cases when measured by MMRE and in seven
out of nine cases for the Pred(25) indicator. Moreover, esti-
mation by analogy is able to operate in circumstances
where it is not possible to generate an algorithmic model,
such as the dataset Real-time 1 where all the data was cate-
gorical in nature or the Mermaid N dataset where no statis-
tically significant relationships could be found. We believe

this type of situation may be quite common particularly at a
very early stage in a project, for example in response to an
invitation to tender. This makes analogy an attractive
method for producing very early estimates.

Estimation by analogy also offers an advantage in that it
is a very intuitive method. There is some evidence to sug-
gest that practitioners use analogies when making estimates
by means of informal methods [8]. Our approach allows
users to assess the reasoning process behind a prediction by
identifying the most analogous projects thereby increasing,
or reducing, their confidence in the prediction.

Many experts have suggested that it is appropriate to
use more than one method when predicting software de-
velopment effort. We believe that estimation by analogy is a
viable technique and can usefully contribute to this process.
This is not to suggest that it is without weakness but on the
empirical evidence presented in this paper it is certainly
worthy of further consideration.

APPENDIX A
ACT ACT_DEV ACT_TST CHNGS FILES

305.22 250.49 54.73 218 105
330.29 225.4 104.89 357 237
333.96 177.35 156.61 136 98
150.4 114.7 35.7 25 24
544.61 357.49 187.12 263 197
117.87 71.5 46.37 39 39
1115.54 833.05 267.09 377 284
158.56 130.4 28.16 48 37
573.71 372.15 201.56 118 53
276.95 232.7 44.25 178 116
97.45 68.55 28.9 59 38
374.34 275.64 98.7 200 180
167.12 100.83 66.29 53 43
358.37 281.18 77.19 143 84
123.1 87.7 35.4 257 257
23.54 16.42 7.12 6 6
34.25 27.5 6.75 5 5
31.8 24.2 7.6 3 3

The above data is drawn from the dataset Telecom 1. ACT
is actual effort, ACT_DEV and ACT_TEST are actual devel-
opment and testing effort, respectively. CHNGS is the num-
ber of changes made as recorded by the configuration man-
agement system and files is the number of files changed by
the particular enhancement project. Only FILES can be used
for predictive purposes since none of the other information
would be available at the time of making the prediction.
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