
Algorithms for Software Quality Optimization

Jamie Wood
Lane Department of CS&EE
West Virginia University, USA
jwood13@mix.wvu.edu

Andrei Perhinschi
Lane Department of CS&EE
West Virginia University, USA
aperhins@mix.wvu.edu

ABSTRACT
Software quality optimization is an area of research
that has received much attention, mostly because
there exists a large number of algorithms, hence
many choices, which can be applied to this par-
ticular problem. Quality optimizers are programs
that find relationships between project metrics and
quality metrics, such as effort and software de-
fects, with the goal of identifying which project
attributes can be changed, and by how much, to
elicit an improvement in the quality metric. This
paper is based on previous research on an experi-
mental quality optimizer called W 2 [1]. W 2 im-
plements contrast set learning, that is an algorithm
which looks at 2 populations and determines what
separates them.

Though W 2 implements an efficient, fast, lin-
ear time algorithm, there are concerns about the
stability and consistency of the recommendations
it makes. In order to establish the degree to which
W 2’s results are stable we attempt to replicate the
original findings. Furthermore, we explore how
the amount and type of historical data affects the
consistency of W 2’s results. To this end we inves-
tigate W 2’s performance on several effort estima-
tion datasets that were used in previous research,
as well as a number of defect prediction datasets
that had not been considered before. We conclude
with a short list of areas where the system can be
improved upon, along with recommendations on
what may be possible as well as some specific top-
ics of interest we believe future research should
address.

Keywords
Effort Estimation, Analogy, Optimization, Soft-
ware Quality, Case Based Reasoning

1. INTRODUCTION

Learning from our mistakes and successes is an
often-ignored human ability. We remember past
experiences and events, analyze the conditions present
before and after, and finally we attempt to extract
some sort of understanding as to the effect of ini-
tial conditions on the end result. We do this be-
cause we crave control. Being able to predict the
effect of our actions allows us to change and adapt
what we do in such a way as to bring about a de-
sired, usually more efficient, more optimized, end
result. Software quality optimizers attempt to do
just this by employing a number of different meth-
ods.

From the inception of computer software there
have existed a myriad of software projects, each
with their given deadlines, budgets, number of work-
ers, etc. Each of these past projects has its own
history, more specifically, a number of factors, or
metrics, that affected the final outcome of the project
in some way. Such historical information can be
collected and processed in order to extract usable
data regarding the relationships between project
metrics and project outcome. Contrast set learn-
ing does just that by looking at the best perform-
ing projects and comparing them to the rest. The
attributes that helped a majority of the best be-
come the best are then adopted in current, similar,
projects.

The question then becomes how to best put this
information to use regarding new projects. There
are several different ways of doing this, such as
parametric models, however W 2 uses a method
called case based reasoning. CBR uses the histor-
ical information itself to extract meaningful data,
bypassing the need for a parametric model [1].

1



From previous research conducted on W 2’s per-
formance and results [2] we begin our work aware
of the following:

• W 2 is a clear performance improvement over
its predecessor, W.

• W 2 matches or outperforms other quality op-
timization methods.

• W 2 attains fast run times on the datasets it’s
been tested on.

• W 2 presents a lightweight system footprint.
• W 2’s lack of parametric modeling lends it high

flexibility in terms of different datasets that
can be accepted.

These previous findings act as the background
against which we conduct some of the same tests,
as well as several new ones, to determine W 2’s
level of performance and usability.

2. OVERVIEW

2.1 Contrast Set Learning

Contrast set learning is a quality optimization
technique that provides the ability to distinguish
the differences between two populations. The de-
sire to incorporate CSL decision making into case
based reasoning quality optimization software was
the motivation for W ’s initial development. In
essence, W was designed as a case based reasoner
with the added ability of performing contrast set
learning. W ’s case relevancy filtering was improved
upon in W 2 by replacing the k-th nearest neighbor
computations with a simple, linear time, overlap
method.

2.2 W 2 Algorithm

To perform its function, W 2 requires two sets
of data: a training dataset and a project description
or test case. Once this information becomes avail-
able, W 2 randomly splits the dataset into 67% train-
ing cases and 33% testing cases. The training in-
stance set is then put through relevancy filtering so
as to retrieve only those cases with enough over-
lap to the test case. The resulting set of projects is
sorted using some metric of utility and split into a
best set and a rest set. W 2 then proceeds to gen-
erate a contrast set that it uses to find the specific
attributes which most push the test project towards

NASA93 x30
MedianSpread Reduction Quartiles

Goal Change Reduc Reduc 50%
months flight 22% 21% r
months ground 11% 10% r
months osp 40% 51% r
months osp2 33% 50% r
defects flight 40% 54% r
defects ground 34% 40% r
defects osp 71% 74% r
defects osp2 64% 75% r

effort flight 51% 60% r
effort ground 42% 44% r
effort osp 69% 74% r
effort osp2 64% 71% r

Figure 1: Comparing defect, effort, and month
estimation reduction percentages over 30 runs
of W 2

the desired utility measures. At this point W 2
takes the attribute recommendations from its pre-
vious step and estimates their success at improving
the test instance. Upon exiting, W 2 outputs the at-
tribute recommendations it thinks are most likely
to lead the test project towards optimization.

3. SYSTEM STATE

To demonstrate the current state of the W 2 sys-
tem, we ran a series of trials comprised of tests
similar to the ones performed previously, as well
as several tests designed to reveal more informa-
tion about the way W 2 performs across a multi-
tude of situations and conditions.

3.1 Basic Testing

In order to establish a frame of reference against
which to compare any subsequent results, we be-
gan by running W 2 through a series of tests sim-
ilar to what had been tried before. The results in
figure 1 can be said to be similar to what has been
obtained previously. More specifically, for osp and
osp2, the results were numerically rather close.
Additionally, we explored the same 4 dataset/project
combinations collecting information from 60 trials
as opposed to just 30.

4. CONCERNS

While working with W 2, one serious issue that
would hinder the usability of this software out-
side of a laboratory setting, becomes immediately
apparent. The existing W 2 codebase is plagued

2



NASA93 x60
MedianSpread Reduction Quartiles

Goal Change Reduc Reduc 50%
months flight 11% 9% r
months ground 13% 12% r
months osp 33% 41% r
months osp2 32% 48% r
defects flight 24% 29% r
defects ground 34% 43% r
defects osp 63% 74% r
defects osp2 62% 68% r

effort flight 35% 41% r
effort ground 37% 39% r
effort osp 62% 70% r
effort osp2 67% 67% r

Figure 2: Comparing defect, effort, and month
estimation reduction percentages over 60 runs
of W 2

NASA93 Flight 3x Stability
MedianSpread Reduction Quartiles

Goal Change Reduc Reduc 50%
months runs 1 33% -5% r
months runs 2 15% 41% r
months runs 3 16% 12% r
defects runs 1 66% 3% r
defects runs 2 22% 48% r
defects runs 3 0% 55% r

effort runs 1 68% 34% r
effort runs 2 60% 51% r
effort runs 3 46% 56% r

Figure 3: Comparing defect, effort, and month
estimation reduction percentages over 3 runs of
W 2

by inconsistencies in the recommendations it sug-
gests. The instability of W 2’s results shows up
both when performing individual runs as well as
when compiling statistical results from multiple
runs. Consistency issues persist across different
datasets as well. We believe the combination of
inconsistency across individual runs and inconsis-
tency present across statistical results from multi-
ple trials can make it difficult to correctly interpret
results.

4.1 Single and Multiple Trial Inconsistancy

When performing single runs, W 2 comes up
with, sometimes wildly, varying results from run
to run. A trial with median and spread reductions
of well over 50% will be followed by a trial with
negative reductions. Whenever W 2’s recommen-
dations lead to a negative reduction in utility met-
rics, that is an increase in utility metrics, we con-

NASA93 Flight 15x Stability
MedianSpread Reduction Quartiles

Goal Change Reduc Reduc 50%
months runs 1 21% 31% r
months runs 2 20% 25% r
months runs 3 3% 20% r
defects runs 1 37% 55% r
defects runs 2 39% 34% r
defects runs 3 0% 14% r

effort runs 1 51% 53% r
effort runs 2 47% 48% r
effort runs 3 36% 37% r

Figure 4: Comparing defect, effort, and month
estimation reduction percentages over 15 runs
of W 2

NASA93 Flight 75x Stability
MedianSpread Reduction Quartiles

Goal Change Reduc Reduc 50%
months runs 1 12% 8% r
months runs 2 15% 23% r
months runs 3 17% 26% r
defects runs 1 27% 33% r
defects runs 2 33% 43% r
defects runs 3 40% 47% r

effort runs 1 49% 38% r
effort runs 2 48% 52% r
effort runs 3 58% 61% r

Figure 5: Comparing defect, effort, and month
estimation reduction percentages over 75 runs
of W 2

sider these recommendations faulty. Such trials
are uncommon, however they do occur. There also
does not appear to be any discernible pattern as
to when W 2 will return a faulty recommendation.
The same thing happens after running W 2 a num-
ber of times, in our case 30, and noting the medi-
ans of the median reduction and spread reduction
sets collected from each run, the same instability
becomes noticed upon repeating the same number
of runs. Figure 3 demonstrates this by listing the
results from 3 runs of 1, 30, and 60 trials. The val-
ues for the runs of 30 and 60 trials are the medians
of the values collected from the trials.

4.2 Increasing Number of Trials

While there is nothing one can do about insta-
bility from one trial to another without changing
the software, over many runs statistical analysis
can bring results to the surface. At first we as-
sumed it would be possible to remove the consis-
tency issues by running W 2 a large enough num-
ber of times and looking at the medians of the me-

3



dian and spread reduction sets collected from each
run. To find out if this would work we increased
the number of trials incrementally from 30 to 100
runs without noticing any improvement in result
consistency. While it may be possible that all one
needs to do to avoid this lack of consistency is run
W 2 a large enough number of times, we could not
find it in our tests. If there is a statistical limit the
results tend towards, more than 100 trials would be
required to find it. We did learn that the number
of runs resulting in faulty recommendations, that
is recommendations that lead to increased utility
metrics, increases as more and more trials are per-
formed.

4.3 Inconsistency Across Datasets

The issue of inconsistency remains present while
using W 2, regardless of dataset choice. We can-
not state that the dataset used has no influence on
consistency, only that inconsistency was observed
among all datasets tested. Future research apply-
ing different types of historical data will show if
and how W 2’s performance is affected.

5. FUTURE WORK

0;136;0cAfter having experimented with W 2 we
were impressed with its execution speed and gen-
erally pleased with the reductions stemming from
its recommendations. That being said, W 2 is not
without its problems. There are some noticeable
issues we ran into that we feel require being ex-
plored in more detail.

5.1 Result Consistency

As discussed briefly above, we consider the re-
liability of W 2’s results its only real shortcoming
at this point. To apply a quality optimizer’s rec-
ommendations and feel confident of this decision,
we have to be certain that the software is capable
of consistently providing us with the best possible
results for the project at hand. In order to attain
a certain level of consistency within our results
we believe there might be several possible avenues
worth exploring further.

5.2 Larger Datasets

One possible way of increasing the reliability of
our results is using much larger datasets. The rea-

soning here being that as we increase the amount
of historical instances available, we increase the
number of projects that highly overlap our test case.
It follows that if the project metrics present in the
learning data are all closer to our test instance, the
best set should be better and the results we obtain
in the end should be more precise. The prelim-
inary tests we ran with large datasets were used
only to record runtimes. We took the largest effort
estimation dataset available, namely “china”, and
copied and pasted its data back into itself until we
ended up with a series of files containing between
2 and 512 times the amount of historical instances
in the original dataset. Simply replicating the data
within a given dataset is assumed to have some ef-
fect on the results, however since we are testing
for run times we are not concerned with results at
this point. Figure 4 graphically demonstrates the
linear behavior. Testing whether or not there is
an improvement in results with larger datasets re-
mains to be explored.

5.3 Size of Best and Rest Sets

The only method we found that allowed us to af-
fect the consistency of the recommendations was
to modify W 2’s K1 and K2 parameters. K1 rep-
resents the number of instances in the best set,
while K2 represents the number of instances in the
rest set, therefore the sum of these two values is
the number of instances that most overlap the test
project. All of the previous results obtained from
W 2 used a value of 20 for K1+K2, where K1=5,
K2=15 [2]. What we found is that increasing the
size of the best and rest sets has a very positive ef-
fect on the stability of W 2’s results. Not only did
both the median and spread values became con-
sistent among separate instances of 30 runs, but
the reduction values themselves increased dramat-
ically. During our trials we used the values 10
and 30 for K1 and K2 respectively. Figure 5 con-
tains the results from running nasa93/ground with
100 trials 8 times. Half of the trials were con-
ducted with K1=5, K2=15, these are the first 3
columns. The last 3 columns represent the other
half of the trials that were conducted with K1=10,
K2=30. Figure 5 clearly shows that not only did
the reductions increase in every individual utility
metric, but consistency from one set of 100 runs

4



to another improved as well. A curious observa-
tion is that the new K values prevent the mini-
mum median and spread reductions from falling
as dramatically as they would otherwise. While
no objective run time measurements were taken,
no performance decrease was noticed with this mi-
nor change in place. Despite this, we recommend
run time testing with modified K1, K2 values be a
part of any future work focusing around W 2.

5.4 Further Considerations on Best/Rest

Given the observations outlined in section 5.3,
an interesting question arises with respect to chang-
ing the sizes of the best and rest sets. We believe it
is worth investigating whether or not there exists a
pair of K1 and K2 that maximizes the consistency
and the magnitude of W 2’s reduction values. Fur-
thermore, if it turned out that such a pair of values
exists, the relationship between dataset and these
values should be explored. Such a relationship, if
known, would allow us to pre-process the data and
dynamically set K1 and K2 at runtime such that
consistency and metric reduction are both maxi-
mized per dataset.

There is also the possibility that the improve-
ments we are seeing in our recommendations are
in fact the result of deeper issues within the sys-
tem and not indicative of an overall positive effect.
Further experimentation is required to determine
which is the case.

5.5 Effects of Training Data Quality

One important consideration we have to keep
in mind is that any results obtained can only be
as trustworthy and reliable as the historical data
used in training. Having said that, there are sev-
eral areas in which the data we use for learning
can be lacking in. Examples of what we consider
to be poor quality data include very short datasets
as well as datasets containing utility metrics with
very limited ranges of values.

5.6 Very Short Datasets

We observed the effects of both types of data de-
scribed above during our exploration of defect pre-
diction datasets. Very short datasets, containing
a handful of historical instances, are not only not
well suited to our goal of extracting information,

NASA93 K1=5 k2=15
MedianSpread Reduction Quartiles

Goal Change Reduc Reduc 50%
months flight 1 22% 21% r
months flight 2 12% 19% r
months flight 3 6% 12% r
defects flight 1 40% 54% r
defects flight 2 29% 42% r
defects flight 3 17% 29% r

effort flight 1 51% 60% r
effort flight 2 42% 47% r
effort flight 3 40% 60% r

Figure 6: Comparing defect, effort, and month
estimation reduction percentages over 30 runs
of W 2 with default K values

NASA93 K1=10 k2=30
MedianSpread Reduction Quartiles

Goal Change Reduc Reduc 50%
months flight 1 38% 59% r
months flight 2 38% 59% r
months flight 3 37% 54% r
defects flight 1 68% 81% r
defects flight 2 68% 81% r
defects flight 3 69% 79% r

effort flight 1 75% 82% r
effort flight 2 75% 82% r
effort flight 3 68% 74% r

Figure 7: Comparing defect, effort, and month
estimation reduction percentages over 30 runs
of W 2 with double k values

but also result in W 2 terminating with a “divide
by 0” error a majority of the time. Switching to
a dataset with regular length, we observe the “di-
vide by 0” errors disappear. To perform our tests
on the effects of short datasets, we took a work-
ing, effort estimation dataset and removed all but
the first 4 historical instances. We alternated be-
tween using the original data and the shortened
copy all while keeping the test project file con-
stant. The main conclusion we can draw from us-
ing very short datasets is that W 2 could benefit
greatly from the addition of some rudimentary er-
ror prevention. Ideally, W 2 would never accept
running with a dataset shorter than an established
minimum length.

5.7 Limited Utility Metric Ranges

Another aspect of data quality became clear to
us as we tried using different defect prediction datasets.
What we found is that for a dataset containing a
utility metric with a range of only a handful of val-
ues, the median and spread reductions will almost

5



always be 0. We first noticed this situation with the
“Ant” dataset. As we used the single utility metric
“bug”, we consistently obtained no reductions in
median or spread. Attempting to understand why
our results were so reliably bad, we took a look at
the raw data and noticed our utility metric had a
range from 0 to 3 containing a mere 4 values. To
ascertain whether or not this was the cause of our
results, we applied the same technique described
in section 5.6. We took a working, effort estima-
tion dataset, and modified its contents to the point
at which the range of its utility metric contained
only 5 values. We then ran W 2 against the orig-
inal and the modified datasets and observed that
over any number of runs the reduction percentages
consistently stay at 0.

The limited range exhibited by the defect pre-
diction data’s utility metric is either an indication
of poor quality or the fact that the data is unsuited
to reducing the metric we chose. In this case we
considered the data to be of poor quality. The de-
fect datasets contain what appear to be historical
instances of projects with very low numbers of
bugs. Whereas anywhere else bug-free software
is a good thing, the absence of any instances with
significant numbers of bugs makes it impossible
for W 2 to gauge which attributes could lead to im-
provements. It follows that for the purpose of min-
imizing the number of bugs in software, several of
the defect prediction datasets we tried contain poor
quality data. If the utility metric is already reduced
as far as it will go, there is nothing left to optimize.

This is another problem area that could be taken
care of by a level of error protection built into
the system. W 2 could pre-process the historical
data and make sure the utility metrics have a wide
enough range of values so as to avoid running into
this issue.

5.8 Effects of Training Data Type

What do we mean when we use the term “type”
while discussing datasets? In this context we ap-
ply the term “type” to those characteristics which
we observe due to what the data in question repre-
sents. One clear example of such a characteristic
is the number of attributes per instance contained
in a given dataset. Such wider datasets could im-
pact the performance of the system in unexpected

ways. There may also be cases in which the ranges
exhibited by the values of whatever utility metrics
are used depend on what the data represents and
not its quality, as was discussed in section 5.7.

Considering the above points, we believe that,
besides its quality, it may be possible for the type
of data used to influence how well the system per-
forms and that this should be a topic for research
in future work involving W 2.

6. CONCLUSION

Taking into account the inherent inconsistency
apparent in the results obtained from W 2, we be-
lieve to have so far demonstrated results similar to
the original findings. We therefore conclude that
W 2 is a promising system currently being ham-
pered by several issues:

• Inconsistency in results.
• Lack of error protection.
• Lack of understanding as to how W 2 scales

to larger amounts of historical data.
• Lack of understanding as to how W 2 performs

with other types of data.
• Somewhat confusing codebase makes for dif-

ficult maintenance.

With the above issues in mind, we identify sev-
eral areas that warrant further exploration as part
of ongoing W 2 research:

• Best/Rest set sizes and their effects on results.
• Optimum best/rest set sizes.
• Effect dataset type has on results.
• Larger datasets.

7. REFERENCES

[1] J. Kolodner. An Introduction to Case-Based
Reasoning. Artificial Intellegence Review, 6, 3–
34, 1992.

[2] A. Brady, J. Keung, and T. Menzies. Al-
gorithms for Software Quality Optimization. In
Promise ’10, 2010.

6


