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ABSTRACT

Background: There are many data mining methods but few com-
parisons between them. For example, there are at least two ways
to build quality optimizers, programs that find project options that
change quality measures like defects, development effort (total staff
hours), and time (elapsed calendar months). In the first way, we
construct a parametric model to represent prior software projects.
In the second way, we just apply case-based reasoning to reason
directly from historical cases.

Aim: To assess case-based reasoning vs parametric modeling for
quality optimization.

Method: We compared the W case-based reasoner against the
SEEWAW parametric modeling tool.

Results: W is easy to explain and fast to build. It makes no
parametric assumptions and hence can be rapidly applied to project
data in many formats. SEESAW is an elaborate tool that can only
process project data expressed in a particular ontology (i.e. just the
COCOMO attributes). It is also slower to execute than W . In 24
different tests comparing W and SEESAW, W always performs at
least as well as SEESAW. In 6 of those tests W performed statisti-
cally better (all tests used Mann-Whitney, 95% confidence). Lastly,
like any CBR method, it comes with a built-in maintenance strategy
(just add more cases).

Conclusion: The W case-based reasoning tool is recommended
over the SEESAW parametric modeling tool (except in the case
where there is no local data).

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—Software quality

assurance; D.2.9 [Software Engineering]: Management—Time

Estimation; I.2.6 [Artificial Intelligence]: Learning—Analogies

Keywords

Effort Estimation, Analogy, Optimization, Parametric modeling,
Software Quality, COCOMO, Case Based Reasoning
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1. INTRODUCTION
How should we reason about software projects? Should we ex-

trapolate from old data to build a parametric model; e.g. using a
Bayes net [9], or the linear equations of COCOMO [5, 7]? Or is it
best to reason directly from data, without an intervening parametric
model, using case-based reasoning (CBR) [26]?

This is a difficult question to answer, unless we restrict ourselves
to a particular context. In this paper, we adopt the context of soft-

ware quality optimization; i.e. adjusting a software project such
that we improve quality attributes such as the defects (number of
delivered defects), the months (calendar time to delivery) and the
effort (staff time, in person months, required for that delivery). This
quality optimization task is different to effort estimation. Effort es-
timators just predict measures on the current project while quality
optimizers seek changes that most improve a project.

Quality optimization is a non-linear problem. Improving any one
goal can harm the others. For example:

• If management rushes projects to completion, they decrease
months but can increase defects.

• Projects that adopt elaborate quality assurance procedures
can reduce defects but at the cost of increased effort.

A quality optimizer must therefore trade-off between reducing months
and defects and effort. This paper will compare two quality opti-
mizers:

1. SEESAW is an AI algorithm that explores parametric models
of software development, based on COCOMO.

2. W is a case-based reasoning algorithm that does the same
task as SEESAW, without using a parametric model.

SEESAW was first introduced in [18] and has been applied to nu-
merous domains [10, 16, 17, 20–22]. W was first introduced in [8]
but that report includes no comparisons with other quality optimiz-
ers. This paper compares W ’s case-based reasoning against SEE-
SAW’s parametric models. Compared to SEESAW:

• W finds similar or better optimizations.
• W is simpler to code: 200 lines of AWK as opposed to the

5000 lines of LISP code used in SEESAW.
• W is faster to run: the following experiments took minutes

for W , but hours for SEESAW.
• W is simpler to maintain since, in CBR, “maintenance” means

nothing more than “add more cases”.
• W makes no use of an underlying model and is therefore free

of all the assumptions of parametric modeling. Hence it can
be quickly applied to more data sets. For example, SEESAW



requires data to be in the COCOMO format but W has been
applied to numerous data sets in other formats [8].

We conclude from these results that, for the task of quality opti-
mization, W ’s case-based reasoning methodology is recommended
over SEESAW’s parametric modeling. The one exception to this
would be that if there is no local data, then W cannot function
and SEESAW should be used. While we offer no conclusion on
the general merits of case-based reasoning compared to parametric
modeling, these results should encourage further experimentation
on the matter.

2. BACKGROUND
The debate between case-based reasoning and model-based meth-

ods can be conducted on at least two levels:

1. At one level, it is an engineering-based discussion that as-
sesses these approaches on criteria like ease of implementa-
tion, runtime speed, and the observed output performance.

2. At another level of assessment, we can assess case-based vs
model-based in terms of their cognitive implications.

Since most of this paper is about level (1), the rest of this section
discusses level (2).

Platonic model-based reasoning is meant to seek out universal
truths. For example, Newton’s agenda was to find a set of equa-
tions (e.g. F = ma) that can be applied universally on earth, as
well as to well as distant planets and stars. He succeeded. In 1846,
rival astronomers John Adams (in England) and Urbain Leverrier
(in France) raced to find a previously unseen planet that was dis-
turbing the orbit of Uranus. Neptune was first sighted by Adams,
then Leverrier, after both men pointed their telescopes at the precise
point in the sky indicated by Newton’s equations.

We dream of the day that our SE models will achieve the same
universality of Newton’s equations. To date, we have not been suc-
cessful. Researchers like Boehm developed parametric models that
predict development effort for software. In Boehm’s COCOMO
parametric model (the 1981 version [5]):

Effort = a ∗ Locb ∗
∏

i

βixi (1)

where xi are one of the effort multipliers shown in Figure 1 (at top)
and βi is a coefficient that controls the influence of xi.

Such learning combines expert intuition with automatic reason-
ing. Expert intuitions define the general form of the parametric
model, while automated data mining fills in the details of that model.
For example, the goal of data mining over parametric models is
to take local data and learn appropriate values for the tunable at-
tributes. In the above model, those tunable attributes are (a, b, βi).

Based on linear regression over historical data [5, 7], Boehm of-
fers values to (a, b, βi) to three significant figures. Previously [15],
we have reported that such precision is somewhat optimistic since
βi has a very large variance. The plot at the bottom of Figure 1
shows the βi values learned from twenty 66% samples (selected at
random) of the NASA93 data set from the PROMISE repository.
While some of the coefficients are stable (e.g. the white circles of
loc remains stable around 1.1), the coefficients of other attributes
are highly unstable:

• The (max −min) range of some of the coefficients is very
large; e.g. the upside down black triangles of stor ranges
from −2 ≤ βi ≤ 8.

• Consequently, nine of the coefficients in Figure 1 jump from
negative to positive.

upper: acap: analysts capability
in theory pcap: programmers capability
β < 0 aexp: application experience

modp: modern programming practices
tool: use of software tools

vexp: virtual machine experience
lexp: language experience

middle sced: schedule constraint
data: data base size

lower: turn: turnaround time
in theory virt: machine volatility
β > 0 stor: main memory constraint

time: time constraint for cpu
rely: required software reliability
cplx: process complexity
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Figure 1: COCOMO 1 effort multipliers, and the sorted coeffi-

cients found by linear regression from twenty 66% sub-samples

(selected at random) from the NASA93 PROMISE data set;

from [15]. Prior to learning, training data was linearized in

the manner recommended by Boehm (x was changed to log(x);
for details, see [15]). During learning, a greedy back-select re-

moved attributes with no impact on the estimates: hence, some

of the attributes have less than 20 results. After learning, the

coefficients were unlinearized.

We have seen instability in other datasets, including the COC81
data used by Boehm to derive Equation 1 [15]. This is an troubling
observation. It seems that while Newton’s equations let us pre-
cisely locate Neptune, Boehm’s equations cannot point us exactly
at which project attributes will lead to lower effort.

Parametric modeling assumes that (i) one parametric form (e.g.
Equation 1) is universal across multiple domains and (ii) that form
is tuned to the local situation by adjusting some tuning attributes.



An opposite approach to parametric models is case-based reason-
ing (CBR). In CBR, there are no universally-applicable parametric
models. Rather, every conclusion is dependent on the particulars
of the task at hand. CBR is based on a theory of reconstructive

memory. According to this theory, humans do not remember things
as they actually happened. Rather, “remembering” is an inference
process, characterized by Bartlett as:

... a blend of information contained in specific traces

encoded at the time it occurred, plus (retrieval time)
inferences based on knowledge, expectations, beliefs,

and attitudes derived from other sources [4].

Bartlett’s work was ignored when first published (1932) but today
it is highly influential; e.g. experts in psychology & law caution
reconstructive memory means that leading questions can signifi-
cantly alter a report given by a human witness [14].

In AI research, Janet Kolodner [13] used reconstructive mem-
ory to characterize expert explanations. To support her claim, she
offered a set of transcripts of experts explaining some effect. Her
reading of those transcripts was that the experts do not use verbatim

recalling when discussing the past. Rather, they reconstruct an ac-
count of their expertise, on the fly, in response to a particular query.
CBR inference is usually characterized [1] in four steps:

1. Retrieve: Find the most similar cases to the target problem.
2. Reuse: Adapt our actions conducted for the past cases to

solve the new problem.
3. Revise: Revise the proposed solution for the new problem

and verify it against the case base.
4. Retain: Retain the parts of current experience in the case base

for future problem solving.

Figure 2: Four steps of CBR, from http://www.

peerscience.com/intro_cbr.htm.

Having verified the results from our chosen adapted action on the
new case, the new case is added to the available case base. The last
step allows CBR to effectively learn from new experiences. In this
manner, a CBR system is able to automatically maintain itself.

In terms of cognitive theory, CBR challenges notions of reason-
ing as model-building. The mantra of CBR is “don’t think, remem-
ber”. That is, when faced with some new situation:

• Do not reason it out using some underlying model (e.g. New-
ton’s equations or Boehm’s parametric models).

• Rather, respond to a new situation via an on-demand survey
of past experiences [23].

CBR challenges the premise of the PROMISE conference series.
Currently, this conference bills itself as “Predictive Models in Soft-
ware Engineering”. This title assumes that model building is the
best way to analyze software engineering. However, if model-heavy

methods like COCOMO do worse than model-lite CBR methods,
then we would need to rethink the premise of PROMISE.

(Note that we call CBR model-lite, but not model-free. For more
on this distinction, see the Discussion section, below.)

3. QUALITY OPTIMIZATION
The above discussion motivates a comparison between paramet-

ric model-based methods and CBR. To make that comparison, we
need to explore the same task with two different approaches. Ac-
cordingly, this section describes quality optimization using SEE-
SAW’s parametric models or W ’s case-based reasoning.

One thing that may not be apparent from the following discus-
sion is the relative complexity of the two systems. Based on recent
experience with teaching graduate AI, we assert that building and
assessing SEESAW is a term project while W can be implemented
in two weekly homework assignments (week1 implements some
basic data loading and nearest neighbor measures; week2 extends
that code to complete W ).

3.1 SEESAW
Since 2007, we have applied AI algorithms over parametric mod-

els of software development (based on COCOMO) [18] to imple-
ment quality optimizers. We found this to be a challenging task
since it must execute over partial descriptions of projects and, in
the case of parametric models, over models with uncertain internal
parameters (like the ranges shown in Figure 1).

In order to address this challenge, we need to understand the
nature of those models. In parametric modeling, the predictions of
a model about a software engineering project are altered by project
variables P and tunable attribute coefficients T :

prediction = model(P, T ) (2)

In the simplified COCOMO model of Equation 3, the tuning op-
tions T are the range of (a, b) and the project options P are the
range of pmat (process maturity) and acap (analyst capability).

effort = a · LOCb+pmat · acap (3)

Based on the definitions of the COCOMO model we can say that
the ranges of the project attributes are P = 1 ≤ (pmat, acap) ≤ 5.
Further, given the cone of uncertainty associated with a particular
project p, we can identify the subset of the project options p ⊆ P
relevant to a particular project. For example, a project manager
may be unsure of the exact skill level of team members. However,
if she were to assert “my analysts are better than most”, then p
would include {acap = 4, acap = 5}.

SEESAW seeks a treatment rx ⊆ p that maximizes the value
of a model’s predictions where value is a domain-specific function



that scores model outputs according to user goals:

argmax
x






AI search
︷ ︸︸ ︷

rx ⊆ p , t ⊆ T, value(model(rx, t))
︸ ︷︷ ︸

Monte Carlo




 (4)

The intuition of Equation 4 was that, when faced with tuning vari-
ance like that seen in Figure 1, we should search for conclusions
that are stable across the space of possible tunings. SEESAW as-
sumed that the dominant influences on the prediction are the project
options p (and not the tuning options T ). Under this assumption,
the predictions can be controlled by:

• Constraining p (using some AI tool)
• Leaving T unconstrained (and sampling t ∈ T using Monte

Carlo methods)

The parametric models used by SEESAW’s models come from CO-
COMO. These attributes have a range taken from {very low, low,
nominal, high, very high, extremely high} or

{vl = 1, l = 2, n = 3, h = 4, vh = 5, xh = 6}

In COCOMO-II model [7], Boehm divided the attributes into
two sets: the effort multipliers and the scale factors. The effort
multipliers affect effort/cost in a linear manner. Their off-nominal
ranges {vl=1, l=2, h=4, vh=5, xh=6} change the prediction by some
ratio. The nominal range {n=3}, however, corresponds to an effort
multiplier of 1, causing no change to the prediction. Hence, these
ranges can be modeled as straight lines y = mx+b passing through
the point (x, y)=(3, 1). Such a line has a y-intercept of b = 1−3m.
Substituting this value of b into y = mx+ b yields:

∀x ∈ {1..6} EMi = mα(x− 3) + 1 (5)

where mα is the effect of α on effort/cost.
We can also derive a general equation for the scale factors that

influence cost/effort in an exponential manner. These features do
not “hinge” around (3,1) but take the following form:

∀x ∈ {1..6} SFi = mβ(x− 6) (6)

where mβ is the effect of factor i on effort/cost.
Along with COCOMO-II, Boehm also defined the COQUALMO

defect predictor. COQUALMO contains equations of the same syn-
tactic form as Equation 5 and Equation 6, but with different co-
efficients. Using experience from 161 projects [7], we can find
the maximum and minimum values ever assigned to m for CO-
QUALMO and COCOMO. Hence, to explore tuning variance (the
t ∈ T term in Equation 4), all we need to do is select m values at
random from the min/max m values ever seen. An appendix to this
document lists those ranges.

Initially, we implemented the AI search of Equation 4 using
simulated annealing [17, 18, 21]. Subsequent work demonstrated
that the recommendations found in this way did better than nu-
merous standard process improvement methods [20]. Later imple-
mentations were based on a state-of-the-art theorem prover [10].
SEESAW searches within the ranges of project attributes to find
constraints that most reduce development effort, development time
(measured in calendar months), and defects. Figure 3 shows SEE-
SAW’s pseudo-code. The code is an adaption of Kautz & Selman’s
MaxWalkSat local search procedure [13]. The main changes are
that each solution is scored via a Monte Carlo procedure (see score
in Figure 3) and that SEESAW seeks to minimize that score (since,
for our models it is some combination of defects, development ef-
fort, and development time in months).

1 function run (AllRanges, ProjectConstraints) {

2 OutScore = -1

3 P = 0.95

4 Out = combine(AllRanges, ProjectConstraints)

5 Options = all Out features with ranges low < high

6 while Options {

7 X = any member of Options, picked at random

8 {Low, High} = low, high ranges of X

9 LowScore = score(X, Low)

10 HighScore = score(X, High)

11 if LowScore < HighScore

12 then Maybe = Low; MaybeScore = LowScore

13 else Maybe = High; MaybeScore = HighScore

14 fi

15 if MaybeScore < OutScore or P < rand()

16 then delete all ranges of X except Maybe from Out

17 delete X from Options

18 OutScore = MaybeScore

19 fi

20 }

21 return backSelect(Out)

22 }

23 function score(X, Value) {

24 Temp = copy(Out) ;; don’t mess up the Out global

25 from Temp, remove all ranges of X except Value

26 run monte carlo on Temp for 100 simulations

27 return median score from monte carlo simulations

28 }

Figure 3: Pseudocode for SEESAW

SEESAW first combines the ranges for all project attributes. These
constraints range from Low to High values. If a project does not
mention a feature, then there are no constraints on that feature, and
the combine function (line 4) returns the entire range of that feature.
Otherwise, combine returns only the values from Low to High. In
the case where a feature is fixed to a single value, then Low = High.
Since there is no choice to be made for this feature, SEESAW ig-
nores it. The algorithm explores only those features with a range
of Options where Low < High (line 5). In each iteration of the
algorithm, it is possible that one acceptable value for a feature X
will be discovered. If so, the range for X is reduced to that single
value, and the feature is not examined again (line 17). SEESAW
prunes the final recommendations (line 21). This function pops off
the N selections added last that do not significantly change the final
score (t-tests, 95% confidence). This culls any final irrelevancies in
the selections. The score function shown at the bottom of Figure
6 calls COCOMO/COQUALMO models 100 times, each time se-
lecting random values for each feature Options. The median value
of these 100 simulations is the score for the current project settings.
As SEESAW executes, the ranges in Options are removed and re-
placed by single values (lines 16-17), thus constraining the space
of possible simulations.

While a successful prototype, SEESAW has certain drawbacks:

• Model dependency: SEESAW requires a model to generate
the estimates. Hence, the conclusions reached were only as
good as this model so using this tool requires an initial, pos-
sibly time-consuming, model validation process.

• Data Dependency: SEESAW can only process project data
in a format compatible with the underlying model. In prac-
tice, this limits the scope of the tool.

• Arbitrary Design: SEESAW handles two dozen cases using
rules designed using “engineering judgment”; i.e. they are
not based on any theoretical or empirical results in the lit-
erature (for example, “do not increase automatic tools usage
without increasing analyst capability”). The presence of such
ad hoc rules makes it harder to verify that the tool is correct.

• Performance: SEESAW uses tens of thousands of iterations,



with several effort estimates needed calculated for each iter-
ation. This resulted in a performance disadvantage.

• Size and Maintainability: Due to all the above factors, the
SEESAW code base has proved difficult to maintain.

We have found that these factors limit the widespread use of quality
optimizers:

• In the three years since our first paper [18], we have only
coded one software process model (COCOMO), which in-
herently limits the scope of our investigations.

• No other research group has applied these techniques.

These problems motivated an exploration of alternate approaches
to quality optimization.

3.2 Contrast Set Learning
The cognitive basis of case-based reasoning offers an alternative

to model-based approaches for software quality estimation. One
can relate the use of a model as an attempt to extrapolate a single,
general, verbatim recollection of knowledge in order to infer about
any related problems. For example, consider the case of Brooks’
law. Brooks’ law states that adding more programmers to an al-
ready delayed project will only delay it further. Thus, a general,
model-based approach for software quality would state:

Do not add programmers to an already delayed project

if schedule deadlines are important.

These general guidelines are similar to the scale factors and ef-
fort multipliers of the USC COCOMO model 1. In the case of
COCOMO, for example, very low analyst capability (pcap) always
signals a shift towards greater project effort and lower software
quality. By combining these guidelines into a general model as
Boehm has done, we can use tools like SEESAW to optimize soft-
ware quality given a constrained query on the software project con-
sidered.

Because of the many issues regarding SEESAW’s model-based
approach already outlined, we have devised a modification of CBR
that attempts to instead reconstruct smaller, local accounts of what
drives better software quality. Using CBR as a guide, we seek a way
to retrieve relevant information about a software project, reuse that
information to extract possible improvements, revise our proposed
quality estimate, then retain this knowledge for future estimates.

We refer to this simple process as Contrast Set Learning. CSL
seeks to optimize the choice of potential actions based solely on
what how similar, historical instances implementing those actions
have performed. In terms of software quality: given a manager’s
possible decisions and accounts of past decisions, which decisions
are most likely to improve software quality?

CSL extracts these decisions using contrast sets. From the pool
of historical cases, those most similar to the project at hand are se-
lected. From this local neighborhood, cases are sorted based on
some utility measure such as software effort. Two sets are formed,
one labelled “best” that contains the most desireable cases, and one
labelled “rest” that contains the remaining cases. The contrast set
consists of the attributes that occur more often in “best” than “rest”.
That is, attributes that occur frequently in only one population tell
us more than attributes that appear in both. Such attributes pro-
vide more contrast between the populations. That is, high con-
trast attributes better encapsulate the properties that separate the
two populations, whereas attributes with low contrast tell us very
little about the space as a whole.

3.2.1 A Worked Example of CSL

For example, consider a company faced with a software project
that is sprialling out of control. Currently they are missing dead-
lines, lack funding, and lack programmers. Management decides to
solve this problem by hiring additional programmers. Not surpris-
ingly, in accordance with Brooks’ law, the additional training time
causes the project to be delivered even later, and now grossly over
budget.

Using contrast set learning, management would instead look at
past projects from the same or similar departments. Say the best
projects (those requiring the least effort) were either given addi-
tional funds or allowed to extend their deadlines best = (more −
money|extend − deadlines). Now consider that the remaining
projects (those requiring the most effort) were either given addi-
tional programmers or allowed to extend their deadlines rest =
(more− programmers|extend− deadlines).

Looking at these decisions we can infer little effect from extend-
ing deadlines, as this change occurred equally in both the best and
rest sets. Thus, it provides little contrast. However, both adding
funding and adding programmers present high-contrast. Only the
best projects involved adding money, and only the worst projects
involved adding programmers.

3.3 W

The standard procedure for CBR is to report the median class
value of some local neighborhood. This neighborhood is typi-
cally defined as the Euclidean distance from a defined project in
n-dimensional space with n project features [26]. W works simi-
larly, but defines a project as a range of values:

• From a range of project values, cases are retrieved that match
a specific amount of overlap with the defined project ranges.
A case’s overlap is defined as the percentage of attributes that
fall within the specified ranges of the defined project.

• From these selected similar cases, the cases are sorted by a
measure of utility to determine the better examples.

• From these sorted ranges, a contrast set is learned. The top 5
"best" cases (those with the best utility measure) are placed
into a set labeled "best". The next 15 ranked cases are placed
into a set labeled "rest", for a combined total of 20 cases.

• From the contrast set, W selects the features that best select
for the region with the best utility measurements.

In the above, better is determined by some domain-specific predi-
cate. In the case of effort, defect, and month estimations, this utility
is the normalized euclidean distance from the lowest possible cost
for all three factors.

3.3.1 Contrast Sets

Once a contrast set learner is available, it is a simple matter to
add W to CBR. W finds contrast sets using a greedy search, where
candidate contrast sets are ranked by the frequency of which they
appear in the "best" set squared divided by how often the candidate
appears in both the "best" and "rest" sets. A simple strategy to score
more favorably towards attributes that occur most often in the best
case is to square the number of times. Taking this heuristic one
step further, given an attribute x, we can penalize x’s occurrence in
the "rest" by dividing the sum of the frequency counts in best and
rest [16], the ensuring rare attributes are weighted appropriately:

like =
freq(x|best)2

freq(x|best) + freq(x|rest)
(7)

From this measure we need only sort each attribute by it’s like
score to prioritize our recommendations



@project example

@attribute ?rely 3 4 5

@attribute tool 2

@attribute cplx 4 5 6

@attribute ?time 4 5 6

Figure 4: W ’s syntax for describing the input query q. Here,

all the values run 1 to 6. 4 ≤ cplx ≤ 6 denotes projects with

above average complexity. Question marks denote what can

be controlled- in this case, rely, time (required reliability and

development time)

3.3.2 The W Algorithm

CBR systems input a query q and a set of cases. They return the
subset of cases C that is relevant to the query. In the case of W :

• Each case Ci is a historical record of one software project,
plus the development effort required for that project. Within
the case, the project is described by a set of attributes which
we assume have been discretized into a small number of dis-
crete values (e.g. analyst capability ∈ {1, 2, 3, 4, 5} denoting
very low, low, nominal, high, very high respectively).

• Each query q is a set of constraints describing the particulars
of a project. For example, if we are interested in a sched-
ule over-run for a complex, high reliability project that has
only minimal access to tools, then those constraints can be
expressed in the syntax of Figure 4.

W seeks q′ (a change to the original query) that finds another
set of cases C′ such that the median effort values in C′ are less
than that of C (the cases found by q). W finds q′ by first dividing
the data into two-thirds training and one-third testing. Retrieve and
reuse are applied to the training set, then revising is applied to the
test set.

In the retrieve step, the initial query q is used to find the N train-
ing cases nearest to q using a Euclidean distance measure where all
attribute values are normalized from 0 to 1.

In the reuse (or adapt) step, the N cases are sorted by effort
and divided into the K1 best cases (with lowest efforts) and K2

rest cases. For this study, we used K1 = 5,K2 = 15. Then
we seek the contrast sets that select for the K1 best cases with the
better estimates. All the attribute ranges that the user has marked
as “controllable” are scored and sorted by Equation 7. This sorted
order S defines a set of candidate q′ queries that use the first i-th

entries in S:

q′i = q ∪ S1 ∪ S2... ∪ Si

According to Figure 2, after retrieving and reusing comes revis-

ing (this is the “verify” step). When revising q′, W prunes away
irrelevant ranges using the algorithm of Figure 5.

On termination, W recommends changing a project according to
the set q′ − q. For example, in Figure 4, if q′ − q is rely = 3 then
this treatment recommends that the best way to reduce the effort for
this project is to reject rely = 4 or 5.

Formally, the goal of W is find the smallest i value such that
q′i selects cases with the more of the better estimates. The reader
might protest that the generation of some succinct human-readable
construct like q′i means that W is not a “real” case-based reasoner.
In that view, the distinguishing feature of CBR is that its reasoning
is instance-based and it never generates any generalizations.

In reply, we observe that W is not the only system that extends
standard CBR with some generalization tools. Watson [27] reviews
numerous CBR systems that, for example, run decision tree learn-
ers over their case library in order to automatically generate an in-

1. Set i = 0 and q′i = q
2. Let Foundi be the test cases consistent with q′i (i.e. that do not

contradict any of the attribute ranges in q′i).
3. Let Efforti be the median efforts seen in Foundi.
4. If Found is too small then terminate (due to over-fitting). After

Shepperd [26], we terminated for |Found| < 3.
5. If i > 1 and Efforti < Efforti−1, then terminate (due to

no improvement).
6. Print q′i and Efforti.
7. Set i = i+ 1 and q′i = qi−1 ∪ Si

8. Go to step 2.

Figure 5: Revising q to learn q′.

dex to the cases. Also, once a system can read a case library, com-
pute distance calculations, and generate a sorted list of the nearest
neighbors, implementing Figure 5 and Equation 7 is only a few
dozen lines of code. That is, W is such a small extension to stan-
dard CBR that it would be somewhat pedantic to declare that it is
not “real” CBR.

4. THE W 2 ALGORITHM
Upon initial experimentation with W , we were forced to de-

cide upon a few arbitrary values for internal decisions. For ex-
ample, when deciding which historical cases were relevant to a
given project, we chose the standard CBR method of taking k near-
est neighbors based on euclidean distance from the defined query.
Given the size of our datasets we arbitrarily chose k = 20 for our
definition of the closest neighbors.

This proved problematic in two regards. First, the knn calcula-
tion required O(n2) time to run, limiting our application to very
large datasets. Second, the arbitrary selection of 20 cases (sepa-
rated into the 5 “best” and 15 “rest”) often selected too large a sub-
set of the data for certain datasets. For example, if data was only
provided for 12 historical cases, once separated into a training set
of 66%, only 8 cases remain. At this point no relevancy filtering is
performed, and the entire space is selected for learning.

To resolve this, a non-static metric for relevancy was devised.
Instead of selecting cases based on an arbitrary value, cases were
ranked and selected based on how well they were contained within
the query space. For each attribute in a case, the case was compared
to the project query. If the case’s value falls within the query, the
case scores on “point” for that attribute. These scores are combined
and ranked. For example, if a case within the nasa93 dataset falls
within the Orbital Space Plane (OSP) case study query for 16 of its
attributes and fails for the other 7, it is said to be 70% contained.
The cases with the highest containment (“Best Overlap”) are then
selected for contrast set reasoning.

The performance of this new method is shown in figure 7. KNN
represents the old O(n2) method of relevancy filtering compared
with the new BestOverlap method. In all but one case, BestOver-
lap performs better. However, even when BestOverlap performs
slightly worse, it still performs better than KNN in spread reduc-
tion.

5. COMPARING W TO SEESAW
In order to compare W and SEESAW, both systems require sim-

ilar inputs. SEESAW can only handle models in the COCOMO
format. Hence, we restrict ourselves to data in that format (see [8]
for examples of W running on a much broader set of inputs).

The inputs required for this study are:



Execution Time

dataset W W2 W2 speedup

nasa93 0.69s 0.10s 6.6x
coc81 0.43s 0.08s 5.3x
china 0.37s 0.42s 10.8x

telecom1 0.07s 0.04s 1.6x

Figure 6: Average execution times for the W and W2 algo-

rithms. By removing the O(n2) kth nearest neighbor calcu-

lation from W we drastically improve performance, especially

on larger datasets such as China (500 instances).

Median Spread Reduction Quartiles
Dataset Treatment Reduc Reduc 50%

kemerer BestOverlap 7% 48%
r

kemerer KNN 0% 44%
r

miyazaki* BestOverlap 75% 24%
r

miyazaki KNN 46% 45%
r

telecom1 KNN 92% 23%
r

telecom1 BestOverlap 81% 34%
r

china BestOverlap 34% 67%
r

china KNN 1% 36%
r

finnish BestOverlap 26% 28%
r

finnish KNN 18% 29%
r

Figure 7: Performance of W2’s BestOverlap relevancy filtering

vs W’s kth nearest-neighbor filtering for 5 unique datasets.

• W needs a set of historical cases. We used the NASA93
dataset available from http://promisedata.org/data.
This dataset represents 93 different NASA projects collected
from the 1980’s and 1990’s represented as feature vectors
describing each project in COCOMO format. NASA93 data
only contains historical information for project effort. De-
velopment time (measured in calendar months) and defects
were added in using the COCOMO/COQUALMO models.

• Both SEESAW and W need an objective function that guides
their search. In this study, the objective function rewarded
minimization of the sum of defects and effort and months
(after these values had been normalized to the same range).

• Both SEESAW and W need a set of project constraints that
tune their conclusions to particular projects. We used the
project constraints of Figure 8.

Figure 8 comes from our debriefing of NASA program managers
and shows different kinds of NASA mission:

• Ground and flight represent typical ranges for most NASA
projects at the Jet Propulsion Laboratory (JPL);

• OSP represents the guidance, navigation, and control aspects
of NASA’s 1990 Orbital Space Plane;

• OSP2 represents a second, later version of OSP with a more
limited scope of COCOMO attributes.

The values column in that figure shows settings that cannot be
changed; e.g. for OSP, the required reliability is fixed at rely = 5.
On the other hand, the low and high ranges in that figure define the
space of possible recommendations for that project. For instance,
the reliability of the JPL flight software can vary from a ranking of
3 (nominal) to 5 (very high).

W used Figure 8 to set its initial query q0. SEESAW used Fig-
ure 8 to guide a set of simulations around its parametric models.
For each case study, 1000 times, inputs were selected at random,

constrained by Figure 8 (so the inputs for case study X conformed
to the description of X shown in that figure).

In order to offer a fair comparison between SEESAW and W , we
proceeded as follows. Recall that W has a training component that
implements retrieve, reuse, and revise (described around Figure 5).
A test component was implemented that copied the code used for
retrieve. This test component was modified such that it executed
on a different test set that contained no data used in training.

Given that rig, for each case study in Figure 8, we repeated the
following process 50 times.

• The available data (NASA93) was divided into a train and
test sets (of sizes 66%:33%). The division was random so
that each time, different instances appeared in train and test.

• The median and spread values for effort, months, and defects
were collected from the train set. These medians and spreads
were recorded as the before values.

• Each quality optimizer (W and SEESAW) was run sepa-
rately. The W algorithm used the train set while SEESAW
used its internal models. In either case, the quality optimizer
returned a set of recommendations on how to change the
project in order to reduce effort, defects, and development
time (measured in calendar months).

• These recommendation were assessed in the same way: by
passing them to W ’s test component which retrieved relevant
cases from the test set.

• The median and spread values for effort, months, and defects
were collected from the instances retrieved from the test set.
These were recorded as the after values.

The results were reported in terms of median and spread. We say
that the median of a set of numbers are the 50th-percentile value
while the spread is difference between the 75th and 25th per-
centile value. The median is a measure of central tenancy while
the spread is a measure of uncertainty around the median. Decreas-
ing the spread means that the predictions fall within a narrower
range. We report spread rather than other measures like standard
deviation since we wish to avoid any inappropriate assumptions of
symmetrical distributions.

6. RESULTS

6.1 W vs SEESAW
Average median and spread results over the 50 trials are shown

in Figure ??. The last column in each group (labeled “Change”)
shows the relative change in effort, defect, months found by W

or SEESAW. A negative amount in this column denotes an opti-
mization failure (increased defect, effort, months). Note that such
negative results occur only in a small minority of results.

The gray rows indicate any member of a pair that was both statis-
tically significantly different and had a lower 50th percentile value.
Note that for most pairs, the results are not statistically significantly
different (Mann-Whitney, 95% confidence level).

Before commenting on SEESAW vs W , we first note that our
results should encourage more use of quality optimization. Observe
that, in the majority of cases, quality optimization works regardless
of how it is implemented (e.g. CBR vs parametric models). In the
52 experiments of Figure ??, positive quality improvements were
seen for 49/52 = 94% experiments (the 3 exceptions are in the
defect results of Flight and OSP2).

Another result that should encourage more use of quality op-
timizers is the reduction in the spreads. In all experiments the
amount of uncertainty in the median estimates was reduced. As
shown in Figure 13, the reduction in the spread was usually over



ranges values
project feature low high feature setting

prec 1 2 data 3
OSP: flex 2 5 pvol 2

Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
rely 3 5 tool 2

JPL data 2 3 sced 3
flight cplx 3 6

software time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418

ranges values
project feature low high feature setting

prec 3 5 flex 3
OSP2 pmat 4 5 resl 4

docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 1 4 tool 2
JPL data 2 3 sced 3

ground cplx 1 4
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Figure 8: The four NASA case studies. Numeric values {1, 2,
3, 4, 5, 6} map to {very low, low, nominal, high, very high, extra
high}.

MedianSpread Reduction Quartiles
Rank Goal Change Reduc Reduc 50%

1 defects ReduceFunct 64% 28%
r

1 defects W 54% 32%
r

1 defects Tools&Tech 51% 39%
r

1 defects ProcMaturity 39% 73%
r

2 defects Personel 23% 100%
r

3 defects ReduceQuality 0% 100%
r

4 defects RelaxScedule -20% 43%
r

1 effort ReduceFunct 62% 28%
r

2 effort W 58% 32%
r

2 effort Tools&Tech 46% 22%
r

2 effort ProcMaturity 24% 76%
r

2 effort ReduceQuality 0% 100%
r

2 effort Personel 0% 105%
r

3 effort RelaxScedule -13% 35%
r

1 months ReduceFunct 37% 16%
r

1 months Personel 32% 98%
r

1 months W 30% 16%
r

1 months Tools&Tech 29% 26%
r

1 months ProcMaturity 29% 33%
r

1 months ReduceQuality 0% 98%
r

2 months RelaxScedule -3% 16%
r

Figure 9: Comparing defect, effort, and month estimation re-

duction percentages (100 ∗ initial−final

intial
of drastic business de-

cisions vs W ’s recommendations for the Ground case study.

MedianSpread Reduction Quartiles
Rank Goal Change Reduc Reduc 50%

1 defects ReduceFunct 64% 28%
r

1 defects W 54% 32%
r

1 defects Tools&Tech 51% 39%
r

1 defects ProcMaturity 39% 73%
r

1 defects Personel 23% 100%
r

1 defects ReduceQuality 0% 100%
r

2 defects RelaxScedule -20% 43%
r

1 effort ReduceFunct 62% 28%
r

1 effort W 58% 32%
r

1 effort Tools&Tech 46% 22%
r

1 effort ProcMaturity 24% 76%
r

1 effort ReduceQuality 0% 100%
r

1 effort Personel 0% 105%
r

2 effort RelaxScedule -13% 35%
r

1 months ReduceFunct 37% 16%
r

1 months Personel 32% 98%
r

1 months W 30% 16%
r

1 months Tools&Tech 29% 26%
r

1 months ProcMaturity 29% 33%
r

1 months ReduceQuality 0% 98%
r

2 months RelaxScedule -3% 16%
r

Figure 10: Comparing defect, effort, and month estimation re-

duction percentages (100 ∗ initial−final

intial
of drastic business de-

cisions vs W ’s recommendations for the Flight case study.

61%. This is a major advantage of quality optimizers since un-
certainty is an serious issue that plagues the managers of software
engineering projects.

The spread reductions were larger than the median reductions.
As shown in Figure 13, the expected median reduction in any qual-
ity estimate was only 15%. Note that if this were otherwise, then
that would be a somewhat damning critique of current software
engineering practices. To see this, consider the implications of
quality optimizers finding recommendations that resulted in an or-
der of magnitude reduction in effort and defects and development



MedianSpread Reduction Quartiles
Rank Goal Change Reduc Reduc 50%

1 defects W 61% 31%
r

2 defects ProcMaturity 51% 26%
r

2 defects ReduceFunct 46% 34%
r

2 defects Tools&Tech 39% 32%
r

2 defects ReduceQuality 0% 382%
r

2 defects Personel 0% 100%
r

3 defects RelaxScedule -30% 78%
r

1 effort W 60% 28%
r

2 effort ProcMaturity 51% 29%
r

2 effort ReduceFunct 48% 36%
r

2 effort Tools&Tech 47% 45%
r

2 effort ReduceQuality 5% 257%
r

2 effort Personel 0% 100%
r

3 effort RelaxScedule -21% 64%
r

1 months ProcMaturity 31% 15%
r

2 months W 30% 17%
r

2 months Personel 29% 98%
r

2 months Tools&Tech 25% 17%
r

2 months ReduceFunct 25% 9%
r

2 months ReduceQuality 4% 61%
r

3 months RelaxScedule -7% 16%
r

Figure 11: Comparing defect, effort, and month estimation re-

duction percentages (100 ∗ initial−final

intial
of drastic business de-

cisions vs W ’s recommendations for the OSP case study.

MedianSpread Reduction Quartiles
Rank Goal Change Reduc Reduc 50%

1 defects W 64% 40%
r

1 defects Tools&Tech 57% 24%
r

1 defects ReduceFunct 50% 29%
r

1 defects Personel 28% 75%
r

1 defects ProcMaturity 24% 38%
r

1 defects ReduceQuality 0% 163%
r

1 defects RelaxScedule -17% 71%
r

1 effort ReduceFunct 63% 27%
r

1 effort W 60% 45%
r

1 effort Toolss&Tech 57% 36%
r

1 effort ReduceQuality 50% 100%
r

1 effort Personel 19% 78%
r

1 effort ProcMaturity 14% 49%
r

2 effort RelaxScedule -43% 91%
r

1 months W 35% 21%
r

1 months Toolss&Tech 30% 15%
r

1 months ReduceFunct 26% 12%
r

1 months Personel 25% 45%
r

1 months ProcMaturity 12% 21%
r

1 months ReduceQuality 6% 98%
r

2 months RelaxScedule -16% 25%
r

Figure 12: Comparing defect, effort, and month estimation re-

duction percentages (100 ∗ initial−final

intial
of drastic business de-

cisions vs W ’s recommendations for the OSP2 case study.

time. That would suggest that the managers of software engineer-
ing projects are routinely missing changes that would significantly
improve their projects.

Another feature to note is that, with only a few exceptions, the
median optimizations obtained from case-based reasoning or para-
metric modeling are very similar. For example, in median MONTHS
results (top right of Figure ??), within each pair of treatments, the
change in the median months values is very similar:

• 19 vs 18% change (for Ground)
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Figure 13: Range of changes in median and spread generated

by applying the recommendations of either W or SEESAW.

The median observed changes were (34, 34)% for (medians,

spreads), respectively. For the sake of brevity, this graph ig-

nores the -94% outlier value seen in OSP2 defects for SEESAW.

• 14 vs 9% change (for Flight)
• 11 vs 12% change (for OSP)
• 12 vs 14% change (for OSP2)

That is, projects can contain an an inherent set of constraints that
cannot be changed, even by smart algorithms. Certainly, we can
fine tune the structure of a project to obtain some improvements in
effort, defects, and months but managers should not expect a magic
silver bullet that offers orders of magnitude improvement in their
software process.

Turning now to the main point of this paper, we conducted sta-
tistical tests on each pair of W vs SEESAW improvements in me-
dian/spread for each query. A Mann Whitney U test (95% con-
fidence) was performed on the two sets of reduction distributions
from each comparison. The statistical tests are summarized in Fig-
ure 15. Note that, in the majority case ( 18

24
), W ’s case-based rea-

soning performs as well as SEESAW ′s parametric modeling.
Also, when the performance results were different, case-based

reasoning did better than parametric modeling ( 6

24
)- sometimes spec-

tacularly so, Observe the median DEFECT OSP2 results (last line,
top row, middle of Figure ??): SEESAW’s recommendations re-
sulted in a dramatic increase in the number of delivered defects
(2612 to 7797). This result shows that W ’s modest decrease in
defects (13%) is actually far better than those found by the other
approach.

In summary, the simple case-based reasoning of W performs just
as well, or better, than SEESAW’s elaborate parametric modeling.

6.2 W Performance Across Multiple Datasets
Because W makes no underlying model assumptions, we aren’t

limited to USC COCOMO for our evaluations. To demonstrate the
effectiveness of W in any data environment, we offer median reduc-
tions for effort reduction for five arbitrary datasets from http://promisedata.org/data

The model-agnostic simpilicity of W made implementing these
tests easy as one need only describe a query space and a target
utility measure. In the case of these five datasets, software effort
was the common target for reduction.

Given that we did not have access to case studies as we did
with NASA93 and COC81 (ground, flight, osp, and osp2) for these
datasets, synthetic queries were developed. Three queries were
generated for each of the five datasets. The first contained the entire



MedianSpread Reduction Quartiles
Win Goal Treatment Reduc Reduc 50%

Nasa93 Ground

defects SEESAW 65% 35%
r

defects W2 54% 24%
r

effort SEESAW 68% 26%
r

effort W2 61% 19%
r

months SEESAW 35% 26%
r

months W2 31% 15%
r

Nasa93 Flight

defects SEESAW 59% 57%
r

defects W2 56% 33%
r

effort SEESAW 68% 43%
r

effort W2 63% 24%
r

months SEESAW 32% 24%
r

months W2 31% 16%
r

Nasa93 OSP2

* defects W2 62% 26%
r

defects SEESAW 53% 35%
r

* effort W2 58% 38%
r

effort SEESAW 44% 43%
r

* months W2 33% 13%
r

months SEESAW 27% 11%
r

Nasa93 OSP

defects W2 72% 22%
r

defects SEESAW 22% 63%
r

effort W2 69% 27%
r

effort SEESAW 37% 70%
r

months W2 43% 15%
r

months SEESAW 13% 32%
r

MedianSpread Reduction Quartiles
Win Goal Treatment Reduc Reduc 50%

Coc81 Flight

defects W2 34% 52%
r

defects SEESAW 20% 70%
r

effort SEESAW 56% 76%
r

effort W2 31% 49%
r

months W2 18% 30%
r

months SEESAW 14% 30%
r

Coc81 Ground

* defects W2 48% 71%
r

defects SEESAW 33% 63%
r

* effort SEESAW 51% 137%
r

effort W2 40% 78%
r

* months W2 26% 31%
r

months SEESAW 13% 27%
r

Coc81 OSP

defects W2 35% 65%
r

defects SEESAW 0% 67%
r

effort SEESAW 41% 56%
r

effort W2 26% 83%
r

months W2 17% 34%
r

months SEESAW 8% 16%
r

Coc81 OSP2

defects W2 8% 37%
r

defects SEESAW 1% 94%
r

* effort W2 13% 45%
r

effort SEESAW -94% 323%
r

months SEESAW 17% 28%
r

months W2 8% 17%
r

Figure 14: Range of changes in median and spread generated

by applying the recommendations of either W or SEESAW.

space of possible project attribute values (All), representing com-
plete freedom to recommend any change within the space. The
other two queries were generated by randomly choosing 50% of
each attribute values from either the lower, middle, or upper ranges

Algorithm Wins Losses Ties

W 6 1 17
SEESAW 1 6 17

Figure 15: Win/Loss/Tie table for statistically significant reduc-

tions across all goals with the Nasa Flight, Ground, OSP, and

OSP2 projects for both the Nasa93 and Coc81 datasets.

for each project attribute (Proj1, Proj2). These queries represent
more common restrictions on possible changes for a given software
project.

Effort reductions can be seen in figures 17 and 16. The chart
in figure 17 shows strong improvement in median effort for the
Telecom and Miyazaki datasets, with strong performance in spread
reduction across all datasets. While the Finnish, China, and Ke-
merer datasets show only marginal or no improvement in median
effort, the certainty of their estimations is improved via a reduction
in spread.
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Figure 16: Plot showing the distribution of median and spread

reductions in software effort for five unique datasets.

Improvement

dataset query q median spread

Telecom Proj1 96% 23%
Telecom Proj2 91% 41%
Telecom All 86% 28%
Miyazaki All 78% 33%
Miyazaki Proj2 69% 21%
Miyazaki Proj1 53% 67%
Finnish All 22% 31%
Finnish Proj2 11% 27%
Finnish Proj1 4% 25%
China All 20% 55%
China Proj2 14% 43%
China Proj1 0% 13%

Kemerer Proj1 21% 61%
Kemerer Proj2 0% 49%
Kemerer All -4% 53%

median 21% 33%

Figure 17: Effort estimation improvements (100∗ initial−final

intial
)

for five unique datasets. Sorted by median improvement. Gray

cells represent no improvement in effort estimates.

7. DISCUSSION

7.1 Search-based Software Engineering



Previously [10], we have explored the connection of SEESAW
to search-based SE (SBSE) [11]. In summary, SBSE uses opti-
mization techniques from operations research and meta-heuristic
search (e.g., simulated annealing and genetic algorithms) to hunt
for near-optimal solutions to complex and over-constrained soft-
ware engineering problems. SBSE has been applied to many prob-
lems in software engineering (e.g., requirements engineering [12])
but most often in the field of software testing [2]. Harman’s writ-
ing inspired us to try simulated annealing (SA) to search the what-
ifs in untuned COCOMO models [18]. For quality optimization,
however, we found that search methods taken from the constraint
satisfaction literature out-perform SA [10].

7.2 Model-lite
We said above that CBR was model-lite, but not model-free. We

hesitate to call CBR model-free, lest we incur the wrath of Janet
Kolodner or Roger Shank [24]. Kolodner and Shank regard CBR
as a model of human cognition where knowledge in a context-
dependent manner, according to the task at hand. This construct
may differ from context to context but the search mechanisms by
which the construct is built (CBR) is constant.

To expand on that point, we note that “model” has at least two
definitions:

1. A hypothetical description of a complex entity or process.
2. A plan to create, according to a model or models.

The first definition is closest to Shepperd’s definition of “model-
based systems”. According to Shepperd [25] software effort esti-
mation methods separate into “human-centric” techniques and “model-
based” techniques. In the former, humans produce their recom-
mendations without using some externalizable representation. In
the latter, a variety of techniques may be used which, according
to Shepperd, divide into algorithmic/parametric models (like CO-
COMO) and induced prediction systems (which include regression,
rule induction, CBR, and many others).

We can marry Shepperd’s view with that of Kolodner and Shank
by specializing the definition of model-based systems. Extend-
ing Shepperd’s ontology, we say that model-based systems can be
sorted according to how much modeling they assume prior to in-
duction. At one end of that sort order, we have parametric mod-
els like COCOMO. We call these model-heavy since they conform
to the first definition of “model”, shown above. At the other end
of that sort are the model-lite methods like CBR. These model-
lite methods conform to the second definition of “model”. Note
that this second definition is closest to Kolodner and Shank’s view
on CBR; i.e. the CBR model is a recipe for generating context-
dependent knowledge.

8. CONCLUSION
Advocates of reconstructive memory such as Barlett [4], Kolod-

ner [13], or Shank [24] argue that we make it up as we go along. In
case-based reasoning (CBR), inference repeats every time there is a
new query. Our reading of the papers at this conference is that, ex-
cept for a few papers that deal with reasoning-by-analogy (e.g. [3]),
most of this community avoids the model-lite approach of CBR.

Proponents of parametric models argue that there exist domain-

independent models which can be tuned to local details. In this
approach, reasoning can take the form of a data miner learning val-
ues for tune-able attributes of a parametric model like Equation 1.
In this way, learning can happen once and users can use the tuned
model for all future queries.

Unfortunately, these supposedly domain-independent models (like
COCOMO) suffer from massive internal variance (see Figure 1).

Previously, we have tried to manage internal variance of this prob-
lem with SEESAW: an AI algorithm that sought stable conclusions
across the space of possible tunings within a parametric model.
While a successful prototype, SEESAW has disadvantages:

• Dependency on a particular parametric model
• A requirement that all the data be in a format acceptable to

that model
• Too many arbitrary internal design decisions
• Slow runtimes
• A code base that proved too large to maintain, modify, and

add support for more models

With a result supporting CBR, this paper finds little to recommend
from SEESAW over the W case-based reasoning tool. Standard
CBR applies a query q to find relevant examples from a set of cases
C using the retrieve-reuse-revise-retain loop of Figure 2. W ex-
tends standard CBR by learning an adaption of q, called q′, that
retrieves better quality examples. Based on the analysis of [8] and
this paper, we recommend W on several grounds:

• W finds similar, or better, results than SEESAW (see Fig-
ure 15).

• W is simpler to code: 200 lines of AWK as opposed to the
5000 lines of LISP code used in SEESAW.

• W is faster to run: the above experiments took minutes for
W , but hours for SEESAW.

• W is simpler to maintain since, in CBR, “maintenance” means
nothing more than “add more cases”.

• W makes no use of an underlying model and is therefore free
from the assumptions of parametric modeling. Hence it can
be applied to more data sets. For example, SEESAW requires
data to be in the COCOMO format but W has been applied
to numerous data sets in other formats [8].

Having said that, there is one situation where we’d recommend
SEESAW over W . Like all CBR systems, W needs cases. If there
is no local data, then SEESAW would be the preferred (only) op-
tion.

What then should we say about the premise of PROMISE; i.e.
that “modeling” is an appropriate method for understanding SE
projects? Our answer is two-fold. Firstly, there is insufficient
evidence in this paper to make the conclusion that CBR always

beats model-heavy methods like parametric models. Neverthless,
these results clearly motivate further exploration and comparison
between the value of CBR and model-heavy techniques. For ex-
ample, at our lab we are exploring very fast clustering methods to
support scaling CBR to very large data sets.

Secondly, there are at least two kinds of “models.” In the tradi-
tional model-heavy definition, models are specific products that can
be applied to multiple domains. In the CBR model-lite definition,
a model is a process that generates many products, each of which
is customized to the particulars of a local domain. In this paper and
[19] we have seen the following advantages of CBR: easy imple-
mentation, fast runtimes, easy maintenance, able to be applied to
more data, and out-performance of model-heavy methods. If these
advantages apply in other problem domains, we speculate that the
future of PROMISE will be “models-as-process” and not “models-
as-products”.

Acknowledgments

This work was partially funded by the United Stated National Sci-
ence Foundation (CCF-1017263).



9. REFERENCES
[1] A. Aamodt and E. Plaza. Case-based reasoning:

Foundational issues, methodological variations, and system
approaches. Artificial Intellegence Communications,
7:39–59, 1994.

[2] J. Andrews, F. Li, and T. Menzies. Nighthawk: A two-level
genetic-random unit test data generator. In IEEE ASE’07,
2007. Available from http:

//menzies.us/pdf/07ase-nighthawk.pdf.

[3] M. Azzeh, D. Neagu, and P. Cowling. Improving analogy
software effort estimation using fuzzy feature subset
selection algorithm. In PROMISE ’08: Proceedings of the

4th international workshop on Predictor models in software

engineering, pages 71–78, 2008.

[4] F. Bartlett. Remembering: A study in experimental and social

psychology. The Cambridge University Press, 1932.

[5] B. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[6] B. Boehm. Safe and simple software cost analysis. IEEE

Software, pages 14–17, September/October 2000. Available
from http://www.computer.org/

certification/beta/Boehm_Safe.pdf.

[7] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark,
B. Steece, A. W. Brown, S. Chulani, and C. Abts. Software

Cost Estimation with Cocomo II. Prentice Hall, 2000.

[8] A. Brady, T. Menzies, J. Keung, O. El-Rawas, and
E. Kocaguneli. Case-based reasoning for reducing software
development effort. Journal of Software Engineering and

Applications, 2010.

[9] N. Fenton, M. Neil, W. Marsh, P. Hearty, L. Radlinski, and
P. Krause. Project data incorporating qualitative factors for
improved software defect prediction. In PROMISE’09, 2007.
Available from http://promisedata.org/pdf/

mpls2007FentonNeilMarshHeartyRadlinskiKrause.

pdf.

[10] P. Green, T. Menzies, S. Williams, and O. El-waras.
Understanding the value of software engineering
technologies. In IEEE ASE’09, 2009. Available from
http://menzies.us/pdf/09value.pdf.

[11] M. Harman and J. Wegener. Getting results from
search-based approaches to software engineering. In ICSE

’04: Proceedings of the 26th International Conference on

Software Engineering, pages 728–729, Washington, DC,
USA, 2004. IEEE Computer Society.

[12] O. Jalali, T. Menzies, and M. Feather. Optimizing
requirements decisions with keys. In Proceedings of the

PROMISE 2008 Workshop (ICSE), 2008. Available from
http://menzies.us/pdf/08keys.pdf.

[13] J. Kolodner. Reconstructive memory: A computer model.
Cognitive Science, 7(4):281–328, 1983.

[14] E. Loftus. Our changeable memories: legal and practical
implications. Nature Rev. Neurosci., pages 231–234, 2003.

[15] T. Menzies, Z. Chen, D. Port, and J. Hihn. Simple software
cost estimation: Safe or unsafe? In Proceedings, PROMISE

workshop, ICSE 2005, 2005. Available from
http://menzies.us/pdf/05safewhen.pdf.

[16] T. Menzies, O. El-Rawas, J. Hihn, and B. Boehm. Can we
build software faster and better and cheaper? In
PROMISE’09, 2009. Available from
http://menzies.us/pdf/09bfc.pdf.

[17] T. Menzies, O. Elrawas, B. Barry, R. Madachy, J. Hihn,
D. Baker, and K. Lum. Accurate estimates without

calibration. In International Conference on Software

Process, 2008. Available from
http://menzies.us/pdf/08icsp.pdf.

[18] T. Menzies, O. Elrawas, J. Hihn, M. Feathear, B. Boehm, and
R. Madachy. The business case for automated software
engineerng. In ASE ’07: Proceedings of the twenty-second

IEEE/ACM international conference on Automated software

engineering, pages 303–312, New York, NY, USA, 2007.
ACM. Available from
http://menzies.us/pdf/07casease-v0.pdf.

[19] T. Menzies and J. Kiper. How to argue less, 2001. Available
from http://menzies.us/pdf/01jane.pdf.

[20] T. Menzies, S. Williams, O. El-rawas, B. Boehm, and
J. Hihn. How to avoid drastic software process change (using
stochastic statbility). In ICSE’09, 2009. Available from
http://menzies.us/pdf/08drastic.pdf.

[21] T. Menzies, S. Williams, O. Elrawas, D. Baker, B. Boehm,
J. Hihn, K. Lum, and R. Madachy. Accurate estimates
without local data? Software Process Improvement and

Practice, 14:213–225, July 2009. Available from
http://menzies.us/pdf/09nodata.pdf.

[22] A. Orrego, T. Menzies, and O. El-Rawas. On the relative
merits of software reuse. In International Conference on

Software Process, 2009. Available from
http://menzies.us/pdf/09reuse.pdf.

[23] R. C. Schank. Dynamic Memory: A Theory of Reminding

and Learning in Computers and People. Cambridge
University Press, New York, NY, USA, 1983.

[24] R. C. Schank and R. P. Abelson. Scripts, plans, goals and

understanding: an inquiry into human knowledge structures.
Erlbaum, 1977.

[25] M. Shepperd. Software project economics: A roadmap. In
International Conference on Software Engineering 2007:

Future of Software Engineering, 2007.

[26] M. Shepperd and C. Schofield. Estimating software project
effort using analogies. IEEE Transactions on Software

Engineering, 23(12), November 1997. Available from
http:

//www.utdallas.edu/~rbanker/SE_XII.pdf.

[27] I. Watson. Applying case-based reasoning: techniques for

enterprise systems. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1998.

APPENDIX

This appendix lists the minimum and maximum m values used for
Equation 5 and Equation 6. In the following, mα and mβ denote
COCOMO’s linear and exponential influences on effort/cost, and
mγ and mδ denote COQUALMO’s linear and exponential influ-
ences on number of defects.

Their are two sets of effort/cost multipliers:

1. The positive effort EM features, with slopes m+
α , that are pro-

portional to effort/cost. These features are: cplx, data, docu,
pvol, rely, ruse, stor, and time.

2. The negative effort EM features, with slopes m−

α , are inversely
proportional to effort/cost. These features are acap, apex, ltex,
pcap, pcon, plex, sced, site, and tool.

Their m ranges, as seen in 161 projects [6], are:

(
0.073 ≤ m+

α ≤ 0.21
)
∧
(
−0.178 ≤ m−

α ≤ −0.078
)

(8)

In the same sample of projects, the COCOMO effort/cost scale fac-



tors (prec, flex, resl, team, pmat) have the range:

−1.56 ≤ mβ ≤ −1.014 (9)

Similarly, there are two sets of defect multipliers and scale factors:

1. The positive defect features have slopes m+
γ and are propor-

tional to estimated defects. These features are flex, data, ruse,
cplx, time, stor, and pvol.

2. The negative defect features, with slopes m−

γ , that are in-
versely proportional to the estimated defects. These features
are acap, pcap, pcon, apex, plex, ltex, tool, site, sced, prec,
resl, team, pmat, rely, and docu.

COQUALMO divides into three models describing how defects
change in requirements, design, and coding. These tunings options
have the range:

requirements

{

0 ≤ m+
γ ≤ 0.112

−0.183 ≤ m−

γ ≤ −0.035

design

{

0 ≤ m+
γ ≤ 0.14

−0.208 ≤ m−

γ ≤ −0.048

coding

{

0 ≤ m+
γ ≤ 0.14

−0.19 ≤ m−

γ ≤ −0.053

(10)

The tuning options for the defect removal features are:

∀x ∈ {1..6} SFi = mδ(x− 1)
requirements : 0.08 ≤ mδ ≤ 0.14

design : 0.1 ≤ mδ ≤ 0.156
coding : 0.11 ≤ mδ ≤ 0.176

(11)

where mδ denotes the effect of i on defect removal.


