
Noname manuscript No.
(will be inserted by the editor)

A Survey of Active Learning Techniques

Tim Menzies, West Virginia University

Kelly D. Cecil, West Virginia University

the date of receipt and acceptance should be inserted later

1 Introduction

The objective of this literature is to review the topic of Active Learning. We wish to

give special attention to techniques that minimize the amount of time required for a

user to probe sub-samples of the data to accurately classify code modules as being

”defective” or ”non-defective”. We focus our investigation on sampling techniques to

minimize the number of queries required by the classifier and classification methods to

maximize the accuracy of the classification.

Address(es) of author(s) should be given

2 ACTIVE LEARNING

2 Active Learning

2.1 What is Active Learning?

There is a large amount of data available in unlimited formats such as software en-

gineering data. These pieces of data are all unlabeled and labeling all of these data

points can be expensive. A heuristic to assist in minimizing the quantity of data points

to be labeled would be helpful when classifying data. We introduce active learning as

a promising solution.

Active learning shares similarities with supervised and unsupervised learning. Ac-

tive learning and supervised learning techniques both attempt to learn a accurate

classifier to fit a data set. Labeling points in active learning and unsupervised learning

techniques are expensive and should be minimized. The goal of an active learner should

be to obtain an accurate classifier with a lower computational cost than a standard

supervised learning algorithm by minimizing the number of queries on data points.

Fig. 1: An Active Learning Heuristic suggested by Dasgupta [1]

2.2 Motivation for Active Learning

Dasgupta describes two ways to explain when active learning is helpful [1]. Active

learning can provide means for an efficient search through a hypothesis space. Each

request for a label may help to shrink the set of plausible classifiers, and active learning

techniques can help to select the points that would help to shrink that set as quickly as

possible. This goal of selecting minimal points motivates the investigation of effective

sampling techniques to aid in the selection of data points. Active learning can also help

to exploit a cluster structure in data. A primitive method of constructing classifiers is

to find clusters in the data, label selected data points within the cluster, and assign

each cluster to the majority class of the labeled points. The classifier is constructed on

the results of these clusters.

2.3 Applying Active Learning to Software Engineering

There are considerations that must be faced when applying an active learning technique

to software engineering data. Typical sets of software engineering data are very large,

so we must be minimize the complexity of our solution. A solution with algorithms

of low complexity is desirable to minimize the user must wait before providing input.

2

2 ACTIVE LEARNING 2.3 Applying Active Learning to Software Engineering

This consideration is very important for interactive data mining applications where the

feature set is updated. Jakob Nielsen suggests that a second is the limit for the user’s

flow of thought to continue uninterrupted and ten seconds is the limit for keeping a

user’s attention focused on dialogue. Nielsen also states that basic advice regarding

these response times have been the same for 30 years. [2] A user who must give input

on a set of feature sets may have focused their attention on other topics in the time

required for the application to finish.

One focus should be to identify clustering and classifier algorithms that minimize

their computation complexity while still performing a satisfactory job in their respec-

tive domains. We may also investigate methods of feature subset selection to remove

attributes that add little value to the classification. Previous investigations with feature

subset selection have found that parts of the training data can be removed without

sacrificing the effectiveness of the classifier [3]. These investigations have also suggested

that simple machine learning algorithms such as Naive Bayes can discover information

in defect prediction as well or better than more sophisticated classifiers [3].

Fig. 2: A function call graph generated in GrammaTech’s CodeSurfer source-code anal-

ysis tool

We further consider the application of active learning to the typical scientific

method: creating a theory, exploration and experimentation of the idea, and formation

of a deduction. We may begin with a single hypothesis and apply active learning for

3

2.3 Applying Active Learning to Software Engineering 2 ACTIVE LEARNING

efficient exploration of interesting instances and data points and quickly reduce the

hypothesis space. The results of our deduction can further lead to more theories to

explore in our domain. Active learning can potentially provide a framework to help us

efficiently investigate complex domains including but not limited to software engineer-

ing. Consider existing software engineering tools such as GrammaTech’s CodeSurfer

and CodeSonar that aim to automate source-code analysis. These tools augmented

with an active learning framework could allow a user to efficiently investigate source

code and interactively update their experiment as their hypothesis evolves.

4

3 FEATURE SUBSET SELECTION

3 Feature Subset Selection

We now investigate methods of feature subset selection to intelligently reduce attributes

in data sets.

3.1 Motivation

We earlier discussed the application of active learning to the field of software engineer-

ing. Software engineering data sets are typically large batches being input at once and

can be very time consuming to process. Feature subset selection algorithms provide a

method to reduce the features of a data set to those that are deemed to be the most

valuable to the analysis. This reduction can lead to higher true positive and lower false

positive rates while significantly reducing the time required to analyze the data set.

3.2 Principle Component Analysis

Principle Component Analysis is a feature subset selection technique that employees

Eigen-vectors to find the most significant features of the data [4].

Principle Component Analysis works as follows [4]. We begin by computing the

mean m for each attribute x in the data set D. We subtract m from all values xi
producing a zero-mean data set.. We then calculate the covariance matrix of the zero-

mean data set. The covariance matrix is then used to calculate the eigen-values and

eigen-vectors of the data set. Larger eigen-values indicate strong patterns for a given

attribute while smaller eigen-values indicate weaker, less interesting patterns for an

attribute.

3.3 Term Frequency-Inverse Document Frequency

Term Frequency-Inverse Document Frequency (tf-idf) is a simple feature subset selec-

tion technique that traditionally been applied to text document mining but has been

applied to search-based software engineering with much success.

Fig. 3: An example function [5].

tf-idf begins by extracting terms from source code in our case. Binkley notes that

terms are most often extracted from identifiers and comments in the source code.

Binkley provides the example function in Figure ??fig:Function. We extract identifiers

int, distance, p1, p2, return, sqrt, x, and y from the example function.

We begin by calculating the term frequency (tf) by counting the frequency of the

term ti in code modules mj and optionally normalizing by the number of all terms in

5

3.3 Term Frequency-Inverse Document Frequency3 FEATURE SUBSET SELECTION

mj to offset a bias in large documents. We calculate the inverse document frequency

(idf) by dividing the number of modules M by the number of modules containing the

ti and applying a logarithm to the result. We construct the weight vector for our terms

by multiplying tfi,j and idfi,j .

Fig. 4: Formulas for tf, idf, and the final tf-idf feature vector.

The weight of a term expresses the importance of the term in a document relevant

to the entire collection of documents. A term that occurs rarely in the entire collection

of documents but frequently in a module would receive a high weight, while a term

that appears frequently in all modules in the collection such as programming language

constructs would receive a low weight and could be safely removed from our feature

selection.

Table 1 demonstrates Principle Component Analysis and tf-idf with a combination

of clustering algorithms. It is worth noting that tf-idf requires less time than Principle

Component Analysis for each respective clustering algorithm. tf-idf performs well with

K-means and GenIc clustering algorithms when comparing information gain to their

Principle Componenent Analysis counterparts.

6

4 SAMPLING TECHNIQUES

4 Sampling Techniques

We now take a look at several available techniques to aid the selection of points to

label.

4.1 The Problems of Random Sampling

General active learning algorithms call for a random sampling of the data, but random

sampling is not an optimal sampling policy for several reasons. Labeling data points

is an expensive operation, so it is unwise to label areas where misclassification is not

possible. Dasgupta and Hsu state that the number of queries required for a proper

analysis when using random queries is O(1
ξ
) where ξ is the desired error rate. [6]

Cohn et al suggests that labeling data points will be most useful in the region of

uncertainty, an area defined as the region in the sample space where misclassification

is still possible based on information already gathered [7]. The cost of labeling in this

region is more rewarding than labeling in an area where misclassification is unlikely

occur. Our project can benefit from a sampling technique that finds a balance between

exploration and exploitation of the dataset.

4.2 Exploration vs. Exploitation

Fig. 5: An random sampling technique favoring exploration (left) vs. a simple sampling

algorithm that favors exploitation (right) [8]

An analysis of sampling algorithm will frequently begin to discuss the algorithm’s

balance between the exploration and exploitation of their selection of data points to

be labeled by the expert. Tomanek et. al. describes active learning methods as being

a highly exploitative strategy since active learning seeks to thoroughly explore the

region of uncertainty defined by Cohn above. The trade off is that the method may

not explore regions further away from the region of uncertainty. Wallace and Tomanek

both express concerns that clusters may still exist in this unexplored region and refer to

this phenomenon as the missed-cluster effect. This concern is demonstrated in Figure 5.

We see that the random sampling algorithm demonstrated on the left found all regions

of interest while requesting labels for many unnecessary points. The simple sampling

algorithm demonstrated on the right concentrated requests for labels to the region of

7

4.3 Hierarchical Sampling 4 SAMPLING TECHNIQUES

uncertainty but failed to identify a cluster in the unexplored region of the data set.

Both authors assert the need for sampling techniques that properly balance exploration

and exploitation of a data set.

4.3 Hierarchical Sampling

Dasgupta et. al. present an active learning algorithm shown in Figure6 where they use

inherent cluster structures in the data [6]. Their method begins by applying hierarchical

clustering on the data. The root of the forming tree is assumed to be the cluster

containing all of the instances. Random instances in the tree are queried for their

labels and, depending on these labels, statistics for each pruning of the tree to see

whether a particular pruning is mixed with different labels or is relatively pure with

one class. Labeling can be stopped at any point and the clusters are assigned their labels

depending on the majority vote. The algorithm halts when the pruning of the trees is

statistically judged to be pure. Their method is statistically consistent and never worse

than supervised techniques. When compared to the baseline active learning method of

random sampling, it reduces the number of points queried to O(
√

1
ξ log 1

ξ) The success

method depends on how well the actual labels align with the cluster structure in the

data.

Fig. 6: Hierarchical Sampling Algorithm [6]

8

4 SAMPLING TECHNIQUES 4.4 Greedy Sampling

4.4 Greedy Sampling

Dasgupta suggests a greedy approach that makes use of Vapnik-Chervonenkis (VC)

theory to selecting data points to be labeled [9]. VC theory attempts to use a statistical

point of view to describe learning processes. The greedy strategy selects data points

to label by choosing points that are equally weighted as a positive and negative point.

Dasgupta formally defines this as follows:

Let S ⊆ Ĥ be the current version space. For each unlabeled xi, let S+
i be

the hypotheses which label xi positive and S−
i the ones which label it negative.

Pick the xi for which these sets are most nearly equal in π-mass, that is, for

which min{π(S2
i ,π(S

+
i)} is largest [9].

The greedy choice made by his approach, to always ask for the label which most

evenly divides the space, satisfies the greedy choice property. This does not necessarily

minimize the points that must be labeled but typically requires at most O(ln | H |,

where H is the hypothesis space. Dasgupta’s binary search of the space requires dlogm

labels where d is the VC dimension and m is the total number of data points. The VC

dimension is defined as a measure of the largest data set of cardinality h that can be

shattered (the positive and negative hypotheses are separated) by classification model

f .

4.5 Agnostic Sampling

Balcan et. al.’s A2 agnostic sampling algorithm shown in Figure 7 is the first to be

proposed as an active learning algorithm that works in the presence of any form of

(limited) noise. The assumption of the algorithm is that samples come drawn from a

fixed distribution. A2 (Agnostic Active) is proposed to be a robust version of the selec-

tive sampling proposed by Cohn et. al. The difference of A2 to selective sampling is the

agnostic approach taken by the algorithm that does not eliminate a hypothesis based

on the result of a single label query. The authors show that A2 achieves exponential

speedups in several settings previously analyzed without a noise. A2 performs partic-

ularly well for the simple case of learning threshold functions (this holds for arbitrary

distributions as well, provided the noise rate is low). The expected number of queries

required for the algorithm is O(
η2ln 1

δ

ξ2
) where ξ is the desired error rate, η is the noise

rate, and ξ is a confidence parameter.

4.6 Query by Committee

The object of the Query By Committee (QBC) is to use quick multiple prediction

methods (the committee) to guess a label for each data point. The data point is identi-

fied to be labeled when the committee is unable to find a consensus regarding the data

points label. The intention of the algorithm is to filter the most informative examples

from the set of data points. We discuss Fruend’s algorithm for Query By Committee

below.

The algorithm begins by calling an oracle Sample to retrieve an unlabeled data

point x from the set of data points. The algorithm proceeds to call prediction methods

9

4.6 Query by Committee 4 SAMPLING TECHNIQUES

Fig. 7: A2 Agnostic Sampling algorithm [10]

Fig. 8: Query by Committee algorithm for a committee of two [11]

10

4 SAMPLING TECHNIQUES 4.7 Iterative Approach to Selective Sampling

to quickly guess the label of x. Freund defines a prediction method Gibbs that ran-

domly chooses a hypothesis h from the possible classes (or labels). The data point is

rejected for labeling if the committee of prediction methods agree on a label. The data

point is labeled by the oracle Label if the committee disagrees on the label.

4.7 Iterative Approach to Selective Sampling

Warmuth applies an iterative approach to selectively sampling previously unlabeled

data for finding molecules that will bind with a particular molecule [12]. 5% batches of

the data are first chosen at random until positive and negative batches are found. All

further batches are chosen using several sampling strategies detailed below. Positive is

the goal state for a batch since those compounds will bind. Labels were hidden from

learn in order to simulate the experiment and performance is benchmarked by reporting

false positives. The sampling strategies were as follows:

– Nearest Neighbor: The data is normalized and batches are considered for being

closest to the already labeled batches’ hyperplanes.

– Support Vector Machine (SVM): The batch is selected by choosing the max-

imum margin hyperplane produced by a support vector machine.

– Voted Perceptron (VoPerc): The strategy computes the weight vector of each

example and stores these vectors. The vectors recorded in each pass are recorded

for each 100 random permutations of the labeled examples. Each weight vector is

assigned a ± vote where the prediction on an example is positive if the resultant

vote is greater than zero and negative otherwise. Unlabeled examples are chosen

that are closest to zero.

All three sampling strategies performed similarly when comparing true and false

positives their respective strategies. The authors declare VoPerc as the best performing

technique due to having a smaller variance in true and false positives than the other

two techniques.

11

5 CLUSTERING METHODS

5 Clustering Methods

5.1 Motivation

The previous section discussed various sampling methods for choosing the most useful

queries in an active learning system and their strengths (situations in which they

might excel) and weaknesses (queries required for a proper analysis.) We would clearly

benefit from using clustering techniques to identify areas of interest and ensure that we

further achieve the goal of balancing exploration and exploitation. Our ideal clustering

algorithm would have low asymptotic complexity while providing a optimal grouping

of similar data points.

5.2 k-means

Fig. 9: Pseudo-code for K-means Algorithm

K-means is a clustering algorithm that seeks to partition points into k clusters

with the nearest mean point. The k-means algorithm has an asymptotic complexity of

O(kN) where k is the number of clusters and N is the number of data points in the

input set. K-means has an attractive complexity, but it is important to note that the

algorithm may have to be executed multiple times to find the best value of k for the

given data.

5.3 GenIc

GenIc (GENeralized Incremental Algorithm for Clustering) is a clustering algorithm

developed specifically to analyze streaming data. The assumption is that streaming

data (data that is arriving in real time) can only be analyzed once, so GenIc has a

low time complexity of O(n) where n is the number of input data records [13] GenIc

12

5 CLUSTERING METHODS 5.4 Canopy

Fig. 10: Pseudo-code for GenIc Algorithm [13]

is also an incremental algorithm meaning that the clusters can be updated as sets of

data points referred to as generations arrive over time.

GenIc computes the ”fitness” of each each center as a function of the number of

points assigned to the center. The algorithm computes the probability of the center’s

survival10 and randomly selects a value between 0 and 1 from a uniform distribution to

determine if a center is removed. The fittest generally survive to the next generation,

but old centers are occasionally replaced with new centers.

5.4 Canopy

The canopy clustering technique is a technique that addresses situations where there

can be a large number of points in the data set, each point can have many features,

and there can be many clusters to discover in the data set. The canopy seeks to solve

all three problems by dividing the clustering into a two stage process.

The first stage uses some cheap distance or similarity measure to create overlapping

subsets called ”canopies.” Canopies are defined to be a subset of points that are cal-

culated by some estimated distance or similarity measure to be within some distance

threshold from a central point [14]. Points may reside in multiple canopies (canopies

may overlap), but all points must reside in at least one canopy. An assumption is made

that points that are not in the same canopy can not be in the same cluster.

13

5.5 Compass 5 CLUSTERING METHODS

Fig. 11: An example of five canopies [14]

Figure 11 illustrates an example provided by McCullen et. al. [?] of five clusters

and their canopies. A solid circle indicates the outer thresholds of the canopy. Points

labeled A, B, C, D, and E are the center points of the canopies. The doted circles

within each canopy designate an area is excluded for consideration to be the center of

a new canopy.

The second stage uses a traditional clustering algorithm such as K-means using

an accurate distance or similarity measure with the restriction that we only measure

distances between points that reside in the same canopy (and assume points of different

canopies to have an infinite distance).

McCullen states that the canopy technique requires at most O(f
2n2

c) distance mea-

sures where n is the number of data points, f is the average number of canopies in

which each data point resides, and c is the number of canopies in use. McCullen also

states that f will generally be much less than c. Canopy with K-means as the second

stage clustering technique requires O(n∗k∗f
2

c) per iteration [?].

5.5 Compass

Compass is a clustering algorithm that works by finding two points with a maximum

distance from the other in the data set and build a tree structure by pulling data to

each of the two extreme points to form two sets. We then recurse on each set until

the variance between the layers is less than a determined threshold. The Compass

algorithm is very simple, and thus is very quick. The algorithm’s complexity is O(3LN)

where L is the number of layers and N is the number of input points. Further research

is in progress to investigate the inclusion of early stopping rules in the algorithm to

reduce the number of layers of the tree.

14

5 CLUSTERING METHODS 5.6 Comparison of Clustering Techniques

Fig. 12: Pseudo-code for Compass Clustering Algorithm

5.6 Comparison of Clustering Techniques

A fast clustering algorithm has several advantages over a slower clustering algorithm

such as Greedy Agglomerative Clustering (GAC) which promises a computational com-

plexity of O(n2). GAC and other clustering algorithms with large computational com-

plexities do not scale well to large data sets. We attempt to investigate clustering algo-

rithms that minimize the computational complexity while still providing an acceptable

clustering of the data set.

k-Means can provide a more reasonable time investment for a single execution

of the algorithm, but the algorithm may be ran multiple times in order to find the

best number of k clusters to fit the data set. The worst case time of O(3LN) and

ability to be updated incrementally makes Compass a strong candidate with respect

to computational complexity.

Reducer and Clusterer Time InterSim IntraSim Gain

TF-IDF*K-means 17.52 -0.085 141.73 141.82

TF-IDF*GenIc 3.75 -0.14 141.22 141.36

PCA*K-means 100.0 0.0 100.0 100.0

PCA*Canopy 117.49 0.0 99.87 99.87

PCA*GenIc 11.71 -0.07 99.74 99.81

TF-IDF*Canopy 6.58 5.02 93.42 88.4

Table 1 Results from a text mining experiment comparing combinations of feature subset
reduction and clustering algorithms to more sophisticated methods.

We find in our studies that the Compass clustering algorithm performs significantly

better in most cases than k-means and bisection methods. 2 and 3 provide a Win-Tie-

15

5.6 Comparison of Clustering Techniques 5 CLUSTERING METHODS

Method Win Loss Tie

COMPASS 180 0 0

BestK 100 46 34

K=16 157 20 3

K=8 142 25 13

K=4 115 40 25

K=2 71 70 39

K=1 62 82 36

BISECT4 1 76 103

BISECT6 30 44 106

BISECT8 36 39 105

Table 2 Win-Loss-Tie Results for the COCOMO81 Data Set

Method Win Loss Tie

COMPASS 171 8 1

BestK 109 7 64

K=16 125 1 54

K=8 113 6 61

K=4 77 13 90

K=2 162 0 18

K=1 79 10 91

BISECT4 0 178 2

BISECT6 31 85 64

BISECT8 29 86 65

Table 3 Win-Loss-Tie Results for the Maxwell Data Set

Loss (13) comparison of three clustering methods with varying k clusters based on the

magnitude of the relative error (MRE) [15]:

MRE =
|actuali−predictedi|

actuali

Foss et al. has demonstrated that using only MRE can lead to an incorrect evalua-

tion of the results in certain situations [15]. Wilcoxon statistics were applied to ensure

that these results do not fall into the limitations of MRE. Compass performs signif-

icantly better than K-means and bisecting K-means on both data sets. Compass is

a very promising algorithm that can provide a small computational complexity while

delivering high quality clusters.

16

6 DOMAIN EXPERTS

wini = 0,tiei = 0, lossi = 0

winj = 0,tiej = 0, lossj = 0

if WILCOXON(MRE′si,MRE′sj) says they are the same then

tiei = tiei + 1

tiej = tiej + 1

else

if median(MRE′si) ¡ median(MRE′sj) then

wini = wini + 1

lossj = lossj + 1

else

winj = winj + 1

lossi = lossi + 1

end if

end if

Fig. 13: Pseudo-code for Win-Tie-Loss calculation between variants i and j

6 Domain Experts

We investigate techniques for machine learning techniques to act as our domain expert.

6.1 Motivation

Compton et al. defines an expert as people whose expertise is scarce and valuable. [16]

A human expert can often be difficult to find. Humans are also prone to error and

are slow when analyzing large amounts of batch data (i.e. software engineering data).

An expert may also possess a bias or may specialize in different strategies than other

experts [17]. An active learning scheme may benefit from the input of multiple experts

who are capable of processing large amounts of data quickly.

6.2 The Use of Simulated Experts in Evaluating Knowledge Acquisition

A machine learning algorithm may be used to stand in for a domain expert for cases

when a human domain expert is unavailable. The machine learning algorithm is not an

ideal substitute of a living, breathing expert, but the simulated expert could improve

the knowledge acquisition process. It is important to note that the expert is only as

good as the machine learning algorithm governing it’s ”opinion” of the data and using

only a single expert may not allow the data to be fully explored. Compton [16] and

Shaw [17] both suggest the use of multiple experts that can correspond on a problem

and ”brain-storm” to fully explore their domain of expertise.

6.3 Comparing Conceptual Structures Between Experts

Our experts must be able to communicate with each other if they are to discover

on what topics they agree or disagree. Shaw expresses the need for experts to be

able to communicate their knowledge of concepts with each other in order to come

17

6.4 ID3 and C4.5 6 DOMAIN EXPERTS

to a consensus [17]. The author establishes four relationships that can occur between

experts:

– Consensus: Experts use the terminology and concepts in the same manner.

– Correspondence: Experts use different terminology to describe the same con-

cepts.

– Conflict: Experts use the same terminology to describe different concepts.

– Contrast: Experts differ in their knowledge of both terminology and concepts.

Fig. 14: An example of a reperatory (entity-attribute) grid [17]

We can use a reperatory grid (referred to as an entity-attribute grid in Shaw’s

literature) as a means of establishing an expert’s knowledge on a topic. Figure 14

shows an example of a reperatory grid. Experts can exchange these reperatory grids

to develop a difference grid (shown in Figure 15) to easily establish consensus and

conflict between the experts. This difference grid populated by scores of 0 (denoted by

blank grid locations) to 5 with lower scores indicating a consensus and higher scores

indicating conflicts. Our example shows that our experts agree on concepts in the upper

right corner of the grid and show conflict on concepts in the lower left corner of the

grid.

6.4 ID3 and C4.5

C4.5 is a decision tree machine learning algorithm developed by Ross Quinlan that is

an extension of the ID3 algorithm that addresses several shortcomings of ID3.

The ID3 algorithm begins by choosing a subset of the training data set at random.

Quinlan refers to this subset of data as the window [18]. A decision tree is formed that

correctly classifies all objects in the window. The algorithm attempts to classify the rest

of the training set using the generated decision tree. If the algorithm correctly classifies

the rest of the training set, the algorithm terminates; Otherwise, the algorithm adds

a selection of incorrectly classified data to the window and regenerates the decision

tree. 16 shows an example data set, and Figure 17 shows the resulting decision tree

produced by ID3.

18

6 DOMAIN EXPERTS 6.5 Naive Bayes

Fig. 15: An example of a difference grid [17]

Fig. 16: An example data set to be processed by ID3 [18]

C4.5 extends ID3 by adding the ability to deal with missing data and numeric data

and provides pruning of the decision tree.

6.5 Naive Bayes

Naive Bayes is a simple statistics-based learning method that is based on Bayes’ theo-

rem. Given a class variable C and a list of features f1..fn):

p(C|f1..fn) =
p(C)∗

p(f1..fn|C)
p(f1..fn)

19

6.5 Naive Bayes 6 DOMAIN EXPERTS

Fig. 17: An example decision tree produced by the ID3 algorithm [18]

The Naive Bayes algorithm is simple to use in practice, very efficient, and robust

against noisy data [19]. The algorithm may be used on raw numeric data using a

Gaussian probability density function or on discrete data. A limitation of the Naive

Bayes classifier is the assumption of feature independence utilized by the classifier is

often violated in the real world. The Naive Bayes classifier works very well despite this

limitation.

Fig. 18: Comparison of Naive Bayes to other algorithms [20]

Testing by Pedro Domingos has found that Naive Bayes performs better than

other classification algorithms including C4.5 [20]. Figure 18 shows Domingos’ results

comparing Naive Bayes with discretized data (Bayes), Naive Bayes using a Gaussian

probability function for the raw numeric data (Gauss), and several other algorithms.

Domingos ranked each classifier using 1 to indicate the most accurate algorithm and

increasing as accuracy decreases. Naives Bayes with discrete data performs best while

Naive Bayes using the Gaussian probability density function ranked second best.

20

7 SUMMARY

7 Summary

We have investigated the heuristics of an active learning technique and hypothesized

about it’s application to complex domains with much focus on software engineering.

Feature subset selection provides us with the means to reduce features in a data set

to those that are most interesting to the data set. Principle Component Analysis is a

feature subset selection algorithm that uses Eigen-Vectors to find the most significant

features in the data. We also present the Term Frequency-Inverse Document Frequency

algorithm. The algorithm counts the frequency of a term in a document and scales by

the inverse term frequency to produce a weight describing the importance of a term

within a document relevent to the entire collection of documents.

Sampling methods are very important to selecting data points. Random sampling

is technique that heavily favors exploration and will label points that will add little in-

formation to the active learner. We look at techniques that favor exploitation to query

points that are in the region of uncertainty. Hierarchical sampling applies hierar-

chical clustering to create a tree structure and applies statistical methods to various

pruning of the trees to judge if a tree is pure (containing one class). Greedy sampling

applies Vapnik-Chervonenkis theory to choose the most attractive points that are al-

most equally labeled with positive and negative labels. A2 agnostic sampling algorithm

provides a solution to noise in the data by ensuring that a hypothesis will not be re-

moved from the hypothesis space because of a single point. Query by Committee uses

a committee of simple prediction methods to collectively guess the label of a point and

send the point to an expert if they disagree on the label. Finally, Warmuth suggests

iterative approaches to selective sampling using nearest neighbor, support vector ma-

chine, and voted perceptron techniques and found that all three work similarly well

with voted perceptron providing slightly less variance in true and false positives than

the other two techniques.

Clustering methods allow the active learner to identify areas of interest to further

promote exploration and exploitation of the data set. K-means is an general use O(kN)

clustering algorithm that updates the mean point of clusters as the cluster membership

changes. GenIc is a clustering algorithm that computes the ”fitness” of a cluster to de-

termine if the cluster survives to the next generation. GenIc is designed for streaming

data and assumes that data can only be analyzed once; GenIc boosts a O(n) complex-

ity to facilitate this streaming data. Canopy is a clustering technique that introduces

”canopies” to ensure that traditional clustering techniques only consider points within

a distance threshold. Canopy considerably reduces the complexity of clustering algo-

rithms; For example, K-means with canopies requires O(n∗k∗f
2

c) where f is usually

much less than c. Compass is a simple O(3LN) algorithm that works by finding two

points of maximum distance from each other and constructs a tree by separating data

points between the two points based on a distance measure. The algorithm then re-

curses on the both data sets until the variance between layers is less (uninteresting) or

greater (too chaotic) than a variance threshold. We present results that suggest that

simple feature subset selection and clustering methods perform as well as or better

than more complicated methods. We also present evidence that the Compass cluster-

ing algorithm performs considerably better than K-means and Bisecting K-means for

various k in several datasets from the PROMISE data repository.

We rely on Domain Experts to label interesting data points. Human experts are

scarce and are prone to error when analyzing large batch sets of data (such as software

21

7 SUMMARY

engineering data). We introduce the possibility of using a machine learning algorithm to

stand in for a human domain expert and establish a method for experts to communicate

their opinions on their domain and terminology with one another. We introduce C4.5

and Naive Bayes machine learning algorithms as possible candidates for experts. C4.5

is a decision tree learning algorithm that trains by continuously adds portions of a

training set until the entire training set can be correctly classified. Naives Bayes is a

statistical learning algorithm based on Bayes’ theorem. We present results by Domingos

that suggests that Naive Bayes outperforms other learners such as C4.5 in practice.

22

List of Tables References

References

1. S. Dasgupta and J. Langford, “Tutorial summary: Active learning,” in ICML, p. 178, 2009.
2. J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 1993.
3. T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang, “Implications of ceil-

ing effects in defect predictors,” in PROMISE ’08: Proceedings of the 4th international
workshop on Predictor models in software engineering, (New York, NY, USA), pp. 47–54,
ACM, 2008.

4. L. I. Smith, “A tutorial on principal component analysis.”.
5. D. Binkley and D. Lawrie, “Information retrieval applications in software maintenance

and evolution,” in In Encyclopedia of Software Engineering (P. Laplante, ed.), Taylor
and Francis LLC, 2010.

6. S. Dasgupta and D. Hsu, “Hierarchical sampling for active learning,” in ICML ’08: Pro-
ceedings of the 25th international conference on Machine learning, (New York, NY, USA),
pp. 208–215, ACM, 2008.

7. D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with active learning,” Mach.
Learn., vol. 15, no. 2, pp. 201–221, 1994.

8. B. C. Wallace, K. Small, C. E. Brodley, and T. A. Trikalinos, “Active learning for biomed-
ical citation screening,” in Knowledge Discovery and Data Mining (KDD), 2010.

9. S. Dasgupta, “Analysis of a greedy active learning strategy,” in In Advances in Neural
Information Processing Systems, pp. 337–344, MIT Press, 2004.

10. M.-F. Balcan, A. Beygelzimer, and J. Langford, “Agnostic active learning,” in ICML ’06:
Proceedings of the 23rd international conference on Machine learning, (New York, NY,
USA), pp. 65–72, ACM, 2006.

11. Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, “Selective sampling using the query
by committee algorithm,” Mach. Learn., vol. 28, no. 2-3, pp. 133–168, 1997.

12. M. K. Warmuth, G. Rätsch, M. Mathieson, J. Liao, and C. Lemmen, “Active learning in
the drug discovery process,” 2002.

13. C. Gupta and R. Grossman, “Genic: A single pass generalized incremental algorithm for
clustering,” in In SIAM Int. Conf. on Data Mining, SIAM, 2004.

14. A. McCallum, K. Nigam, and L. H. Ungar, “Efficient clustering of high-dimensional data
sets with application to reference matching,” in KDD ’00: Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining, (New York,
NY, USA), pp. 169–178, ACM, 2000.

15. T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simulation study of the
model evaluation criterion MMRE,” IEEE Transactions on Software Engineering, vol. vol,
pp. 29no11pp985–995, 2003.

16. P. Compton, P. Preston, and B. Kang, “The use of simulated experts in evaluating knowl-
edge acquisition,” in University of Calgary, pp. 12–1, 1995.

17. M. Shaw and B. R. Gaines, “Comparing conceptual structures: Consensus, conflict, cor-
respondence and contrast,” Knowledge Acquisition, vol. 1, pp. 341–363, 1989.

18. J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81–106, March
1986.

19. Y. Yang and G. Webb, “Weighted proprotional k-interval discretization of naive-bayes
classifiers,” in PAKADD’03, pp. 501–512, 2003.

20. P. Domingos and M. J. Pazzani, “On the optimality of the simple bayesian classifier under
zero-one loss,” Machine Learning, vol. 29, no. 2-3, pp. 103–130, 1997.

List of Tables

1 Results from a text mining experiment comparing combinations of fea-

ture subset reduction and clustering algorithms to more sophisticated

methods. 15

2 Win-Loss-Tie Results for the COCOMO81 Data Set 16

3 Win-Loss-Tie Results for the Maxwell Data Set 16

23

List of Figures List of Figures

List of Figures

1 An Active Learning Heuristic suggested by Dasgupta [1] 2

2 A function call graph generated in GrammaTech’s CodeSurfer source-

code analysis tool . 3

3 An example function [5]. 5

4 Formulas for tf, idf, and the final tf-idf feature vector. 6

5 An random sampling technique favoring exploration (left) vs. a simple

sampling algorithm that favors exploitation (right) [8] 7

6 Hierarchical Sampling Algorithm [6] . 8

7 A2 Agnostic Sampling algorithm [10] 10

8 Query by Committee algorithm for a committee of two [11] 10

9 Pseudo-code for K-means Algorithm . 12

10 Pseudo-code for GenIc Algorithm [13] 13

11 An example of five canopies [14] . 14

12 Pseudo-code for Compass Clustering Algorithm 15

13 Pseudo-code for Win-Tie-Loss calculation between variants i and j . . . 17

14 An example of a reperatory (entity-attribute) grid [17] 18

15 An example of a difference grid [17] . 19

16 An example data set to be processed by ID3 [18] 19

17 An example decision tree produced by the ID3 algorithm [18] 20

18 Comparison of Naive Bayes to other algorithms [20] 20

24

