RANDOM RAMBLINGS 1. GLASS DATA I wanted to use the glass data from Quebec, I really did. Unfortunately, none of the information in the spreadsheet is useful to my cause. There is no data relating to the number of glass fragment groupings found at a crime scene, nor is there any data relating to the number of glass fragments per glass grouping found at crime scenes. 2. EVETT 1994 AND DATA MANIPULATION We spoke about "maniplulating data" during our last meeting. This was much more ambitious than I originally expected. Any fool can add random numbers onto data, but I decided that I should seek guidance to manipulate it in a meaningful manner. I decided it would be best to modify the Poisson distribution that calculates the T values used in Evett's 1994 paper. I chose this because Evett states: "Imagine that, before starting the case, the expert was asked how many matching fragments would be expected to be found if C were truly the case and that the reply was 'about 4'." Clearly there is a lot of wiggle room in the calculation of this factor, so I created a procedure which writes to a file which can be plotted in gnuplot. The plot calculates the T values based on finding x fragments in y different groups with a lambda factor of y. This procedure outputs the T values given the input values (x,y,z) and can be optained by executing (create-plot-t) after loading evett94.lisp The resulting plot was not significant to me in any way. The slopes were poor for skiing: low values of (x,y,z) produced a local maximum, but as (x,y,z) became larger, the outputs became flat. Since I had created a function to calculate t-values given a lambda and a j value, it seemed natural to plot lambda, j, and the result of Evett's 1994 algorithm with the inputs lambda and j. The resulting plot is fairly interesting, but nothing abnormal is present. 3. EVETT 1994 SUMMARY This summary is available as summary.text