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Abstract

Evaluation Bias in Effort Estimation

Omid Jalali

There exists a large number of software effort estimation methods in the literature and the space of
possibilities [54] is yet to be fully explored. There is little conclusive evidence about the relative
performance of such methods and many studies suffer from instability in their conclusions. As a
result, the effort estimation literature lacks a stable ranking of such methods.

This research aims at providing a stable ranking of a large number of methods using data sets
based on COCOMO features. For this task, the COSEEKMO tool [46] was further developed into
a benchmarking tool and several well-known effort estimation methods, including model trees,
linear regression methods, local calibration, and several newly developed methods were used in
COSEEKMO for a thorough comparison. The problem of instability was further explored and the
evaluation method used was identified as the cause of instability. Therefore, the existing evaluation
bias was corrected through a new evaluation approach, which was non-parametric. The Mann-
Whitney U test [42] is the non-parametric test used in this study, which introduced a great amount
of stability in the results. Several evaluation criteria were tested in order to analyze their possible
effects on the observed stability.

The conclusions made in this study were stable across different evaluation criteria, different
data sets, and different random runs. As a result, a group of four methods were selected as the
best effort estimation methods among the explored 312 combinations of methods. These four
methods were all based on the local calibration procedure proposed by Boehm [4]. Furthermore,
these methods were simpler and more effective than many other complex methods including the
Wrapper [37] and model trees [60], which are well-known methods in the literature.

Therefore, while there exists no single universal best method for effort estimation, this study
suggests applying the four methods reported here to the historical data and using the best per-
forming method among these four to estimate the effort for future projects. In addition, this study
provides a path for comparing other existing or new effort estimation methods with the currently
explored methods. This path involves a systematic comparison of the performance of each method
against all other methods, including the methods studied in this work, through a benchmarking tool
such as COSEEKMO, and using the non-parametric Mann-Whitney U test.
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Chapter 1

Introduction

Software effort estimation is, as its name suggests, the task of estimating the amount of effort

required to develop new software. It is essential for software developers to estimate a new project’s

effort in order to make a decision about developing or not developing a software project. In large

projects, it is critical that all resources are planned ahead of time and money is allocated to the

project. In many cases, the success or failure of a company or organization may depend on such a

software project.

According to Boehm, software effort estimates are often wrong by a factor of four [4]. Other

studies have reported larger errors (of 85% to 772% with many in the range of 500% to 600%)

when comparing different software models [33]. A recent example is the NASA’s CLCS system,

which was cancelled in 2003. The initial estimate for the project was 206 million dollars, which

was increased to between 488 million and 533 million dollars, more than twice the initial estimate.

On cancellation, approximately 400 developers lots their jobs [70].

There are other studies exploring the problem of overrunning projects. Molokken and Jor-

gensen report that 60% to 80% of projects “encounter effort and/or schedule overruns [51].” Ac-

cording to Standish Group’s Chaos Report, “31.1% of projects will be cancelled before they ever

get completed. Further results indicate 52.7% of projects will cost 189% of their original esti-
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mates [72],” meaning that there is a 89% overrun in these projects.

This could mean that the remaining projects may have to be cancelled or postponed in order

to cover the costs of these projects. Although Jorgensen and Molokken briefly question such

numbers [28], they report an average of 30% to 40% overrun [28, 51]. There are other studies

reporting several cancelled, delayed, and overrun projects. The lesson from these studies is to

search for methods that can reduce the error in effort estimation and produce reliable and accurate

estimates.

Researchers have developed several software models and numerous effort estimation methods,

some of which can be found in [54]. This has caused two problems. One is that, each organization

capable of collecting historical data has used a different model to collect data and most likely

kept it private. Therefore, there is usually no access to data in order to research certain models’

performance. This has led this study to use the COCOMO model developed and later improved by

Boehm [4, 7] with two publicly available data sets.

Another problem is that, although there are numerous studies on different effort estimation

methods (for example, Jorgensen and Shepperd’s study [30] identified 304 software cost estimation

papers), there are few empirical studies comparing these methods, and more importantly, reporting

stable conclusions. There are, however, few studies that compare different software models, such

as COCOMO II, SEER-SEM, PRICE-S comparison in [40], REVIC, SASET, PRICE-S, SEER-

SEM, SLIM, SOFTCOST, CHECKPOINT, COCOMO II, and SAGE comparison in [19], and

SLIM, COCOMO, Function Points, and ESTIMACS comparison in [33]. Although these studies

are helpful in the sense that they provide a unique opportunity to compare the performance of

these models (mostly without any notable publicly available data), they also add to the confusion

of what model or method to use since they either report no clear winner [19, 40] or evaluate the

results differently and offer different conclusions based on the method of evaluation [33].

It is clear that unless the numerous effort estimation methods are ranked systematically, the

confusion will remain, and will possibly get worse as new methods are added. This study aims

2



at such a task. Different combinations of the representatives of several well-known groups of

methods are ranked in this research in an effort to introduce a framework for such rankings in the

future, as well as reporting the best performing methods among the 312 combinations of methods

studied here.

The importance of the results of this research is not only in the systematic method of compari-

son offered, but is also in the stability of the conclusions made. The evaluation method used in this

research plays a key role in illustrating this stability, which is the main feature missing from many

studies [19,33,40,46,67]. As an example, Shepperd and Kadoda’s study attempted at “comparing

four contrasting techniques of stepwise regression, rule induction, a form of case-based reasoning,

and neural nets [67].” However, they were unable to show conclusive results about these methods

and their possible rankings relative to each other. It should be noted that their experiments used

simulated data (first proposed by Pickard et al. [56] where they explored simulated non-normal

data) and were repeated across different data sets and used different sampled training sets in dif-

ferent runs. Although no conclusive results were offered, their study contained some elements of

a systematic comparison, such as different data sets and runs.

The experiments in this work have the same goal of ranking methods and use a similar ap-

proach. The COSEEKMO tool [46] is further developed to incorporate several different methods,

including model trees [60], linear regression methods, case-based reasoning methods [54, 69] (us-

ing estimation by analogy), thorough column pruning methods such as Wrapper [37], local cal-

ibration [4] methods, as well as newly developed column pruners [2] and row pruners (Section

3.2.3).

There is an evaluation bias in every study of effort estimation methods, due to the selection

of specific tests to compare these methods. This study will introduce a non-parametric evaluation

method called the Mann-Whitney U test (Section 3.4.2), which does not assume an underlying

distribution and hence, is less affected by the nature of the experiments. In order to further reduce

the bias in evaluation, three different evaluation criteria will be used to measure the performance
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of each method. Also, different data sets (and their subset) and different random runs of the

experiments will be used to compare all methods involved.

The results of this research show a great amount of stability in the conclusions (unlike other

prior studies) and report four effort estimation methods as the best performing methods among

the 312 combinations of methods explored. These methods are all based on the local calibration

method developed by Boehm [4]. A row pruning method developed in this work is used in two

of these four methods. These four methods were recently implemented in a tool called 2CEE for

NASA’s Jet Propulsion Laboratory and have shown outstanding results [2].

1.1 Contributions of This Thesis

This thesis has made the following contributions to both the literature and practice:

• A new framework for comparing and ranking effort estimation methods.

• One of the few studies that compared the representatives of many effort estimation methods

in a large scale, through 312 combinations of such methods, and reported stable results.

• Reducing the search space for effort estimation methods to a small group of four top per-

forming methods.

• Exploring the evaluation bias in the comparison of effort estimation methods and aiming at

reducing its effects in such comparisons.

• Suggesting the Mann-Whitney U test as a non-parametric evaluation method in effort esti-

mation, which reduces the instability in the results. This suggestion was recently taken into

consideration by Baker [2] and showed similar stability in the results.

• A simple row pruning method, called Locomo and based on the local calibration procedure

and the nearest neighbor algorithm, which performs well and is reported in the top four
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performing methods in this study.

• Industrial implementation of Locomo in the 2CEE tool developed for NASA’s Jet Propulsion

Laboratory.

1.2 Structure of This Document

The outline of the remaining chapters is as follows:

• Chapter 2 explores related studies and provides a background of the current research.

• Chapter 3 gives the details of the experiments performed in this study and introduces tools

and methods used or developed for this research. It also offers the results and the discussion

of these experiments.

• Chapter 4 summarizes this study and offers conclusions. It also describes possible future

works.

• In addition, there is an appendix containing the instructions for the experimental tool used in

this study.
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Chapter 2

Background and Related Work

This chapter provides background information about this research. It is important to understand

the previous work and existing problems in this area before presenting the experiments and results

since this study attempted to solve such problems. The effort estimation concept and different

approaches to effort estimation are discussed in Section 2.1. Section 2.2 focuses on the COCOMO

model used in this study and briefly discusses other models. The concepts of pruning columns and

row are provided in Sections 2.3 and 2.4 respectively. In this study, these pruners are considered

pre-processors to learners, discussed in Section 2.5. Different evaluation methods are discussed in

Section 2.6 and the instability of such evaluations in effort estimation is discussed in Section 2.7.

Finally, a summary of the current common problems in the effort estimation literature is presented

in Section 2.8.

2.1 Effort Estimation

Effort estimation for software projects serves a major role in the success or failure of such projects,

especially in the case of large projects. As mentioned in Section 1, inaccurate estimates are re-

ported widely in the literature and have caused the cancellation of overrunning projects. Boehm
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Figure 2.1: Classification of Effort Estimation Methods [54].

and Papaccio’s study about software costs concludes that “understanding and controlling software

costs is extremely important [6].” This section provides an overview of models and methods that

could help in estimating such costs as accurately as possible, which could simplify the process of

controlling software costs as [6] mentions.

Effort estimation methods can be classified in different ways. Section 2.1.1 takes a look at one

such classification, which focuses on the type of effort estimation methods, broadly categorized

based on the amount of historical data they need. The remaining sections discuss this classification

in detail.

2.1.1 Classification of Software Effort Estimation Methods

Myrtveit et al. published a study where they classified the current effort estimation methods in

two groups of sparse-data and many-data methods [54]. This is a classification based on the

availability of historical data. According to [54], “sparse-data methods are estimation methods

requiring few or no historical data” while many-data methods need more historical data for effort

estimation. Each group contains different types of methods.

Sparse-data methods include:
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• Analytic Hierarchy Process (AHP),

• Expert Judgment, and

• Automated Case-Based Reasoning (CBR).

Many-data methods are subdivided into functions and arbitrary function approximators (AFA).

According to [54], “arbitrary function approximators do not make any assumptions regarding

the relationship between the predictor and response variables” while functions assume otherwise.

AFA’s include:

• Estimation by Analogy (EBA),

• Artificial Neural Networks (ANN), and

• Classification and Regression Trees (CART).

Myrtveit et al. explore some of these methods. Overall, there are 7 groups of effort estimation

methods based on this classification. However, EBA may be considered a kind of CBR. As they

mention, “there is a spectrum between sparse and many-data methods” and CBR may belong to

both depending on how it is used. “If CBR is used to identify the closest case, it is a many-data

method. EBA is an example of this use of CBR. [54].” Therefore, they view EBA as a type of CBR

and the same approach is used in Section 2.4 to study both methods for row pruning.

2.1.2 Analytic Hierarchy Process

Analytic Hierarchy Process (AHP) [63], in general, is a technique for dealing with complex deci-

sions by determining the right decision suited for each case, or criteria, rather than using a generic

decision. Each problem in analyzed through the hierarchy of smaller problems that are easier to

solve. In essence, this is a structured problem-solving technique that deals with sub-problems con-

currently and makes a decision based on the relative ranking of the solutions for each sub-problem.
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AHP can be applied to effort estimation in various ways. As Shepperd and Cartwright suggest,

“an example would be to utilize the hierarchical structure of AHP to predict effort by decomposing

the problem into a number of criteria which all contribute to actual effort [65].” They use AHP

(as well as a pairwise comparison technique) in the study of their sparse-data method and report

promising results. AHP, as a multicriteria decision-making technique, may be applied to effort

estimation, which uses a single criterion, namely effort. Moreover, other contributing factors to

effort such as function points and other information about the project can extend this hierarchy [65].

2.1.3 Expert Judgment

According to Jorgensen, an estimation strategy is categorized as expert estimation, or expert judg-

ment, when “the estimation work is conducted by a person recognized as an expert on the task,

and that a significant part of the estimation process is based on a non-explicit and non-recoverable

reasoning process [27].” Clearly, the extent to which the expert follows guidelines in this process

can affect the successful reproduction of the results of this process. Nonetheless, the expert may

or may not follow any instructions or use the historical data.

There are twelve “best practice” expert estimation principles suggested by Jorgensen [27] based

on empirical evidence:

1. Evaluate estimation accuracy, but avoid high evaluation pressure.

2. Avoid conflicting estimation goals.

3. Ask estimators to justify and criticize their estimates.

4. Avoid irrelevant and unreliable estimation information.

5. Use documented data from previous development tasks.

6. Find estimation experts with relevant domain background and good estimation

records.
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7. Estimate top-down and bottom-up, independently of each other.

8. Use estimation checklists.

9. Combine estimates from different experts and estimation strategies.

10. Assess the uncertainty of the estimate.

11. Provide feedback on estimation accuracy and task relations.

12. Provide estimation training opportunities.

According to Jorgensen [27], principles 1 through 5 “reduce situational and human biases,”

principles 7 through 10 “support the estimation process,” and principles 11 and 12 “provide feed-

back and training opportunities.” Jorgensen also cautions that there is “still a need for more knowl-

edge about how to apply them in various software estimation situations. [27].” Baker [2] studied

these principles and implemented seven of the twelve best practices in the 2CEE tool designed for

NASA’s Jet Propulsion Laboratory.

Expert judgment approaches are widely used for effort estimation in the industry [27, 30].

Jorgensen [27] reports five studies were 62%, 72%, 83%, 84%, and 86% of the effort estimation in

a wide range prominent organizations and companies were performed using expert judgment.

In their review of effort estimation studies, Jorgensen and Shepperd claim that “more formal

estimation techniques” or model-based methods “has been somewhat erratic to date, has not doc-

umented higher accuracy than expert judgment, and that expert-based estimation approaches are,

by far, the most common used approaches by the software industry [30].” Although, according

to [30], model-based methods have not documented higher accuracies than expert-based methods,

Jorgensen mentions that “it is not possible to conclude that expert estimation or estimation model,

are more accurate” and offers an observation where expert-based methods seem to be more accu-

rate “when there are important domain knowledge not included in the estimation models, when the

estimation uncertainty is high as a result of environmental changes not included in the model, or

when simple estimation strategies lead to relatively accurate estimates [27].” Therefore, there is no
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clear winner in the comparison of the two approaches in effort estimation. Jorgensen offers empir-

ical results where he compared 15 studies that compare expert-based estimation with model-based

estimation. Among these studies, five were in favor of expert-based estimation, five were in favor

of model-based estimation, and five did not find any difference [27].

Therefore, although the expert-based estimation is widely used in the industry, the lack of a

clear winner between the two approaches has led researchers to study the model-based effort esti-

mation extensively . Another reason for the tendency of researchers toward model-based methods

may be the lack of expert judgments in the research community and ease of reproducing model-

based methods’ results comparing to that of the expert-based methods.

In general, model-based methods, such as the ones in Figure 2.1 (functions, different arbitrary

function approximators (AFA) including EBA, ANN, and CART, and even CBR in certain cases)

use some algorithm to summarize the historical data and offer estimates for new projects. These

methods are discussed in their corresponding sections. Menzies et al. [46] extended the twelve best

practices for expert-based estimation to include eight best practices for model-based estimation:

According to Boehm [4, 7]; Chulani [13, 62]; Kemerer [33]; Stutzke [73]; Shep-

perd [68]; our own work [11, 12, 45]; and a recent tutorial at the 2006 International

Conference of the International Society of Parametric Analysts [24], best practices for

model-based estimation include at least the following:

13. Reuse regression parameters learned from prior projects on new projects;

14. Log-transforms on costing data before performing linear regression to learn log-

linear effort models;

15. Model-tree learning to generate models for non-linear relationships;

16. Stratification, i.e. given a database of past projects, and a current project to be

estimated, just learn models from those records from similar projects;
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17. Local calibration, i.e. tune a general model to the local data via a small number

of special tuning parameters;

18. Hold-out experiments for testing the learned effort model [45];

19. Assessing effort model uncertainty via the performance deviations seen during

the hold-out experiments of item #17;

20. Variable subset selection methods for minimizing the size of the learned effort

model [11, 12, 34, 49].

(These practices were applied or further explored in this study with the exception of perfor-

mance deviations being rejected and replaced with a non-parametric test. The results are explained

in Section 3.6.)

They also included best practices for the combination of expert-based and model-based esti-

mation [46]:

This separation of model-based and expert-based methods is not a strict division since

some practices fall into both categories: e.g. #4 & #20 are similar as are #10 &

#19. Also, one way to view model-based methods is that they seek algorithms to

make maximal use of #5. Further, some research actively tries to combine the two

approaches:

21. Shepperd’s case-based reasoning tools [68] explore algorithmic methods for em-

ulating expert analogical reasoning;

22. Chulani & Boehm’s Bayesian tuning method [13] for regression models allows

an algorithm to carefully combine expert judgment with the available data;

23. This paper will argue for the use of heuristic rejection rules to represent expert

intuitions on how to rank different effort models.
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(Case-based reasoning was applied and further explored in this study and rejection rules were

replaced with a non-parametric test. The Bayesian tuning method can be explored as a future work.

The results of the case-based reasoning method are explained in Section 3.6.)

Baker’s attempt [2] to integrate as many as seven of Jorgensen’s twelve best practices [27] into

a tool, which also involves model-based methods emphasizes the suggestions of other researchers

[64] to combine expert-based and model-based effort estimation methods and create a unified

approach for effort estimation, which could potentially increase the accuracy of the estimates.

The Bayesian estimation approach suggested by Chulani et al. [13] is another method to merge

“expert prior information with software engineering data,” which is especially useful when the

data is scarce and incomplete.

2.1.4 Automated Case-Based Reasoning

Case-based reasoning (CBR) is an approach for finding similarities between past projects and a

future project and using them in predicting certain features, such as effort, for future projects. In

this method, when seeking a solution to a current problem, the problem is matched against other

solved problems and their solutions (altogether called cases) in the case base. Solutions to similar

problems are then used to find a solution to the current problem, which is tested for success. This

new solution may be revised if necessary. The new problem and its solution will be stored as a new

case in the case base. In short,

case-based reasoning has four distinct aspects:

• characterization of cases,

• storage of past cases,

• retrieval of similar cases to use as analogies, and

• utilizing the retrieved case to solve the target case problem, sometimes known as

case adaptation [67].
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In a general sense, CBR and the methods based on it may seem similar to rule induction algo-

rithms such as C4.5 [61] in that both approaches look for similarities in the data. However, there

is a difference in how they use their training data. CBR uses the test instance (current problem) to

generalize as it is processing its train instances while a rule induction algorithm finishes training a

model before it can use it on a test instance. In other words, according to Shepperd and Kadoda,

CBR is considered to be fundamentally different from rule induction and regression

approaches in that it utilizes specific knowledge of previously solved cases to solve

future ones, while the former use generalized knowledge or relationships, respectively.

In other words, CBR is model free [67].

2.1.5 Functions

Functions are the first group of many-data methods analyzed by Myrtveit et al. [54] and are consid-

ered of the general form y = AxB. In general, functions relate the features (also called the variables)

of a model mathematically. The linear regression method (discussed in Section 3.5.5) is a function,

and the only one discussed in [54]. Boehm, who developed the COCOMO model [4] (discussed in

Section 2.2.1), also developed the local calibration method, which is a specialized form of linear

regression [4, p526-529]. Local calibration is widely used as an effort estimation method, at least

in the COCOMO community. Local calibration is further discussed in Section 3.5.5.

There are also other forms of regression, such as the multiple regression approach.

A multiple regression model can be written as

yt = β0 +β1xt1 + · · ·+βkxtk + εt

where xt1 · · ·xtk are the values of the predictor (or regressor) variables for the xth ob-

servation, β0 · · ·βk are the coefficient to be estimated, εt is the usual error term, and yt
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is the response variable for the yth observation [13].

Chulani et al. report the popular classical multiple regression approach as the most commonly

used technique for empirical calibration [13]. Their study explores the problems faced by the

multiple regression approach during the calibration of COCOMO II [7], an updated version of

COCOMO. Their study suggests the Bayesian approach over the multiple regression approach.

Nonetheless, regression is widely used in many studies in the effort estimation literature. Accord-

ing to Jorgensen and Shepperd [30], “regression-based estimation approaches dominate” the space

of estimation approaches with a total of 49% of the studies published between 1989 and 2004. It

should be noted that they also included the methods based on COCOMO in this list.

2.1.6 Estimation by Analogy

Estimation by analogy can be considered a type of case-based reasoning [54] and has become the

focus of more studies recently [30]. Among other methods, Boehm suggested estimation by anal-

ogy as a method for effort estimation [4]. According to Boehm, “the main strength of estimation

by analogy is that the estimate is based on actual experience on a project [4].” Since it is not clear

to what degree the previous project represents the current project, and Boehm considered this its

main weakness, estimation by analogy should be used with caution. However, Boehm did not

explore the possibility of automating this process at that time.

Later, Cowderoy and Jenkins [15] mentioned estimation by analogy as a “widely exercised

practice within the software industry” and as a partly automated process. Nonetheless, this pro-

cess was not fully automated until later. Among other tools, ANGEL software tool described by

Shepperd et al. is an automated tool that uses estimation by analogy [69]. In their effort esti-

mation study, Shepperd and Schofield suggested using estimation by analogy as a viable tech-

nique in addition to other effort estimation methods [68]. Effort estimation using estimation

by analogy and case-based reasoning in general are extensively studied by other researchers as
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well [1,29,31,32,38,41,52,53,57,58]. Some, however, are skeptical about the application of case-

based reasoning in effort estimation in every domain. Delany et al. studied the problems associated

with extending the use of CBR for cost estimation to operate across broader domains [16].

2.1.7 Artificial Neural Networks

As their name suggests, artificial neural networks (ANN) are mathematical methods designed

based on the neural activities of neurons of living organisms in the nervous system, and more

specifically the brain. Similar to the brain, where an input (stimuli) can be related to an output

(action), an ANN can model the relations between inputs and outputs.

An application of ANN is in data mining and finding patterns. Effort estimation is also possible

using ANN models, although Myrtveit et al. mentioned contradicting studies about the relative

performance of ANN models comparing to regression models discussed before [54]. Another

study (also discussed in Section 2.7) is the Shepperd and Kadoda’s study where they found ANN

usually performing worse than stepwise regression (a variant of regression), rule induction, and

case-based reasoning [67]. Nonetheless, researchers have used and recently focused more on ANN

as an effort estimation method [30].

2.1.8 Classification and Regression Trees

Classification trees were studied both in statistics and in artificial intelligence. The statistics studies

by Breiman et al. led to the classification and regression trees (CART) [9] and among other studies

in artificial intelligence, classification trees led Quinlan to ID3, which was later extended into

C4.5 [61]. In essence, CART creates a classification tree of a group of variables and their split

points that most reduce the impurity of the root node, where impurity is measured using a specific

function [77].

The application of CART in effort estimation may seem strange due to the presence of a clas-
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sification tree. However, as Briand et al. explain, this is possible:

CART examines the data and determines data splitting criteria that will most suc-

cessfully partition the dependent variable. To build a regression tree the data set is

recursively split until a stopping criterion is satisfied. All but the terminal nodes in a

tree specify a condition based on one of the variables that have an influence on project

effort or any other dependent variable.

After a tree is generated it may be used for effort prediction of a project. To predict

the effort for a project, a path is followed through the tree according to the project’s

specific variable values until a terminal node is reached. The mean or median value of

the terminal node may then be used as the predicted value [10].

According to Jorgensen and Shepperd [30], CART is used in effort estimation studies, which

is 5% of studies over a span of 15 years. Myrtveit et al. [54] report contradicting studies about the

merits of CART comparing to regression models. One of such studies is by Briand et al. [10], where

they report contradicting results comparing to their previous studies on the benefits of CART when

used alone or in combination with other methods. They conclude that “depending on the structures

present in the data, we have to expect variations in performance across data sets [10].” Kitchenham

applied CART to the COCOMO data set and reported other simpler methods outperforming it [35].

Kitchenham suggest using an algorithm like CART when there is a large number of data points in

the data set.

2.2 Software Effort Estimation Models

There are many software effort estimation models available. This study focuses on COCOMO,

discussed in Section 2.2.1. Other effort estimation models are also discussed briefly in Section

2.2.2.
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2.2.1 COCOMO

The COnstructive COst MOdel (COCOMO) was developed in 1981 by Barry Boehm and was

published along with a data set containing 63 projects [4]. At that time, Boehm published the

COCOMO model in three versions (all are considered COCOMO 81 hereafter). Basic COCOMO

is a relatively simple model “good for quick, early, rough order of magnitude estimates of soft-

ware costs” with a limited accuracy [4]. Basic COCOMO applies to three modes of software

projects, organic, semidetached, and embedded. In the organic mode “relatively small software

teams develop software in a highly familiar, in-house environment,” whereas in the embedded

mode, “project should operate within tight constraints (strongly coupled complex of hardware,

software, regulations, and operational procedures) [4].” The semidetached mode is “an intermedi-

ate stage between the organic and embedded modes [4].” Basic COCOMO only uses the lines of

code (or delivered source instructions, DSI) in its estimates. Due to the limited accuracy of Basic

COCOMO, being “within a factor of 1.3 of the actuals only 29% of the time, and within a factor

of 2 of the actuals only 60% of the time [4],” as well as other limitations, this study does not focus

on Basic COCOMO. Instead, Intermediate COCOMO is used in this research.

The core intuition behind COCOMO is that, as a program grows in size, the development

effort grows exponentially. This is the case with either models. Similar to Basic COCOMO,

Intermediate COCOMO also supports the three software modes. The constants for these modes,

which are different from Basic COCOMO, are provided in Table 2.1. The equation for estimating

effort in these modes [4] is

e f f ort = a∗
(

KLOCb
)

(2.1)

where a and b are the constants in Table 2.1 and KLOC is the thousand lines of code (or delivered

source instructions). Effort is measured in man-month, which consists of 152 hours of working

time and includes those activities related to the development or managing a project.

According to Boehm, “Intermediate COCOMO incorporates an additional 15 predictor vari-
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Development Mode a b
Organic 3.2 1.05
Semidetached 3.0 1.12
Embedded 2.8 1.20

Table 2.1: Intermediate COCOMO 81 development modes.

Cost Driver Description
ACAP Analyst capability

Upper PCAP Programmer capability
(increase AEXP Applications experience
these to MODP Use of modern programming practices
decrease TOOL Use of software tools
effort) VEXP Virtual machine experience

LEXP Programming language experience
Middle SCED Required development schedule

DATA Data base size
Lower TURN Computer turnaround time

(increase VIRT Virtual machine volatility
these to STOR Main storage constraint
increase TIME Execution time constraint
effort) RELY Required software reliability

CPLX Product complexity

Table 2.2: COCOMO 81 cost drivers.

ables which account for much of the software project cost variation left unexplained by Basic

COCOMO [4].” This extension to Basic COCOMO provides a better accuracy, where “the esti-

mates are within 20% of the project actuals 68% of the time [4].” The 15 factors, also called cost

drivers, are provided in Table 2.2.

As a result, equation 2.1 is extended [4] to include these cost drivers.

e f f ort = a∗
(

KLOCb
)
∗

(
∏

j
EM j

)
Here, KLOC is the thousand lines of code, EM j is one of the cost drivers from Table 2.2 with

precise values from Table 2.3, and a and b are the parameters tuned by Boehm’s local calibration
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Cost Driver Very Low Low Nominal High Very High Extra High
ACAP 1.46 1.19 1.00 0.86 0.71

Upper PCAP 1.42 1.17 1.00 0.86 0.70
(increase AEXP 1.29 1.13 1.00 0.91 0.82
these to MODP 1.2 1.10 1.00 0.91 0.82
decrease TOOL 1.24 1.10 1.00 0.91 0.83
effort) VEXP 1.21 1.10 1.00 0.90

LEXP 1.14 1.07 1.00 0.95
Middle SCED 1.23 1.08 1.00 1.04 1.10

DATA 0.94 1.00 1.08 1.16
Lower TURN 0.87 1.00 1.07 1.15

(increase VIRT 0.87 1.00 1.15 1.30
these to STOR 1.00 1.06 1.21 1.56
increase TIME 1.00 1.11 1.30 1.66
effort) RELY 0.75 0.88 1.00 1.15 1.40

CPLX 0.70 0.85 1.00 1.15 1.30 1.65

Table 2.3: The precise COCOMO 81 effort multiplier values.

procedure (further discussed in Section 3.5.5). Cost drivers may increase or decrease the effort.

This can be seen with labels upper or lower in Tables 2.2 and 2.3.

The third and last version of COCOMO 81 is the Detailed COCOMO, which provides “a set of

phase-sensitive effort multipliers for each cost driver attribute” and takes into account an assess-

ment of the impact of each cost driver in different levels of development [4]. Detailed COCOMO

is rather complex and was not used in this study.

COCOMO 81 has two public data sets (COC81 and NASA93, discussed in Section 3.1.1) and

several researchers have published baseline results based on COCOMO [13,46]. According to Jor-

gensen and Shepperd, where they reviewed effort estimation studies from 1989 to 2004, “roughly

half of all estimation papers try to build, improve or compare with regression model-based estima-

tion methods” with COCOMO being one of the most common parametric estimation model in this

dominant category of research [30].

Boehm later updated the COCOMO 81 model to COCOMO II in 2000 [7]. COCOMO II

adds five scale factors that exponentially influence effort. However, COCOMO II is not used in
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this study since there is no publicly available data set for it. Hence, COCOMO II is not further

discussed.

2.2.2 Other Models

There are several other software models. This study follows previous studies in the literature

that uses COCOMO and hence, it does not explore these models. Furthermore, there is either no

publicly available data or few baseline results for some of these models, making it hard to compare

the results of this study with others. However, as Section 4.1 mentions, these models can be studied

in future works upon the availability of data. Boehm suggests this as a good practice as well [5].

Some of these models and approaches with references are listed below:

• CHECKPOINT: is a commercial model [19].

• ESTIMACS: is a commercial model [33].

• PRICE-S [55] is privately owned [19].

• REVIC: Revised Enhanced Intermediate Version of COCOMO, is privately owned by the

government [19].

• SAGE: is a commercial model [19].

• SASET: Software Architecture Sizing and Estimating Tool, is privately owned by the gov-

ernment [19].

• SEER-SEM: System Evaluation and Estimation of Resources — Software Estimating Model

[26] is privately owned [19].

• SLIM: Software Lifecycle Management [59] is privately owned [19].

• SoftCost: is a commercial model [19].
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2.3 Column Pruning

Column pruning, also known as feature subset selection [21] and variable subset selection [49],

is a pre-processing method to select a subset of columns of a data set, while removing the others,

which could reduce the noise in the data. Reducing the noise can improve the accuracy of the

trained model, hence improving the performance of an effort estimation method. Chen et al. [12]

as well as other researchers [2, 25, 34] have reported this as well.

The reduction of noise can be more clearly explained in mathematical notations. In a linear

model with constants βi that inputs features fi from a set of features F to predict for y,

y = β0 +β1 · f1 +β2 · f2 +β3 · f3 + · · ·

the variance of y is some function of the variances in fi. If the set F contains noise, then random

variations in fi can increase the uncertainty of y. Column pruning methods decrease the number of

features fi, thus increasing the stability of y’s predictions. That is, the fewer the features, the more

restrained are the model predictions. Taken to an extreme, column pruning can reduce y’s variance

to zero by pruning the above equation back to y = β0, but increases model error since the equation

y = β0 will ignore all project data when generating estimates. Hence, intelligent column pruners

experiment with some proposed subsets F ′ ⊆ F before changing that set.

The removed columns are not necessarily useless. They are, however, not suitable for the model

being generated from the data. Therefore, the same column may not be removed if another column

pruner was used. The inclusion of such columns happens during the data collection process when

several features are included in the data for the possibility of being used in the future. Column

pruners may also remove redundant columns if they exist, which can improve the efficiency of the

learning algorithm and produce smaller theories and models [11].

Column pruning is generally used in machine learning, and is often referred to as attribute

selection. According to Hall and Holmes [21], there are several attribute selection methods, which
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are often categorized as either filters or wrappers. The main difference between the two is in

their evaluation method. A wrapper uses a target learner to evaluate an attribute while a filter uses

general characteristics of the data and does not use the target learner in evaluating the attributes

[21]. There are other classifications of attribute selection methods as well. Ranking attributes

individually or in subsets and ranking them based on their class type (being numeric or discrete)

are among such classifications [21].

Hall and Holmes [21] compared six attribute selection methods, including information gain at-

tribute ranking (a simple and fast method that uses entropy and information gain measures), Relief

(an instance-based method with its extension, ReliefF, to handle noise and multiclass data sets),

Principal Component (an statistical technique that can reduce the dimensionality of data using

transformations), CFS (Correlation-based Feature Selection that evaluates subsets rather than in-

dividual attributes using some heuristic), consistency-based subset evaluation (that uses class con-

sistency as an evaluation metric), and the Wrapper attribute selection method. They benchmarked

their results across 15 UCI data sets [3] and against C4.5 [61] and naive Bayes [18]. Their results

show that attribute selection can improve the performance of common learning algorithms and

that there is no single best attribute selection method for all cases. However, they show that [21]

Wrapper is the most accurate attribute selection method (when speed is not an issue).

Hall and Holmes’ study has led this study to explore different column pruning methods, includ-

ing Wrapper and a variation of Wrapper called Local Wrapper developed by Chen et al. [12, 46],

and also simple, near-linear-time column pruning methods developed by Baker [2]. These column

pruning methods are described in Section 3.5.3.

Column pruning methods can search for the best attributes using forward selection or backward

elimination of the attributes. In forward selection, the column pruner starts with an empty subset

and adds attributes to the list as they are evaluated. In backward elimination, the column pruner

starts with the the set of all attributes and removes them one at a time as they are evaluated. These

two approaches, as well as the combination of both [2], are applied in several of the column pruners

23



studied in this study.

2.4 Row Pruning

Row pruning, also known as stratification, is used as a pre-processor in effort estimation. For a

given project, row pruning finds similar projects and uses them in estimating the effort for the

given project. This is especially helpful when calibrating an effort estimation method since similar

projects have less variation. Row pruning is applicable to several software models, including

COCOMO 81. Ferens and Christensen stratified data for all of the nine software models they

used (REVIC, SASET, PRICE-S, SEER-SEM, SLIM, SoftCost, CHECKPOINT, COCOMO II,

and SAGE) before calibration [19].

Researchers have studied row pruning in effort estimation extensively [12, 40, 45–47, 67, 68].

The problem of outliers have been reported in [43]. Outliers are projects that exist in a data set

used for calibration of an effort estimation method and negatively affect the produced model. Row

pruning is an ideal method for identifying and removing such outliers. (An earlier and smaller

version of this study did not report row pruning as an effective method. Column pruning methods

usually outperformed row pruning methods [25]. However, this is considered to be a problem with

the evaluation methods in that study. This study reports row pruning as an effective method, as it

can be seen in Section 3.6.)

There are many other studies that predict row pruning can improve the performance of methods

used in effort estimation in general. Menzies et al. reported large improvements in terms of

PRED(N), defined in Section 2.6.1, when using stratified data instead of unstratified data [45]. In

another study, they report that pruning in general is most important for small datasets [12]. This

may seems reasonable since an outlier or an irrelevant attribute can more negatively affect a model

when the size of the data set is smaller. Such outliers can be removed using row pruning and the

irrelevant attributes can be removed using column pruning. (However, this study has not found any
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relation between the data set size and the effectiveness of row or column pruning methods. Their

conclusion could be related to the wrong evaluation criteria they used.)

This study only comments on the effectiveness of row pruning for effort estimation in CO-

COMO 81 models. However, in a study using COCOMO II, SEER-SEM, and PRICE-S models,

Lum et al. predicted that adjusting the models for the local environment should improve the per-

formance of these models [40]. Such adjustments can be done using row pruning.

There are also studies that report negative results from certain row pruning methods. In a more

recent study using stratification, Menzies et al. reported negative results for the NASA93 data

set [46]. This data set is further explained in Section 3.1.1. (This is not consistent with the results

of this study on stratification. The reason could be the wrong evaluation criteria they used.)

Stratification is not limited to software effort estimation. Cost estimation in general is a wide

research area and researchers have tried to use similar methods, such as stratification, for cost es-

timation in many other fields. Chen and Huang studied stratification for Monte Carlo production

cost simulation [23], which is a probabilistic method. Their study compares a proposed stratifi-

cation method with conventional stratification methods and reported better variance reduction in

estimates using their proposed methods.

2.4.1 Manual and Automatic Row Pruning

Previous studies such as [12,46] mostly focused on manual row pruning (also discussed in Section

3.2.1). However, there exists an automatic approach as well, which was developed in this study

and is discussed in Section 3.2. There are similarities between automatic row pruning methods and

nearest neighbor methods, which are estimation by analogy methods. As discussed before, estima-

tion by analogy is a many-data method and is therefore suitable for selecting similar instances from

the historical data to find an estimate for a new project. In general, case-based reasoning methods,

which encompasses estimation by analogy, can be used as automatic row pruning methods. This

is discussed in the next section.
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2.4.2 Case-Based Reasoning and Row Pruning

As mentioned in Section 2.1.4, case-based reasoning (CBR) is a more general approach for finding

similarities between past projects and a current project. While row pruning methods use a similar

approach to CBR, they may differ in the way CBR trains a model. CBR finds solutions to similar

existing problems to generate a solution to a current problem. In training, a row pruning method

may function similar to a rule induction algorithm (as discussed before), in that it trains a model

without any knowledge of the current problem. However, in order to train the best model possible,

a train instance can simulate the role of the current problem in training the model, similar to CBR.

It is clear that such a train instance may or may not be similar to the current problem. Hence,

the resulting model may not perform well. There are similarities between estimation by analogy

(discussed in Section 2.1.6) as a type of CBR and the row pruning methods used in this study

(discussed in Section 3.2).

Since CBR is model free [67], using CBR methods (such as the nearest neighbor algorithm,

discussed in Section 3.2.2) in effort estimation can reduce the need for a certain model such as

COCOMO. The reason is that, nearest neighbor algorithms make few or no assumptions about the

domain. Therefore, they can be applied to a variety of data sets based on different effort estima-

tion models. However, this can also be considered a drawback of this algorithm since ignoring

important domain knowledge and searching for similar instances “blindly” can later lower the per-

formance of the learned model or increase the error in the estimate. (This is confirmed by the

current study as it can be seen in Section 3.6. There is a solution to this problem and that is to

augment the nearest neighbor algorithm with another method that takes into account the domain

assumptions. The row pruning method developed in this study follows this approach. This is

further discussed in Section 3.2.3.)
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2.5 Learners

Learners are essentially machine learning tools that can find a pattern in the data or generate a

model, among many other application for them. In effort estimation, learners are used to learn

a model from the historical data, which can later be applied to new projects. The learned theory

is used to find an estimate for those new projects. This study generally applies the name learner

to any effort estimation method that can find an estimate. There may be other classifications for

learners as well. For example, the nearest neighbor algorithm discussed before (or other CBR

methods) do not generally learn a model. They use the historical data to find an estimate for a new

project without generating a model that can be applied to a second project, meaning that, there is

no actual learning involved. (As a result, when the nearest neighbor is analyzed in Section 3.6, it

is shown without a learner and only as a row pruner.)

This study focuses on regression methods such as linear regression, local calibration [4], and

model trees [60] as learners. Linear regression and model trees can be found in Weka, Waikato

Environment for Knowledge Analysis, along with numerous other machine learning tools [76].

These learners are discussed in detail in Section 3.5.5.

In general, different machine learning methods can be combined in different orders to create

different methods. Effort estimation methods can also be combined this way. The goal is to create

a better estimation method using the aggregate performance of such methods. Clearly, not all

combinations will result in a more powerful method due to the conflicting nature of some methods.

Theoretically, the stacking or combining of n methods can be done in n! ways. A meta-learner

is used in stacking to learn which methods are reliable and find the best way to stack different

methods [76]. This process becomes harder as more methods have to be considered. The num-

ber of available methods is large and grows larger with new data mining toolkits appearing more

frequently. Weka, the R Project (available online at http://www.r-project.org/), and Orange

(available online at http://www.ailab.si/orange/) are among such toolkits. Therefore, such
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a large number of methods can potentially create thousands of combinations, which must be eval-

uated and pruned before the search space gets filled with several over-elaborate methods. (This

study compares 312 combinations and prunes the majority of them.)

Bagging and boosting are among other meta-learning algorithms [76]. Their application in

effort estimation was recently investigated by Baker [2] and no significant improvement in model

accuracy was reported. This study does not explore these methods.

2.6 Evaluation

Evaluation of effort estimation methods is probably as important as finding such methods. Without

a proper evaluation of these methods, no decision can be made about their relative performance.

Hence, effort put into developing them may have well been wasted. Usually the comparison of

effort estimation methods is done through some statistical test that compares their error distribu-

tions [76]. It is important to choose the right statistical test for a comparison. This section describes

the benefits and limitations of two different categories of tests.

First, it is helpful to understand different ways of collecting error distributions. In general,

error is defined as the difference between the actual and expected behavior of a certain object. In

effort estimation, error of a method is measured as a function of the actual effort needed and the

prediction (or estimate) of effort provided by that method. Here are some of the most used error

definitions in effort estimation:

• Absolute Residual (AR) is defined as

|actual− prediction|

which is one of the simplest error definitions and is the absolute value (magnitude) of the

difference between actual and predicted efforts. Another terminology, also used in this study,
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for AR is Magnitude of Error, ME.

• Relative Error (RE) is defined as

actual− prediction
actual

and has both negative and positive error values possible.

• Magnitude of Relative Error (MRE) is defined as

|actual− prediction|
actual

which is simply the magnitude of RE.

• Magnitude of Error Relative to the estimate (MER) is defined as

|actual− prediction|
prediction

and differs from MRE in the fact that it measures the error relative to the predicted value.

MER was proposed by Kitchenham et al. [36].

• Balanced Relative Error (BRE) is defined as


prediction−actual

actual if prediction−actual ≥ 0

prediction−actual
prediction if prediction−actual < 0

and was suggested by Miyazaki et al. [50].
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• Inverted Balanced Relative Error (IBRE) is defined as


prediction−actual

actual if prediction−actual < 0

prediction−actual
prediction if prediction−actual ≥ 0

and was also suggested by Miyazaki et al. [50].

Some of these error definitions such as AR, MER, and MRE are used in many studies [20, 36,

54, 66, 67]. On the other hand, BRE and IBRE have not been used in many studies and the study

by Foss et al. does not report the tests based on these any better than the ones based on MER

or MRE [20]. Therefore, this study uses AR, MER, and MRE as the evaluation criteria in the

analysis of results of different effort estimation methods.

Many statistical tests only specify whether the distributions are identical (equal) or not. This is

also known as verifying the null hypothesis that the two samples are identical. A null hypothesis

is a hypothesis compared with an alternative hypothesis using statistical tests. This type of tests

is frequently used and several well-known tests such as Student’s t-test are among the tests in this

category.

Other tests can offer comparisons where one distribution can be considered better or worse

than another. This will offer conclusive results about the performance of test subjects represented

with these distributions. Hence, these tests may be preferred over the tests that only verify the

null hypothesis. However, not many statistical tests can provide such a comparison. Usually,

these tests are created based on the needs of the study by augmenting a test that verifies the null

hypothesis with a simple test, such as the median or mean comparisons. In this case, if the null

hypothesis is rejected, meaning that the distributions are not identical, the medians (or means) of

each distribution are compared to find which one performed better.

In general, statistical tests are categorized into two groups of parametric and non-parametric

tests. These are defined in the following sections.
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2.6.1 Parametric Tests

Parametric tests assume parameterized distributions in the data. The most common parameter-

ized distribution is the normal or Gaussian distribution. Parametric tests such as the t-test and

ANOVA (analysis of variance) assume a normal underlying distribution. Student’s t-test is one of

the most popular parametric tests. Using its different versions, it can be applied to two independent

distributions (where each distribution contains a random instance, which may or may not have a

relationship with another instance in the other distribution) or to two paired distributions (where

each instance of one distribution has a unique relationship to an instance of the other distribution).

It can be used to test whether two error distributions (based on MRE for example) are statistically

the same or not [11, 12, 46]. However, there are several limitations to a parametric test such as the

t-test.

The main limitation of a parametric test is that it assumes an underlying distribution when

such a distribution may or may not exist. For example, several previous studies [12, 25, 45, 46]

uses t-tests to compare the error distributions. This study repeated the experiments in [25, 46]

and as Figure 3.1 shows, the underlying distributions are not normal. Hence, there is a need for

checking the underlying distribution before proceeding with parametric tests, which are frequently

used in the literature. Such verifications may certainly fail in different cases and hence, there is a

need for tests that do not assume an underlying distribution. Such tests belong to the category of

non-parametric tests, which is described in the next section.

Another limitation of a parametric test such as the t-test is that they are usually susceptible

to outliers (defined before). Outliers have large deviations comparing to other instances in the

distribution and greatly affect the mean and standard deviation calculations used frequently in

parametric tests. As Menzies et al. mention in their study [46], the presence of large deviations

makes it harder to assess the performance of different methods. Therefore, comparisons will show

instability and evaluation of effort estimation methods becomes pointless. The instability problem

is discussed further in Section 2.7. One way to avoid the problem of outliers is to use rankings
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of error values, instead of the error values, to compare methods. This is the approach in some

non-parametric tests, as described in the next section.

Student’s t-test is not the only parametric test used. Most of the studies mentioned before

also used mean and standard deviations of the error estimates, such as MRE, in their evaluation

methods. Although mean MRE is more frequently used in the literature than other mean values, it

is neither the best choice nor it is suitable in every case. In a study by Foss et al. [20], mean MRE

(MMRE), mean MER (MMER), mean BRE (MBRE), mean IBRE (MIBRE), and median MRE

(MdMRE) were compared to SD, RSD, and LSD, which are defined below. (Unlike all other tests

in their study, MdMRE is not a parametric test.) According to the results of their study, although

“MMRE has for many years been, and still is, the de facto criterion to select between competing

prediction models in software engineering,” it is “an unreliable criterion” and therefore, cannot be

relied on in comparison of effort estimation methods [20]. They suggest MMER to be preferred

over MMRE and conclude that MMRE, MMER, MBRE, MIBRE, and MdMRE are “substantially

more unreliable as evaluation criteria than SD, RSD, and LSD [20].” Even so, they consider none

of these as universal solutions for comparing effort estimation methods due to either a flaw or a

limitation in these criteria.

Standard Deviation (SD) is defined as

√
∑(actuali− predictioni)2

n−1

where n is the size of the distribution and actuali and predictioni are the corresponding values for

each instance in the distribution.

Relative Standard Deviation (RSD) is defined as

√
∑(actuali−predictioni

xi
)2

n−1
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where xi is a certain variable in the data such as function points, FP [20].

Logarithmic Standard Deviation (LSD) is defined as

√
∑(ei− (− s2

2 ))2

n−1

where ei is define as

lnactuali− ln predictioni

and s2 is the variance of ei [20].

Another popular parametric test using MRE is PRED(N) defined as

1
T

T

∑
i=1


1 if MREi ≤ N

0 if MREi > N

and is usually used with N = 0.25 and N = 0.30. It is also described in terms of percentages such

as PRED(30). PRED(N) is used in many studies where MMRE and other MRE-based methods are

used [10, 45, 46, 69]. However, Foss et al. “do not believe that reporting several measures that are

all based on MRE would improve matters” in comparing methods [20]. Menzies et al. [46] suggest

using a combination of parametric tests, which they call rejection rules. This is further discussed

in Section 3.3.2.

2.6.2 Non-Parametric Tests

Non-parametric statistics includes a large group of tests that do not assume an underlying dis-

tribution and are hence considered distribution free. This makes non-parametric tests a suitable

candidate for effort estimation studies since, unlike parametric tests, they do not require verifi-

cation of the underlying distribution. Moreover, if such a verification fails, non-parametric tests

become the only possible choice. In general, due to fewer assumptions they make, non-parametric
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tests are considered statistically more robust (meaning that violations of their assumptions do not

affect them unpredictably and they still perform well).

The application of non-parametric tests in effort estimation studies [10, 17, 20, 31, 36] have not

been as frequent as the parametric ones. Usually, simple non-parametric tests are used. For ex-

ample, Foss et al. studied median MRE [20], which can be considered a non-parametric test since

it does not need to have any specific distribution. Other researchers have used median values as

well. However, similar to the results from [20], no conclusive results were offered as to which

evaluation method performed well for general use. Demsar [17] suggests using non-parametric

tests, which are mentioned to be “simple, yet safe and robust.” Demsar’s study analyzes other pa-

pers and compares different evaluation methods on classifiers’ performance. In order to compare

two classifiers, Demsar uses methods such as averaging over data sets, paired t-tests, Wilcoxon

signed-rank test [74], and finally counts of wins, losses, and ties based on a sign test (also sug-

gested by [8]). The non-parametric Wilcoxon signed-rank test is considered an alternative to the

parametric paired t-test [10, 17]. When comparing multiple classifiers, Demsar uses ANOVA and

Friedman test, which was augmented with other tests in case the null hypothesis was rejected.

Friedman test is a non-parametric equivalent of the parametric test ANOVA.

Demsar’s results show that the parametric test ANOVA is no better than the non-parametric

Friedman test. More generally, using empirical results, Demsar suggests using the two non-

parametric tests, Wilcoxon signed-rank and Friedman tests. Although the results of Demsar’s

study clearly suggest non-parametric tests, there are better non-parametric tests that can be used

in a wider range of experiments. More specifically, Friedman test requires other additional tests

and Wilcoxon signed-rank test can only be applied where the two samples are related or are two

replications of the same experiment on the same sample.

Another non-parametric test that verifies the null hypothesis is the Mann-Whitney U test [42],

which is discussed in detail in Section 3.4.2. Although the Mann-Whitney test can only verify

the null hypothesis, a simple comparison of the two medians of the ranks for each distribution,
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generated during the procedure, will determine the preferred distribution. This test shows a great

amount of stability as shown in Section 3.6.

There are other alternatives for non-parametric tests as well. Kitchenham et al. [36] suggest

using boxplots as alternatives to parametric tests such as MMRE and PRED(N). According to their

study, boxplots show the median values as the central location for the distribution and show two

tails for each boxplot. A boxplot shows the spread of the distribution using the height of the box

and the skewness of the distribution using the position of the median and the length of boxplot

tails. Using the residuals, prediction− actual, is suggested as one of the possible variables for

boxplots.

Menzies et al. have a similar approach using quartile charts [48]. A quartile chart is generated

by sorting the distribution and dividing the results into four quartiles. The median is represented

with a dot and the upper and lower quartiles are represented with vertical lines.

Although boxplots and quartile charts are non-parametric tests that summarize the data, they

use visual representations. Analyzing visual representations in studies where a large number of

methods are used across different data sets requires a great amount of time and accuracy and

therefore, offering a summary of the results becomes a cumbersome task. As a result, this study

does not focus on boxplots or quartile charts for evaluating its large number of methods.

2.6.3 Evaluation Bias

There are numerous evaluation methods and inherently, every effort estimation study ignores some

evaluation method. Therefore, every study is biased toward a certain group of evaluation methods.

In general, evaluation bias cannot be avoided and without it no major study can find any conclusive

results, since each evaluation method can suggest a different conclusion. Nonetheless, its extent

can be reduced to a minimum such that the choice of evaluation methods does not affect the results

as much while making it possible to find stable conclusions.

Evaluation bias can exist in effort estimation studies in different forms. One of the most com-
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mon evaluation biases is the way that an evaluation method behaves across different data sets. In

order to avoid several underlying characteristics of a data set that may unpredictably affect the con-

clusions, Shepperd and Kadoda’s study uses simulated data to control these characteristics [67].

Their study shows that as the characteristics of the data sets change, the conclusions made using

the same methods also change. However, none of the methods studied could be considered better

than others in the comparisons made using several evaluation methods across the simulated data

sets with different characteristics. Hence, different data sets can affect the evaluation of the same

methods in different ways, causing evaluation bias in the study.

Another place that evaluation bias is visible is when comparing different studies using the same

methods. Menzies et al. reported that their rejection rules, a type of evaluation method they created,

reported that stratification was useful [12]. A later study [25] using the same rejection rules and

experimental approach contradicted the previous results, showing that stratification was not useful.

This shows the amount of instability some evaluation methods can create when an experiment is

repeated.

Finally, evaluation bias can be caused by the underlying criteria used in the evaluation method.

For two underlying criteria of MRE and MER used in a simple mean test, Foss et al. argue that

mean MER is a better test than mean MRE [20]. Although this test is very simple, it shows how

much different criteria can affect a test. More sophisticated tests are usually more affected by

different underlying evaluation criteria since there are many factors involved and changing one

could have an adverse effect on the others.

This study aims at reducing the evaluation bias in comparing effort estimation methods by

using a better test, several evaluation criteria, different data sets and subset of those data sets, and

several randomized runs of the same experiment to produce different results.
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2.7 Instability

Stability is a defining factor in accepting the conclusions of a study and without it, it is impossible

to compare studies, approaches, or methods. The effort estimation literature has reported many

instabilities in the results and as a result, no clear conclusion has been accepted widely as to which

method or methods perform the best. For example, Shepperd and Kadoda [67] compared different

methods and reported no stable conclusions despite their many efforts.

Recently, some researchers have realized this problem and attempted at analyzing its sources

[20, 36, 54, 67]. Among these studies, some were pessimistic about finding a possible solution to

the problem while a few suggested general approaches without a detailed plan. Foss et al. [20]

compared several evaluation methods and reported no clear conclusion about the preferred method

as a universal evaluation method. As a result, they state that, “it probably is futile to search for

the Holy Grail: a single, simple-to-use, universal goodness-of-fit kind of metric, which can be be

applied with ease to compare” different methods [20].

Myrtveit et al. [54] consider the problem of instability a “poorly understood” problem and

suggest that the research procedure in effort estimation studies (using a single data sample, an

accuracy indicator, and cross-validation) is the source of the problem due to its unreliability. As

a result, they “cast some doubt on the conclusions of any study of competing software prediction

models that used this research procedure as a basis of model comparison [54].” Their solution is a

rather general solution, which suggests developing more reliable research procedures.

Kitchenham et al. [36] consider it essential to understand how to make comparison between

competing models and mention that some of the different accuracy indicators used by different re-

searchers generated contradictory results. They continue, “without understanding what the various

indicators are describing, meaningful comparison is not possible. Furthermore, if we cannot make

meaningful comparisons we cannot make progress [36].” Once again, only a general solution is

given for the problem of instability in comparing methods. Shepperd and Kadoda’s study [67] sug-
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gests exercising caution when comparing different approaches along with few general guidelines

and methods.

Although none of the above studies suggested a clear solution to the problem of instability in

comparing effort estimation methods, this does not mean that such a solution does not exist. As a

matter of fact, this study reports stability in comparing a wide range of effort estimation methods

across different data sets, evaluation criteria, and randomized runs. This might be the first study

that reports such stability and it is expected that future studies will find similar stabilities as well.

2.8 Summary of Current Problems

There are many problems that an effort estimation study may face. Four of the more prominent

problems are summarized here.

• Effort estimation studies lack stability in their conclusions in general. Recently, researchers

attempted at finding the source of such instabilities. However, no clear approach is suggested

to reduce or diminish instability.

• Lack of publicly available data sets has affected effort estimation studies greatly since their

suggested methods cannot be tested thoroughly. Moreover, these data sets may not be suit-

able for every study since they were collected using certain models. Unless a researcher can

access private or commercial data, which makes the experiments unrepeatable for others, the

study has to use simulated data. Simulated data has its own limitations and cannot always

represent the real-world examples.

• There are too many effort estimation methods and without a proper pruning of this list,

researchers will not be able to compare them conclusively. Hence, little progress can be

made in finding better methods.
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• The evaluation approaches used in effort estimation studies need to be revised and better

approaches, accepted by the majority of researchers, have to be applied in order to reduce

the instability present in the current studies.

This research applies better evaluation criteria and as a result, offers solutions for the instability

problem. It also prunes many effort estimation methods and provides a framework for continuing

this pruning. Although in this study the lack of data is offset by using different subsets of data sets,

this problem requires the help of the software engineering industry by releasing their data, which

will ultimately benefit them by providing them with better effort estimation methodologies.
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Chapter 3

Laboratory Studies

This chapter describes the laboratory studies performed throughout this research. In this work,

COSEEKMO served as the framework in which many types of experiments became possible. As a

result of these studies, several tools such as Locomo were developed. Also, an existing systematic

error in the evaluation of methods became clear, which resulted in using a new evaluation method

called the Mann-Whitney U test. Finally, many of the methods developed by other researchers

such as Shepperd’s nearest neighbor method [67] and Baker’s column pruning method [2] were

incorporated in COSEEKMO.

The experimental design is described in Section 3.1, including the data used in this study,

the experimental method, and a general description of the evaluation of the results. This study

focuses on column and row pruning among other methods for effort estimation. Column pruning

is discusses in detail in [2] and is mentioned in the methods used in COSEEKMO in Section 3.5.3.

On the other hand, part of this study is mainly about different row pruning methods. These methods

are discussed in Section 3.2.

Another part of this study is designated to the evaluation methods used to compare effort es-

timation methods. Sections 3.3 and 3.4 explain several different parametric and non-parametric

tests used respectively. Section 3.4.2 explains the Mann-Whitney U test, a non-parametric test, in
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detail.

Section 3.5 categorizes all different methods in COSEEKMO and space of combined meth-

ods possible in COSEEKMO. Such combinations are used in this study to find the group of best

methods suitable for effort estimation. (A manual for COSEEKMO is provided in Appendix A.)

Section 3.6 provides the results and discusses the findings based on these results.

3.1 Experimental Design

All the experiments in this work were done using the COSEEKMO tool. This study focus on effort

estimation methods based upon Boehm’s 1981 version of the COCOMO model [4], also called

COCOMO 81, since there is publicly available data sets in this model’s format. Boehm’s updated

version of COCOMO, called COCOMO II [7], can also be supported in the methods present in

COSEEKMO as it is shown for one such method called Cocomin [2]. However, since there is no

publicly available data set in the COCOMO II format, this study does not explore this model. The

COCOMO model is further explained in Section 2.2.1.

3.1.1 Data

The data used in this study was from two data sets:

• COC81 containing 63 records in the COCOMO 81 format [4, p496-497] and

• NASA93 containing 93 NASA records in the COCOMO 81 format.

Taken together, these two data sets are the largest COCOMO-style data source in the public

domain (for reasons of corporate confidentiality, access to Boehm’s COCOMO II data set is highly

restricted). Boehm used the 63 projects present in COC81 in his study to calibrate the COCOMO

81 model. NASA93 was originally collected to create a NASA-tuned version of COCOMO, funded

by the Space Station Freedom Program. It contains data from six NASA centers including the Jet
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Propulsion Laboratory. Menzies et al. report that there is a large deviation seen in the NASA93

data [46]. According to them, this was caused by the presence of a wide variety of projects rather

than poor data collection. They explain the process of data collection in detail and believe that

“NASA93 was collected using methods equal to or better than standard industrial practice [46].”

However, this work shows that the reason for the large deviations in NASA93 as well COC81 is

the evaluation method used, which was based on parametric assumptions. These assumptions are

shown not to hold. Therefore, their belief that equal or larger deviation can be seen in industrial

data based on what they observed in NASA93 does not hold.

In this study, effort estimators were built using all or some part of data from COC81 and

NASA93 data sets. These two data sets contain several different subsets. The name of these subsets

and the number of subsets used (in parenthesis) are:

• All (2): selects all records from a particular source.

• Category (2): NASA93 designation selecting the type of project such as avionics.

• Center (2): NASA93 designation selecting records relating to where the software was built.

• Fg (1): NASA93 designation selecting either “ f ” (flight) or “g” (ground) software.

• Kind (2): COC81 designation selecting records relating to the development platform such as

max for mainframe.

• Lang (2): COC81 designation selecting records about different development languages such

as ftn for FORTRAN.

• Mode (4): designation selecting records relating to the COCOMO 81 development mode

such as semi-detached, embedded, or organic.

• Project (2): NASA93 designation selecting records relating to the name of the project.
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Number Data Set Name Size
1 COC81 all 63
2 COC81 kind-max 31
3 COC81 kind-min 21
4 COC81 lang-ftn 24
5 COC81 lang-mol 20
6 COC81 mode-e 28
7 COC81 mode-org 23
8 NASA93 all 93
9 NASA93 category-avionicsmonitoring 30
10 NASA93 category-missionplanning 20
11 NASA93 center-2 37
12 NASA93 center-5 39
13 NASA93 fg-g 80
14 NASA93 mode-embedded 21
15 NASA93 mode-semidetached 69
16 NASA93 project-gro 23
17 NASA93 project-X 38
18 NASA93 year-1975 37
19 NASA93 year-1980 38

Table 3.1: Names and sizes of subsets of COC81 and NASA93.

• Year (2): NASA93 term that selects the development years, grouped into units of five. For

example, years 1970, 1971, 1972, 1973, and 1974 are labeled “1970”.

Overall, COC81 and NASA93 data sets contain 57 subsets (including the super sets). However,

only 19 of these subsets were used in this study. Their names and sizes are provided in Table 3.1.

The reason is that the rest of the subsets contain fewer than 20 projects (with 25 of them containing

fewer than 10 projects). As described in [46], due to choosing a test set size of 10, there will not

be enough projects to train a model in the subsets that contain fewer than 20 projects.

The subsets of each data set can overlap with each other since a project may be categorized in

different ways (for example year and center may share projects). Therefore, different projects may

belong to more than one subset of each data set. These overlaps for COC81 and NASA93 data sets

are provided separately in tables 3.2 and 3.3 respectively. It should be noted that the subset all is
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Subset 2 3 4 5 6 7
1 31/63 21/63 24/63 20/63 28/63 23/63
2 0/52 16/39 2/49 10/49 15/39
3 6/39 14/27 16/33 4/40
4 0/44 7/45 12/35
5 13/35 4/39
6 0/51

Table 3.2: Overlap of subsets of COC81 shown as intersection/union for each pair of subsets.
Subset numbers match the ones in Table 3.1.

Subset 9 10 11 12 13 14 15 16 17 18 19
8 30/93 20/93 37/93 39/93 80/93 21/93 69/93 23/93 38/93 37/93 38/93
9 0/50 13/54 17/52 30/80 3/48 24/75 4/49 17/51 20/47 5/63

10 1/56 7/52 20/80 2/39 18/71 1/42 7/51 3/54 15/43
11 0/76 32/85 5/53 32/74 23/37 0/75 10/64 13/62
12 33/86 13/47 23/85 0/62 38/39 23/53 14/63
13 8/93 69/80 20/83 33/85 31/86 31/87
14 0/90 3/41 12/47 12/46 9/50
15 20/72 23/84 25/81 27/80
16 0/61 0/60 9/52
17 23/52 13/63
18 0/75

Table 3.3: Overlap of subsets of NASA93 shown as intersection/union for each pair of subsets.
Subset numbers match the ones in Table 3.1.

the super set for each data set and therefore will overlap with every other subset. In each data set,

the overlap is shown as |A∩B|
|A∪B| for all pairs of subsets A and B.

3.1.2 Experimental Method

This work is based on cross-validation. COSEEKMO uses cross-validation to partition the data

into train and test sets. COSEEKMO does this is two different ways in order to study the effects

of stratification (discussed later in Section 3.2) suggested by Boehm [7]. Each subset (of COC81

or NASA93) is partitioned into a test set and a train set. Also, all the instances in the superset (of

the subset) that are not present in the test set are stored in another train set. The first train set is

used when studying the effect of stratified data and the second train set is used when studying the

effects of non-stratified data. In each run, each train set is used individually to train a model. That

model is then tested on the test set.

In general, a model is trained on the records in the train set and tested on the records in the test
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set, each representing a hold out record. Using a set of hold out records, represented by the test

set in this study, is a common practice [45, 75, 76]. For each run, COSEEKMO uses a different

seed for random number generation, resulting in different train and test sets. Hence, each method

is trained and tested on different sets. In these experiments, test sets have a constant size, set to 10.

This size is chosen as a result of prior research [46] using COSEEKMO. This process is repeated

20 times as described in Section 3.5.1.

One of the other possible options is to use all the data set to train a model and test on the

same data set. However, this option is not suitable since in the real world examples, the goal is to

assess how a model predicts the effort for a new project [46] not seen before. Also, as Ferens and

Christensen [19] describe in their study, the failure to use a hold out sample, like the test set in this

work, can overstate a model’s accuracy on new examples.

Another option is the k-fold cross-validation, where a set is partitioned into k subsets. Each

time, exactly one different subset is used in testing the model while the other k-1 subsets are used

in training the model. This option allows for the maximum amount of data for training a model.

On the other hand, it is computationally expensive for large data sets. Although only some of the

subsets of COC81 and NASA93 are large, this option is not feasible in COSEEKMO in general.

COSEEKMO contains several methods resulting in numerous combined methods. There are also

multiple runs in each experiment. Therefore, k-fold cross-validation and other computationally

expensive methods such as bootstrapping are not practically possible in this study.

Bouckaert [8] claims that experiments using cross-validation suffer from low replicability.

However, this is not the case with COSEEKMO since the random number generation can be repli-

cated exactly when the same seed is used, providing the same results.

3.1.3 Evaluation of Results

The methods in COSEEKMO were evaluated using the non-parametric Mann-Whitney U test, de-

scribed in detail in Section 3.4.2. The parametric alternatives were not suitable since the error
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distributions were not normal. The Mann-Whitney U test compares all the methods and combina-

tions used in COSEEKMO and returns a table of win-loss-tie values for each data set or its subsets.

Depending on the experiment, one or more of the values reported in such a table were used to de-

cide the best method or methods. In this study, minimizing the number of losses is used for such

decisions. However, when two methods have the same number of losses, the one with more wins

is ranked higher. Although non-parametric tests are preferred in this study, the parametric alter-

natives are available as well. COSEEKMO originally used parametric tests only and depended on

rejection rules [46] that chose one method over others based on parametric criteria. This is further

discussed in Section 3.3.

3.2 Row Pruning

Row pruning is used as a pre-processor in this study. This work explores two distinct row pruning

methods with different variations. These are automatic in the way they select similar instances.

This study was initiated partly to explore row pruning methods in order to reduce the pres-

ence of outliers as described in Section 2.4. However, after row pruning methods were introduced

into COSEEKMO initially, the comparison of methods did not report row pruning as an effective

method. Column pruning methods usually outperformed row pruning methods [25]. Nonetheless,

soon after the prior study was published, further research showed a systematic error in evaluation

criteria used in COSEEKMO and other effort estimation studies in general. This is further dis-

cussed in Sections 2.6 and 3.3. The evaluation criteria was the reason for the outliers problem as

well, which was the driving force for developing an effective row pruning method. Since outliers

were artifacts of the previous evaluation criteria and did not exist in the current results, the first

conclusion was that row pruning was not required anymore. Nonetheless, once this evaluation

error was resolved, new experiments proved row pruning to be a worthy pre-processor, ranking

among the top methods reported by COSEEKMO. This is shown in Section 3.6.
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Section 3.2.1 briefly discusses manual stratification for certain few similarities it has with au-

tomatic row pruning methods in the remainder of this section. Nearest neighbor, described in

Section 3.2.2, uses all the attributes to select similar instances. This is done using a Euclidean

distance measure. Locomo is similar to the nearest neighbor method in using all the attributes to

select similar instances. However, it uses the local calibration method (described in Section 3.5.5)

internally to evaluate the selected instances. Hence, it can be considered a combination method,

combining a row pruner and a learner. Therefore, in the remainder of this work whenever Locomo

is mentioned in the results as the row pruning method, it is always followed by the local calibration

method as its learner, which is used internally. Locomo and its variations are discussed in detail in

Section 3.2.3.

3.2.1 Manual Stratification

Boehm et al. advises that effort estimates can be improved via manual stratification (using do-

main knowledge to select relevant past data) [7]. As described in Section 3.1.1, both COC81 and

NASA93 data sets are composed of different subsets. Each subset can be distinguished from other

instances in the main data set using the information stored in the instances of the main data set such

as where and when it was gathered. This is a stratification method that makes use of the similarities

between instances. It is considered a manual method since the only way to stratify the data is to

use the manually gathered information about the data such as the location and time of the project

or instance. As a result, each subset contains similar instances. Each subset is then partitioned into

train and test sets. This assures that the training and testing are done on data that contains similar

instances.

This method is a pre-processor and can be compared to its counterpart, which is described in

Section 3.5.1. In the other method, a model is trained using the information in the superset and not

in the subset. It is then tested on a test set derived from the subset. Hence, this study can present

the results of comparison of these two methods applied to the data as pre-processors. These two
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methods are applied to every other method, whether a pre-processor or not. These two methods

are discussed and their results are analyzed as train types since they are more similar to each other

in their approach and less similar to automatic row pruning methods discussed here.

3.2.2 Nearest Neighbor

The ANGEL project [69] inspired this study to explore estimation by analogy as a way to find

similarities among train instances, which can be used to find effort estimates for test instances.

Nearest neighbor uses the normalized Euclidean distance as a measure of similarity. For two

instances X and Y each having m attributes, the normalized Euclidean distance, called distance

hereafter, is:

√
m

∑
a=1

(
Xa−Ya

Maxa−Mina
)2

Nearest neighbor takes a train file with ntrain instances as input and finds the distance between

every pair of train instances. It then tries to find the best neighborhood for each train instance

i. To do so, it first sorts the remaining instances in ascending order using their distance from i.

Then, for each neighborhood k, where 1 ≤ k < ntrain, it averages the actual efforts of the first k

sorted instances. This average value is used as the estimate for the effort of instance i when a

neighborhood of size k is used. Finally, depending on the variation of nearest neighbor used, the

MRE or AR (also called ME and described in Section 2.6) is calculated for instance i and is added

to the sum of MRE’s or AR’s for neighborhood k. The neighborhood with the minimum sum of

MRE or AR is chosen as the best neighborhood.

Once nearest neighbor found the best neighborhood b, it uses this neighborhood to find the

estimate for each test instance. Therefore, similar to the training part, the distance between every

test instance and all train instances is calculated. For each test instance j, the train instances are

sorted in ascending order using their distance from j. Finally, the average of the actual efforts for
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the first b train instances is used as the estimate of effort for j.

3.2.3 Locomo

Locomo is a row pruner that combines a nearest neighbor method with the local calibration method

described in Section 3.5.5. When Locomo was first developed in this work, it only accepted neigh-

borhoods that were set before and would not look for the most suitable neighborhood. Hence, it

was given the name static Locomo.

On the other hand, dynamic Locomo tries to find the best neighborhood while processing the

train set in order. This neighborhood can change from one train set to another and hence it is

dynamic. Although the two methods and their variations are different, they both use the local

calibration method in finding effort estimates. The local calibration method uses the k nearest train

instances (whether k is a constant or it was found during training) to find that estimate.

Static Locomo

Similar to the nearest neighbor method described in Section 3.2.2, static Locomo uses the normal-

ized Euclidean distance to measure the distance of each test instance j from all train instances.

Then, using the provided neighborhood, k, it finds the k closest train instances to j. These train in-

stances are then passed to the local calibration method, which finds an estimate for the test instance

j.

This process is repeated until an effort estimate is found for every test instance in the test set.

However, since it is not possible to predict the best neighborhood for this method, this study tries

a set of neighborhoods {5,10,20,40,80} as the possible best neighborhoods. Therefore, for each

pair of train and test sets, each one of these neighborhoods is tried separately and all the results are

stored under this method’s results when comparing this method against all other methods.

While static Locomo was being developed, the goal was to find a minimum set of neighbor-

hoods that represent other neighborhoods in their performance. Several neighborhoods were tested
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and in general the neighborhoods in the set {5,10,20,40,80} were shown to provide same or bet-

ter estimates (depending on the data sets) comparing to all other neighborhoods tested. In addition

to performance considerations, these neighborhoods take into account the data set bounds. The

largest data set, NASA93, has 93 instances. Since in this study a test set always contains 10 in-

stances, a train set can contain at most 83 instances. Therefore, a neighborhood of 80 provides

an upper bound for the neighborhoods that can be used in static Locomo. It should be noted that

a neighborhood of 83 will use all the train set instances, and hence static Locomo simplifies to

the local calibration method. Other neighborhoods were included in this list for similar reasons of

representing proper upper and lower bounds for data sets. Overall, these neighborhoods provided

an adequate coverage of the data sets used in this study.

Dynamic Locomo

Although the neighborhoods used in static Locomo were generally the best choices, there were

several unavoidable, redundant procedures used in static Locomo. Also, the choice of neighbor-

hood was not based on a training process using the train set. Therefore, static Locomo’s set of

neighborhoods was only suitable for the data sets used in this study and needed revision once new

data sets would be used. Therefore, dynamic Locomo was developed.

Dynamic Locomo can process any COCOMO 81 data set and can be easily modified to accept

other data sets based on other models used in effort estimation. There are no static neighborhoods

used in dynamic Locomo. Therefore, it can find the best neighborhood most suitable for a given

train set. Dynamic Locomo uses a similar algorithm to the nearest neighbor algorithm described

in Section 3.2.2 when looking for the best neighborhood in the train set.

When given a train set of size ntrain, it first calculates the distance of every train instance i from

all other train instances using a normalized Euclidean distance. Like the algorithm for the nearest

neighbor method, dynamic Locomo tries to find the best neighborhood for each train instance i.

To do so, it sorts the remaining train instances in ascending order using their distance from i.
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Unlike the nearest neighbor method where an average of actual efforts was used, dynamic Locomo

uses the local calibration method to find an effort estimate. So, for each neighborhood k, where

1≤ k < ntrain, the first k sorted train instances are passed to the local calibration method along with

instance i to find an effort estimate for i. This estimated effort is used (along with the actual effort)

to calculate the MRE value for instance i when neighborhood k is used.

At the end of this process, there will be ntrain MRE values for each neighborhood. The neigh-

borhood that has the lowest median or mean MRE (depending on the variation of dynamic Locomo)

is chosen as the best neighborhood b. This neighborhood is used to select the closest b train in-

stances to each test instance j. These train instances along with j are passed to the local calibration

method to find an effort estimate for j.

Dynamic Locomo’s source code is available at http://unbox.org/wisp/tags/coseekmo/

2.0/locomo/dynamicLocomoMedian.awk.

3.3 Parametric Tests

Initially, this study used parametric tests to compare different effort estimation methods. As de-

scribed in Section 2.6.1, parametric tests assume that there is an underlying parameterized distri-

bution in the data. For most parametric tests (including all the ones used in this study before), this

underlying distribution is the normal distribution. The parametric tests in this study were used to

compare different error distributions such as AR and MRE. As it is shown in Figure 3.1, these error

distributions do not represent a normal distribution.

Although it is clear that parametric tests are not suitable for this study in particular, it is ben-

eficial to study such parametric tests in general since they can be used when the underlying dis-

tribution is shown to be normal. Therefore, these tests are discussed in detail in the following

sections.
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Figure 3.1: Relative error (RE) values seen in experiments with COSEEKMO on six different
subsets. Thin lines show the actual values. Thick lines show a Gaussian (normal) distribution that
uses mean and standard deviation of the actual values.
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3.3.1 General Tests

There are several evaluation criteria discussed in Section 2.6 such as AR and MRE. Previously, this

study made use of these criteria in different ways. Mean and standard deviation of these criteria

were used extensively. As discussed before, using mean and standard deviation only make sense if

the underlying distribution is normal.

3.3.2 Rejection Rules

Previously, effort estimation methods used in this study were compared using rejection rules [46].

These rules and their order are shown in Figure 3.2. There are five rules used in the given order to

compare two methods x and y. The goal is to find the method that performs worse than the other,

for every pair of methods in the experiment. The methods that survive this comparison are reported

as the best methods. These methods cannot be rejected when comparing them to other methods.

Rule 1 is only applied if the MRE values of x and y are statistically different. This is tested

using a two-tailed t-test at the 95% confidence interval. Therefore, two methods are statistically

different if the following inequality holds:

|meanMRE(x)−meanMRE(y)|√
sdMRE(x)2

n(x)−1 + sdMRE(y)2

n(y)−1

> 1.96

Rule 1 returns the method with the higher mean MRE value as the worse method. However, if

the two methods do not have statistically different MRE distributions, other rules may apply.

Rule 2 compares the standard deviation of the MRE values for x and y and returns the method

with higher standard deviation as the worse method. Rule 3 compares the correlation between

the predicted and actual values and reports the method with the lower correlation as the worse

method. Rule 4 uses the PRED(30) measure on MRE values and reports the method with the lower

PRED(30) value as the worse method. Rule 5 compares the number of attributes of the subsets

used in both methods and reports the one with more attributes as the worse method (since both
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FUNCTION worse(x,y)
IF statisticallyDifferent(x,y) THEN

IF meanMRE(x) < meanMRE(y) THEN RETURN y FI # rule1
IF meanMRE(y) < meanMRE(x) THEN RETURN x FI # rule1

ELSE
IF sdMRE(x) < sdMRE(y) THEN RETURN y FI # rule2
IF sdMRE(y) < sdMRE(x) THEN RETURN x FI # rule2

IF correlation(x) < correlation(y) THEN RETURN x FI # rule3
IF correlation(y) < correlation(x) THEN RETURN y FI # rule3

IF pred(x) < pred(y) THEN RETURN x FI # rule4
IF pred(y) < pred(x) THEN RETURN y FI # rule4

IF |Subset(x)| < |Subset(y)| THEN RETURN y FI # rule5
IF |Subset(y)| < |Subset(x)| THEN RETURN x FI # rule5

FI
RETURN 0 # if no reason to return true

Figure 3.2: COSEEKMO’s rejection rules.

have similar performances).

These rules were obtained from an earlier study using COSEEKMO by Menzies et al. [46].

They mention that their rejection rules can reproduce Boehm’s 1981 COCOMO 81 analysis. How-

ever, this study achieved the same results when the order of the rules were modified [25]. Rule 2

was also modified from their study to use the standard deviation only, which did not change the

results. According to their study, lower priority rules were used with a much lower frequency when

methods were compared pairwise.

3.3.3 Instability

Although the parametric tests used in this study were able to reproduce the results in the literature,

they lacked the stability when reporting the best methods. Different methods performed differently

for different data sets and their subsets. This is clearly shown in the previous work [25] prior to
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this study, reproduced here in Figures 3.3 and 3.4.

Each figure shows three parametric tests in three separate graphs. A vertical line in any set of

graphs in these figures shows the results of different methods (shown in the legend) on the same

subset of a data set. As it can be seen from these results, different methods perform differently

across different data sets and from one parametric test to another. Hence, it is hard to compare

different methods across different data sets. This would be even harder when the results were

compared from one run of the experiment to another, where two runs only differed in their random

number generator’s seeds. The source of this problem could be considered the parametric tests.

These tests were not suitable for this study since the error distributions were not normal. However,

this problem was solved by using non-parametric tests, discussed in Section 3.4.

3.4 Non-Parametric Tests

This study originally used parametric tests. However, as explained before, these tests make as-

sumptions about the underlying distributions. Such assumptions cannot be guaranteed in every

experiment and as Figure 3.1 shows, the experiments done in this study do not have a normal dis-

tributions required for the parametric tests done before. Therefore, non-parametric tests replaced

parametric tests in this study.

Non-parametric tests do not assume an underlying distribution and therefore can be used in

this study. Among different non-parametric tests, the Mann-Whitney U test, also known as the

Wilcoxon rank-sum test, is the most suitable test for comparing the methods used in this study.

This test is discussed in Section 3.4.2. However, before this test was chosen, other non-parametric

tests were explored and studied in detail. One such test is the median test, discussed in Section

3.4.1.
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Figure 3.3: Effects of different pruning methods showing instability in using parametric tests.
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Figure 3.4: Effects of different neighborhoods showing instability in using parametric tests.
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3.4.1 Median Test

The median test used in this study compared two different distributions using their median and

spread. This test sorts the error estimates, using AR, MRE, etc. It then reports value in the middle

as the median and the difference between the values at one-third and two-third of the sorted list as

the spread. Finally, the method with the lowest median and spread was reported as the best method.

Although this test was simple, it did not produce stable and conclusive results. Most of the

methods reported as the winners in one experiment were not reported as the winners in another

experiment with a different random number generator seed. Therefore, a stronger test was needed,

which led this research to the Mann-Whitney U test.

3.4.2 Mann-Whitney U Test

This test was developed independently by Wilcoxon in 1945 and Mann and Whitney in 1947 [71,

p109-118]. Therefore, it is known by two different names: the Wilcoxon rank-sum test and the

Mann-Whitney U test. Wilcoxon proposed this test as well as the Wilcoxon signed-rank test in

the same paper [74]. The Wilcoxon signed-rank test is suitable for cases where the two samples

are related or are two replications of the same experiment on the same sample. Since this study

explores different samples with different methods, the Wilcoxon signed-rank test could not be

used.

On the other hand, the Wilcoxon rank-sum test requires the two samples to be statistically

independent. This is the case in this study, where two methods applied to a data set create two

statistically independent error samples. However, the Wilcoxon rank-sum test only explores equal

sample sizes [42]. This could not be assured in this work since certain pre-processor methods

could create error samples with different sizes depending on their heuristics. Nonetheless, the test

proposed by Mann and Whitney, which is an extension of the Wilcoxon rank-sum test, resolved

this problem. As a result, this study uses the Mann-Whitney U test, or the MWU test hereafter.
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The MWU test assesses the null hypothesis, which states that the two samples come from

identical distributions. Also, the MWU test requires the samples to have continuous measurements

[42]. For two samples X and Y , the MWU test first ranks the two samples. To do so, the samples

are sorted into one large sample while maintaining the information about which sample each value

came from. Each value is then ranked with a number between 1 and |X |+ |Y |. If there are two or

more identical values, the average of the ranks of these values is assigned as their identical ranks.

For example, if k identical values v1, ...,vk have ranks r1, ...,rk, they all get the same rank of:

∑
k
i=1 ri

k

It is clear that ranking the values removes the effects of the outliers present in certain tests such

as the parametric tests. A value large enough to be considered an outlier will have a larger rank

than the previous non-outlier value in the sorted list. However, this rank is only larger by a constant

c < k. Once all the values of both samples are ranked, the MWU test calculates the sum of the

ranks for all the values in each sample. Therefore, for a sample X , the sum of the ranks is:

RX = ∑
ri∈X

ri

RY is calculated the same way. Using the sum of the ranks for each sample, the U statistic is

calculated as follows, where nX = |X |:

UX = RX −
nX(nX +1)

2

UY is calculated the same way. In addition to UX and UY , the mean and standard deviation of U

must also be found using the following equations, where mU is the mean of U , σU is the standard

deviation of U , and nY = |Y |:
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mU =
nX nY

2

σU =

√
nX nY (nX +nY +1)

12

Finally, the following normal approximation can be used to calculate the standard normal de-

viate, z, also known as the standard score:

z =
U −mU

σU

Since there are two samples X and Y , there will be two standard scores, zX and zY . These

values are always equal in magnitude and opposite in sign. Therefore, they are simply identified

by z, where z = |zX | = |zY |. In order to assess the null hypothesis, a confidence interval is used.

This study uses two different confidence intervals. At 95% confidence interval, z <= 1.96 must

hold to accept the null hypothesis. At 99% confidence interval, z <= 2.576 must hold to accept

the null hypothesis.

Given two methods mX and mY , the acceptance or rejection of the null hypothesis can only

identify these methods’ performance (based on their error samples X and Y ) as being identical or

not respectively. In the case of non-identical methods, the MWU test does not help in identifying

which method performed better. Nonetheless, in comparison of different methods it is more inter-

esting to find the ones that performed best. Therefore, in case of two non-identical samples, which

happens when the null hypothesis is rejected, another non-parametric test can augment the MWU

test. The simplest and most useful non-parametric test is to compare the median ranks of the two

samples after the MWU test considered them non-identical. If the performance measure used in

the MWU test is an error estimate (such as AR, MRE, etc.), a lower value is better. Therefore,

if sample X has a lower median rank than sample Y , then method mX is considered better than

method mY . On the other hand, if the performance measure used in the MWU test is considered
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better when it has a higher value, then method mY is considered better than method mX . Finally, if

both samples have the same median rank, their corresponding methods are considered identical.

To summarize, the MWU test augmented with the median rank test can score two methods as

follows (when a lower value in a sample is considered better):

• If the null hypothesis holds, both methods get a tie.

• If the null hypothesis is rejected and the median rank of X is lower than the median rank of

Y , method mX gets a win and method mY gets a loss.

• If the null hypothesis is rejected and the median rank of X is higher than the median rank of

Y , method mX gets a loss and method mY gets a win.

• If the null hypothesis is rejected and the median rank of X is equal to the median rank of Y ,

both methods get a tie.

It is clear that if a higher value in a sample is considered better, the above assignments of wins and

losses must be switched.

The slowest part of the described algorithm for the MWU test augmented with the median

rank test is the sorting done in the first step. There are two samples of size nX and nY and the

combined sample of size nX +ny must be sorted. The rest of the algorithm has a time complexity

of θ(nX + nY ). Therefore, depending on the sorting algorithm, the MWU test’s algorithm can be

implemented efficiently. An example of the MWU test is provided in Figure 3.5.

It is clear that the MWU test can only compare a pair of methods. In this study, there are

several methods used in a single experiment. Therefore, the MWU test was applied to each distinct

pair of methods once. The resulting number of wins, ties, and losses for each method were used

to identify the best method or methods in each experiment. Since N methods are compared in a

pairwise fashion, a method is compare against N−1 other methods. Hence, the sum of the number

of wins, ties, and losses for each method is equal to N− 1. In order to identify the best method
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There are two samples A and B with |A|= 5 and |B|= 6:

A = {5,7,2,0,4}
B = {4,8,2,3,6,7}

They are sorted as follows:

Samples A A B B A B A B A B B
Values 0 2 2 3 4 4 5 6 7 7 8

The rankings are:

Samples A A B B A B A B A B B
Values 0 2 2 3 4 4 5 6 7 7 8
Ranks 1 2.5 2.5 4 5.5 5.5 7 8 9.5 9.5 11

The sum and median of A’s ranks are:

RA = 1+2.5+5.5+7+9.5 = 25.5
medianA = 5.5

and the sum and median of B’s ranks are:

RB = 2.5+4+5.5+8+9.5+11 = 40.5
medianB = (5.5+8)/2 = 6.75

The U statistic for A and B is:

UA = 25.5−5∗6/2 = 10.5
UB = 40.5−6∗7/2 = 19.5

Mean and standard deviation of U are:

mU = 5∗6/2 = 15
σU =

√
5∗6∗ (5+6+1)/12 = 5.477

Finally, the z values for A and B are:

zA = (10.5−15)/5.477 =−0.82
zB = (19.5−15)/5.477 = 0.82

Since |zA| = |zB| = 0.82 < 1.96, the null hypothesis holds and thus samples A and B are
considered identical (at the 95% significance level). In this case, both methods corresponding
to A and B get a tie. If the null hypothesis did not hold, since medianA < medianB, A’s method
gets a win and B’s method gets a loss (assuming that a low value in the sample is considered
better).

Figure 3.5: An example of the Mann-Whitney U test.
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or methods, this work explored using wins, ties, losses, and different combinations of these three

numbers such as the difference between the number of wins and losses.

Since the goal is to find the best method or methods, the remaining methods can be discarded.

Therefore, an insightful metric is the number of losses. If this is non-zero, then there is a case for

discarding that method. However, in case of several methods having the same number of losses,

the number of wins plays a role in making a decision. As a results, if two or more methods have

the same number of losses, the ones with more wins are considered better. Using only the number

of losses (and wins if necessary) might render the calculation of the number of ties redundant.

However, before the number of wins and losses can be found, a decision must be made about

the acceptance or rejection of the null hypothesis, which automatically results in calculating the

number of ties.

In general, the MWU test described here can be used to compare any number of methods using

any performance measure, such as error estimates. It should be noted that, wins, ties, losses, or

any combination of these numbers cannot necessarily be the suitable identifier of superiority of a

method over others in every study. As an example, if in a study the number of wins was to be used

as the way of identifying the best method, it might not be a suitable measure for other studies. This

is because if a method ties with the majority of other methods and does not lose to any, it can be

considered a superior method since it performs at least as well as any other method. Therefore,

each study requires an in-depth understanding of its performance measure and possible ways of

interpreting the MWU test’s results.

As another example, the confidence interval should be used with great care. Since the critical

value for the confidence interval of 99% is greater than that of 95% confidence interval, it is more

likely that the null hypothesis holds. Therefore, there are more ties possible and as a result, the

number of wins and losses will be reduced. Hence, if the number of losses or wins were to be

used to identify the best methods, such identification could become harder to achieve, resulting in

a possible confusion in the comparison. Thus, it is helpful to understand these details about the
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MWU test before applying it. The complete source code of the MWU test along with instructions

are available at http://unbox.org/wisp/tags/mwu/1.0/lib/mwu.awk.

3.5 COSEEKMO

COSEEKMO is a tool used in effort estimation experiments. Menzies et al. designed it initially

and discussed its several uses [25, 39, 43, 44, 46]. COSEEKMO’s goal is to find the best group

of methods for effort estimation on COCOMO-style data sets. Currently, COSEEKMO uses CO-

COMO 81 data sets for experimentation. However, it can easily be extended to use COCOMO II

data sets. Shepperd considers COSEEKMO’s main limiting factor to be the required conformity of

the collected data to the COCOMO model, although he considers the motivation for COSEEKMO

“attractive” [64]. At the time of developing COSEEKMO (and until now) COCOMO data sets

were the only accessible and publicly available data sets for effort estimation experiments. How-

ever, it is possible (and rather simple) to modify COSEEKMO to work with other models as well.

There are several different methods currently present in COSEEKMO. Some of these meth-

ods are simple while others use complex algorithms for effort estimation. Usually, more complex

methods are preferred since they are believed to explore more possibilities and provide the best

effort estimate in this case. However, as Menzies et al. suggest, “it is good practice to benchmark

elaborate or resource intensive techniques against simpler alternatives [45].” According to Co-

hen’s argument [14], it is possible that simpler methods can achieve similar results to sophisticated

methods and hence the latter is superfluous in such cases. As an example, they mention Holte’s

famous study where he compared classification rules and showed how simple ones usually per-

formed well [22]. Similarly, as presented in Section 3.6, in every case, the more complex methods

are superfluous and simpler ones perform at least as well as any other method.

Since its introduction, COSEEKMO has been modified and improved constantly to explore a

wider range of effort estimation methods. For example, it is possible that the combination of any
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number of effort estimation methods can provide better effort estimates. Therefore, COSEEKMO

explores all such combinations. Also, the evaluation methods of COSEEKMO have been modified

to include non-parametric tests such as the MWU test (introduced in Section 3.4.2).

Although the methods explored in COSEEKMO are integrated for increased performance, they

can be used individually as well. For example, NASA’s Jet Propulsion Laboratory uses the dy-

namic Locomo method (discussed in Section 3.2.3), which is currently a method integrated into

COSEEKMO [2]. This satisfies one of the main goals of COSEEKMO, which is to find a group of

best methods to be used in effort estimation practices. Also, new effort estimation and evaluation

methods can be easily added to COSEEKMO for analysis and comparison. Cocomin [2] is an ef-

fort estimation method that was added to COSEEKMO in this work. The MWU test is an example

of evaluation methods added to COSEEKMO. Such additions increased the stability of results in

COSEEKMO, which can be seen in Section 3.6.

This section provides an overview of COSEEKMO’s algorithm (Section 3.5.1), numeric esti-

mation methods (Section 3.5.2), pre-processors (Sections 3.5.4 and 3.5.3), learners (Section 3.5.5),

and combinations of methods and experiments (Section 3.5.6).

3.5.1 Algorithm

The algorithm for COSEEKMO is presented in Figure 3.6. In this algorithm, Data represents all

19 subsets of COC81 and NASA93 data sets. Runs is a constant representing the number of runs

for each data set. Previous studies used 30 runs [46]. However, in this work, 20 runs showed the

same stability. Therefore, COSEEKMO uses 20 runs in this study.

As discussed in Section 3.1.2, in each run and for each subset, 10 instance are chosen at random

to create a test set. Then, based on the train type, a train set is generated. One train set is generated

using all the instances in the subset except for the ones in the test set. This method is called the

subset train type. The other train set is generated using all the instances in the superset except for

the ones in the test set. This method is called the superset train type. These train sets are used
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FOR datum IN Data DO
FOR run IN Runs DO

FOR train type IN {superset,subset} DO
partition datum into train and test sets # train set is created using train type
FOR numeric estimation IN {precise,proximal} DO

apply numeric estimation to train and test sets
apply methods and their combinations to train and test sets

DONE
DONE

DONE
DONE
run evaluation methods on the results

Figure 3.6: COSEEKMO’s algorithm.

separately to train different models later.

Once the numeric estimation methods (discussed in Section 3.5.2) are applied to the train and

test sets, different methods or combinations of methods are applied to each train set and the trained

models are used to generate effort estimates. These methods are categorized into two groups

of pre-processors (column pruners and row pruners) and various learners, all discussed in the

following sections. Finally, an evaluation method compares the effort estimates generated from

each method or combination of methods and reports the best methods. This study used the MWU

test as described in Section 3.4.2.

3.5.2 Numeric Estimation Methods

COSEEKMO uses COCOMO data sets for its effort estimation experiments. As described in

Section 2.2.1, there are several cost drivers in the COCOMO 81 model, represented in ordinal

values in a rating scale. Table 2.2 provided the names of these cost drivers and Table 2.3 provided

the numeric values of the effort multipliers matching their ordinal values in the rating scale. In

this study, the numeric estimation method that uses these effort multipliers is called the precise

numeric estimation method.
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Cost Driver Very Low Low Nominal High Very High Extra High
ACAP 1.2 1.1 1.00 0.9 0.8

Upper PCAP 1.2 1.1 1.00 0.9 0.8
(increase AEXP 1.2 1.1 1.00 0.9 0.8
these to MODP 1.2 1.1 1.00 0.9 0.8
decrease TOOL 1.2 1.1 1.00 0.9 0.8
effort) VEXP 1.2 1.1 1.00 0.9

LEXP 1.2 1.1 1.00 0.9
Middle SCED 1.2 1.1 1.00 1.1 1.2

DATA 0.9 1.00 1.1 1.2
Lower TURN 0.9 1.00 1.1 1.2

(increase VIRT 0.9 1.00 1.1 1.2
these to STOR 1.00 1.1 1.2 1.3
increase TIME 1.00 1.1 1.2 1.3
effort) RELY 0.8 0.9 1.00 1.1 1.2

CPLX 0.8 0.9 1.00 1.1 1.2 1.3

Table 3.4: The proximal COCOMO 81 effort multiplier values.

These values were generated by Boehm, using his project experience [4]. It is hard to regenerate

these values for each new organization requiring effort estimation since there is usually not enough

relevant data available within most organization. Therefore, another approach is to use a proximal

numeric estimation of the values in Table 2.3, as suggested by Menzies et al. [46]. These proximal

values are generated by mapping the precise values into two approximate straight lines. One line

has a negative slope and is used for ACAP, PCAP, AEXP, MODP, TOOL, VEXP, and LEXP cost

drivers. The other one has a positive slope and is used for DATA, TURN, VIRT, STOR, TIME,

RELY, and CPLX cost drivers. A third proximal set of values is used for the SCED cost driver,

which has identical negative and positive slopes. The proximal effort multiplier values are shown

in Table 3.4. Both precise and proximal values are used in COSEEKMO.

3.5.3 Column Pruning Pre-Processors

COSEEKMO uses several column pruning methods as pre-processors. Column pruning is useful

in removing columns (also known as features, attributes, or variables) of a data set that create
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noise, mostly in terms of deviations, in the model. In order to study the effects of column pruning,

COSEEKMO compares several column pruners (including no column pruner) as pre-processors.

These column pruners differ mostly in the thoroughness of their search algorithms.

Wrapper

Wrapper [37] is a standard best-first search through the space of possible features. At worst, the

Wrapper must search the whole space, or all the subsets of features F in a data set, which is an

exponential number 2F . However, a simple best-first heuristic makes Wrapper practical for effort

estimation. At each step of the search, all the current subsets are scored by passing them to a

target learner. Two different target learners, LSR and M5p, are used in this study. These learners

are further discussed in Section 3.5.5. Wrappers used in COSEEKMO use the forward search,

meaning that they start with an empty subset of features and add useful features. If an added

feature does not help the subset containing that feature score better than a smaller or different

subset of the same size, that feature gets a negative point. Once a feature has a certain number of

negative points, it is removed from the subset of features reported by the Wrapper at the end of

its algorithm. The Wrappers used in COSEEKMO remove a feature if it has more than 5 negative

points. The remaining features are reported by the Wrapper and are used to train and test a model

later by COSEEKMO. When LSR or M5p are used as target learners, the data sets are usually

logged and the results are unlogged. Therefore, the Wrappers used in COSEEKMO with LSR and

M5p as target learners also log the data. However, to study the effects of logging, non-logged data

sets are also used and compared with logged data sets.

Local Wrapper

Local Wrapper, developed by Chen et al. [12, 46], also uses a thorough search. However, it uses

the local calibration method as its target learner. This further specializes Local Wrapper for effort

estimation.
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Cocomin

Cocomin, developed by Baker [2], is another column pruning method that uses a less thorough

search algorithm. Cocomin is a near-linear-time column pruner. Since it uses some heuristic

criteria to select features, it does not explore all the subsets and hence, Cocomin is a very fast

column pruner that “runs in O(F.log(F)) for the sort and O(F) for the exploration of the selected

features [2].”

Baker describes Cocomin as follows:

Cocomin is defined by the following operators:

{sorter,order, learner,scorer}

The algorithm runs in linear time over a sorted set of features, F .

Cocomin pre-sorts the features on some heuristic criteria. Some of these criteria, such

as standard deviation or entropy, are gathered without evaluation of the target learner.

Others are gathered by evaluating the performance of the learner using only the feature

in question plus any required features, such as KLOC for COCOMO, to calibrate the

model.

This search can be ordered in one of three ways:

• A “backward elimination” process starts with all features F and throws some

away, one at a time.

• A “forward selection” process starts with one feature and adds in the rest, one at

a time.

• “Both” forward and backward searches are run separately and the best perform-

ing result is chosen.

69



Regardless of the search order, at some point the current set of features F ′ ⊆ F is

passed to a learner to generate a performance score by applying the model learned on

the current features to the train set. Cocomin returns the features associated with the

highest score.

After the features are ordered, each feature is considered for backward elimination, or

forward selection if chosen, in a single linear pass through the feature space, F . The

decision to keep or discard the feature is based on an evaluation measure generated by

calibrating and evaluating the model with the training data [2].

There are three variations of Cocomin used in COSEEKMO as a column pruning pre-processor.

The first one

• sorted the features by the highest median MRE;

• used a backward elimination search order;

• learned using the local calibration method;

• scored using mean MRE.

The second one

• sorted the features by their native order (simply meaning that it did not do any additional

sorting);

• used a backward elimination search order;

• learned using the local calibration method;

• scored using mean MRE.

Finally, the third one (which was an older version of Cocomin)
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• sorted the features by their native order (simply meaning that it did not do any additional

sorting);

• ran both forward selection and backward elimination search orders to find the best;

• learned using the local calibration method;

• scored using mean MRE.

These variations only differ in the internal settings. These settings were decided through several

experiments. Some of the results of these experiments are available in Table 3.7 of [2]. The

experiments performed using COSEEKMO over all such settings suggested the same results and

hence, the above three settings were selected.

Theoretically, a Wrapper (with target learners such as local calibration, LSR, and M5p) uses an

exponential-time search algorithm and is more thorough. Hence, it is believed to be more useful

than a simpler method such as Cocomin. However, as shown later in Section 3.6, Cocomin is

superior to Wrapper pre-processors.

3.5.4 Row Pruning Pre-Processors

Row pruning methods are another group of pre-processors that are used in COSEEKMO. After

the addition of new column pruning methods discussed before, several row pruning methods were

added to COSEEKMO in order to remove instances or projects in the data sets that could create

noise in the trained models.

There are two types of row pruning used in COSEEKMO. The manual method, called manual

stratification, uses the information stored in each instance and divides each data set into several

subsets. This is discussed in Sections 3.2.1 and 3.5.1 with details of the method and the subset and

superset train types. However, a better comparison of pre-processors compares this pre-processor,
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also called the subset train type, with another pre-processor, called the superset train type, for their

similarities.

The automatic row pruning methods include the nearest neighbor method, described in Section

3.2.2, and Locomo, described in Section 3.2.3. Both static Locomo and dynamic Locomo are used

in COSEEKMO. The nearest neighbor method has two variations. One of the variations uses the

MRE in training the model and the other uses AR. The static Locomo method uses different neigh-

borhoods in the set {5,10,20,40,80} as described before. Dynamic Locomo has two variations.

One variation uses the mean of MRE’s in training the model and the other uses the median of

MRE’s. Overall, Locomo is superior to the nearest neighbor method as shown in Section 3.6.

3.5.5 Learners

Several learners are used in COSEEKMO. Learners are usually applied to the processed data after

pre-processors are used. Learners train and test on the data available in order to find the best

performing method. In COSEEKMO, some learners must be applied without a previously applied

pre-processor. These learners, including Cocomin and Cocomost, are actually pre-processors used

as learners for simplicity. COSEEKMO allows for such learners. On the other hand, other learners

such as local calibration, LSR, and M5p can be applied with or without pre-processors applied to

the data. All the learners used in COSEEKMO are discussed below.

Linear Regression

Linear regression assumes that the data can be approximated by one linear model that includes

lines of code (KLOC) and other features f ∈ F seen in a software development project:

e f f ort = β0 +∑
i

βi · fi

Linear regression adjusts βi to minimize the error. Boehm argues that effort is exponential on
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KLOC [4]:

e f f ort = a ·KLOCb ·∏
i

βi

where a and b are domain-specific constants. Such exponential functions can be learned via

linear regression after they are converted to the following linear form:

log(e f f ort) = log(a)+b·log(KLOC)+∑
i

log(βi)

In general, it is useful to transform from a more complex space (in this case, the exponential

model) to a simpler one (in this case, the linear model) since it is easier to explain and work with

the simpler space. In this case, it is especially useful to find a and b values when dealing with a

linear model rather than solving an exponential equation for a and b. The majority of the methods

in COSEEKMO transform the data in this way. This approach is also suggested by Myrtveit et

al. [54] in their study involving linear regression. It is necessary to unlog the estimates returned

from each method after the trained model has been tested.

Weka [76] provides the functionality needed for linear regression. This is called LSR and

COSEEKMO uses it through Weka.

Model Trees

Model trees are a generalization of linear regression. Instead of fitting the data to one linear model,

model trees learn multiple linear models and a decision tree that decides which linear model to

use. Model trees are useful when the projects form regions and different models are appropriate

for different regions. COSEEKMO includes the M5p model tree learner defined by Quinlan [60].

Weka [76] provides the functionality needed for M5p. As discussed in the case with LSR, M5p

also logs the data in order to transform the space and therefore, the estimate must be unlogged.
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Local Calibration

Local calibration is a specialized form of linear regression developed by Boehm [4, p526-529].

Local calibration assumes that project effort is exponential on KLOC:

e f f ort = a ·KLOCb ·∏
i

βi

Table 2.3 shows the βi values recommended by Boehm (with the names on the left hand side

defined in Table 2.2). When βi values are used in the above equation, they yield estimates in

months where one month is 152 hours (and includes development and management hours). To

operate, local calibration linearizes the exponential equation to generate

log(e f f ort) = log(a)+b·log(KLOC)+∑
i

log(βi)

Linear regression would try to adjust all the βi values. This is not practical when training on a

very small number of projects. Hence, local calibration fixes the βi values while adjusting a and b

values to minimize the prediction error.

COSEEKMO uses local calibration on the training set to find a and b values and applies those

to the test set to find estimates. However, COSEEKMO also applies the three values for a and b as

suggested by Boehm for embedded, organic, and semidetached software modes. These values can

be found in Table 2.1.

Cocomin

Cocomin (described in Section 3.5.3) is a column pruning method with local calibration as its

target learner. Although COSEEKMO usually uses Cocomin as a pre-processor, Cocomin can also

be used as a learner without any column or row pruning pre-processors applied to it. COSEEKMO

uses three variations of Cocomin as explained in Section 3.5.3.
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Cocomost

Cocomost is another column pruning pre-processor with local calibration as its target learner. It

was developed by Baker [2] and is used as a learner in COSEEKMO without any column or row

pruning pre-processors applied to it. Cocomost evaluates all of the possible subsets of features.

There are several evaluation methods used, similar to the evaluation methods in Cocomin. As

shown in Section 3.6, Cocomost performs similar to Cocomin although Cocomost explores more

subsets. A detailed analysis of Cocomost and Cocomin is available in [2].

3.5.6 Combinations of Methods And Experiments

COSEEKMO can use every possible combination of pre-processors and learners as well as nu-

meric estimation methods and train types to create a combination of methods. Certain methods

can also be used individually, such as Cocomin and Cocomost learners. Each method, whether

combined or single, is evaluated against every other method using the MWU test. The results of

such comparisons in the experiments using COSEEKMO are presented in Section 3.6. The total

number of methods can be found by calculating the possible combinations. There are 8 column

pruning pre-processors applied to 8 row pruning pre-processors and learners. Therefore, there are

a total of 8∗8 = 64 combinations of column pruning pre-processors, row pruning pre-processors,

and learners. All the 8 row pruning pre-processors and learners can be applied without a column

pruning pre-processor. In addition, 6 more learners are also applied without a column pruning

pre-processor. Therefore, there are 8 + 6 = 14 more combinations possible that do not use any

column pruning pre-processor. Overall, 64+14 = 78 combinations of pre-processors and learners

are used in COSEEKMO. Since there are 2 train types and 2 numeric estimation methods applied

to each combination, a total of 2∗2∗78 = 312 combinations are used in COSEEKMO.
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3.6 Results And Discussions

This section offers the results of the current study in detail. However, this study have been under

careful review for a relatively long time since, as shown later, it shows stability in the results that

is not reported elsewhere in the literature. Many runs of the previous versions of the experiments

were analyzed in detail before and showed the same conclusions as this study’s results. The more

interesting fact is that, as the experiments evolved and were expanded to include more methods,

the conclusions did not change. For example, comparing to the most recent version of the experi-

ments using COSEEKMO, the train types were added, which doubled the number of combinations

possible. Although this could have potentially changed the conclusions from the previous versions

of the experiment, it had no effect on them. Overall, these results show a great amount of stability

as the experiments evolved, and as they are discussed in this section, they will provide a clear sense

of how to arrive at the final conclusions.

The results of the experiments using COSEEKMO are extensive. There are 19 subsets of

data sets used in this study and 312 combinations of methods possible. Therefore, reporting the

results of these methods applied to all these subsets cannot be done using simple win-loss-tie

tables obtained from the MWU test. Also, understanding such tables is a very time-consuming

task. In addition, these results are analyzed using three different evaluation criteria (AR, MER,

and MRE), adding to the amount of analysis required. Hence, it is essential to categorize these

findings through analyzing the results across different subsets and data sets, different evaluation

criteria, and different runs. This will provide better perspectives about these biases and will offer

a gradual path toward selecting the best effort estimation methods in COSEEKMO.

COSEEKMO was used with its 312 methods to generate the results in one representative run.

Such a run is called a complete run. The results of a random complete run is provided in Sections

3.6.1, 3.6.2, and 3.6.3. Each section provides a different analysis of the results. In order to simplify

the results and focus on the more useful methods, the training type was reduced to subset and half
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of all the combinations of these methods (312/2 = 156) were used. Also, the proximal numeric

estimation method was removed from the results and only 156/2 = 78 methods were reported.

Such a run is called a simple run. Simple runs take less time to complete and are relatively easier

to analyze. The justification for simpler runs as well as the results of such a run are provided in

Section 3.6.4. Finally, a detailed look at the best and worst performers are provided in Section

3.6.5, where an additional 4 runs of the experiment are reported for the 8 representative methods

selected from the list of 78 methods.

3.6.1 Top 10 Methods For Each Subset Across Three Evaluation Criteria

This is the most complete set of results since it explores the findings across different subsets and

different evaluation criteria. The top 10 methods for each subset is reported individually in Tables

3.5 through 3.61. This contains the top 3% of the methods that have the fewest number of losses

(and the most number of wins in case of the same number of losses). The justification for not

showing more results is offered in Section 3.6.3. These detailed tables help in identifying the

methods suitable for each subset. The reason for reporting these individual tables is that, one

method may be more suitable for a subset while it might perform worse for other subsets. However,

such a method may be ignored when the results are reported in any other fashion. It should be noted

that the total number of losses (as well as wins and ties) possible is 311 for each method.

77



Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise NewCocominNative StaticLocomo lc 105 206 0
Superset precise NewCocominNative StaticLocomo lc 105 206 0
Subset precise None StaticLocomo lc 106 205 0
Superset precise None StaticLocomo lc 106 205 0
Subset precise NewCocominMedian StaticLocomo lc 107 204 0
Subset precise OldCocomin StaticLocomo lc 107 204 0
Superset precise OldCocomin StaticLocomo lc 107 204 0
Superset precise NewCocominMedian StaticLocomo lc 108 203 0
Subset precise None DynamicLocomoMedian lc 114 197 0
Superset precise None DynamicLocomoMedian lc 114 197 0

Table 3.5: Top 10 methods for subset 1 using AR evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise NewCocominMedian None lsr 122 189 0
Superset precise NewCocominNative None lsr 122 189 0
Superset precise OldCocomin None lsr 122 189 0
Superset precise None None lsr 123 188 0
Superset precise None StaticLocomo lc 125 186 0
Superset proximal NewCocominMedian None lsr 136 175 0
Superset proximal NewCocominNative None lsr 136 175 0
Superset proximal OldCocomin None lsr 136 175 0
Superset precise NewCocominMedian StaticLocomo lc 139 172 0
Superset precise NewCocominNative StaticLocomo lc 139 172 0

Table 3.6: Top 10 methods for subset 2 using AR evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise None StaticLocomo lc 42 269 0
Superset precise NewCocominMedian StaticLocomo lc 46 265 0
Superset precise NewCocominNative StaticLocomo lc 46 265 0
Superset precise OldCocomin StaticLocomo lc 46 265 0
Subset precise None None lc 77 234 0
Superset precise None DynamicLocomoMean lc 84 227 0
Subset proximal None None e 91 220 0
Superset precise NewCocominMedian None lc 91 220 0
Superset precise NewCocominNative None lc 91 220 0
Superset precise None None cocomin1 91 220 0

Table 3.7: Top 10 methods for subset 3 using AR evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise NewCocominMedian DynamicLocomoMean lc 47 264 0
Superset precise NewCocominNative DynamicLocomoMean lc 47 264 0
Superset precise OldCocomin DynamicLocomoMean lc 47 264 0
Superset precise None DynamicLocomoMean lc 49 262 0
Superset precise NewCocominMedian DynamicLocomoMedian lc 51 260 0
Superset precise NewCocominNative DynamicLocomoMedian lc 51 260 0
Superset precise OldCocomin DynamicLocomoMedian lc 51 260 0
Superset precise None DynamicLocomoMedian lc 61 250 0
Subset precise OldCocomin StaticLocomo lc 67 244 0
Subset precise NewCocominMedian StaticLocomo lc 77 234 0

Table 3.8: Top 10 methods for subset 4 using AR evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset proximal None None e 18 293 0
Superset proximal None None e 18 293 0
Subset precise None None sd 20 291 0
Superset precise None None sd 20 291 0
Subset precise None StaticLocomo lc 25 286 0
Subset precise None None lc 44 267 0
Superset precise NewCocominNative None lc 50 261 0
Superset precise None None cocomin1 50 261 0
Superset precise None None cocomin2 50 261 0
Superset precise None None cocomost 50 261 0

Table 3.9: Top 10 methods for subset 5 using AR evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None StaticLocomo lc 69 242 0
Subset proximal NewCocominMedian StaticLocomo lc 69 242 0
Subset proximal None StaticLocomo lc 69 242 0
Subset precise NewCocominNative StaticLocomo lc 70 241 0
Subset precise OldCocomin StaticLocomo lc 70 241 0
Subset proximal None None lc 70 241 0
Subset precise None None lc 72 239 0
Subset proximal NewCocominNative StaticLocomo lc 72 239 0
Subset proximal NewCocominMedian None lc 75 236 0
Subset proximal OldCocomin StaticLocomo lc 75 236 0

Table 3.10: Top 10 methods for subset 6 using AR evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None StaticLocomo lc 9 302 0
Subset precise None None lc 10 301 0
Subset precise None None org 10 301 0
Superset precise None None org 10 301 0
Subset precise None DynamicLocomoMedian lc 16 295 0
Subset proximal None None lc 43 268 0
Subset precise None DynamicLocomoMean lc 46 265 0
Subset proximal None None org 49 262 0
Superset proximal None None org 49 262 0
Subset precise NewCocominMedian DynamicLocomoMedian lc 55 256 0

Table 3.11: Top 10 methods for subset 7 using AR evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise OldCocomin DynamicLocomoMean lc 182 129 0
Subset precise OldCocomin StaticLocomo lc 184 127 0
Superset precise OldCocomin StaticLocomo lc 184 127 0
Subset precise OldCocomin DynamicLocomoMean lc 232 79 0
Subset precise None None cocomin1 235 76 0
Subset precise OldCocomin None lc 235 76 0
Superset precise None None cocomin1 235 76 0
Superset precise OldCocomin None lc 235 76 0
Subset precise NewCocominMedian StaticLocomo lc 247 64 0
Subset precise None None lc 249 62 0

Table 3.12: Top 10 methods for subset 8 using AR evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise OldCocomin DynamicLocomoMedian lc 147 164 0
Superset precise OldCocomin DynamicLocomoMean lc 159 152 0
Superset proximal LocalWrapper None m5p 170 141 0
Superset precise None None cocomin1 184 127 0
Superset precise OldCocomin None lc 184 127 0
Superset proximal OldCocomin None lsr 187 124 0
Superset proximal OldCocomin None m5p 196 115 0
Superset precise OldCocomin StaticLocomo lc 198 113 0
Superset precise None None cocomost 201 110 0
Superset proximal None None m5p 201 110 0

Table 3.13: Top 10 methods for subset 9 using AR evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset proximal None None e 5 306 0
Superset proximal None None e 5 306 0
Subset precise None None e 32 279 0
Superset precise None None e 32 279 0
Subset proximal None None org 154 157 0
Superset proximal None None org 154 157 0
Subset proximal OldCocomin StaticLocomo lc 87 222 2
Superset proximal NewCocominMedian StaticLocomo lc 105 204 2
Superset proximal None None cocomost 127 182 2
Superset proximal NewCocominMedian DynamicLocomoMean lc 131 178 2

Table 3.14: Top 10 methods for subset 10 using AR evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None sd 57 254 0
Superset precise None None sd 57 254 0
Subset precise None None lc 68 243 0
Subset proximal None None lc 80 231 0
Subset precise None DynamicLocomoMean lc 86 225 0
Subset proximal NewCocominMedian None lc 87 224 0
Subset proximal NewCocominMedian DynamicLocomoMedian lc 89 222 0
Subset proximal NewCocominNative None lc 90 221 0
Subset proximal None None cocomin2 90 221 0
Superset precise None None lc 90 221 0

Table 3.15: Top 10 methods for subset 11 using AR evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise NewCocominMedian None m5p 75 236 0
Superset precise LSRWrapper None lsr 87 224 0
Superset precise LSRWrapper None m5p 87 224 0
Superset precise NewCocominMedian None lsr 92 219 0
Superset proximal NewCocominNative None lsr 95 216 0
Superset precise M5PWrapper None lsr 111 200 0
Superset precise M5PWrapper None m5p 111 200 0
Superset proximal NewCocominNative None m5p 111 200 0
Superset precise OldCocomin None lsr 114 197 0
Superset precise OldCocomin None m5p 114 197 0

Table 3.16: Top 10 methods for subset 12 using AR evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset proximal OldCocomin None lsr 68 243 0
Subset proximal M5PWrapper None lsr 76 235 0
Subset proximal NewCocominNative None lsr 77 234 0
Subset precise OldCocomin None lsr 78 233 0
Subset proximal NewCocominMedian None lsr 79 232 0
Subset proximal LSRWrapper None lsr 80 231 0
Subset precise NewCocominNative None lsr 83 228 0
Subset proximal None None lsr 87 224 0
Subset proximal LSRWrapper None m5p 90 221 0
Subset proximal M5PWrapper None m5p 103 208 0

Table 3.17: Top 10 methods for subset 13 using AR evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise None None lsr 62 249 0
Superset proximal None None lsr 76 235 0
Subset precise NewCocominMedian StaticLocomo lc 91 220 0
Subset precise NewCocominNative StaticLocomo lc 94 217 0
Superset proximal NewCocominNative None lsr 94 217 0
Subset precise None StaticLocomo lc 99 212 0
Superset precise NewCocominMedian None lsr 105 206 0
Superset precise NewCocominNative None lsr 105 206 0
Superset precise None None m5p 105 206 0
Superset proximal NewCocominMedian None lsr 107 204 0

Table 3.18: Top 10 methods for subset 14 using AR evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset proximal NewCocominNative None lsr 54 257 0
Subset precise NewCocominMedian None lsr 100 211 0
Subset precise NewCocominNative None lsr 105 206 0
Subset proximal M5PWrapper None m5p 106 205 0
Subset proximal M5PWrapper None lsr 112 199 0
Subset proximal LSRWrapper None lsr 126 185 0
Subset precise OldCocomin None lsr 127 184 0
Subset proximal NewCocominMedian None lsr 132 179 0
Subset proximal OldCocomin None lsr 139 172 0
Subset precise OldCocomin DynamicLocomoMean lc 147 164 0

Table 3.19: Top 10 methods for subset 15 using AR evaluation criterion.

82



Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset proximal None None e 24 287 0
Superset proximal None None e 24 287 0
Superset precise None DynamicLocomoMedian lc 34 277 0
Subset proximal NewCocominMedian None lc 40 271 0
Subset proximal NewCocominMedian StaticLocomo lc 40 271 0
Subset proximal None None cocomin1 42 269 0
Subset proximal OldCocomin None lc 42 269 0
Subset proximal OldCocomin StaticLocomo lc 42 269 0
Subset precise NewCocominNative None lc 43 268 0
Subset precise None None cocomin2 43 268 0

Table 3.20: Top 10 methods for subset 16 using AR evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset proximal NewCocominNative None lsr 95 216 0
Superset proximal NewCocominNative None m5p 117 194 0
Superset precise None None lsr 170 141 0
Superset proximal NewCocominMedian None m5p 171 140 0
Superset proximal None None lsr 171 140 0
Subset precise NewCocominMedian None lc 172 139 0
Subset precise LocalWrapper None lc 174 137 0
Superset precise None None m5p 177 134 0
Superset precise M5PWrapper None lsr 179 132 0
Superset precise M5PWrapper None m5p 179 132 0

Table 3.21: Top 10 methods for subset 17 using AR evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset proximal M5PWrapper None m5p 101 210 0
Subset precise M5PWrapper None m5p 129 182 0
Subset proximal LSRWrapper None lsr 136 175 0
Subset proximal LSRWrapper None m5p 154 157 0
Subset proximal M5PWrapper None lsr 161 150 0
Subset precise LSRWrapper None m5p 175 136 0
Subset precise M5PWrapper None lsr 177 134 0
Subset precise NewCocominMedian None lsr 179 132 0
Subset precise OldCocomin None lsr 180 131 0
Superset proximal NewCocominNative None lsr 183 128 0

Table 3.22: Top 10 methods for subset 18 using AR evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset proximal None None e 52 259 0
Superset proximal None None e 52 259 0
Subset precise None None cocomost 85 226 0
Superset proximal None None cocomin1 90 221 0
Superset proximal OldCocomin None lc 90 221 0
Subset precise None None e 105 206 0
Superset precise None None e 105 206 0
Superset proximal None None cocomost 105 206 0
Subset precise None None cocomin1 106 205 0
Subset precise OldCocomin None lc 106 205 0

Table 3.23: Top 10 methods for subset 19 using AR evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None e 59 252 0
Superset precise None None e 59 252 0
Subset precise None StaticLocomo lc 62 249 0
Superset precise None StaticLocomo lc 62 249 0
Subset precise NewCocominNative StaticLocomo lc 63 248 0
Superset precise NewCocominNative StaticLocomo lc 63 248 0
Subset precise OldCocomin StaticLocomo lc 64 247 0
Superset precise NewCocominMedian StaticLocomo lc 64 247 0
Superset precise OldCocomin StaticLocomo lc 64 247 0
Subset precise NewCocominMedian StaticLocomo lc 68 243 0

Table 3.24: Top 10 methods for subset 1 using MER evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None e 21 290 0
Superset precise None None e 21 290 0
Subset proximal None None e 25 286 0
Superset proximal None None e 25 286 0
Superset precise None None lc 33 278 0
Subset precise None None sd 45 266 0
Superset precise None None sd 45 266 0
Subset precise None None lc 63 248 0
Superset precise NewCocominMedian None lc 69 242 0
Superset precise NewCocominMedian None lsr 71 240 0

Table 3.25: Top 10 methods for subset 2 using MER evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None e 6 305 0
Superset precise None None e 6 305 0
Subset precise None None lc 30 281 0
Subset precise None StaticLocomo lc 30 281 0
Subset precise None DynamicLocomoMean lc 51 260 0
Subset precise None DynamicLocomoMedian lc 56 255 0
Superset precise None DynamicLocomoMean lc 71 238 2
Superset precise NewCocominMedian DynamicLocomoMean lc 79 230 2
Superset precise NewCocominNative DynamicLocomoMean lc 79 230 2
Superset precise OldCocomin DynamicLocomoMean lc 79 230 2

Table 3.26: Top 10 methods for subset 3 using MER evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise NewCocominMedian DynamicLocomoMean lc 13 298 0
Superset precise NewCocominMedian DynamicLocomoMedian lc 13 298 0
Superset precise NewCocominNative DynamicLocomoMean lc 13 298 0
Superset precise NewCocominNative DynamicLocomoMedian lc 13 298 0
Superset precise OldCocomin DynamicLocomoMean lc 13 298 0
Superset precise OldCocomin DynamicLocomoMedian lc 13 298 0
Superset precise None DynamicLocomoMean lc 14 297 0
Superset precise None DynamicLocomoMedian lc 14 297 0
Subset precise None None cocomin1 47 264 0
Subset precise None None cocomost 47 264 0

Table 3.27: Top 10 methods for subset 4 using MER evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None StaticLocomo lc 21 290 0
Subset precise None None lc 22 289 0
Subset proximal None None e 41 270 0
Superset proximal None None e 41 270 0
Superset precise NewCocominNative DynamicLocomoMedian lc 70 241 0
Superset precise OldCocomin DynamicLocomoMedian lc 70 241 0
Subset precise None DynamicLocomoMean lc 73 238 0
Subset precise None None org 75 236 0
Subset proximal None None lc 75 236 0
Superset precise None None org 75 236 0

Table 3.28: Top 10 methods for subset 5 using MER evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None StaticLocomo lc 21 290 0
Subset precise None None lc 32 279 0
Subset proximal None StaticLocomo lc 39 272 0
Subset precise None DynamicLocomoMean lc 40 271 0
Subset precise None None e 40 271 0
Subset proximal None None lc 40 271 0
Superset precise None None e 40 271 0
Subset proximal NewCocominMedian None lc 46 265 0
Subset proximal NewCocominNative None lc 53 258 0
Subset proximal None None cocomin2 53 258 0

Table 3.29: Top 10 methods for subset 6 using MER evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None org 6 305 0
Superset precise None None org 6 305 0
Subset precise None None lc 12 299 0
Subset precise None StaticLocomo lc 12 299 0
Subset precise None DynamicLocomoMedian lc 20 291 0
Subset proximal None None org 25 286 0
Superset proximal None None org 25 286 0
Subset precise None None sd 48 261 2
Superset precise None None sd 48 261 2
Subset proximal None None lc 54 255 2

Table 3.30: Top 10 methods for subset 7 using MER evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None cocomin1 65 246 0
Subset precise OldCocomin None lc 65 246 0
Superset precise None None cocomin1 65 246 0
Superset precise OldCocomin None lc 65 246 0
Subset precise None None e 100 211 0
Superset precise None None e 100 211 0
Subset precise OldCocomin DynamicLocomoMedian lc 110 201 0
Superset precise OldCocomin DynamicLocomoMedian lc 110 201 0
Subset precise OldCocomin StaticLocomo lc 123 188 0
Superset precise OldCocomin StaticLocomo lc 123 188 0

Table 3.31: Top 10 methods for subset 8 using MER evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise None None cocomin1 51 260 0
Superset precise OldCocomin None lc 51 260 0
Superset precise OldCocomin DynamicLocomoMedian lc 58 253 0
Superset proximal LocalWrapper None m5p 71 240 0
Superset precise None None cocomost 76 235 0
Superset proximal None None cocomost 78 233 0
Superset proximal OldCocomin None lsr 82 229 0
Superset precise LocalWrapper None lc 88 223 0
Superset proximal NewCocominMedian None lc 89 222 0
Superset proximal NewCocominMedian None lsr 89 222 0

Table 3.32: Top 10 methods for subset 9 using MER evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset proximal NewCocominMedian None lc 18 293 0
Superset proximal None None cocomost 19 292 0
Subset proximal None None e 22 289 0
Superset proximal None None e 22 289 0
Superset proximal NewCocominMedian StaticLocomo lc 25 286 0
Superset proximal None None cocomin1 25 286 0
Superset proximal OldCocomin None lc 25 286 0
Superset proximal NewCocominMedian DynamicLocomoMean lc 28 283 0
Superset precise None None cocomin1 37 274 0
Superset precise OldCocomin None lc 37 274 0

Table 3.33: Top 10 methods for subset 10 using MER evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None lc 23 288 0
Subset precise None DynamicLocomoMean lc 32 279 0
Subset precise None StaticLocomo lc 40 271 0
Superset precise None None lc 47 264 0
Subset proximal None None lc 49 262 0
Subset precise None DynamicLocomoMedian lc 61 250 0
Subset proximal NewCocominNative None lc 62 249 0
Subset proximal None None cocomin2 62 249 0
Subset proximal NewCocominMedian DynamicLocomoMedian lc 64 247 0
Subset proximal NewCocominMedian None lc 64 247 0

Table 3.34: Top 10 methods for subset 11 using MER evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset proximal NewCocominNative None lsr 79 232 0
Superset precise NewCocominMedian None m5p 81 230 0
Subset precise LocalWrapper None lc 83 228 0
Superset proximal NewCocominNative None m5p 86 225 0
Superset precise LSRWrapper None lsr 87 224 0
Superset precise LSRWrapper None m5p 87 224 0
Superset proximal NewCocominMedian None lsr 87 224 0
Superset precise OldCocomin None lsr 89 222 0
Superset precise OldCocomin None m5p 89 222 0
Superset precise NewCocominMedian None lsr 90 221 0

Table 3.35: Top 10 methods for subset 12 using MER evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset proximal OldCocomin None lsr 35 276 0
Subset proximal NewCocominMedian None lsr 44 267 0
Subset proximal NewCocominNative None lsr 44 267 0
Subset proximal None None lsr 49 262 0
Subset precise OldCocomin None lsr 53 258 0
Subset precise NewCocominNative None lsr 56 255 0
Subset proximal LSRWrapper None lsr 56 255 0
Subset proximal M5PWrapper None lsr 56 255 0
Subset proximal LSRWrapper None m5p 57 254 0
Subset proximal NewCocominNative None m5p 67 244 0

Table 3.36: Top 10 methods for subset 13 using MER evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None StaticLocomo lc 25 286 0
Subset precise OldCocomin StaticLocomo lc 25 286 0
Subset precise NewCocominMedian StaticLocomo lc 28 283 0
Subset precise NewCocominNative StaticLocomo lc 33 278 0
Subset precise None None cocomin1 47 264 0
Subset precise OldCocomin None lc 47 264 0
Subset precise None None lc 54 257 0
Subset precise NewCocominMedian None lc 56 255 0
Subset precise None None cocomost 57 254 0
Subset precise OldCocomin DynamicLocomoMedian lc 65 246 0

Table 3.37: Top 10 methods for subset 14 using MER evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset proximal NewCocominNative None lsr 29 282 0
Subset precise NewCocominNative None lsr 56 255 0
Subset precise NewCocominMedian None lsr 57 254 0
Subset precise OldCocomin None lsr 69 242 0
Subset proximal M5PWrapper None m5p 72 239 0
Subset proximal NewCocominMedian None lsr 74 237 0
Subset proximal M5PWrapper None lsr 80 231 0
Subset proximal LSRWrapper None lsr 81 230 0
Subset precise OldCocomin DynamicLocomoMedian lc 87 224 0
Subset proximal OldCocomin None lsr 90 221 0

Table 3.38: Top 10 methods for subset 15 using MER evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise None DynamicLocomoMedian lc 22 289 0
Subset proximal NewCocominMedian None lc 38 273 0
Subset proximal NewCocominMedian StaticLocomo lc 39 272 0
Subset proximal None None cocomin1 44 267 0
Subset proximal OldCocomin None lc 44 267 0
Subset proximal OldCocomin StaticLocomo lc 44 267 0
Subset precise NewCocominNative None lc 48 263 0
Subset precise None None cocomin2 48 263 0
Subset proximal None None cocomost 48 263 0
Subset proximal None None e 48 263 0

Table 3.39: Top 10 methods for subset 16 using MER evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset proximal None None e 92 219 0
Superset proximal None None e 92 219 0
Superset proximal NewCocominNative None lsr 94 217 0
Subset precise LSRWrapperNoLog None m5p 97 214 0
Subset precise M5PWrapperNoLog None m5p 103 208 0
Subset precise LocalWrapper None lc 107 204 0
Superset proximal NewCocominNative None m5p 110 201 0
Subset precise M5PWrapper None lsr 111 200 0
Superset proximal None None lsr 112 199 0
Subset precise LSRWrapperNoLog None lsr 113 198 0

Table 3.40: Top 10 methods for subset 17 using MER evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset proximal M5PWrapper None m5p 30 281 0
Subset precise M5PWrapper None m5p 51 260 0
Subset proximal LSRWrapper None lsr 51 260 0
Subset proximal M5PWrapper None lsr 53 258 0
Subset proximal LSRWrapper None m5p 61 250 0
Subset precise NewCocominMedian None lsr 71 240 0
Subset precise LSRWrapper None m5p 72 239 0
Subset precise NewCocominNative None lsr 72 239 0
Subset precise OldCocomin None lsr 73 238 0
Subset precise LSRWrapper None lsr 76 235 0

Table 3.41: Top 10 methods for subset 18 using MER evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset proximal None None cocomin1 44 267 0
Superset proximal OldCocomin None lc 44 267 0
Superset proximal None None cocomost 51 260 0
Subset precise None None cocomin1 52 259 0
Subset precise OldCocomin None lc 52 259 0
Subset precise None None cocomost 59 252 0
Superset proximal NewCocominMedian None lc 61 250 0
Subset proximal None None e 67 244 0
Superset proximal None None e 67 244 0
Superset precise None None cocomin1 68 243 0

Table 3.42: Top 10 methods for subset 19 using MER evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise NewCocominNative StaticLocomo lc 51 260 0
Superset precise NewCocominNative StaticLocomo lc 51 260 0
Subset precise None StaticLocomo lc 53 258 0
Subset precise OldCocomin StaticLocomo lc 53 258 0
Superset precise NewCocominMedian StaticLocomo lc 53 258 0
Superset precise None StaticLocomo lc 53 258 0
Superset precise OldCocomin StaticLocomo lc 53 258 0
Subset precise NewCocominMedian StaticLocomo lc 59 252 0
Subset precise None DynamicLocomoMedian lc 59 252 0
Subset precise None None sd 59 252 0

Table 3.43: Top 10 methods for subset 1 using MRE evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise NewCocominMedian None lsr 49 262 0
Superset precise NewCocominNative None lsr 49 262 0
Superset precise OldCocomin None lsr 49 262 0
Superset precise None None lsr 51 260 0
Superset precise None StaticLocomo lc 51 260 0
Superset precise None None lc 52 259 0
Subset precise None None sd 53 258 0
Superset precise None None sd 53 258 0
Superset precise NewCocominMedian StaticLocomo lc 61 250 0
Superset precise NewCocominNative StaticLocomo lc 61 250 0

Table 3.44: Top 10 methods for subset 2 using MRE evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None e 22 289 0
Superset precise None None e 22 289 0
Subset precise None None lc 28 283 0
Subset precise None StaticLocomo lc 28 283 0
Superset precise None StaticLocomo lc 28 283 0
Superset precise NewCocominMedian StaticLocomo lc 29 282 0
Superset precise NewCocominNative StaticLocomo lc 29 282 0
Superset precise OldCocomin StaticLocomo lc 29 282 0
Subset proximal None None e 31 280 0
Superset proximal None None e 31 280 0

Table 3.45: Top 10 methods for subset 3 using MRE evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise NewCocominMedian DynamicLocomoMean lc 9 302 0
Superset precise NewCocominNative DynamicLocomoMean lc 9 302 0
Superset precise None DynamicLocomoMean lc 9 302 0
Superset precise OldCocomin DynamicLocomoMean lc 9 302 0
Superset precise NewCocominMedian DynamicLocomoMedian lc 12 299 0
Superset precise NewCocominNative DynamicLocomoMedian lc 12 299 0
Superset precise OldCocomin DynamicLocomoMedian lc 12 299 0
Superset precise None DynamicLocomoMedian lc 15 296 0
Subset precise None None org 35 276 0
Superset precise None None org 35 276 0

Table 3.46: Top 10 methods for subset 4 using MRE evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None lc 21 290 0
Subset precise None StaticLocomo lc 23 288 0
Subset proximal None None e 25 286 0
Superset proximal None None e 25 286 0
Subset precise None None org 29 282 0
Superset precise None None org 29 282 0
Superset precise None None lc 33 278 0
Superset precise NewCocominNative None lc 35 276 0
Superset precise None None cocomin1 35 276 0
Superset precise None None cocomin2 35 276 0

Table 3.47: Top 10 methods for subset 5 using MRE evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None StaticLocomo lc 21 290 0
Subset precise None None e 22 289 0
Superset precise None None e 22 289 0
Subset precise None None lc 37 274 0
Subset proximal None None e 51 260 0
Superset proximal None None e 51 260 0
Subset proximal None StaticLocomo lc 54 257 0
Subset proximal None None lc 66 245 0
Subset precise None DynamicLocomoMean lc 71 240 0
Subset proximal NewCocominMedian None lc 77 234 0

Table 3.48: Top 10 methods for subset 6 using MRE evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None org 7 304 0
Superset precise None None org 7 304 0
Subset precise None None lc 8 303 0
Subset precise None StaticLocomo lc 8 303 0
Subset precise None DynamicLocomoMedian lc 12 299 0
Subset precise None DynamicLocomoMean lc 33 278 0
Subset proximal None None org 34 277 0
Superset proximal None None org 34 277 0
Subset proximal None None lc 44 265 2
Subset precise None None cocomin1 43 264 4

Table 3.49: Top 10 methods for subset 7 using MRE evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise OldCocomin StaticLocomo lc 116 195 0
Superset precise OldCocomin StaticLocomo lc 116 195 0
Superset precise OldCocomin DynamicLocomoMean lc 118 193 0
Subset precise OldCocomin None lc 129 182 0
Superset precise None None cocomin1 129 182 0
Superset precise OldCocomin None lc 129 182 0
Subset precise None None cocomin1 130 181 0
Subset precise OldCocomin DynamicLocomoMedian lc 132 179 0
Superset precise OldCocomin DynamicLocomoMedian lc 132 179 0
Subset precise None StaticLocomo lc 137 174 0

Table 3.50: Top 10 methods for subset 8 using MRE evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise OldCocomin DynamicLocomoMean lc 51 260 0
Superset proximal LSRWrapper None lsr 70 241 0
Superset proximal LSRWrapper None m5p 70 241 0
Superset proximal M5PWrapper None lsr 96 215 0
Superset proximal M5PWrapper None m5p 96 215 0
Superset proximal NewCocominMedian None lsr 104 207 0
Superset precise OldCocomin StaticLocomo lc 114 197 0
Superset proximal NewCocominNative None m5p 118 193 0
Superset proximal OldCocomin None lsr 122 189 0
Superset precise OldCocomin DynamicLocomoMedian lc 125 186 0

Table 3.51: Top 10 methods for subset 9 using MRE evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset proximal NewCocominMedian StaticLocomo lc 46 265 0
Superset proximal NewCocominMedian DynamicLocomoMean lc 49 262 0
Subset precise None None e 57 254 0
Superset precise None None e 57 254 0
Superset proximal NewCocominNative StaticLocomo lc 83 228 0
Superset proximal OldCocomin DynamicLocomoMedian lc 97 214 0
Superset proximal NewCocominMedian None lc 98 213 0
Superset proximal NewCocominNative DynamicLocomoMean lc 115 196 0
Superset precise None None cocomin1 118 193 0
Superset precise OldCocomin None lc 118 193 0

Table 3.52: Top 10 methods for subset 10 using MRE evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None lc 17 294 0
Subset precise None DynamicLocomoMean lc 27 284 0
Subset proximal None None lc 34 277 0
Subset precise None DynamicLocomoMedian lc 50 261 0
Subset proximal NewCocominNative None lc 57 254 0
Subset proximal None None cocomin2 57 254 0
Subset proximal NewCocominMedian None lc 58 253 0
Subset proximal NewCocominMedian DynamicLocomoMedian lc 60 251 0
Superset precise None None lc 67 244 0
Subset proximal NewCocominMedian DynamicLocomoMean lc 69 242 0

Table 3.53: Top 10 methods for subset 11 using MRE evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise LSRWrapper None lsr 32 279 0
Superset precise LSRWrapper None m5p 32 279 0
Superset precise NewCocominMedian None lsr 35 276 0
Superset proximal NewCocominNative None lsr 51 260 0
Superset proximal NewCocominNative None m5p 52 259 0
Superset proximal NewCocominMedian None m5p 54 257 0
Superset proximal NewCocominMedian None lsr 56 255 0
Superset proximal OldCocomin None m5p 58 253 0
Superset proximal OldCocomin None lsr 66 245 0
Superset precise NewCocominNative None m5p 71 240 0

Table 3.54: Top 10 methods for subset 12 using MRE evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset proximal OldCocomin None lsr 33 278 0
Subset proximal NewCocominNative None lsr 34 277 0
Subset proximal NewCocominMedian None lsr 40 271 0
Subset proximal None None lsr 46 265 0
Subset precise NewCocominNative None lsr 50 261 0
Subset precise OldCocomin None lsr 51 260 0
Subset proximal LSRWrapper None lsr 53 258 0
Subset proximal M5PWrapper None lsr 53 258 0
Subset proximal LSRWrapper None m5p 55 256 0
Subset proximal NewCocominNative None m5p 60 251 0

Table 3.55: Top 10 methods for subset 13 using MRE evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None e 7 304 0
Superset precise None None e 7 304 0
Superset precise None None lsr 53 258 0
Superset proximal None None lsr 61 250 0
Subset precise None None cocomin1 71 240 0
Subset precise OldCocomin None lc 71 240 0
Subset precise None None sd 61 249 1
Superset precise None None sd 61 249 1
Subset precise None StaticLocomo lc 48 261 2
Subset precise OldCocomin StaticLocomo lc 50 259 2

Table 3.56: Top 10 methods for subset 14 using MRE evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset proximal NewCocominNative None lsr 26 285 0
Subset precise NewCocominNative None lsr 54 257 0
Subset precise NewCocominMedian None lsr 55 256 0
Subset proximal NewCocominMedian None lsr 74 237 0
Subset proximal M5PWrapper None m5p 75 236 0
Subset precise OldCocomin None lsr 79 232 0
Subset proximal LSRWrapper None lsr 80 231 0
Subset proximal M5PWrapper None lsr 81 230 0
Subset proximal NewCocominNative None m5p 84 227 0
Subset proximal OldCocomin None lsr 86 225 0

Table 3.57: Top 10 methods for subset 15 using MRE evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset precise None DynamicLocomoMedian lc 29 282 0
Subset proximal NewCocominMedian StaticLocomo lc 39 272 0
Subset proximal NewCocominMedian None lc 40 271 0
Subset proximal None None cocomin1 40 271 0
Subset proximal OldCocomin None lc 40 271 0
Subset proximal OldCocomin StaticLocomo lc 40 271 0
Subset precise NewCocominMedian None lc 42 269 0
Subset precise NewCocominNative None lc 42 269 0
Subset precise None None cocomin2 42 269 0
Subset proximal NewCocominNative None lc 42 269 0

Table 3.58: Top 10 methods for subset 16 using MRE evaluation criterion.

95



Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Superset proximal NewCocominNative None lsr 70 241 0
Superset precise M5PWrapper None lsr 78 233 0
Superset precise M5PWrapper None m5p 78 233 0
Superset proximal NewCocominNative None m5p 83 228 0
Superset precise LSRWrapper None lsr 84 227 0
Superset precise LSRWrapper None m5p 84 227 0
Superset proximal NewCocominMedian None m5p 93 218 0
Superset precise NewCocominMedian None m5p 94 217 0
Superset precise None None lsr 95 216 0
Superset precise None None m5p 95 216 0

Table 3.59: Top 10 methods for subset 17 using MRE evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset proximal M5PWrapper None m5p 41 270 0
Subset precise M5PWrapper None m5p 49 262 0
Subset proximal LSRWrapper None lsr 55 256 0
Subset proximal M5PWrapper None lsr 58 253 0
Subset proximal LSRWrapper None m5p 60 251 0
Subset precise M5PWrapper None lsr 64 247 0
Superset proximal NewCocominNative None lsr 64 247 0
Subset precise LSRWrapper None m5p 70 241 0
Superset proximal NewCocominNative None m5p 71 240 0
Superset proximal None None lsr 72 239 0

Table 3.60: Top 10 methods for subset 18 using MRE evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None e 46 265 0
Superset precise None None e 46 265 0
Superset precise None None lc 59 252 0
Subset precise None None lc 65 246 0
Subset precise None StaticLocomo lc 65 246 0
Superset proximal None None cocomin1 66 245 0
Superset proximal OldCocomin None lc 66 245 0
Subset precise None None cocomin1 68 243 0
Subset precise OldCocomin None lc 68 243 0
Superset proximal None None lc 68 243 0

Table 3.61: Top 10 methods for subset 19 using MRE evaluation criterion.
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All Subsets And One Evaluation Criterion

Tables 3.5 through 3.23 show the results of running the MWU test using the AR evaluation criterion

for each of the 19 subsets of COC81 and NASA93 data sets. The names of these data sets can be

found from Table 3.1.

As expected, the top 10 methods for each subset is different from other subsets. There is no

general trend as to which method performs better in each subset. For example, both superset and

subset train types are present in the results. Also, both precise and proximal numeric estimation

methods are present in the top 10 methods for these subsets. Moreover, column pruners, row

pruners, and learners based on local calibration as well as other methods are represented in the

results.

Nonetheless, this was anticipated. A single method cannot possibly be useful for all subset

and data sets. If so, such a method would have been reported in the literature. However, no such

method is known to exist at the time of writing the results of this study. Therefore, this study is

in agreement with other studies in this respect. However, this work does not consider these results

without any direction or decisive content. Although no single method is best, there are certain

points that can be made about the top methods for the subsets used in this study. Furthermore,

clear points can be made about methods not in the top reported list.

These findings for AR are as follows:

1. In 18 of 19 subsets, the top method either had a simple column pruning method (Cocomin)

or required no column pruning method at all. This is a key finding since it simplifies and

speeds up the effort estimation process.

2. In all subsets, the top method either used no row pruning method or used one based on local

calibration.

3. In addition, the nearest neighbor method was not used in the top 10 performing methods.

This and the previous point clearly state that row pruning without any domain knowledge,
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which is the nearest neighbor method in this case, is actually less useful than not doing row

pruning at all.

4. All the top methods in every subset used learners employing linear regression to learn a

model. Local calibration and all methods based on that, as well as LSR and M5p are such

methods. Once again the nearest neighbor method that does not use any of these learners

fails. This re-emphasizes the need for methods that have some domain knowledge about

the data (where it is assumed by methods such as local calibration that project effort is

exponential on KLOC).

5. In 12 of 19 subsets, local calibration and learners based on that, including its standard modes

were the top method’s learner. LSR was used in the other 5 subsets and M5p was only used

in 2 subsets. This clearly states that in 17 of the 19 subsets, model trees were not selected as

the preferred learner and simpler linear regression learners performed better.

6. In all subsets, when column pruning using LSR or M5p as target learners is present, it logs

the data. The absence of methods that do not log the data simplifies the search for the top

performing methods in Section 3.6.5.

7. Although simple column pruners based on local calibration (such as Cocomin) are useful, the

more thorough one (Local Wrapper) is never used in the top method. Hence, sophisticated

column pruners can be removed when looking for the top performing methods in Section

3.6.5.

All Subsets And All Evaluation Criteria

The importance of these findings is that, they can be generalized to other evaluation criteria. The

results of the MWU test based on the MER evaluation criterion are presented in Tables 3.24 through

3.42. Similarly, the results based on the MRE evaluation criterion are presented in Tables 3.43
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through 3.61. The goal is to identify any similarities or differences in the results across these

evaluation criteria for each individual subset.

• Finding 1 holds for both MER and MRE. In MER results, the top methods of 18 of 19 subsets

used a simple column pruning method (Cocomin) or required no column pruning method at

all. In MRE tables, 17 of the 19 subsets showed the same results, with 1 of the 2 other subset

showing Cocomin very close to the top method.

• Finding 2 holds for all subsets evaluated using MER and MRE as well.

• Finding 3 holds for all subsets evaluated using MER and MRE as well. In addition, these two

findings demonstrate the importance of using methods that have some domain knowledge

about the data.

• Finding 4 holds for all subsets evaluated using MER and MRE as well.

• Finding 5 holds for MER and MRE as well. For MER, 15 of the subsets used local calibration

and learners based on it and 3 used LSR. Only 1 used M5p, meaning that 18 of the 19 subsets

used simple linear regression learners. For MRE, 13 used local calibration and learners based

on it, 5 used LSR, and only 1 used M5p. Therefore, 18 of the 19 subsets used simpler linear

regression learners again. It is even more interesting that in 15 of the 19 subsets, the top

method’s learner across all evaluation criteria was from the same type of learner (meaning

that for all three criteria, it was either based on local calibration, or was one of the LSR or

M5p learners). This further shows the agreement between different evaluation criteria.

• Finding 6 holds for all subsets evaluated using MER and MRE as well except for subset

17 evaluated using MER. However, a simple local calibration performs better in this subset.

Therefore, the same point can be made about simplifying the search for top performing

methods by removing methods that do not log the data.
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• Finding 7 holds for all subsets when using MER and MRE as well. Sophisticated and com-

plex column pruning methods are not required in general.

The agreement in the findings among the three evaluation criteria and across all 19 subsets

proves the fact that different evaluation criteria show stable results (using the MWU test). This

is an essential point in studying the effects of evaluation bias in effort estimation studies and is

further discussed in Chapter 4.

3.6.2 Top 20 Methods For Each Data Set Across Three Evaluation Criteria

Although the results for the subsets of each data set are useful in finding the most appropriate

methods for each subset, it is also useful to find the best methods applied to each data set based on

the results for each individual subset of that data set. This is done by summing the number of ties,

wins, and losses individually for each method across all subsets of a data set. In this section, the

top 20 methods for each data set (COC81 and NASA93) are reported. This includes the top 6% of

the methods that have the fewest number of total losses over all subsets of that data set (and most

number of total wins in case of the same number of total losses). The justification for not showing

more results is offered in Section 3.6.3.

The goal of presenting the results in this way is to find methods that can perform best across

most, if not all, subsets of a data set. Similar to reporting the results in Section 3.6.1, these results

are also reported for two data sets, COC81 and NASA93, across all three evaluation criteria, AR,

MER, and MRE. Tables 3.62 through 3.67 contain these results. It should be noted that the total

number of losses (as well as wins and ties) possible is 311∗7 = 2177 for COC81 and 311∗12 =

3732 for NASA93.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None DynamicLocomoMean lc 743 1430 4
Subset precise None DynamicLocomoMedian lc 796 1377 4
Subset precise None None lc 750 1417 10
Subset precise NewCocominMedian None lc 922 1244 11
Subset precise None StaticLocomo lc 529 1631 17
Superset precise NewCocominNative DynamicLocomoMedian lc 868 1288 21
Superset precise NewCocominMedian DynamicLocomoMedian lc 892 1264 21
Superset precise OldCocomin DynamicLocomoMedian lc 892 1264 21
Subset precise NewCocominMedian DynamicLocomoMedian lc 965 1190 22
Subset precise OldCocomin DynamicLocomoMean lc 903 1250 24
Subset precise None None cocomin1 925 1228 24
Subset precise OldCocomin None lc 925 1228 24
Subset precise NewCocominNative DynamicLocomoMean lc 938 1215 24
Subset precise NewCocominMedian StaticLocomo lc 685 1467 25
Subset precise NewCocominNative None lc 936 1216 25
Subset precise None None cocomin2 936 1216 25
Subset precise NewCocominNative StaticLocomo lc 682 1469 26
Subset precise NewCocominMedian DynamicLocomoMean lc 900 1250 27
Subset precise NewCocominNative DynamicLocomoMedian lc 963 1184 30
Subset proximal None DynamicLocomoMean lc 1143 1004 30

Table 3.62: Top 20 methods for COC81 using AR evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise NewCocominMedian None lc 2355 1373 4
Subset precise None None cocomost 2172 1555 5
Subset proximal None None e 2217 1510 5
Superset proximal None None e 2217 1510 5
Subset precise None None cocomin1 2154 1571 7
Subset precise OldCocomin None lc 2154 1571 7
Subset precise NewCocominNative None lc 2474 1249 9
Subset precise None None cocomin2 2474 1249 9
Superset precise None None lc 2350 1371 11
Subset precise OldCocomin DynamicLocomoMedian lc 2467 1253 12
Subset precise NewCocominNative DynamicLocomoMedian lc 2682 1037 13
Subset precise NewCocominMedian DynamicLocomoMedian lc 2693 1024 15
Superset precise OldCocomin DynamicLocomoMean lc 2472 1243 17
Subset precise OldCocomin DynamicLocomoMean lc 2437 1273 22
Subset precise None None lc 2525 1183 24
Superset precise None DynamicLocomoMedian lc 2659 1046 27
Superset precise None DynamicLocomoMean lc 2594 1106 32
Superset precise OldCocomin DynamicLocomoMedian lc 2379 1318 35
Subset precise NewCocominNative DynamicLocomoMean lc 2679 1016 37
Superset precise None None cocomin1 2268 1423 41

Table 3.63: Top 20 methods for NASA93 using AR evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None lc 335 1829 13
Subset precise None DynamicLocomoMean lc 548 1608 21
Subset precise None StaticLocomo lc 281 1873 23
Subset precise None None cocomin1 555 1599 23
Subset precise OldCocomin None lc 555 1599 23
Subset precise NewCocominNative None lc 566 1587 24
Subset precise None None cocomin2 566 1587 24
Subset precise None DynamicLocomoMedian lc 562 1590 25
Subset precise NewCocominMedian None lc 568 1579 30
Subset precise None None cocomost 568 1577 32
Subset precise None None e 321 1817 39
Superset precise None None e 321 1817 39
Subset precise NewCocominMedian StaticLocomo lc 457 1649 71
Subset precise None None sd 497 1609 71
Superset precise None None sd 497 1609 71
Superset precise NewCocominMedian DynamicLocomoMedian lc 569 1535 73
Subset precise NewCocominMedian DynamicLocomoMean lc 621 1483 73
Superset precise NewCocominNative DynamicLocomoMedian lc 568 1535 74
Superset precise OldCocomin DynamicLocomoMedian lc 570 1533 74
Subset precise OldCocomin DynamicLocomoMean lc 615 1486 76

Table 3.64: Top 20 methods for COC81 using MER evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None cocomin1 1388 2301 43
Subset precise OldCocomin None lc 1389 2300 43
Subset precise None None cocomost 1503 2181 48
Subset proximal None None e 1493 2181 58
Superset proximal None None e 1493 2181 58
Subset precise NewCocominMedian None lc 1702 1966 64
Subset precise NewCocominNative None lc 1829 1832 71
Subset precise None None cocomin2 1829 1832 71
Subset proximal None None cocomost 1777 1879 76
Subset proximal None None cocomin1 1827 1825 80
Subset proximal OldCocomin None lc 1827 1825 80
Subset proximal NewCocominMedian None lc 1986 1665 81
Subset precise None None e 726 2892 114
Superset precise None None e 726 2892 114
Subset precise None None lc 1737 1876 119
Subset proximal NewCocominNative None lc 2090 1519 123
Subset proximal None None cocomin2 2090 1519 123
Subset precise OldCocomin DynamicLocomoMedian lc 1789 1793 150
Superset precise None None lc 1632 1948 152
Subset precise NewCocominNative DynamicLocomoMedian lc 2131 1439 162

Table 3.65: Top 20 methods for NASA93 using MER evaluation criterion.
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Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None DynamicLocomoMean lc 428 1739 10
Subset precise None StaticLocomo lc 260 1905 12
Subset precise None None lc 321 1841 15
Subset precise None None sd 348 1810 19
Superset precise None None sd 348 1810 19
Subset precise None DynamicLocomoMedian lc 436 1718 23
Superset precise NewCocominNative DynamicLocomoMedian lc 457 1687 33
Superset precise OldCocomin DynamicLocomoMedian lc 462 1682 33
Superset precise NewCocominMedian DynamicLocomoMedian lc 472 1670 35
Superset precise NewCocominMedian DynamicLocomoMean lc 485 1645 47
Superset precise NewCocominNative DynamicLocomoMean lc 473 1656 48
Superset precise OldCocomin DynamicLocomoMean lc 473 1656 48
Subset precise NewCocominMedian None lc 566 1563 48
Superset precise None StaticLocomo lc 358 1770 49
Subset precise None None cocomost 585 1540 52
Superset precise None DynamicLocomoMean lc 473 1650 54
Superset precise None DynamicLocomoMedian lc 495 1626 56
Superset precise NewCocominNative StaticLocomo lc 362 1755 60
Superset precise OldCocomin StaticLocomo lc 364 1753 60
Superset precise NewCocominMedian StaticLocomo lc 365 1751 61

Table 3.66: Top 20 methods for COC81 using MRE evaluation criterion.

Train Numeric Column Pruner Row Pruner Learner Ties Wins Losses
Type Estimation
Subset precise None None e 1558 2154 20
Superset precise None None e 1558 2154 20
Subset precise OldCocomin None lc 1438 2272 22
Subset precise None None cocomin1 1439 2271 22
Subset precise None None cocomost 1519 2187 26
Subset precise NewCocominMedian None lc 1751 1954 27
Subset precise NewCocominNative None lc 1886 1808 38
Subset precise None None cocomin2 1886 1808 38
Superset precise None None lc 1652 2022 58
Subset precise None None lc 1699 1962 71
Superset precise None None cocomin1 1538 2115 79
Superset precise OldCocomin None lc 1538 2115 79
Subset precise OldCocomin DynamicLocomoMedian lc 1795 1858 79
Superset precise OldCocomin DynamicLocomoMean lc 1715 1931 86
Superset precise OldCocomin DynamicLocomoMedian lc 1639 2003 90
Superset precise None DynamicLocomoMean lc 1931 1707 94
Superset precise None DynamicLocomoMedian lc 1991 1643 98
Subset precise NewCocominNative DynamicLocomoMedian lc 2140 1488 104
Subset precise OldCocomin DynamicLocomoMean lc 1709 1909 114
Superset precise None StaticLocomo lc 1344 2272 116

Table 3.67: Top 20 methods for NASA93 using MRE evaluation criterion.
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Looking at the results for COC81 and NASA93 across all three evaluation criteria, these points

can be made about the results in of Tables 3.62 through 3.67:

1. The only methods present in all 6 tables are based on the local calibration method. In ev-

ery case, the learner is either the local calibration method or is based on local calibration,

including the standard modes. This is an outstanding finding. This simply means that none

of the more sophisticated column pruning methods (such as Wrappers that use LSR or M5p

target learners) and also learners such as LSR and M5p are as useful as methods based on

local calibration in effort estimation.

2. Although methods based on local calibration are the only top performers in these results, they

do not require to be sophisticated. As an example, Local Wrapper, which uses a thorough

search and the local calibration method, is not present in these results. Hence, it is adequate

to use simple pre-processors and learners based on local calibration.

3. In addition to the absence of sophisticated methods, methods such as nearest neighbor that

do not use the domain knowledge about the data are also absent from these results. Such

methods represent the other end of the spectrum with their simplistic designs.

4. In all the results, the top two methods use the subset train type and the precise numeric

estimation method. This can greatly simplify the search for the top performing methods in

Section 3.6.5 by removing methods that use the superset train type and the proximal numeric

estimation method.

5. In every data set and for all the evaluation criteria, the methods using dynamic Locomo

always ranked higher than the methods using static Locomo. This shows that fixed neigh-

borhoods cannot be as effective in row pruning as specific neighborhoods found for each

data set. Therefore, although simpler methods are usually desired, row pruning requires a

focused search of the instances to find the most appropriate neighborhood.
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6. All the methods found in these results use linear regression (since they are all based on local

calibration) and all log the data. This clarifies the need for logging the data.

7. Except in one case (Table 3.67) one or both of the top two methods use one or more of a

column pruner, a row pruner, or a learner such as Cocomin that prunes columns automatically

in training the model. Even in that one case, the next methods (which are very close to the top

two) satisfy this finding. Therefore, pruning the data in effort estimation can be considered

beneficial.

Similar to the case with the subsets, these findings across different data sets and evaluation

criteria also show stability in the results. The stability seen across the data sets has a different

nature from the stability seen across their subsets. This is not the weakness but rather is the strength

of these experiments in that, they show how changing the view of the results (for example from

subsets to their data sets) can affect the results of the evaluation, and hence illustrate the evaluation

bias present in the effort estimation literature. This is further discussed in Chapter 4.

3.6.3 All Methods For Each Data Set

There is another way of looking at the results of these experiments and that is by looking at the

trend present in each data set across different evaluation criteria. Therefore, instead of listing only

the top 10 or 20 results, all methods are presented together in a graph. In order to do so, the number

of losses across all subsets of a data set is summed up. This is done for each evaluation criteria.

The methods are then sorted based on their number of losses for AR and the same sort order is

applied to MER and MRE results. Hence, the same method is present at the same X-axis location.

Figures 3.7 and 3.8 show these graphs.

These results show a clear trend in the performance of methods regardless of the evaluation

criteria used. Although there are spikes present in these graphs, the general trend remains the

same. It should be mentioned that, these spikes are usually small, except for three large spikes
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Figure 3.7: All 312 methods applied to COC81 and arranged using the sort order in AR.
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Figure 3.8: All 312 methods applied to NASA93 and arranged using the sort order in AR.
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Figure 3.9: All 312 methods applied to both COC81 and NASA93 and arranged using the sort order
in the top left graph.

in NASA93’s MER results. However, these spikes are irrelevant when considering the number of

methods (312) and the total number of losses possible, which is 311 ∗ 7 = 2177 for COC81 and

311∗12 = 3732 for NASA93.

Another important feature of these graphs can be seen in performance of the top performers

(seen at the leftmost part of each graph). These methods are the same and usually perform at

least as well as any other method. This further illustrates the similar effects of different evaluation

criteria. Furthermore, it shows that the majority of the 312 methods are not needed. This clarifies

the reason for showing only a small group of top methods in Tables 3.5 through 3.67 rather than

showing all such methods.

As shown before, Figures 3.7 and 3.8 show a general trend across different evaluation criteria.

Such a trend also exists when the same sort order is applied to the graphs of both data sets, COC81

and NASA93. This can be seen in Figure 3.9. The three graphs on the left are the same as the
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graphs in Figure 3.7. Therefore, they have the same spikes. However, there are more spikes, with

some large ones, in the NASA93 graphs. This was anticipated since as stated before, a method may

not perform the same way across different data sets. Nonetheless, the trend seen in either data set

is similar across different evaluation criteria.

Once more, it is helpful to look at the top performing methods (seen at the leftmost part of each

graph). Although they show more spikes, they still perform at least as well as all other methods.

Therefore, in order to study these methods, Section 3.6.4 focuses on a smaller group of methods,

namely 78 of them. Section 3.6.5 reduces the number of methods studied even further.

3.6.4 Simpler Results

Simplifying the results is helpful in many ways. Presenting too many methods makes it harder to

compare the performance of these methods individually. In addition, there is a great amount of

difference in the performance of certain groups of methods, as described below, such as the ones

that use the superset train type or the proximal numeric estimation method. Therefore, this section

aims at removing such methods and as a result, focusing on other aspects of the results of these

experiments, such as finding the methods that perform worse than the others.

The results in Section 3.6.2 show that the train type can be simplified. In every case, the top

performing method used the subset train type, which performed at least as well as the superset

train type in the top method (Table 3.67) and otherwise much better than any method using the

superset train type (Tables 3.62 through 3.65). (There might seem to be a case against removing

the superset train type when looking at the tables in Section 3.6.1 since superset appears repeatedly

in the results. Also, the lack of space does not allow for showing more than 10 results in each table.

Therefore, in tables with only the superset train type, it seems that the superset train type performs

better. However, the fact is that all those results show similar (and mostly zero) number of losses.

Therefore, when looking at all, rather than top 10, methods the superset train type performs no

better that the subset train type in 96.5% of the tables and only slightly better in the remaining
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3.5% tables. Hence, removing the superset train type can greatly simplify the results in these tables

as well. These results are available at http://unbox.org/wisp/var/omid/extras/results/.)

Therefore, there is a case for simplifying the results and only looking at the subset train type in

the results of the remaining experiments. In addition to reducing the search space of the methods

by half, it also reduces the time of the experiment by more than half. The reason is that, training

on the superset takes at least as much time as, and usually more than, training on the subset (since

the size of the superset is at least as large as the subset). Therefore, the time required to train each

model is reduced by more than half.

There is also a case for removing the proximal numeric estimation method from further con-

sideration in the results. As Tables 3.62 through 3.67 show, the top performing method in each

data set never used proximal. This further proves the point that having some domain knowledge

about the data (by using precise instead of proximal numeric estimation) helps the performance of

methods. This was also seen in the case with the nearest neighbor method, which did not use the

domain knowledge about the data, comparing to other methods such as local calibration.

These simplifications reduce the number of methods analyzed from 312 to a quarter of that, or

78. At this stage of reporting the results, there is no benefit in removing individual methods (such

as nearest neighbor). The reason is that removing individual methods will not reduce the number of

methods more than a few, which does not affect the runtime greatly. Also, the performance of such

methods comparing to the top methods is worth analyzing since they are present in the literature.

The next section takes a look at the best and worst performers of these 78 methods across different

evaluation criteria, subsets, and an additional 4 runs.

The results of this section are generated by removing all methods with superset train type or

proximal numeric estimation method and running the MWU test on the remaining 78 methods.

These results are provided in Tables 3.68 through 3.73. It should be noted that the total number of

losses (as well as wins and ties) possible is 77∗7 = 539 for COC81 and 77∗12 = 924 for NASA93.
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Top 10
Column Pruner Row Pruner Learner Ties Wins Losses
None DynamicLocomoMean lc 173 365 1
None DynamicLocomoMedian lc 189 349 1
None None lc 195 343 1
NewCocominMedian DynamicLocomoMedian lc 220 315 4
None StaticLocomo lc 136 398 5
NewCocominMedian None lc 211 322 6
NewCocominMedian StaticLocomo lc 164 368 7
NewCocominMedian DynamicLocomoMean lc 201 331 7
NewCocominNative StaticLocomo lc 165 366 8
OldCocomin StaticLocomo lc 165 366 8

Bottom 10
Column Pruner Row Pruner Learner Ties Wins Losses
NewCocominMedian NearestME None 188 4 347
NewCocominMedian NearestMRE None 184 3 352
OldCocomin NearestMRE None 178 1 360
NewCocominNative NearestME None 175 1 363
NewCocominNative NearestMRE None 174 1 364
None NearestMRE None 164 7 368
None NearestME None 156 14 369
OldCocomin NearestME None 167 2 370
LocalWrapper NearestME None 153 3 383
LocalWrapper NearestMRE None 153 2 384

Table 3.68: Top 10 and bottom 10 methods for COC81 using AR evaluation criterion.

Top 10
Column Pruner Row Pruner Learner Ties Wins Losses
None None cocomin1 560 363 1
OldCocomin None lc 560 363 1
None None cocomost 567 356 1
NewCocominMedian None lc 595 328 1
NewCocominNative None lc 627 295 2
None None cocomin2 627 295 2
OldCocomin DynamicLocomoMedian lc 652 270 2
NewCocominNative DynamicLocomoMedian lc 686 236 2
NewCocominMedian DynamicLocomoMedian lc 689 233 2
NewCocominMedian StaticLocomo lc 568 352 4

Bottom 10
Column Pruner Row Pruner Learner Ties Wins Losses
OldCocomin NearestMRE None 435 1 488
NewCocominMedian NearestMRE None 406 1 517
NewCocominNative NearestMRE None 399 0 525
OldCocomin NearestME None 396 1 527
NewCocominMedian NearestME None 391 2 531
NewCocominNative NearestME None 385 0 539
None NearestMRE None 354 0 570
None NearestME None 327 0 597
LocalWrapper NearestMRE None 294 5 625
LocalWrapper NearestME None 291 5 628

Table 3.69: Top 10 and bottom 10 methods for NASA93 using AR evaluation criterion.
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Top 10
Column Pruner Row Pruner Learner Ties Wins Losses
None DynamicLocomoMean lc 149 386 4
None None lc 87 447 5
None StaticLocomo lc 78 454 7
None DynamicLocomoMedian lc 131 398 10
None None e 92 435 12
None None cocomin1 143 384 12
OldCocomin None lc 143 384 12
NewCocominMedian None lc 147 380 12
NewCocominNative None lc 147 380 12
None None cocomin2 147 380 12

Bottom 10
Column Pruner Row Pruner Learner Ties Wins Losses
NewCocominMedian NearestME None 152 3 384
NewCocominMedian NearestMRE None 153 1 385
LocalWrapper NearestME None 149 4 386
None NearestME None 152 0 387
None NearestMRE None 146 4 389
LocalWrapper NearestMRE None 148 2 389
OldCocomin NearestMRE None 147 2 390
OldCocomin NearestME None 140 6 393
NewCocominNative NearestMRE None 145 1 393
NewCocominNative NearestME None 140 2 397

Table 3.70: Top 10 and bottom 10 methods for COC81 using MER evaluation criterion.

Top 10
Column Pruner Row Pruner Learner Ties Wins Losses
None None cocomost 427 492 5
NewCocominMedian None lc 469 450 5
None None cocomin1 408 509 7
OldCocomin None lc 408 509 7
NewCocominNative None lc 490 424 10
None None cocomin2 490 424 10
None None lc 460 442 22
OldCocomin DynamicLocomoMedian lc 503 390 31
OldCocomin StaticLocomo lc 411 475 38
NewCocominNative DynamicLocomoMedian lc 553 333 38

Bottom 10
Column Pruner Row Pruner Learner Ties Wins Losses
OldCocomin NearestME None 343 9 572
NewCocominMedian NearestMRE None 331 17 576
NewCocominNative NearestMRE None 336 12 576
NewCocominMedian NearestME None 332 15 577
NewCocominNative NearestME None 321 12 591
None None org 280 42 602
None NearestMRE None 274 1 649
LocalWrapper NearestMRE None 251 18 655
LocalWrapper NearestME None 234 18 672
None NearestME None 246 3 675

Table 3.71: Top 10 and bottom 10 methods for NASA93 using MER evaluation criterion.
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Top 10
Column Pruner Row Pruner Learner Ties Wins Losses
None DynamicLocomoMean lc 127 411 1
None StaticLocomo lc 83 453 3
None None lc 88 448 3
None DynamicLocomoMedian lc 122 411 6
NewCocominMedian None lc 146 382 11
None None cocomin1 146 380 13
OldCocomin None lc 146 380 13
NewCocominNative None lc 146 379 14
None None cocomin2 146 379 14
None None cocomost 146 378 15

Bottom 10
Column Pruner Row Pruner Learner Ties Wins Losses
NewCocominMedian NearestME None 161 2 376
NewCocominMedian NearestMRE None 159 1 379
NewCocominNative NearestME None 155 1 383
OldCocomin NearestMRE None 155 1 383
LocalWrapper NearestME None 150 3 386
None NearestMRE None 147 5 387
OldCocomin NearestME None 151 1 387
None NearestME None 152 0 387
LocalWrapper NearestMRE None 149 2 388
NewCocominNative NearestMRE None 150 1 388

Table 3.72: Top 10 and bottom 10 methods for COC81 using MRE evaluation criterion.

Top 10
Column Pruner Row Pruner Learner Ties Wins Losses
None None e 402 518 4
None None cocomin1 399 520 5
OldCocomin None lc 399 520 5
NewCocominMedian None lc 468 451 5
None None cocomost 431 487 6
None None lc 468 449 7
NewCocominNative None lc 491 424 9
None None cocomin2 491 424 9
OldCocomin DynamicLocomoMedian lc 500 409 15
OldCocomin StaticLocomo lc 395 512 17

Bottom 10
Column Pruner Row Pruner Learner Ties Wins Losses
OldCocomin NearestME None 306 8 610
NewCocominNative NearestMRE None 305 6 613
M5PWrapperNoLog NearestME None 298 12 614
NewCocominMedian NearestME None 297 11 616
M5PWrapperNoLog NearestMRE None 290 15 619
NewCocominNative NearestME None 295 5 624
None NearestMRE None 244 1 679
LocalWrapper NearestMRE None 229 9 686
LocalWrapper NearestME None 226 7 691
None NearestME None 222 1 701

Table 3.73: Top 10 and bottom 10 methods for NASA93 using MRE evaluation criterion.
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These findings can be stated from Tables 3.68 through 3.73. For the top methods:

1. Dynamic Locomo (with mean MRE) is the row pruner of the top performing method for

COC81 across all three evaluation criteria.

2. There is no column pruner used in the top performing method for COC81 across all three

evaluation criteria. Nonetheless, column pruning always appeared repeatedly in the top 10

methods.

3. Hence, the same method is ranked as the top performing method for COC81 across all three

evaluation criteria.

4. Unlike in COC81, in NASA93 and across all evaluation criteria, simple column pruning based

on local calibration (such as Cocomin) was ranked in the top two methods, whether used as

a pre-processor or a learner.

5. Also, unlike in COC81, in NASA93 and across all evaluation criteria, no row pruning was

used in the top performing method. Nonetheless, row pruning always appeared repeatedly

in the top 10 methods.

6. In both COC81 and NASA93, the top methods’ learners were based on local calibration.

7. In both COC81 and NASA93, dynamic Locomo performs better than static Locomo, repeat-

ing the same finding as before.

According to these findings, row pruning using dynamic Locomo and using mean MRE as

its internal evaluation method is selected for comparison in Section 3.6.5. Also, column pruning

based on Cocomin (with its newer variation and using median MRE to sort) is selected for this

comparison. This variation of Cocomin always performs at least as well as all other variations of

Cocomin and all other column pruning methods (when looking at the number of losses in these

tables). Finally, local calibration is also selected as a learner for these comparisons.
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For the bottom methods:

1. In both COC81 and NASA93 and across all evaluation criteria, the nearest neighbor method

constantly performed worse than any other row pruner.

2. Although Cocomin appears in both the top and bottom lists, it does so due to the presence of

nearest neighbor. However, Local Wrapper never appears in the top methods and is always

present in the bottom methods. Therefore, as stated before, sophisticated column pruning

cannot necessarily improve the performance of methods.

3. Except for one method (in MER results for NASA93) all other bottom methods lack the use

of a learner. (The exception actually does not use a learner, but rather uses a standard mode

of COCOMO and hence, it is not really an exception to this finding.) When comparing the

performance of the top and bottom methods in each table, it is clear that a learner with do-

main knowledge about the data (local calibration) makes a big difference in the performance

of these methods.

According to these findings, the nearest neighbor method is selected as the worst performing

row pruner for comparison in Section 3.6.5. Also, Local Wrapper is selected as a thorough column

pruner for these comparisons.

So far, both the best and worst performing methods have been analyzed. However, there are

two other methods missing from this list. These are Wrappers using LSR and M5p target learners.

These methods did not appear in either top or bottom 10 methods. Therefore, there is a case for

including them in the comparisons in Section 3.6.5. These methods are believed to perform better

than other column pruning methods for their thorough search.

3.6.5 Top Performers For Each Data Set

This section provides the last set of results from all experiments using COSEEKMO. Thus far,

all the previous sections focused on finding trends as well as best and worst performing methods
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Method Number Symbol Column Pruner Row Pruner Learner
1 × None None Local Calibration
2 3 None Dynamic Locomo Local Calibration
3 2 Cocomin None Local Calibration
4 # Cocomin Dynamic Locomo Local Calibration
5 4 Local Wrapper None Local Calibration
6 5 LSR Wrapper None LSR
7 D M5p Wrapper None M5p
8 S None Nearest Neighbor None

Table 3.74: The chosen methods from every category of methods in COSEEKMO experiments.

across different evaluation criteria and different subsets and data sets. This section focuses on

another aspect of these experiments and that is the stability of results across different runs of these

experiments.

The results in this section are from a total of 5 runs of COSEEKMO. These are simple runs

(defined before) with the last run being the simplified version of the run that all the previous

results are derived from. Each run uses a different random seed to generate the train and test sets.

Except for the last run, run 5, none of the other runs were presented before. There are two reasons

for doing so. One is that, all these runs showed very similar performances and hence, it was

redundant to show them. The second reason is the amount of space needed for illustrating these

results. However, all these results are available at http://unbox.org/wisp/var/omid/extras/

results/.

The graphs presented in this section will include the methods discussed and selected in Section

3.6.4. These methods are provided in Table 3.74.

The graphs of the number of losses of the methods in Table 3.74 are presented in Figures 3.10

through 3.14. These graphs show the results of five different runs across three different evaluation

criteria and also across two data sets and their 19 subsets. Each graph shows both COC81 and

NASA93 data sets and each data sets’ results are generated by finding the number of losses of each

of its subsets for each specific method and graphing it. Therefore, for each method, there are 7
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Figure 3.10: Performance of top 8 methods from Table 3.74 for run 1.

points in each of the COC81 graphs and 12 points for each of the NASA93 graphs, corresponding

to the 7 and 12 subsets of each data set respectively. The lower the points are (fewer losses), the

better the performance is for each method.

These graphs illustrate both the big picture and the small details of these results. The big

picture is offered through categorizing 312 methods into 8 methods showing methods with best,

worst, and average performances. These methods are either developed in this study as well as

Baker’s study [2] or represent well-known methods in the effort estimation literature. Hence, these

results can offer clear comparisons of effort estimation methods. The small details help in drawing

conclusions about the evaluation bias and the stability of effort estimation methods. These details

are categorized into three groups of different evaluation criteria, different data set and subsets, and

different runs.

There are several points that can be made about these methods:

1. At least one and usually all four methods 1,2,3,4 perform better than all other 4 methods
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Figure 3.11: Performance of top 8 methods from Table 3.74 for run 2.
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Figure 3.12: Performance of top 8 methods from Table 3.74 for run 3.
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Figure 3.13: Performance of top 8 methods from Table 3.74 for run 4.
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Figure 3.14: Performance of top 8 methods from Table 3.74 for run 5.
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5,6,7,8. The first four methods are based on local calibration and use zero or one simple

column pruning and row pruning methods.

2. As shown in every graph, thorough column pruning based on local calibration (method 5) is

always inferior to simple column pruning based on local calibration (method 3).

3. Although no conclusions can be made on the relative performance of column pruning meth-

ods with Wrappers using local calibration, LSR, or M5p (methods 5,6,7), all these methods

always perform worse than simple column pruners based on local calibration (method 3).

4. Method 8, which never applies the domain knowledge, always perform worse than any other

method. Methods 2 and 8 are both row pruners that use a similar nearest neighbor algorithm.

However, method 2 uses local calibration while method 8 does not use a learner.

5. When a row pruner (method 2) performs well, adding a column pruner (method 3) does not

increase the performance of the resulting method (4). This can be seen from the COC81

graphs.

6. Similarly, when a column pruner (method 3) performs well, adding a row pruner (method

2) does not increase the performance of the resulting method (4). This can be seen from the

NASA93 graphs.

7. Hence, applying one of the two pre-processors (based on local calibration) suffices.

8. Local calibration (method 1) as a learner and without any pre-processor usually performs

well (and always perform better than methods not using local calibration). However, its

performance is always increased when a simple row pruner (method 2) or a simple column

pruner (method 3) is used as its pre-processor.

9. Model trees (method 7) usually perform similar (while they may perform slightly better or

worse than) single linear regression, LSR (method 6). However, model trees always perform
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worse than other single linear regression methods (1,2,3,4).

Finally, there are several points that can be made about the stability of results across different

evaluation criteria, data sets, and random runs. All the above findings hold across all evaluation cri-

teria, data sets, and runs, showing a great amount of stability in the observations made when study-

ing the biases in effort estimation. Nonetheless, as the observations become more fine-grained,

biases show their nature more clearly:

1. COC81 responds better to row pruning (method 2) while NASA93 responds better to column

pruning (method 3).

2. In NASA93, model trees (method 7) always perform worse than any simple linear regression

method (including method 6). However, in COC81, method 7 performs similar and some-

times slightly better than method 6, although it never performs better than other simple linear

regression methods.

3. Methods 1,2,3,4 show better performances in general when evaluated using AR comparing

to MER and MRE. This is also usually the case for methods 5,6,7,8.

4. None of the runs have exactly the same performance for the any specific method across

different data sets or evaluation criteria.

The interesting point is that, no matter how fine-grained these observations are made (depend-

ing on the bias), the previous findings still hold independent of the biases in the study.
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Chapter 4

Conclusions

This work had two main goals. One was to study the evaluation bias in effort estimation and the

other was to report the relative performance of numerous methods studied in the literature and find

the best performing methods.

Studying Evaluation Bias In Effort Estimation

One of the most important biases in evaluating effort estimation methods is the type of evaluation

methods used. There were several experiments with COSEEKMO comparing effort estimation

methods using parametric evaluation. Those experiments illustrated how parametric evaluation

methods, applied as the standard tests in the literature, were unsuitable for effort estimation ex-

periments in general, due to their normality assumptions. As a result, this study introduced non-

parametric tests as the new approach to evaluating effort estimation methods, and namely the

Mann-Whitney U test. The introduction of the MWU test was beneficial in two ways:

• As a non-parametric test, it could be applied to any distribution, including the error distribu-

tions in this experiment.

• It showed a great amount of stability in comparison of different effort estimation methods,
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regardless of the evaluation criteria used. This stability did not exist previously (in prior

experiments as well the literature) when parametric tests were used (Section 3.3.3).

Three different evaluation criteria, AR, MER, and MRE, were used in this study. The stability

of the observations made across different evaluation criteria was clear. Section 3.6 demonstrates

how evaluation bias can be reduced using a non-parametric test such as the MWU test. Further-

more, applying such a test illustrated stability beyond evaluation criteria. The stability of the

observations (Section 3.6.5) was also clear across different data sets and their subsets and across

different random samplings of these data sets through several random runs of the experiment.

(Overall, 312 combinations of methods were applied to 2 data sets with 19 subsets through 5 ran-

dom runs and finally evaluated using 3 evaluation criteria.) This is contrary to what Shepperd and

Kadoda [67], among other researchers [20, 36, 54], reported regarding stability.

Nonetheless, such a bias cannot be completely removed, as shown in the last findings of Section

3.6.5. The space of explored evaluation biases in this study includes some of the well-known

biases. Nonetheless, there may be other evaluation biases introduced that could agree or disagree

with the results of this study. Such biases can be explored in future works.

Unavoidably, due to the nature of this study, four other biases were also introduced. These

biases can affect each other, and hence, affect the evaluation bias. Thus, they are worthy of a brief

discussion. The first bias was in the paradigm. This study only explored the model-based meth-

ods, and among which, only the COCOMO 81 model. On the other hand, expert-based methods,

which require human expertise, could not possibly be explored in a fully automatic tool such as

COSEEKMO. However, a future study can be devised to compare the performance of model-based

methods included in automatic tools such as COSEEKMO to those of the experts.

This study only explored the COCOMO 81 model, introducing the second bias, which is the

bias in the model. However, this could not be avoided since COCOMO 81 was the only well-

known software model with publicly available data. In addition, prior research using this model

is extensively available, which makes it possible to measure the validity of the experiments in this
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study to the ones in the literature. Nonetheless, this type of bias can be explored in future works,

depending on the availability of more data.

The third bias is in the selection of methods used within the model-based effort estimation

methods. There are many other methods in the literature and practice that may produce different

results. Although this study selected a number of methods representing several other methods, it is

worthwhile to explore other methods in future works and possibly further prune the space of effort

estimation methods.

The fourth and last bias involves the sampling of the data, given the fact that historical data

about the projects can be maintained in a given organization. The data used in this study comes

from (the only) two publicly available data sets collected by Boehm [4] and NASA (Section 3.1.1).

As a result, one may argue that using only two data sets introduces the sampling bias to the obser-

vations made. However, it should be noted that these two data sets were repositories that accepted

data from a wide range of projects. For example, the NASA93 data set comes from different teams

working at geographical locations spread throughout the United States using a variety of program-

ming languages. While some of this data is from flight systems (a particular NASA specialty),

most are ground systems and share many of the properties of other terrestrial software (such as

same operating systems, development languages, development practices). Much of NASA’s soft-

ware is written by contractors who service a wide range of clients (not just NASA). These contrac-

tors are contractually obliged (ISO-9001) to demonstrate their understanding and usage of current

industrial best practices.

Nonetheless, this study explored different subsets of these data sets in order to reduce the

sampling bias. Increasing the number of random runs of the experiments along with sampling at

random to create different train and test sets were the measures taken along this path. Similar to

other biases, this bias can be explored in future works depending on the availability of more data.
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Studying Effort Estimation Methods

The comparison of effort estimation methods in this research to study evaluation bias also made it

possible to explore their relative performance and report a group of methods as superior to others.

Some of these methods including linear regression, model trees, and nearest neighbor (based on

case-based reasoning) were studied before. Some, such as the Cocomin column pruner, were

recently developed [2] and some, such as the Locomo row pruner, were developed in this study.

Out of 312 combinations of methods possible in COSEEKMO, a group of 8 representatives of the

above methods were selected through detailed analysis of the results in Section 3.6. This analysis

made it possible to draw conclusions about the performance of these methods, which helps in

simplifying the effort estimation process by limiting the scope of the search for such methods to

a small list of four methods. This leads to another observation stating that there is no single best

effort estimation method. Rather, there is a group of four methods that should be tried on the

historical data and the best performing one can be applied to generate effort estimates for a future

project.

There were several observations made throughout Section 3.6 that are organized here. These

conclusions are applicable to both COC81 and NASA93 data sets and their subsets as well different

evaluation criteria and different runs.

• Simple methods based on local calibration perform better than other methods.

• Applying one or both simple row pruning, using dynamic Locomo, and simple column prun-

ing, using Cocomin, increases the performance of the local calibration learner.

• Sophisticated and thorough column pruning (using Wrappers with target learners such as

local calibration, LSR, or M5p) does not increase the performance of a method and always

performs worse than Cocomin.

• Row pruning without applying a learner (in the case of the nearest neighbor method that
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uses case-based reasoning) produces the worst performance among all methods in this study.

Hence, applying the domain knowledge is essential and therefore, similar case-based rea-

soning methods found in the literature are not as useful as the ones (such as Locomo) that

employ local calibration. (According to [54], case-based reasoning methods belong to both

sparse-data methods (requiring few or no historical data) and many-data methods (where his-

torical data is available). Therefore, the comparison of a case-based reasoning method with

other methods in this study is justified. Moreover, the same algorithm from a case-based

reasoning method augmented with local calibration creates Locomo that performs well.)

• Model trees fail to increase the performance of a method in effort estimation, emphasizing

the assumption of local calibration that effort is a single linear function.

• The methods that log the data (hence using linear regression) outperform the methods that

do not log the data. This is one of the assumptions used in local calibration, where effort is

modeled as an exponential function on the lines of code (and is linearly proportional to the

product of a set of effort multipliers).

• Using proximal numeric estimation failed to increase the performance of the methods in this

study. This is another assumption used in local calibration, where there is a pre-defined set

of (precise) numeric values used as effort multipliers influencing the effort.

• Applying the superset train type is not useful. Methods using the superset train type usually

perform no better (and generally worse) than methods using the subset train type. This could

be due to the presence of more noise in the train set as it gets larger through applying the

superset train type rather than the subset train type, hence reducing the performance of the

trained model. As a result of this and since training using the superset takes more time, there

is no reason to use the superset train type.

As a result of these observations, in order to obtain the best performance in COC81 and

125



NASA93 data sets, this study suggests using dynamic Locomo as a row pruner and Cocomin as

a column pruner to be applied as pre-processors to local calibration. Locomo and Cocomin are

fast and use simple algorithms to search for best projects and features of a data set respectively.

There are a total of four combinations of these methods (no column or row pruning, only column

pruning, only row pruning, and both column and row pruning) with local calibration always used

as the learner. Since these are fast methods and there is no single best method among these, this

study suggest applying all four combinations to the historical data and selecting the one with the

best performance to generate effort estimates on future projects.

Although Locomo and Cocomin are newly developed methods, they were tested very recently

and similar findings to the results of this study were reported. According to [2], when applied in

the NASA’s Jet Propulsion Laboratory environment, “Locomo and Cocomin when used to estimate

flight projects produced a 5.4% median MRE, whereas standard LC produced a 21.97% median

MRE, and SCAT provided a 29.29% median MRE.” This emphasizes the validity of the findings in

Section 3.6.5, where Locomo and Cocomin were found to improve the performance of local cali-

bration. Similarly, “using Locomo to estimate ground-based projects resulted in a 15.9% median

MRE, whereas standard LC and uncalibrated models such as SCAT produced 28.9% and 42.1%

median MRE’s, respectively [2].” Locomo is once again found to provide better performance

comparing to local calibration without any row pruning.

As mentioned before, (simple) local calibration methods reported the best performance among

all other methods when applied to the COCOMO 81 data sets. This is an important finding since it

suggests that a data set is best explored using the models developed for it rather than more generic,

and possibly sophisticated methods such as model trees, or more simplified methods such as the

nearest neighbor method. Although this might seem obvious, there is a number of studies in the

literature that ignore this fact. This study suggests applying or developing new and simple meth-

ods (such as Locomo and Cocomin) around the basic modeling tools (such as local calibration)

developed for a software model (such as COCOMO 81) before creating more sophisticated ones
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that lack the domain knowledge about the data.

At the time of writing the results of this research, there is no known study that reports the

stability seen in the results of the comparison of such a large number of effort estimation methods.

One reason may be the fact that such a comparison is not a widespread practice due to many factors

such as the lack of data, appropriate top-performing methods, and even resources. This study took

more than a year and required hours of processing using computers as well as human analysis of the

results. Furthermore, it required developing new methods and interacting with other researchers

through this process. Therefore, many studies prefer applying one or two and usually fewer than a

handful of methods and report their results based on those findings.

A second reason is the approach to comparing and evaluating the performance of effort esti-

mation methods. As an example, even when a relatively large number of methods were compared

in [46], the statistical methods applied to the results were wrong (since they used parametric tests,

which this study proves them to be unsuitable). As a result, that study reported large standard devi-

ations with {median,max}= {150%,649%} and identified the root of such problems to be the rare

presence of large errors in the results that can mislead mean calculations. Hence, better evaluation

methods (such as rejection rules in Figure 3.2) were devised to reduce such deviations. However,

little progress was made to report stability in the results [46]. Other studies, such as Shepperd and

Kadoda’s study [67], report instability (or no stability) in their results as well.

There may be other reasons for the absence of studies reporting stability, which is considered

a source of contradicting studies in the effort estimation literature. Overall, the conclusions made

in studies investigating the conclusion instability problem [20, 36, 54, 67], which report doubts

in the possibility of finding a solution to the instability problem (discussed in Section 2.7) were

shown not to hold in this study. This study offers stability, and more importantly a framework for

comparing new methods, as well as other existing methods not in COSEEKMO, with the current

list of best methods reported from this work.
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4.1 Future Work

There are several aspects of this research that can be further explored.

• This study only focuses on model-based methods. Expert-based methods [27] are also im-

portant to consider when comparing the performance of methods. The comparison of these

two groups can only be done if experts are willing to take part in this experiment. Fortu-

nately, the number of top-performing effort estimation methods (among the ones studied)

was reduced to four in this research. Therefore, the length of such an experiment is de-

creased greatly, making it possible to compare expert-based methods with the four model-

based methods.

• COCOMO is the only well-known and well-published software model with publicly avail-

able data. Therefore, this study only focused on COCOMO. However, there is a large number

of software models that can be explored if data is available. It is suggested that COSEEKMO

or a similar tool is developed for such comparisons.

• Even within COCOMO, there is no access to certain data sets. If such data sets became

available, further sampling and more extensive studies can be done.

• Evaluation bias cannot possibly be explored in a single study due to the large number of

evaluation methods and criteria available. Although this study explored well-known para-

metric tests an introduced a non-parametric test, other tests [17] and evaluation criteria can

be studied in order to verify or correct the results of this study.

• The number of methods explored in this study is large. However, there are certainly other

effort estimation methods to be explored. As it is seen in Figure 2.1, COSEEKMO only

explored a small portion of that space. Future works can explore this even further and include

methods based on neural nets or genetic algorithms. However, it is essential to study these

methods systematically and offer stable conclusions or reasons for instability.
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Appendix A

COSEEKMO’s Manual

COSEEKMO is an open-source tool designed for performing effort estimation experiments. It con-

sists of several effort estimation methods that are all based on COCOMO-style data sets. Although

these methods are used on COCOMO-style data sets, COSEEKMO does not have such restrictions

and can incorporate any method. The goal of COSEEKMO is to allow the user to compare dif-

ferent effort estimation methods and obtain benchmarks for new methods comparing to existing

methods including the well-known methods in the literature and industry. Therefore, COSEEKMO

can be expanded using new methods. This manual explains how to use COSEEKMO and how to

add, remove, or modify a certain method.

A.1 Obtaining the Tool

COSEEKMO can be found at http://unbox.org/wisp/tags/coseekmo/2.0. All directories

and their files must be downloaded for COSEEKMO to work properly. COSEEKMO is a command

line tool that can be used in the Terminal of any Linux distribution such as Ubuntu (available

for free at http://www.ubuntu.com). Although COSEEKMO was designed with Linux as the

operating system in mind, Mac users can modify it to run in X11 or Terminal. Also, Windows users
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can use it without any modification under Cygwin (available for free at http://cygwin.com).

Regardless of what operating system is used, certain packages must be installed. These pack-

ages are:

• bash: the required shell for COSEEKMO,

• g++: the compiler for C++ language,

• gawk: the interpreter for the gawk language, and

• java: the interpreter for the java language. Java is used to run Weka and as of the date that

this document is written, Weka requires Sun Java Runtime Environment (available for free

at http://www.java.com) rather than the Java in combination with Linux or Gnome.

A.2 Directory Structure

COSEEKMO is divided into several parts each represented by a directory. The major files of

COSEEKMO are stored in the bin directory. There are certain configuration files that are included

in the config directory and are used by COSEEKMO in numeric estimations. Directories data and

weka contain the data sets and the Weka data mining software (available for free at http://www.

cs.waikato.ac.nz/ml/weka) respectively. Directory eg contains examples with certain methods

and their combinations. Directory evaluation contains the evaluation tools used in COSEEKMO

and specified in the start script.

Each method has its own directory, which includes the files necessary to run that method in-

dividually. As explained in Sections A.3 and A.4, each method has to conform to certain input

and output formats. Since modifying an already existing method might not be possible, scripts are

provided in the methods directory to modify the input and output accordingly. These scripts run

the methods and are the only way that COSEEKMO uses to communicate to the methods. If a new

method is added, it is strongly suggested that the existing scripts are used as templates to create
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new scripts for such a method. However, not all methods require scripts and some (such as column

pruners) can be directly added to the COSEEKMO’s main script, generate.

After the experiment is finished, the results are stored into results directory. This directory

contains graphing scripts as well.

A.3 Input Format

Each method in COSEEKMO may have different input formats and accept different parameters.

However, before such a method can be used in COSEEKMO, a uniform input format must be

adopted. In order to facilitate the adoption of such formats, scripts can be used to convert the

input provided by COSEEKMO to the input format require by the method. This eliminates the

need for changes in methods’ source codes and the need for recompilation. COSEEKMO provides

two input files for training and testing a model as well as a string called Prefix that contains the

structure of the output requested from the method and can be filled in with the required information

provided by the method. This is further explained in Section A.4.

The train and test files are generated by COSEEKMO, enabling it to compare methods on the

same input. Although each method’s use for the input files may be different from the others, in

a specific run all corresponding input files (whether the train or the test file) are the same for all

methods. Moreover, every input file is an ARFF (Attribute-Relation File Format) file. As a part

of the experiments, COSEEKMO handles the conversion of the COCOMO cost drivers from the

ordinal values to numeric values used as effort multipliers. Hence, all input files contain these

numeric values before they can be used by the methods.
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A.4 Output Format

Since COSEEKMO is used to compare different methods, the output of all methods must conform

to what COSEEKMO can use in its evaluation methods. The format of the output is passed as an

input parameter to each method. The output is in CSV (Comma-Separated Value) format and each

field can be completed according to the method used and the information, such as the name of the

method, that is necessary to distinguish that method from other methods.

This output format can be modified if necessary as long as all methods and evaluation tools

reflect this change accordingly. However, the current output format contains the necessary fields

for a complete comparison of methods. These fields, in the current order are:

• a number representing the current run, which is incremented after each run in finished,

• a string representing the name of the data set (or its subset) used to generate the input files

for training and testing,

• a string representing the name of the method used to create the train file,

• a string representing the name of the numeric estimation method (currently either precise or

proximal),

• a string representing the name of the column pruning method used as the pre-processor (or

None if none used),

• a string representing the name of the row pruning method used as the pre-processor (or None

if none used),

• a number representing the number of attributes used from the train file by the method (it

may be smaller than the normal value only if a column pruning method was used as a pre-

processor),
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• a number representing the number of instances used from the train file by the method (it may

be smaller than the normal value only if a row pruning method was used as a pre-processor),

• a string representing the name of the learner used (or None if none used),

• a number representing the predicted value of cost for a test instance, and

• a number representing the actual value of cost for a test instance.

This ordering represents a combination of zero or one column pruning methods, zero or one

row pruning methods, and zero or one learners. The method used can be any one of these three or

a combination of these three.

Since column pruning can affect the number of attributes in the train file, the number of at-

tributes in the test file is adjusted (to the number of attributes in the train file) accordingly in order

to test the trained model. However, row pruning only affects the number of instances in the train

file when training a model. As a result, each and every test instance can be used when testing

the trained model. Hence, the number of test instances is always a constant value. Clearly, it is

redundant to include these two numbers (number of attributes and number of instances of the test

file) in the fields of the string above.

A.5 Adding a Method

In order to add a method, a directory can be created in the COSEEKMO tool and all the method’s

files can be added to that directory. As explained before, the method needs to conform to the input

and output formats of COSEEKMO. Therefore, the user can add a script to the methods directory.

This script will be responsible for communicating between COSEEKMO and the method’s files

stored in its directory. This way, COSEEKMO does not have to know anything about how the

method works. The script handles everything the method does and only submits the results to

COSEEKMO. Therefore, this script is responsible for converting the input format of COSEEKMO
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to the input format required by the method and also converting the output of the method to the

output format that COSEEKMO requires.

There are three different types of methods that can be added to COSEEKMO.

• The column pruners are the first group. COSEEKMO calls them before calling a row pruner

or a learner. They can be added to the ColumnPrunerMethods category in the start script.

• Another group is learners and row pruners that can operate on the results of a column-pruned

train and test file. This group is called automatically after a column pruner has finished

processing. They can be added to the NormalMethods category in the start script.

• Finally, there are methods that require no column or row pruning. They can be added to

the SpecialMethods category in the start script. The benefits of this category are further

explained in Section A.10.

In special cases, a method can be added directly to the main script of COSEEKMO, generate.

A.6 Enabling a Method

A method must be added to one of the three categories of ColumnPrunerMethods, NormalMethods,

or SpecialMethods in the start script in order to be enabled.

A.7 Removing a Method

Any method can be removed from COSEEKMO by removing its directory and files as well as the

scripts added to the methods directory. It must also be disabled by removing it from any of the

three categories of ColumnPrunerMethods, NormalMethods, or SpecialMethods in the start script.
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A.8 Disabling a Method

A method must be removed from any of the three categories of ColumnPrunerMethods, Normal-

Methods, or SpecialMethods in the start script in order to be disabled.

A.9 Modifying a Method

Since COSEEKMO only requires certain input and output formats, modifying a method has no

effect on COSEEKMO’s functionality as long as the script created for the method satisfies the

input and output formats. Therefore, the user can modify a method at any time.

A.10 Combination of Methods

COSEEKMO allows for combining different methods. Therefore, it is possible to create various

combinations of methods in COSEEKMO. By default, COSEEKMO combines all column pruners

with all the normal methods specified in the NormalMethods category. As briefly explained in

Section A.5, a method in the NormalMethods category is either a learner, a row pruner, or both.

Therefore, the combination of a column pruner with zero or one row pruners and zero or one

learners can be done automatically by adding a method that combines zero or one row pruners

with zero or one learners.

In order to make the column pruners optional, the user can add a method to the SpecialMethods

category. This method can be a combination of zero or one row pruners with zero or one learners.

Therefore, all possible combinations of zero or one column pruners, zero or one row pruners, and

zero or one learners is supported in COSEEKMO.

The SpecialMethods category gives limitless power to the user by allowing the user to combine

more than one of each type of the methods and obtain a combination that can potentially have sev-

eral layers of pre-processors and learners. This allows the user to explore countless combinations,
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including any ordering of column pruners, row pruners, and learners.

A.11 Running the Tool

After obtaining all the files and directories of COSEEKMO (described in Section A.1), the user

can run it by running the script called start in the main directory of COSEEKMO. This script

first prepares the tool for running the methods. It then runs all the methods specified in the three

categories of ColumnPrunerMethods, NormalMethods, and SpecialMethods and creates a log of

the results. Finally, it runs the specified evaluation method and stores the results for each data set

or subset in a separate file.

There are three example scripts that can be used as well. They are located in the eg directory.

The user can run these example scripts instead of the start script in the main directory.
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