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ABSTRACT
How can we best find project changes that most improve project
estimates? Prior solutions to this problem required the use of stan-
dard software process models that may not be relevant to some new
project. Also, those prior solutions suffered from limited verifica-
tion (the only way to assess the results of those studies was to run
the recommendations back through the standard process models).

Combining case-based reasoning and contrast set learning, the
W system requires no underlying model. Hence, it is widely appli-
cable (since there is no need for data to conform to some software
process models). Also, W ’s results can be verified (using hold-
out sets). For example, in the experiments reported here, W found
changes to projects that greatly reduced estimate median and vari-
ance by up to 95% and 83% (respectively).

1. INTRODUCTION
Existing research in effort estimations focuses mostly on deriv-

ing estimates from past project data using (e.g.) parametric mod-
els [6] or case-based reasoning (CBR) [40] or genetic algorithms [22].
That research is curiously silent on how to change a project in or-
der to, say, reduce development effort. That is, that research reports
what is and not what should be changed.

Previously [12, 26, 28, 31], we have tackled this problem using
STAR/NOVA, a suite of AI search algorithms that explored the in-
put space of standard software process models to find project op-
tions that most reduced the effort estimates. That approach had
some drawbacks including (a) the dependency of the data to be in
the format of the standard process models, (b) the implementation
complexity of the Monte Carlo simulator and the AI search en-
gines, and (c) the lack of an independent verification module (the
only way to assess the results of those studies was to run the rec-
ommendations back through the standard process models).

This paper describes “W ”, a simpler, yet more general solu-
tion to the problem of finding project changes that most improves
project estimates. Combining case-based reasoning and contrast set
learning, W requires no underlying parametric model. Hence, W
can be applied to more data sets since there is is no requirement for

.

the data sets to be in the format required by the standard software
process models. For example, this paper explores five data sets with
W , three of which cannot be processed using STAR/NOVA.

W is simpler to implement and easier to use than STAR/NOVA,
requiring hundreds of lines of the scripting language AWK rather
than thousands of lines of C++/LISP. For example, we describe
below a case study that finds a loophole in Brooks’s Law (“adding
manpower [sic] to a late project makes it later”). Using W , that
study took three days which included the time to build W , from
scratch. An analogous study, based on state-of-the-art model-based
AI techniques, took two years.

Also, the accuracy of STAR/NOVA is only as good as the un-
derlying model (the USC COCOMO suite [6]). W ’s results, on the
other hand, are verified using hold-out sets on real-world data. In
the experiments reported below, we show that W can find changes
to projects that greatly reduce estimate median and variance by up
to 95% and 83%, respectively.

Finally, the difference between W , which finds what to change
in order to improve an estimate, and a standard case-based effort
estimator, which only generates estimates, is very small. Based
on the this experiment, we advise augmenting standard CBR tools
with modules like the planning sub-systems in W .

The rest of this paper is structured as follows. After some back-
ground notes on effort estimation and STAR/NOVA, we describe
the general framework for case-based reasoning. The W extension
to CBR is then described (contrast set learning over the local neigh-
borhood), using a small example. This is followed by fourteen case
studies, one with Brooks’s Law, and thirteen others. Our conclu-
sion will discuss when W is preferred over STAR/NOVA.

2. BACKGROUND

2.1 Why Study Effort Estimation?
Generating (and regenerating) project effort estimates is an im-

portant and continuous process for project managers. Not only do
good estimates allow the better use of resources, but by reviewing
and improving their estimation process, a software company can
learn and improve from their past experience.

Sadly, we often get estimates wrong. Consider the NASA’s Check-
out Launch Control System, which was canceled when the initial
estimate of $200 million was overrun by an additional $200M [42].
This case is not unique, despite the significant effort put into de-
signing more accurate estimation models. It has been reported that
many predictions are wrong by a factor of four or more [5, 19].

In order to conduct software effort estimation, it is standard prac-
tice to use models to estimate effort. Many software process mod-
els have emerged aiming to achieve that task, and there has not



emerged a single standardized model that is widely used by the
software engineering industry. There several reasons for this in-
cluding generality, data islands and instability. Software models
may not be general so it can be inappropriate to apply a software
model learned in one environment one to another. Also, many com-
panies prefer to keep cost related data confidential. This data island
effect has also contributed to the fragmentation of the field by com-
panies preferring to build private models rather than using publicly
available models. This multiplicity of software effort models has
lead to scarcity of publicly available, local data needed for model
based effort estimation. Without sufficient data to build, audit, and
tune models, the predictions generated by these models may be
highly unstable. Baker [4] reports a study that learned values for
the (a, b) (linear,exponential) constants in Boehm’ COCOMO soft-
ware process model [5]. The study was repeated 100 times, each
time selecting from a random sample of 90% of the project data.
The learned values for (a, b) exhibited an alarming variance:

(2.2 ≤ a ≤ 9.18) ∧ (0.88 ≤ b ≤ 1.09) (1)

Such large variations make it hard to understand the effects of chang-
ing project options. Suppose some proposed change doubles pro-
ductivity, but a moves from 9 to 4.5. The improvement resulting
from that change would be obscured by the tuning variance.

2.2 Handling Large Variances and Uncertainty
The process simulation community (e.g. Raffo [37]) studies elab-

orate software process models. While such models offer a detailed
insight into an organization, the effort required to tune them is non-
trivial. For example, Raffo spent two years tuning one such model
to one particular site [36]. Slow tuning time means that models will
exhibit large variances for much of their lifetime.

These large variances defeat standard decision making algorithms.
For example, a standard tool in sensitivity analysis [38] is to par-
tially differentiate the equations of a model, then explore the coef-
ficients on the partials. Large variances like Equation 1 guarantee
that any such gradient analysis will yield highly variable results.

Miller [33] reports that feature selection can reduce model pre-
diction variance. While he was talking specifically about least squares
regression, the more general point is that the fewer the variables,
the less the contribution of variable variance to output variance. In-
spired by Miller, we conducted feature selection experiments with
effort data sets [10,24,29], with disappointing results. As predicted
by Miller, variance is decreased when, say, 20 attributes are re-
duced to 10. But note in Baker’s study that large variances persist
for effort data, even after reducing the number of variables to two.
Clearly, we need to look further than just feature selection.

An alternative to feature selection is case selection, where data
sets of size D are replaced with a smaller data set of prototypes.
The smaller the data set, the fewer the values and (hopefully), the
smaller the variance. Prototype generation should not be confused
with nearest neighbor methods: the latter is run on a per-query ba-
sis while the former is run once as a pre-processor to all subsequent
inferencing. The art of prototype generation is to find or generate
a set of representative examples that best represents and replaces
the training cases. Typically, prototype generation removes most
of the training data. For example, Chang’s prototype generators [8]
replaced training sets of size T = (514, 150, 66) with prototypes
of size N = (34, 14, 6) (respectively). That is, prototypes may be
as few as N

T
= (7, 9, 9)% of the original data. The problem with

prototype generation is that it can be very slow. [22] discusses ge-
netic algorithms that combine feature and case selection. Dr. Li
was kind enough to share his code. Using that system, we have
learned that searching the 2D space of possible cases can be very
slow. A similar result was reported by Kirsopp and Shepperd [20],

who found that case selection was only practical for very small data
sets.

If we cannot remove variance, we must deal with the uncertain-
ties it presents. Much of the related work on uncertainty in software
engineering uses a Bayesian analysis. For example, Pendharkar
et.al. [35] demonstrate the utility of Bayes networks in effort esti-
mation while Fenton and Neil explore Bayes nets in defect predic-
tion [13]. We take a different approach here due to the simplicity
of our implementation (see below).

Of all the literature, we found Search-Based Software Engineer-
ing (SBSE) [16] to be closest to this work. SBSE uses optimiza-
tion techniques from operations research and meta-heuristic search
(e.g. simulated annealing and genetic algorithms) to hunt for near
optimal solutions to complex and over-constrained software engi-
neering problems. The SBSE approach can and has been applied
to many problems in software engineering (e.g. requirements engi-
neering [17]) but most often in the field of software testing [3].

2.3 STAR and NOVA
The SBSE literature inspired us to try simulated annealing to

search the what-ifs associated with Equation 1. This lead to the
STAR system [12, 28]. NOVA was a generalization of STAR that
included simulated annealing and other search engines [26, 31].

STAR/NOVA handled model variance by finding conclusions that
were stable across the space of possible tunings. This analysis as-
sumed that, for a mature effort estimation model, the range of possi-
ble tunings was known (this is the case for models like COCOMO).
For such models, it is possible for the AI search engines to find con-
clusions that hold across the space of all tunings.

STAR and NOVA constrain project options P but not the tuning
options T . Hence, their recommendations contains subsets of the
project options P that most improve the score, despite variations
in the tunings T . This approach meant we could reuse COCOMO
models requiring using local tuning data. The following is a de-
scription that briefly presents the operation of STAR and NOVA:

1. SAMPLE: We sample across the ranges of all the attributes
in the model n1 times. Most of the time we sample randomly
across the range, with some heuristics that allow us to con-
centrate more on the extremes of the range.

2. DISCRETIZE: The data seen in the n1 samples is then dis-
cretized into D = 10 bins. Equal frequency bins were used.

3. CLASSIFY: The top n% projects are classified as best or rest.
4. RANK: The ranges are then ranked in increasing order using

Support-Based Bayesian Ranking.
5. PRUNE: STAR runs n2 experiments with the models where

the top ranked ranges 1..X ranges are pre-set and the remain-
ing ranges can be selected at random.

6. REPORT: STAR returns the 1..X settings that optimize the
best for the fitness function. These settings are determined by
iterating back from the minimum point achieved towards the
first point that is statistically similar to the minimum point.

In practice, STAR/NOVA approach was very effective. Figure 1
shows the large effort reductions found by STAR in three out of
four cases presented at ASE’09. It is insightful to reflect about
STAR/NOVA’s failure to find large reductions in the fourth case
study (nasa93 osp2). In this project, management had already fixed
most of the project options. STAR/NOVA failed, in this case, since
there was very little left to try and change. This fourth case study
lead to one of the lessons learned of STAR/NOVA: apply project
option exploration tools as early as possible in the lifecycle of a
project. Or, to say that more succinctly: if you fix everything, there
is nothing left to fix [27].



study NOVA
nasa93 flight 72%

nasa93 ground 73%
nasa93 osp 42%

nasa93 ops2 5%

Figure 1: Improvements in effort estimates ( initial−final
initial

)
found by NOVA. From [14].

While a successful prototype, STAR/NOVA has certain draw-
backs:

• Model dependency: STAR/NOVA requires a model to cal-
culate (e.g.) estimated effort. In order to do so, we had to
use some software process models to generate the estimates.
Hence, the conclusions reached by STAR/NOVA are only as
good as this model. That is, if a client doubts the relevance
of those models, then the conclusions will also be doubted.

• Data Dependency: STAR/NOVA’s AI algorithms explored
an underlying software process model. Hence, it could only
process project data in a format compatible with the under-
lying model. In practice, this limits the scope of the tool.

• Inflexibility: It proved to be trickier than we thought to code
up the process models, in a manner suitable for Monte Carlo
simulation. By our count, STAR/NOVA’s models required
22 design decisions to handle certain special cases1. Lacking
guidance from the literature, we just had to apply “engineer-
ing judgment” to make those decisions. While we think we
made the right decisions, we cannot rigorously justify them.

• Performance: Our stochastic approach conducted several tens
of thousands of iterations to explore the search space, with
several effort estimates needed calculated for each iteration.
This resulted in a performance disadvantage.

• Size and Maintainability: Due to all the above factors, our
code base proved difficult to maintain.

While there was nothing in principle against applying our tech-
niques to other software effort models, we believe that the limiting
factor on disseminating our technique is the complexity of our im-
plementation. As partial evidence for this, we note that in the three
years since we first reported our technique [28]:

• We have only coded one set of software process models (CO-
COMO), which inherently limited the scope of our study.

• No other research group has applied these techniques.

Therefore, rather than elaborate a complex code base, we now
explore a different option, based on Case Based Reasoning (CBR).
This new approach had no model restrictions (since it is does not
use a model) and can accommodate a wide range of data sets (since
there are no restrictions of the variables that can be processed).

3. CASE-BASED REASONING (CBR)
Case based reasoning is a method of machine learning that seeks

to emulate human recollection and adaptation of past experiences in
order to find solutions to current problems. That is, as humans we
tend to base our decisions not on complex reductive analysis, but
on an instantaneous survey of past experiences [39]; i.e. we don’t
think, we remember. CBR is purely based on this direct adaptation

1E.g. one user required the following modification: do not increase
automatic tools usage without increasing analyst capability.

of previous cases based on the similarity of those cases with the cur-
rent situation. Having said that, a CBR based system has no dedi-
cated world model logic, rather that model is expressed through the
available past cases in the case cache. This cache is continuously
updated and appended with additional cases.

Aamodt & Plaza [1] describe a 4-step general CBR cycle, which
consists of:

1. Retrieve: Find the most similar cases to the target problem.
2. Reuse: Adapt our actions conducted for the past cases to

solve the new problem.
3. Revise: Revise the proposed solution for the new problem

and verify it against the case base.
4. Retain: Retain the parts of current experience in the case base

for future problem solving.

Having verified the results from our chosen adapted action on
the new case, the new case is added to the available case base. The
last step allows CBR to effectively learn from new experiences. In
this manner, a CBR system is able to automatically maintain itself.
As discussed below, W supports retreive, reuse, and revise (as
well as retain if the user collecting data so decides).

Figure 2: figure
A diagram describing the steps of CBR (source:

http://www.peerscience.com/Assets/cbrcycle1.gif).

This 4-stage cyclical CBR process is sometimes referred to as
the R4 model [41]. Shepperd [41] considered the new problem as
a case that comprises two parts. There is a description part and a
solution part forming the basic data structure of the system. The
description part is normally a vector of features that describe the
case state at the point at which the problem is posed.The solution
part describes the solution for the specific problem (the problem
description part).

The similarity between the target case and each case in the case
base is determined by a similarity measure. Different methods of
measuring similarity have been proposed for different measurement
contexts. A similarity measure is measuring the closeness or the
distance between two objects in an n-dimensional Euclidean space,
the result is usually presented in a distance matrix (similarity ma-
trix) identifying the similarity among all cases in the dataset. Al-
though there are other different distance metrics available for dif-



ferent purposes, the Euclidean distance metric is probably the most
commonly used in CBR for its distance measures.

Irrespective of the similarity measure used, the objective is to
rank similar cases from case-base to the target case and utilize the
known solution of the nearest k-cases. The value of k in this case
has been the subject of debate [18,40]: Shepperd [40], Mendes [23]
argue for k = 3 while Li [22] propose k = 5.

Once the actual value of the target case is available it can be re-
viewed and retained in the case-base for future reference. Stored
cases must be maintained over time to prevent information irrel-
evancy and inconsistency. This is a typical case of incremental
learning in an organization utilizing the techniques of CBR.

Observe that these 4 general CBR application steps (retreive,
reuse, revise, retain) do not include any explicit model based cal-
culations; rather we are relying on our past experience, expressed
through the case base, to estimate any model calculations based on
the similarity to the cases being used. This has two advantages:

1. It allows us to operate independently of the models being
used. For example, our prior report to this conference [14]
ran over two data sets. This this study, based on CBR, uses
twice as many data sets.

2. This improves our performance, since data retrieval can be
more efficient than calculation, especially given that many
thousands of iterations of calculation were needed with our
traditional modeling based tool. As evidence of this, despite
the use of a slower language, W ’s AWK code runs faster than
the C++/LISP used in STAR/NOVA. It takes just minutes to
conduct 20 trials over 13 data sets with W . A similar trial,
conducted with NOVA or STAR, can take hours to run.

4. FROM CBR TO W
A standard CBR algorithm reports the median class value of

some local neighborhood. The W algorithm treats the local neigh-
borhood in a slightly different manner:

• The local neighborhood is divided into best and rest;
• A contrast set is learned that most separates the regions (con-

trast sets contain attribute ranges that are common in one re-
gion, but rare in the other).

• W then searches for a subset of the contrast set that best se-
lects for (e.g.) the region with lower effort estimates.

The rest of this section details the above process.

4.1 Finding Contrast Sets
Once a contrast set learner is available, it is a simple matter to

add W to CBR. W finds contrast sets using a greedy search, where
candidate contrast sets are ranked by the log of the odds ratios.
Let some attribute range x appear at frequency N1 and N2 in two
regions of size R1 and R2. Let the R1 region be the preferred goal
and R2 be some undesired goal. The log of the odds ratio, or LOR,
is:

LOR(x) = log

„
N1/R1

N2/R2

«
Note that when LOR(x) = 0, then x occurs with the same proba-
bility in each region (such ranges are therefore not useful for select-
ing on region or another). On the other hand, when LOR(x) > 0,
then x is more common in the preferred region than otherwise.
These LOR-positive ranges are candidate members of the contrast
set that selects for the desired outcome.

It turns out that, for many data sets, the LOR values for all the
ranges contain a small number of very large values (strong con-
trasts) and a large number of very small values (weak contrasts).

The reasons for this distribution do not concern us here (and if the
reader is interested in this master-variable effect, they are referred
to [25, 30]). What is relevant is that the LOR can be used to rank
candidate members of a contrast set. W computes the LORs for
all ranges, then conducts experiments applying the top i-th ranked
ranges.

For more on LOR, and their use for multi-dimensional data, see [34].

4.2 The Algorithm
CBR systems input a query q and a set of cases. They return the

subset of cases C that is relevant to the query. In the case of W :

• Each case Ci is an historical record of one software projects,
plus the development effort required for that project. Within
the case, the project is described by a set of attributes which
we assume have been discretized into a small number of dis-
crete values (e.g. analyst capability∈ {1, 2, 3, 4, 5} denoting
very low, low, nominal, high, very high respectively).

• Each query q is a set of constraints describing the particulars
of a project. For example, if we were interested in a sched-
ule over-run for a complex, high reliability projects that have
only minimal access to tools, then those constraints can be
expressed in the syntax of Figure 4.

W seeks q′ (a change to the original query) that finds another set of
cases C′ such that the median effort values in C′ are less than that
of C (the cases found by q). W finds q′ by first dividing the data
into two-thirds training and one-third testing. Retrieve and reuse
are applied to the training set, then revising is applied to the test
set.

1. Retrieve: The initial query q is used to find the N training
cases nearest to q using a Euclidean distance measure where
all the attribute values are normalized from 0 to 1.

2. Reuse (adapt): The N cases are sorted by effort and divided
into the K1 best cases (with lowest efforts) and K2 rest cases.
For this study, we used K1 = 5, K2 = 15. Then we seek
the contrast sets that select for the K1 best cases with lowest
estimates. All the attribute ranges that the user has marked
as “controllable” are scored and sorted by LOR. This sorted
order S defines a set of candidate q′ queries that use the first
i-th entries in S:

q′i = q ∪ S1 ∪ S2... ∪ Si

Formally, the goal of W is find the smallest i value such q′i selects
cases with the least median estimates.

According to Figure 2, after retrieving and reusing comes revis-
ing (this is the “verify” step). When revising q′, W prunes away
irrelevant ranges as follows:

1. Set i = 0 and q′i = q
2. Let Foundi be the test cases consistent with q′i (i.e. that do

not contradict any of the attribute ranges in q′i).
3. Let Efforti be the median efforts seen in Foundi.
4. If Found is too small then terminate (due to over-fitting).

After Shepperd [40], we terminated for |Found| < 3.
5. If i > 1 and Efforti < Efforti−1, then terminate (due to

no improvement).
6. Print q′i and Efforti.
7. Set i = i + 1 and q′i = qi−1 ∪ Si

8. Go to step 2.

On termination, W recommends changing a project according to
the set q′ − q. For example, in Figure 4, if q′ − q is rely = 3 then
this treatment recommends that the best way to reduce the effort
this project is to reject rely = 4 or 5.



Historical Effort Data
Dataset Attributes Number of cases Content Units Min Median Mean Max Skewness
coc81 17 63 NASA projects months 6 98 683 11400 4.4
nasa93 17 93 NASA projects months 8 252 624 8211 4.2
desharnais 12 81 Canadian software projects hours 546 3647 5046 23940 2.0
maxwell 26 62 Finish banking software months 6 5189 8223 63694 3.3
isbsg 14 29 Banking projects of ISBSG minutes 662 2355 5357 36046 2.6

Total: 328

Figure 3: The 328 projects used in this study come from 5 data sets.

One useful feature of the above loop is that it is not a black box
that offers a single “all-or-nothing” solution. Rather it generates
enough information for a user to make their own cost-benefit trade-
offs. In practice, users may not accept all the treatments found by
this loop. Rather, for pragmatic reasons, they may only adopt the
first few Si changes seen in the first few rounds of this loop. Users
might adopt this strategy if (e.g.) they have limited management
control of a project (in which case, they may decide to apply just
the most influential Si decisions).

Implementing W is simpler than the STAR/NOVA approach:

• Both NOVA and STAR contain a set process models for pre-
dicting effort, defects, and project threats as well as Monte
Carlo routines to randomly select values from known ranges.
STAR and NOVA implement simulated annealing while NOVA
also implements other search algorithms such as A*, LDS,
MAXWALKSAT, beam search, etc. STAR/NOVA are 3000
and 5000 lines of C++ and LISP, respectively.

• W , on the other hand, is a 300 line AWK script.

Our pre-experimental suspicion was that W was too simple and
would need extensive enhancement. However, the results shown
below suggest that, at least for this task, simplicity can suffice (but
see the future work section for planned extensions).

Note that W verification results are more rigorous than those
of STAR/NOVA. W reports results on data that is external to its
deliberation process (i.e. on the test set). STAR/NOVA, on the
other hand, only reported the changes to model output once certain
new constraints were added to the model input space.

5. DATA
Recall that a CBR system takes input a query q and cases C. W

has been tested using multiple queries on the data sets of Figure 3.
These queries and data sets are described below.

5.1 Data Sets
As shown in Figure 3, our data includes:

• The standard public domain COCOMO data set (Cocomo81);
• Data from NASA;
• Data from the International Software Benchmarking Stan-

dards Group (ISBSG);
• The Desharnais and Maxwell data sets;

Except for ISBSG, all the data used in this study is available at
http://promisedata.org/data or from the authors.

Note the skew of this data (min to median much smaller than
median to max). Such asymmetric distributions complicate model-
based methods that use Gaussian approximations to variables.

There is also much divergence in the attributes used in our data:

• While our data include effort values (measured in terms of
months or hours), no other feature is shared by all data sets.

@project example
@attribute ?rely 3 4 5
@attribute tool 2
@attribute cplx 4 5 6
@attribute ?time 4 5 6

Figure 4: W ’s syntax for describing the input query q. Here,
all the values run 1 to 6. 4 ≤ cplx ≤ 6 denotes projects with
above average complexity. Question marks denote what can
be controlled- in this case, rely, time (required reliability and
development time)

• The COCOMO and NASA data sets all use the attributes de-
fined by Boehm [5]; e.g. analyst capability, required software
reliability, memory constraints, and use of software tools.

• The other data sets use a variety of attributes such as the
number of data model entities, the number of basic logical
transactions, and number of distinct business units serviced.

This attribute divergence is a significant problem for model-based
methods like STAR/NOVA since those systems can only accept
data that conforms to the space of attributes supported by their
model. For example, this study uses the five data sets listed in
Figure 4. STAR/NOVA can only process two of them (coc81 and
nasa93).

CBR tools like W , on the other hand, avoid these two problems:

• W makes no assumption about the distributions of the vari-
ables.

• W can be easily applied to any attribute space (caveat: as
long but there are some dependent variables).

5.2 Queries
Figure 4 showed an example of the W query language:

• The idiom “@attribute name range“ defines the range of in-
terest for some attribute “name”.

• If “range” contains multiple values, then this represents a
disjunction of possibilities.

• If “range” contains one value, then this represents a fixed
decision that cannot be changed.

• The idiom “?x” denotes a controllable attribute (and W only
generates contrast sets from these controllables). Note that
the “range”s defined for “?x” must contain more than one
value, otherwise there is no point to making this controllable.

6. EXAMPLE
Figure 5 shows W running on the (dataset,query) of (coc81,osp).

The osp query comes from our contacts at the Jet Propulsion Labo-
ratory and describes the constraints that apply to the flight guidance
system of the Orbital Space plane (see Figure 6).

The training results are shown on lines 5 to 8. These are the
the Si scores on all the ranges with a positive LOR. Note that one



1 historical data : coc81
2 new project(s) : osp
3 #n score range
4 -------------------------
5 1 0.41 stor = 3
6 2 0.09 acap = 5
7 3 0.00 cplx = 4
8
9 q_0:

10 9 15 40 41 50 55 61 79 83 240 387
11 423 523 539 605 702 1063 1600 2040 6400
12
13 25% 50% 75%
14 Baseline: 52.5 313.5 653.5
15
16 Results of applying the top n-th ranges
17 found during training
18
19 q_1: stor=3 : {15 50 55 240 702} (median,spread)= 55,190

Figure 5: Running (coc81,osp).

@project osp
@attribute data 3
@attribute rely 5
@attribute ?team 2 3
@attribute pcap 3
@attribute ?stor 3 4 5
@attribute ?acap 2 3
@attribute ?aexp 2 3
@attribute ?tool 2 3
@attribute ?sced 1 2 3
@attribute ?cplx 5 6
@attribute kloc 75 80 90 95 100 105 110 115 120 125

Figure 6: The osp query query says, in part, that system size is
between 75 and 125 kloc; that required reliability rely is very
high; but analyst capability acap is only fair to medium. For a
full description of this query, see [28].

range has an outstandingly high LOR; stor = 3 has an LOR or
0.41 while all the rest are under 0.1. That is, we should expect
most of the benefit from applying just one range (stor = 3).

The baseline effort estimates of q0 are on lines 10,11. These
are all the efforts of all the cases selected by the osp query. These
efforts are summarized on lines 13,14 (the median effort is 313.5).

The testing results are after line 18. In this example, q1 is q0

(osp) plus the top-ranked attribute range (stor = 3). The effects of
q1 are on lines 19. Now, only five cases are selected with a median
effort of 55. Testing stops at line 19 since applying the next ranges
did not improve the median or spread results.

As to performance measures, if Improvement = initial−final
initial

,
then the median improvement of Figure 5 is 313−55

313
= 82%.

Also, let the spread be the 75th− 25th percentile interval (a non-
parametric measure of estimate variance). The spreads of Figure 5
are, for q0, 653− 52 = 601 and, for q1, 240− 50 = 190. Hence,
the spread improvement was 601−190

601
= 68%. Reducing both me-

dian and spread are useful since the former relates to development
cost and the latter relates to how much we can trust and estimate
(the smaller the spread, the more we can trust it).

7. CASE STUDIES

7.1 Case Study #1: Brooks’s Law
This section applies W to Brooks’s Law. Writing in the 1970s [7],

Brooks noted that software production is a very human-centric ac-
tivity and managers need to be aware of the human factors that
increase/decrease productivity. For example, a common practice

@project brooks
@attribute ?prec 1 2 3 4 5 6
@attribute ?flex 1 2 3 4 5
@attribute ?resl 1 2 3 4 5
@attribute ?team 1 2 3 4 5
@attribute ?pmat 1 2 3 4 5
@attribute ?rely 1 2 3 4 5
@attribute ?data 2 3 4 5
@attribute ?cplx 1 2 3 4 5 6
@attribute ?ruse 2 3 4 5 6
@attribute ?docu 1 2 3 4 5
@attribute ?time 3 4 5 6
@attribute ?stor 3 4 5 6
@attribute ?pvol 2 3 4 5
@attribute ?acap 1 2 3 4 5
@attribute ?pcap 1 2 3 4 5
@attribute ?pcon 1 2 3 4 5
@attribute apex 1
@attribute plex 1
@attribute ltex 1
@attribute ?tool 1 2 3 4 5
@attribute ?site 1 2 3 4 5 6
@attribute ?sced 1 2 3 4 5
@attribute kloc 0.9 2.2 3 [snip] 339 350 352 423 980

Figure 7: The brookslaw query.

at that time at IBM was to solve deadline problems by allocating
more resources. In the case of programming, this meant adding
more programmers to the team. Brooks argued that this was an
inappropriate response since, according to Brooks’s law “adding
manpower [sic] to a late software project makes it later”. The rea-
son for this slowdown is two-fold:

• The more people involved the greater the communication
overhead. While this is certainly an issue if all parts of the
software system are accessible to all other parts, with an in-
telligent module design, this first issue can be mitigated.

• The second issue is more fundamental. Software construc-
tion is a complex activity. Newcomers to a project suffer
from inexperience in the tools, the platform, the problem do-
main, etc.

The query of Figure 7 models this second issue. In this query, all
the experience attributes have been set to their lowest value (apex,
plex, ltex are analyst experience, programmer language experi-
ence, and language and tool experience, respectively). The remain-
ing attributes are all controllable (as denoted by the “?” in front of
each one) and are allowed to move over their full range.

For a (dataset,query) of (nasa93,q = brookslaw), W returns

q′ = q ∪ (data = 2)

That is, W is recommended setting the database size to its lowest
value. Databases are used to store program and data elements. In
effect, W is recommending reigning in the scope of the project.
The recommendation can be paraphrased as follows:

If the project is late, and you add more staff with less
experience, you can still finish on time if you decrease
the scope of the project.

Figure 8 shows the effects of this recommendation. The AsIs
row shows the median and spread of the effort values in nasa93.
The ToBe1 row shows the effect of Brooks’s Law. In the subset of
the data consistent with aexp = plex = ltex = 1, the median
effort has nearly doubled. The ToBe2 row shows the impact of W ’s
recommendation: the project will now finish in nearly the the time
as the AsIs row, and the spread is greatly reduced.

One of the reasons we are exploring W is the simplicity of the
implementation. In this regard, it is useful to compare our results



Treatment median spread
AsIs = Nasa93 225 670
ToBe1 = nasa93 ∪ q 380 680
ToBe2 = nasa93 ∪ q′ 220 290

Figure 8: Effort estimates seen in different treatments for the
Brooks’ Law Experiment.

@project desharnais-team-m
@attribute ?TeamExp -1 0 1
@attribute ?ManagerExp 3 4 5 7
@attribute PointsAjust 302 397 697

Figure 9: The desharnais−team−m query selects for medium
sized projects being developed by teams with low experience.

on Brooks’s Law to other researchers. Brooks’s Law is a well-
researched effect and other researchers have found special cases
where the general law does not hold. For example, using sophisti-
cated qualitative reasoning techniques, Zhang et al. [44] found their
own loopholes in Brooks’s Law. One of us (Keung) worked on site
with the Zhang team and reports that the Brooks analysis was the
main result of a two year masters graduate thesis. In contrast, writ-
ing W took three days and the specific analysis of Brooks’s Law
took took twenty minutes from first posing the question, to graph-
ing the output.

7.2 Thirteen More Case Studies
Apart from the Brooks’ Law experiment, we have tested W on

thirteen other case studies:

• For the ISBSG data set, we used our recent experience to
describe the constraints suitable for a stand-alone or client
server system (denoted stdalone and clientsrv).

• For the Desharnais data set, we posed queries representing:

– (s, m, l) denotes (small, medium,large) projects;
– (mngr, team) denotes (manager,team) experience be-

ing low.

For example, Figure 9 shows the Desharnais-team-m query.
• For the Cocomo and NASA data sets, we used our contacts

at the Jet Propulsion Laboratory to write queries describing
(a) osp (see above); (b) the second version of that system
called osp2; as well as (c) generic flight and (d) ground sys-
tems.

• Lacking direct experience with the Finnish financial system,
we could not pose specific queries to the Maxwell dataset.
Instead, we made half the attributes controllable and used
that for the Maxwell query (see Figure 10).

Figure 11 shows the improvements seen in our 13 queries, run-
ning on the data sets of Figure 3. As shown by the last line of Fig-
ure 11, the usual improvements where (36,68) for (median,spread).
Note that, unlike STAR/NOVA, these are results on real-world data
sets not used during training.

Figure 12 displays the Figure 11 results graphically. The dashed
line indicates the median of the improvements for each axis. One
data set had consistently worse results than any other. The gray
cells of Figure 11 indicate when W failed (i.e. where the treatments
increased median development effort or spread, or both). Note that
the gray cells are found only in the Desharnais results.

On investigation, the root cause of the problem was the granular-
ity of the data. Whereas (e.g.) coc81 assigns only one of six values
to each attribute, Desharnais’s attributes had a very wide range.

@project maxwell
@attribute ?T01 1 2 3 4 5
@attribute ?T02 1 2 3 4 5
@attribute ?T03 2 3 4 5
@attribute ?T04 2 3 4 5
@attribute ?T05 1 2 3 4 5
@attribute ?T06 1 2 3 4
@attribute ?T07 1 2 3 4 5
@attribute ?T08 2 3 4 5
@attribute ?T09 2 3 4 5
@attribute ?T10 2 3 4 5
@attribute ?T11 2 3 4 5
@attribute ?T12 2 3 4 5
@attribute ?T13 1 2 3 4 5
@attribute ?T14 1 2 3 4 5
@attribute ?T15 1 2 3 4 5

Figure 10: The maxwell query.

Improvement
dataset query q median spread
coc81 ground 95% 83%
coc81 osp 82% 68%
nasa93 ground 77% 15%
ISBSG stdalone 69% 100%
nasa93 flight 61% 73%
nasa93 osp 49% 48%

maxwell 44% 76%
ISBSG clientsrv 42% 88%

desharnais mngr-l 36% -45%
coc81 osp2 31% 71%
nasa93 osp2 27% 42%

desharnais mngr-s 23% 85%
desharnais mngr-m 23% 85%

coc81 flight 0% 18%
desharnais team-m 0% 60%
desharnais team-s -11% -206%
desharnais team-l -15% -93%

median 36% 68%

Figure 11: Improvements (100 ∗ initial−final
intial

) for 13 queries.
Sorted by median improvement. Gray cells show negative im-
provements.

Currently, we are exploring discretization policies to [11, 43] re-
duce attributes with large cardinality to a smaller set. Tentatively,
we can say that discretization solves the problem with Desharnais
but we are still studying this aspect of our system.

Even counting the negative Desharnais results, in the majority
of cases W found treatments that improved both the median and
spread of the effort estimates. Sometimes, the improvements were
modest: in the case of (coc81,flight), the median did not improve
(but did not get worse) while the spread was only reduced by 18%.
But sometimes the improvements are quite dramatic.

• In the case of (ISBSG,stalone), a 100% improvement in spread
was seen when q′ selected a group of projects that were co-
developed and, hence, all had the same development time.

• In the case of (coc81,ground), a 95% effort improvement
was seen when q′ found that ground systems divide into two
groups (the very expensive, and the very simple). In this case
W found the factor that drove a ground system into the very
simple case.
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8. DISCUSSION

8.1 Comparisons to NOVA
Figure 13 shows that estimation improvements found by W (in

this report) to the improvements reported previously (in Figure 1).
This table is much shorter than Figure 11 since, due to the modeling
restrictions imposed by the software process models, NOVA can-
not be applied to all the data sets that can be processed by W . The
numbers in Figure 13 cannot be directly compared due to the dif-
ferent the different goals of the two systems: W tries to minimize
effort while NOVA tries to minimize effort and development time
and delivered defects (we are currently extending W to handle such
multiple-goal optimization tasks). Nevertheless, it is encouraging
to note that the results are similar and that the W improvements are
not always less than those found by STAR/NOVA.

study NOVA W
nasa93 flight 72% 61%

nasa93 ground 73% 77%
nasa93 osp 42% 49%

nasa93 ops2 5% 27%

Figure 13: Comparing improvements ( initial−final
initial

) found by
NOVA (from Figure 1) and W (Figure 11).

Regardless of the results in Figure 13, even though we prefer W
(due to the simplicity of the analysis) there are clear indicators of
when we would still use STAR/NOVA. W is a case-based method.
If historical cases are not available, then STAR/NOVA is the pre-
ferred method. On the other hand, STAR/NOVA is based on the
USC COCOMO suite of models. If the local business users do not
endorse that mode, then W is the preferred method.

8.2 Threats to Validity
External validity is the ability to generalize results outside the

specifications of that study [32]. To ensure the generalizability of
our results, we studied a large number of projects. Our datasets
contain a wide diversity of projects in terms of their sources, their
domains and the time period they were developed in. Our reading

id features relative weight
1 Personnel/team capability 3.53
2 Product complexity 2.38
3 Time constraint 1.63
4 Required software reliability 1.54
5 Multi-site development 1.53
6 Doc. match to life cycle 1.52
7 Personnel continuity 1.51
8 Applications experience 1.51
9 Use of software tools 1.50
10 Platform volatility 1.49
11 Storage constraint 1.46
12 Process maturity 1.43
13 Language & tools experience 1.43
14 Required dev. schedule 1.43
15 Data base size 1.42
16 Platform experience 1.40
17 Arch. & risk resolution 1.39
18 Precedentedness 1.33
19 Developed for reuse 1.31
20 Team cohesion 1.29
21 Development mode 1.32
22 Development flexibility 1.26

Figure 14: Relative effects on development effort. Data from a
regression analysis of 161 projects. From [6].

of the literature is that this study uses more project data, from more
sources, than numerous other papers. Table 4 of [21] list the total
number of projects in all data sets used by other studies. The me-
dian value of that sample is 186, which is less much less than the
the 328 projects used in our study.

Internal validity questions to what extent the cause-effect rela-
tionship between dependent and independent variables hold [2].
For example, the above results showed reductions in the effort es-
timates of up to 95%; i.e. by a factor of 20. Are such massive
reductions possible?

As shown in Figure 14, these reductions are theoretically possi-
ble. Figure 14 shows the relative effects of different factors seen in
161 projects. According to this chart, making maximal changes to
the first factor (personnel/team capability) can affect the develop-
ment effort by up to a 3.53. Making maximal changes just to the
first four factors could have a net effect of up to

3.53 ∗ 2.38 ∗ 1.62 ∗ 1.54 ≈ 21 > 20

By the same reasoning, making maximal changes to all factors
could have a net effect of up to eleven thousand. Hence, an im-
provement of 95% (or even more) is theoretically possible.

As to what is pragmatically possible, that is a matter for human
decision making. No automatic tool such as STAR/NOVA/W has
access to all the personnel factors and organizational constraints
known to a human manager. Also, some projects are inherently ex-
pensive (e.g. the flight guidance system of a manned spacecraft)
and cutting costs by, say, reducing the required reliability of the
code is clearly not appropriate. Tools like W are useful for uncov-
ering options that a human manager might have missed, yet ulti-
mately the actual project changes must be a human decision.

9. CONCLUSION
If a manager is given an estimate for developing some software,

they may ask “how do I change that?”. The model variance problem
makes it difficult to answer this question. Our own prior solution
to this problem required an underlying process model that limited
the data sets that can be analyzed.

This paper has introduced W , a case-based reasoning approach
(augmented with a simple linear-time greedy search for contrast



sets). W provides a mechanism that allows projects to improve
over time based on historical events, greatly assist in the project
planning and resource allocation. W has proven to be simpler to
implement and use than our prior solutions. Further, since this new
method has no model-based assumptions, it can be applied to more
data sets. When tested on 13 real-world case studies, this approach
found changes to projects that could greatly reduce the median and
variance of the effort estimate.

10. FUTURE WORK
This paper has presented W in the context of effort estimation.

We suspect, but cannot yet show, that the algorithm would be a
useful decision aid in many other domains.

While a promising prototype, there are many design options left
to explore within W . For example, Equation 2 is a generalization
of the Euclidean distance measure used in W ’s training phase:

Distance =

vuut nX
i=1

wi(xi − yi)2 (2)

In the above, wi is a weighting applied to each attribute. Currently,
W uses wi = 1 but there are any number of proven and fast feature
weighting schemes that can focus the inferencing away from noisy
attributes [9, 15].

Also, there a few too many magic numbers within the current
version of W . For example, during training, the best and rest sets
are of size K1 = 5 and K2 = 15. Now that we have baseline
results, it would be prudent to conduct experiments to see if there
are better values for K1 and K2.

One issue is W ’s greedy linear-time search to explore the con-
trast set. Perhaps some of STAR/NOVA’s search algorithms could
be applied to W to improve that aspect of the inference.

Finally, given the power of contrast sets to extract relevant at-
tributes, future work exists in seeing if W is a useful feature subset
selector for other domains.
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