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ABSTRACT
In this paper we seek to further support the viability of FBC, by
analyzing its behavior in best and worst case decision making sce-
narios and comparing that to the other derivate "you pick two" poli-
cies. More generally, we seek to utilize the same stochastic AI tool
previously used in order to determine the best and worst case sce-
narios for certain project test cases, all while circumventing model
tuning. We find that our tool, STAR, is able to reliably determine
worst case scenarios, without the need for model fine tuning. We
also provide further support to the viability of FBC by observing
the policy’s success and failure in various test cases.
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1. INTRODUCTION
“Faster, Better, Cheaper” (FBC) was a development philosophy

adopted by the NASA administration in the mid to late 1990s. that
lead to some some dramatic successes such as Mars Pathfinder as
well as a number highly publicized mission failures, such as the
Mars Climate Orbiter & Polar Lander. It was later on blamed for
several project failures at NASA.

Previously [INSERT CITATION HERE] we have explored n
using STAR and other AI search methods in reusing USC CO-
COMO based models in the absence of sufficient data for tuning
these models to the particular projects and project templates that
we being studied. In these studies we’ve explored the our ability to
make good decisions that would improve our test project by reduc-
ing the effort, defects and development time of a project.

FBC was advocated in the 1990s by the then-administrator of
NASA, Daniel Goldin, as a method for reducing the expenditure of
NASA. FBC was in-line with the direction that the Clinton admin-
istration’s approach of doing more for less. FBC was initially suc-
cessful: projects that usually cost over a billion were implemented
at 1

4
th of that cost (e.g. Mars Pathfinder). However, subsequent

failures (Mars Climate Orbiter and Polar Lander; the Columbia
Shuttle disaster) lead to much criticism of FBC.

.

This paper reports the results of such a comparison. After a dis-
cussion of related work, we will review the sad history of “Better,
Faster, Cheaper” at NASA. We will then describe the case stud-
ies, as well as the STAR system. Previous results presented in [27]
suggested that (a) FBC is in fact a viable development methodology
and (b) suggested that when applied properly, can indeed produce
similar or better results compared to the "you pick two" policies in
a variety of project cases.

Building on that study, this paper presents this new study of
FBC using the Previously used AI tool “STAR” [INSERT CITA-
TION HERE]. It is found that, even if FBC is applied properly to
a project, project managers need to be weary of making bad deci-
sions. Also, bad decisions that are made while applying FBC affect
every aspect of the project, increasing the damage done to a project.
In addition to all that, we show that STAR is able to reliably show
which combinations of policies are the worst for a certain project,
showing that not only are we capable of getting the best policies,
but also the worst of them using stochastic AI methods applied to
data starved software engineering models with medium granularity.

Previous papers by Menzies et. al explored the validity of the
general consensus on “Faster, Better, Cheaper? Pick any two”.
It was found that “Faster, Better, Cheaper” (FBC) is indeed fea-
sible when maintaining a balanced concern and concentration on
the quality aspects of a project. This paper extends previous pub-
lications by the authors [INSERT CITATION HERE] in several
ways:

•

•

•

The following sections are organized in the following fashion:

2. “FASTER, BETTER, CHEAPER”
This paper applies STAR to an analysis of FBC. In the 1990s, the

main approach to implementing FBC within NASA was to down
size projects and reduce their cost and complexity, concentrating on
producing missions in volume. Reducing funding naturally meant
that less verification and testing was possible within budget and
schedule constraints. The reasoning behind this however was to
be able to produce a larger volume of unmanned missions, which
would counteract the expected higher rate of mission failure. This
would, optimally, yield more successful missions as well as more
scientific data produced by these projects. Another focus in this
policy was allowing teams to take acceptable risks in projects to
allow for cost reduction, and possibly using new technology that
could reduce cost while possibly providing more capabilities. This



was accompanied by the new view, being pushed at NASA by
Goldin, that “it’s ok to fail” [36], which was rather misunderstood.
This new policy was meant to eliminate huge budget missions of
the past, that upon possible failure would yield large losses. Project
cost used to routinely exceed the $1 billion mark, while the first
FBC project, the Mars Pathfinder, was completed for a fraction of
the cost, netting at about $270 million [9].

Some within NASA, like 30 year veteran Frank Hoban, sup-
ported these policies [9] who viewed these new policies as a nec-
essary break from traditional policies that were very risk averse.
The additional cost reduction, accompanied by the additional risk,
was to allow for a path to cheap and commercial space flight. Even
given the reduced funding, the Mars Pathfinder mission, along with
other first generation FBC missions, were successes. This fueled
enthusiasm to apply FBC across all of NASA to further reduce
spending per mission as well cutting the work force by one third.
FBC was extended to be applied on manned space missions as well,
where funding was also reduced. Coming into a space shuttle pro-
gram that was starting to age and in need of updates, the new poli-
cies imposed cuts in funding from 48% of the NASA budget to
38% [17], further straining that program. Further more, a single
prime contractor (Lockheed Martin) was used for missions in an-
other bid to reduce cost and managerial complexity [38, 39].

This produced opposition within NASA, where traditionally is-
sues pertaining to the shuttle were designated LOVC (Loss of Ve-
hicle and Crew) and given priority over all other issues, includ-
ing cost. However the cost cuts and layoffs that ensued damaged
morale leading to a string of early retirements of veteran scientists,
skilled engineers and managers [17].

Despite this, additional projects were planned including Mars
Climate Orbiter and Polar Lander. These two projects were more
aggressive implementations of FBC, especially when it came to the
Faster-Cheaper part of those policies. Costs of the Orbiter and the
Lander were brought down to $125 million and $165 million re-
spectively [37]. This was much less than the previous Pathfinder
mission (which itself cost slightly less than $300 million) and a
huge reduction from the previous Viking Mars missions (cost about
$935 million in 1974 Dollars, equivalent to $3.5 billion in 1997
dollars). The success of these missions would’ve strengthen FBC
within NASA and JPL, and been seen to break new ground in terms
of mission completion with the reduced staff and budget [12].

Both of these missions failed. Using a single contractor had
weakened quality assurance and caused loss of vehicle. These
flaws where software issues that could have easily been rectified
if they had been discovered on the ground (e.g. a failure to con-
vert from imperial to metric units, causing the loss of the Climate
Orbiter [29]). The Mars Program Independent Assessment Team
Report [39] found that these missions were under-staffed, under-
funded by at least 30%, and too tightly scheduled.

Elsewhere, across the Atlantic in the UK, another Mars mission
to deliver a lander, designated the Beagle 2, was under way. This
mission was also developed cheaply, applying the same concepts
in design and implementation that NASA was at the time using.
The lander however was declared lost after not establishing contact
after separation from the mars express vehicle [28].

One other failure that FBC was blamed for was the Columbia
Shuttle disaster in 2003. This was post-Goldin, at a point where
NASA had realized the excessive cost cutting and staff reducing
policies needed to be changed. After that disaster, critics quickly
pointed the finger to these missions being under funded due to FBC.
There were many calls, especially politically, for throwing FBC “in
the waste basket" [8, 14]. It was these criticisms that turned NASA
away from FBC towards policies concentrating on two of the three

aspects of FBC.

3. BACKGROUND
STAR is a natural tool for assessing policies produced under

FBC, since it uses COCOMO based software engineering models
that have already been used within NASA. These COCOMO mod-
els represent FBC in the following manner:

• Faster is represented by the Months model, which estimates
the total development months needed for a software project.

• Better is represented by the Defects model, which estimates
the number of delivered defects per KLOC (thousand lines
of code).

• Cheaper is represented by the Effort model, which estimates
the effort that is needed for a software project in person-
months, and hence can be used to estimate the cost of the
development of the project.

Note that for all the models, lower is better. The tool combines
estimates with utility weights {f, b, c} (short for Faster, Better,
Cheaper) using the following formula:

score =

p
f.M2 + b.D2 + c.E2

√
f + b+ c

(1)

This score value represents the Euclidean distance to the normal-
ized values of the predictions of development effort “E”; total de-
velopment months “M”; and “D”, the number of delivered defects
per KLOC. This is the utility function that is used in order to assess
any given set of “policies" that might be presented to be imple-
mented in a given software project. Given that we normalize the
predictions min..max to 0..1 then Equation 1 has the range one to
zero and lower scores are better. STAR searches for the minimal
set of project changes that most reduces this score.

By adjusting the various values of (f, b, c), we can compare the
effects of methodologies that emphasize different project goals:

• BF = “better, faster” i.e. c = 0 and b = f = 1;

• BC = “better, cheaper” i.e. f = 0 and b = c = 1;

• CF = “cheaper, faster” i.e. b = 0 and f = c = 1;

• FBC = “faster, better, cheaper” i.e. b = f = c = 1.

For example, Boehm et at. [5] advocate a certain functional form
for generating software development effort estimates. In that form,
the development effort is linear on a set of effort multipliers EMi

and exponential on a set of scale factors SFj :

effort = A ·KSLOCB+0.01·
P

j βjSFj ·
Q
i αiEMi (2)

The particular effort multipliers and scale factors recommended by
Boehm et al. are shown in Figure 11. While Boehm et al offer
default values for the Equation 2 variables, linear regression on lo-
cal data can tune the αi, βj values to the particulars of a local site.
Also, if there is insufficient data for a full tuning of α, β, then a
coarse grain tuning can be achieved by just adjusting the A,B1.
linear and exponential tuning parameters.

A problem that has been under-explored in the literature is tuning
variance. In data starved domains, there is insufficient data to pro-
duce precise tunings. For example, At PROMISE 2005, we have
1We will use uppercase B to denote the COCOMO linear tuning
variable of Equation 2 and lower b to denote the business utility
associated with defect predictions of Equation 1



reported very large tuning variance in the post-tuning values of α
and β [24]. Baker [2] offers a similar finding. After thirty 90%
random samples of that data, the A,B ranges found during tuning
were surprisingly wide:

(2.2 ≤ A ≤ 9.18) ∧ (0.88 ≤ B ≤ 1.09) (3)

We are not the only research group to be concerns about tuning
variance. At PROMISE 2007, Korte & Port [19] explore the vari-
ance of automatically learned effort predictors. They comment that
this variance is large enough to confuse standard methods for as-
sessing different predictive model generators.

Since 2005 [6, 20], we have been trying to reduce tuning vari-
ance. using feature subset selection (FSS). However, despite years
of work, we now report that FSS reduces but does not tame the
variance of A,B, α, β.

Having failed to tame tuning variance, we have been exploring a
new approach. The STAR tool [10, 22, 25]. that we describe below
checks for stable conclusions within the space of possible tunings.

4. STAR
STAR uses Figure 1 as the inputs to a Monte Carlo simulation

over a set of software models. STAR contains the COCOMO effort
E estimator [5] but also the COCOMO development months M
estimator [5, p29-57], and COQUALMO D defects estimator [5,
p254-268], These estimator generate the {E,M,D} variables used
by Equation 1 in the introduction.

We base our analysis on COCOMO and COQUALMO for sev-
eral reasons. These are mature models which have been devel-
oped, refined, and constrained over a very long period of time.
The range of tuning options explored by STAR are taken from
30 years of modeling experience and regression studies of hun-
dreds of projects [4]. COCOMO and COQUALMO have been
selected and tested by a large community of academic and indus-
trial researchers led by Boehm (this large group has meet annually
since 1985). Unlike other models such as PRICE TRUE PLAN-
NING [31], SLIM [33], or SEER-SEM [16], the COCOMO family
of models are fully described in the literature. Also, at least for
the effort model, there exist baseline results [7]. Further, we work
extensively with government agencies writing software. Amongst
those agencies, these models are frequently used to generate and
justify budgets.

But the most important reason we use COCOMO & COQUALMO
is that the space of possible tunings within these models is well de-
fined. Hence, it is possible to explore the space of possible tun-
ings. Recall from Equation 2 that the COCOMO model includes
{A,B, α, β} tuning values. Many of these variables are shared
with the COQUALMO defect predictor which also has a separate
set of tuning variables, which we will call γ. Using 26 years of
publications about COCOMO-related models, we inferred the min-
imum and maximum values yet seen for {A,B, α, β, γ}. For ex-
ample, the A,B min/max values come from Equation 3. We use
the variable T to store the range of possible values for these tuning
variables.

STAR runs as follows. First, a project P is specified as a set of
min/max ranges to the input variables of STAR’s models:

• If a variable is known to be exactly x, then then
min = max = x.

• Else, if a variable’s exact value is not known but the range of
possible values is known, then min/max is set to the smallest
and largest value in that range of possibilities.

• Else, if a variable’s value is completely unknown then min/min
is set to the full range of that variable in Figure 11.

Second, STAR’s simulated annealer2 seeks constraints on the
project options P that, normally, most reduce the score of Equa-
tion 1 (for examples of P , see Figure 1). For finding the worst
policies, STAR had to be slightly adapted, where lookied for the
policies that most increased Equation 1. A particular subset of
P ′ ⊆ P is scored by using P ′ as inputs to the COCOMO and
COQUALMO. When those predictive models run, variables are se-
lected at random from the min/max range of possible tunings T and
project options P .

In practice, the majority of the variables in P can be removed
without effecting the score; i.e. our predictive models exhibit a
keys effect where a small number of variables control the rest [21].
Finding that minimal set of variables is very useful for management
since it reveals the least they need to change in order to most im-
prove the outcome. Hence, after simulated annealing, STAR takes
a third step.

In this third step, a Bayesian sensitivity analysis finds the small-
est subset of P ′ that most effects the output. The scores seen during
simulated annealing are sorted into the (10,90)% (best,rest) results.
Members of P ′ are then ranked by their Bayesian probability of
appearing in best. For example, 10, 000 runs of the simulated an-
nealer can be divided into 1,000 lowest best solutions and 9,000
rest. If the range rely = vh might appears 10 times in the best
solutions, but only 5 times in the rest then:

E = (reply = vh)

Prob(best) = 1000/10000 = 0.1

Prob(rest) = 9000/10000 = 0.9

freq(E|best) = 10/1000 = 0.01

freq(E|rest) = 5/9000 = 0.00056

like(best|E) = freq(E|best) · Prob(best) = 0.001

like(rest|E) = freq(E|rest) · Prob(rest) = 0.000504

Prob(best|E) =
like(best|E)

like(best|E) + like(rest|E)
= 0.66 (4)

Equation 4 is a poor ranking heuristic since it is distracted by low
frequency (freq) evidence. For example, note how the probability
(Prob) of E belonging to the best class is moderately high even
though its support is very low; i.e. Prob(best|E) = 0.66 but
freq(E|best) = 0.01. To avoid such unreliable low frequency ev-
idence, we augment Equation 4 with a support term. In Equation 5,
likelihood (like) is chosen as our support term. Support should
increase as the frequency of a range increases, i.e. like(x|best)
is a valid support measure since it does exactly so. High support
would indicate a higher number of examples that "support" that E
can be part of the best set. STAR1 hence ranks ranges via

Prob(best|E)∗support(best|E) =
like(x|best)2

like(x|best) + like(x|rest)
(5)

After ranking members of P ′, STAR imposes the top i-th ranked
items of P ′ as model inputs, then runs the models 100 times. This
continues until the scores seen using i+ 1 items is not statistically
different to those seen using i (t-tests, 95% confidence). STAR
returns items 1..i of P ′ as the least set of project decisions that
most reduce effort, defects, and development time. We call these
returned items the policy.

2Simulated annealers randomly alter part of the some current so-
lution. If this new solution scores better than the current solution,
then current = new. Else, at some probability determined by a
temperature variable, the simulated annealer may jump to a sub-
optimal new solution. Initially the temperature is “hot” so the an-
nealer jumps all over the solution space. Later, the temperature
“cools” and the annealer reverts to a simple hill climbing search
that only jumps to new better solutions. For more details, see [18].



Note that STAR constrains the project options P but not the tun-
ing options T . Hence, STAR’s generated policy contains subsets
of the project options P that most improve the score, despite vari-
ations in the tunings T . This approach means we can reuse CO-
COMO models without using local tuning data. The following is a
description that further details the manner in which STAR operates:

1. SAMPLE: To sample the ranges from the models, STAR runs
the simulated annealer K1 times. Note that here, we sample
across the ranges of all the attributes. While most of the time
we sample randomly across the range, we also have a heuris-
tic optimization called extreme sampling. This form of sam-
pling works in the following manner: for x% (x is set to 5 by
default), STAR samples only the extremums of the attributes.

2. DISCRETIZE: The data seen in the K1 samples is then dis-
cretized into D = 10 bins. Discretization converts a con-
tinuous range into a histogram with n break points b1 . . . bn
where (∀i < j : bi ≤ bj). After discretization, many obser-
vations can fall into the same range between bi and bi+1 at
frequency counts ci. This study used equal width discretiza-
tion; i.e.

∀i, j : (bi − bi−1) = (bj − bj−1)

3. CLASSIFY: The ranges are then classified into those seen in
BEST% best or rest.

4. RANK: The ranges are then ranked in increasing order using
Support-Based Bayesian Ranking using Equation 5.

5. PRUNE: Also called the back select stage. STAR runs K2

experiments with the models where the top ranked ranges
1..X ranges are pre-set and the remaining ranges can be se-
lected at random.

6. REPORT: STAR returns the 1..X settings that optimize the
best for the fitness function being used according to the weights
applied to effort, defects, development time, and threats. These
settings are determined by iterating back from the minimum
point achieved towards the first point that is statistically sim-
ilar to the minimum point. This statistical difference is tested
via a standard t-test.

To run our experiments, we had to apply our engineering judg-
ment to set the parameters. The following are the default values:

K1 = 10, 000,K2 = 1, 000, D = 10, BEST = 10%

Previously [22] we have shown that this approach (that does not
use local tuning) generates estimates very similar to those gener-
ated by “LC” method proposed by Boehm (that does tune the model
to local data) [3]. We have explained this effect as follows. Uncer-
tainty in the project options P and the tuning options T contribute
to uncertainty in the estimates generated by STAR’s models. How-
ever, at least for the COCOMO and COQUALMO models used by
STAR, the uncertainty created by P dominates that of T . Hence,
any uncertainty in the output can be tamed by constraining P and
not T .

5. CASE STUDIES AND METHODS
We use two categories of projects in this paper to study the fail-

ure of of FBC. The one category includes three projects of various
sizes. Designated Small, Medium, and Large, they corresponded to
projects of size ranges [7,13] kloc, [70,130] kloc, and [700,1300]
kloc respectively. These projects are open ended and are used to
study whether there is an influence of project size purely on our
study. Open ended here meaning that there are no project limi-
tations that are predetermined but that the only limitation is the
default limits of the models and the size of the projects.

ranges values
project feature low high feature setting

prec 1 2 data 3
OSP: flex 2 5 pvol 2

Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
prec 3 5 flex 3

OSP2 pmat 4 5 resl 4
docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 3 5 tool 2
JPL data 2 3 sced 3

flight cplx 3 6
software time 3 4

stor 3 4
pvol 2 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418
rely 1 4 tool 2

JPL data 2 3 sced 3
ground cplx 1 4

software time 3 4
stor 3 4
pvol 2 4
acap 3 5
apex 3 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Figure 1: Three case studies. Numeric values {1, 2, 3, 4, 5, 6}
map to {verylow, low, nominal, high, veryhigh, extrahigh}.
The terms in column 2 come from Figure 11.

The second category are the NASA project templates that we’ve
previously used, and are presented in Figure 1. These studies rep-
resent the NASA software, at increasing levels of specificity:

• Flight is a general description of flight software at NASA’s
Jet Propulsion Laboratory.

• Ground is a general description of ground software at NASA’s
Jet Propulsion Laboratory.

• OSP is a specific flight system: the GNC (guidance, nav-
igation, and control) component of NASA’s 1990s Orbital
Space Plane;



• OSP2 is a later version of OSP.

Large Medium Small
Policy % Used Policy % Used Policy % Used
acap=5.0 100 acap=5.0 100 pcap=5.0 100
apex=5.0 100 apex=5.0 100 acap=5.0 100
flex=6.0 100 auto=6.0 100 apex=5.0 100
ltex=5.0 100 flex=6.0 100 flex=6.0 100
pcap=5.0 100 ltex=5.0 100 ltex=5.0 100
pcon=5.0 100 pcap=5.0 100 pcon=5.0 100
plex=5.0 100 pcon=5.0 100 plex=5.0 100
pmat=6.0 100 plex=5.0 100 prec=6.0 100
prec=6.0 100 pmat=6.0 100 sced=1.0 100
resl=6.0 100 prec=6.0 100 sced=1.5 100
site=6.0 100 resl=6.0 100 site=6.0 100
team=6.0 100 sced=1.0 100 team=6.0 100
sced=1.0 90 sced=1.5 100 auto=6.0 90
auto=6.0 80 site=6.0 100 pmat=6.0 90
sced=1.5 80 team=6.0 100 resl=6.0 90
ett=6.0 60 peer=6.0 80 cplx=1.5 80
peer=6.0 60 rely=5.0 80 ett=6.0 80
rely=5.0 60 cplx=1.5 70 docu=1.0 70

tool=5.0 70 cplx=1.0 60
data=2.5 60 data=2.5 60
docu=1.5 60 peer=6.0 60
ett=6.0 60 sced=2.0 60
docu=1.0 50 docu=1.5 50

pvol=2.0 50
pvol=2.5 50
rely=5.0 50
time=3.5 50
tool=5.0 50

Figure 3: The most common policies selected as good policies to
apply. Note that policies picked less than 50% of the time have
been ommitted.

Figure 1 describes the details of flight, ground, OSP, and OSP2.
Note that Figure 1 does not mention all the features listed in Fig-
ure 11 inputs. For example, our defect predictor has inputs for use
of automated analysis, peer reviews, and execution-based testing
tools. For all inputs not mentioned in Figure 1, values are picked at
random from the full range of Figure 11.

One aspect to note from Figure 1 is the number of open options
not specified in the description of the projects. Some of the features
in Figure 1 are known precisely (see all the features with single
values). But many of the features in Figure 1 do not have precise
values (see all the features that range from some low to high value).
Sometimes the ranges are very narrow (e.g., the process maturity of
JPL ground software is between 2 and 3), and sometimes the ranges
are very broad. In fact, our case studies can be ranked

ground ≡ flight > OSP > OSP2

according to the options open to a project manager:

• In the case of flight and ground systems, the description is
very general and managers have many options.

• In the case of OSP2, most of the project options are pre-
determined and project managers have very little opportunity
to effect the course of a project.

• OSP is an early version of OSP2 and, measured in terms of
the number of open options, falls in between flight and OSP2.

The results of our study are presented in the following sections.
We present two separate results:

1. The first of these results show the stability of our AI methods
in producing results in this study, in addition to presenting
the ability of these policies to control the projects that they
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Figure 6: An example of the results generated for large projects
while trying to find the best policies (FBC applied).

are selected for. A summary of the best and worst selected
policies are also presented.

2. The second result presents the potential for FBC to succeed
or fail and compares that potential with that of other “you-
pick-two” strategies in the form of quartile charts and Mann-
Whitney rankings.

6. RESULTS

6.1 Stability, Control and Validity
In order to determine the stability of STAR in choosing the worst

policies, three open ended projects, of different sizes, were created.
We ran the three of those in STAR using FBC and its "pick two"
variants, with each case running ten times to account for the ran-
dom variation in the results. This was repeated twice: one with
the intention of choosing the best policies, and the other the worst
policies. This was repeated for our NASA projects as well, except
each case was repeated twenty times. Figures 2 through 5 present
the stability results. These figures present the percentage of times
that policies appear in the set of chosen policies, whether looking
for the best or the worst policies.

The results shown confirm previous results concerning the stabil-
ity in selecting the best policies, and also suggest that this stability
is also available when choosing the worst policies. This is indicated
by the large amount of policies that are chosen at a high percentage
rate. However, the policy generation is not equally stable across
the board. In the case of the open ended projects, the results pre-
sented in Figure 2 and Figure 3 for the Small project seem to be less
stable, generating a larger range of policies compared to Medium
and Large. This makes sense in small open ended projects, as the
project would be more sensitive to the small details within a project,
which is reflected in the models as well. Take the case of the CO-
COMO II model: Equation 2 shows that when the size (KLOC) of
the project decreases, the effort multipliers will inherently have a
larger relative effect on the effort of a project. On the other hand,
if the size was large, the scale factors would have a much larger
effect, meaning that the effort multipliers that would be included in
the policies need to have a large effect on the project to “make the
grade”.

In the case of stability for the NASA projects, we see a different
stability result in Figure 4 and Figure 5, where the more specific



Large Medium Small
Policy % Used Policy % Used Policy % Used Policy % Used
acap=1.0 100 acap=1.0 100 acap=1.0 100 auto=2.0 80
apex=1.0 100 apex=1.0 100 apex=1.0 100 data=4.5 80
auto=1.0 100 auto=1.0 100 auto=1.0 100 pvol=4.5 80
ett=1.0 100 ett=1.0 100 ett=1.0 100 time=5.5 80
flex=1.0 100 flex=1.0 100 ltex=1.0 100 auto=1.5 70
ltex=1.0 100 ltex=1.0 100 pcap=1.0 100 docu=4.5 70
pcap=1.0 100 pcon=1.0 100 pcon=1.0 100 stor=5.5 70
pcon=1.0 100 peer=1.0 100 peer=1.0 100 cplx=5.5 60
peer=1.0 100 plex=1.0 100 plex=1.0 100 ett=1.5 60
plex=1.0 100 pmat=1.0 100 prec=1.0 100 ett=3.0 60
pmat=1.0 100 prec=1.0 100 rely=1.0 100 time=5.0 60
prec=1.0 100 rely=1.0 100 resl=1.0 100 auto=3.0 50
rely=1.0 100 resl=1.0 100 sced=4.0 100 data=4.0 50
resl=1.0 100 sced=4.5 100 sced=4.5 100 ett=2.0 50
site=1.0 100 sced=5.0 100 sced=5.0 100 ett=2.5 50
team=1.0 100 site=1.0 100 site=1.0 100 peer=2.0 50
sced=4.5 90 team=1.0 100 team=1.0 100 plex=1.5 50
tool=1.0 80 tool=1.0 100 flex=1.0 90 ruse=5.5 50
sced=5.0 50 pcap=1.0 90 pmat=1.0 90

sced=4.0 70 tool=1.0 90

Figure 2: The most common policies selected as bad policies to apply. Note that policies picked less than 50% of the time have been
ommitted.

flight ground OSP OSP2
Policy % Used Policy % Used Policy % Used Policy % Used
acap=3.0 100 acap=3.0 100 docu=2.0 100 ltex=2.0 100
auto=1.0 100 pmat=2.0 100 ett=1.0 100 auto=1.0 100
plex=1.0 100 auto=1.0 100 ltex=2.0 100 ett=1.0 100
ltex=1.0 100 pcon=1.0 100 acap=2.0 100 peer=1.0 100
pcon=1.0 100 ltex=1.0 100 apex=2.0 100 prec=3.0 100
site=1.0 100 site=1.0 100 pcon=2.0 100 pmat=4.0 95
pcap=3.0 100 flex=1.0 100 auto=1.0 100 docu=3.0 95
resl=1.0 100 resl=1.0 100 prec=1.0 100 sced=2.0 75
ett=1.0 100 ett=1.0 100 resl=1.0 100 pmat=4.5 50
flex=1.0 100 pcap=3.0 100 tool=2.0 100
rely=3.0 100 team=1.0 100 team=2.0 100
apex=2.0 100 apex=3.0 100 peer=1.0 100
team=1.0 100 prec=1.0 100 pmat=1.0 100
prec=1.0 100 peer=1.0 100 sced=1.0 80
peer=1.0 100 plex=1.0 95 flex=2.0 75
pmat=2.0 90 rely=1.0 55 cplx=5.0 60
stor=3.0 50

Figure 4: The most common policies selected as bad policies to apply for NASA projects. Note that policies picked less than 50% of
the time have been omitted.
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Figure 7: An example of the results generated for large projects
while trying to find the worst policies (FBC applied).

a project is the more restricted and stable are its results, for both
searching for good and bad policies. The reason to this is that more
specified projects tend have a smaller search space, causing smaller
policy sets to created by STAR.

We also need to study whether STAR is able to control projects
and guide the to the end that it intends, whether good or bad. Fig-
ure 6 and Figure 7 are examples of the STAR runs, both conducted
for large projects with an FBC focused evaluation function. The re-
sults from these runs are clumped with the results from other runs
in order to obtain clearer overall results. The first corroborates re-
sults from previous papers we’ve published previously ( [23]), and
choses the best policies for reducing overall defects, effort and de-
velopment time. Note here that since the projects being used are
open ended, this causes larger policies to me generated. We can
see however that even for such open ended projects, STAR is able
to control the project well, demonstrated by the large “dip” in the
graphs of Figure 6. On the other hand, Figure 7 shows the policies
that are selected by star to be the worst in one of the runs.

The purpose of this experiment is determining the policies that
need to be avoided, while at the same time showing how bad a
project can be mishandled in the worst case scenario. This sce-
nario is demonstrated by the spike that appears in the graphs of



flight ground OSP OSP2
Policy % Used Policy % Used Policy % Used Policy % Used
pcon=5.0 100 plex=4.0 100 sced=1.0 100 peer=6.0 100
prec=6.0 100 resl=6.0 100 apex=3.0 100 auto=6.0 100
pmat=3.0 100 flex=6.0 100 team=3.0 100 pmat=5.0 100
ltex=4.0 100 team=6.0 100 peer=6.0 100 ett=6.0 100
site=6.0 100 prec=6.0 100 ltex=4.0 100 ltex=5.0 100
flex=6.0 100 acap=5.0 100 auto=6.0 100 prec=5.0 100
acap=5.0 100 pcon=5.0 100 resl=3.0 100 docu=4.0 95
resl=6.0 100 ltex=4.0 100 prec=2.0 100 sced=2.5 70
plex=4.0 100 apex=5.0 100 flex=5.0 100
apex=5.0 100 site=6.0 100 acap=3.0 100
team=6.0 100 pcap=5.0 100 pcon=3.0 100
pcap=5.0 95 pmat=3.0 95 ett=6.0 100
data=3.0 90 time=3.5 85 pmat=4.0 100
time=3.5 90 ett=6.0 75 tool=3.0 90
stor=4.0 85 stor=3.5 65 sced=1.5 65
pmat=2.5 80 data=2.5 65 cplx=6.0 60
data=2.5 80 stor=4.0 60 apex=2.5 60
time=4.0 70 data=3.0 60 prec=1.5 60
rely=5.0 70 rely=4.0 60 tool=2.5 60
peer=6.0 70 time=4.0 60 cplx=5.5 60
stor=3.5 65 pmat=2.5 60 acap=2.5 55
ett=6.0 55 peer=6.0 55 time=3.5 55
auto=6.0 50 auto=6.0 55 pcon=2.5 50

team=2.5 50

Figure 5: The most common policies selected as good policies to apply for NASA projects. Note that policies picked less than 50% of
the time have been ommitted.

Ratings
Attributes Large Medium Small

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

prec M N M N M N
Scale flex M N M N M N

Factors resl M N M N M N
(COCOMO II) team M N M N M N

pmat M N M N M N
rely M N M N M N
data N N M M
cplx N N N M
ruse M

Effort docu N N N N M
Multipliers time N M M

(COCOMO II) stor M
pvol N N M
acap M N M N M N
pcap M N M N M N
pcon M N M N M N
apex M N M N M N
plex M N M N M M N
ltex M N M N M N
tool M M N M N
site M N M N M N
sced N N M N N M M N M M

Defect auto M N M N M M M N
Removal peer M N M N M M N

(COQUALMO) ett M N M N M M M N

Figure 8: Policy ranges open ended: This table shows the ranges of policies for the open ended size projects. The gray filled cells
represent the allowed range, and “N” and “M” the policies chosen while searching for good and bad policies respectively.

Figure 7. The fact that STAR is able to produce such a clear spike
when searching for the worst policies demonstrates that it is pro-
ducing a set of policies which produce definitive worst results for
that project.

The stability results presented in figures 2 to 5 are presented in
a different manner in figures 8 to 10. Figure 8 presents the stable
policies fort the open ended projects. The shaded cells indicated
the range for the particular attribute in that row, which in this case
are the default values indicated in the COCOMO II model. Also
“N” and “M” show the locations of the best and worst stable policy
respectively. Figure 9 and Figure 10 represent the stable policies

for the NASA projects. These stable results have been made to
overlap with the results of medium size projects, since most of the
NASA projects fall in that category. The light gray cells indicate
the model ranges that aren’t within the project range, while the dark
gray cells indicate the ranges of attributes within the project. “N”
and “M” represent the open ended medium-sized project’s stable
results, while “�” and “�” represent the NASA project’s stable
results, best and worst respectively.

We ask the question of whether an AI tool that covers the full
ranges of attributes is necessary or not. Other works such as the
work of [25] seem to suggest that the nature of the models in use al-



Ratings
Attributes flight ground

1 2 3 4 5 6 1 2 3 4 5 6

prec �M �N �M �N
Scale flex �M �N �M �N

Factors resl �M �N �M �N
(COCOMO II) team �M �N �M �N

pmat M � � N M � � N
rely M � �N �M � N
data �N �N
cplx N N
ruse

Effort docu N N N N
Multipliers time � �

(COCOMO II) stor � � �
pvol �
acap M � �N M � �N
pcap M � �N M � �N
pcon �M �N �M �N
apex M � �N M � �N
plex �M � N �M � N
ltex �M � N �M � N
tool M N M N
site �M �N �M �N
sced N N M M N N M M

Defect auto �M �N �M �N
Removal peer �M �N �M �N

(COQUALMO) ett �M �N �M �N

Figure 9: Policy ranges part 1: This table shows the ranges for flight and ground. The dark gray filled cells represent the allowed
range, and “�” and “�” the policies chosen while searching for good and bad policies respectively. This table is overlapped over the
results for medium projects from Figure 10.

Ratings
Attributes OSP OSP2

1 2 3 4 5 6 1 2 3 4 5 6

prec �M � N M � � N
Scale flex M � � N M N

Factors resl �M � N M N
(COCOMO II) team M � � N M N

pmat �M � N M � �� N
rely M M
data N
cplx N � � N
ruse

Effort docu N �N N N � �
Multipliers time �

(COCOMO II) stor
pvol
acap M � � N M N
pcap M N M N
pcon M � � N M N
apex M � � N M N
plex M N M N
ltex M � � N M � �N
tool M � � N M N
site M N M
sced ��N �N M M N �N � M M

Defect auto �M �N �M �N
Removal peer �M �N �M �N

(COQUALMO) ett �M �N �M �N

Figure 10: Policy ranges part 2: This table shows the ranges for OSP and OSP2. The dark gray filled cells represent the allowed
range, and “�” and “�” the policies chosen while searching for good and bad policies respectively. This table is overlapped over the
results for medium projects from Figure 10.

low us to simply overlook the ranges of the attributes while simply
concentrating on the maxima and minima of the attributes. Looking
at Figure 8, we can see that there is support for this operating as-
sumption made by SEESAW [25, 26] in that most of the attributes
(mainly those attributes that are proportional to COCOMO II Ef-
fort) seem to to propagate to either extreme. Note however that
there is also counter evidence to that is presented in these tables.

The obvious evidence is that fact that there seems to be policies that
aren’t on the extreme, especially for the medium and small open-
ended projects. This seems to suggest that there is a need to explore
the full ranges of the attributes in order to obtain the best policies.
Another piece of evidence is the fact that there are several attributes
that aren’t set in the medium and large projects. This indicates that
sometimes the whole range of an attribute can be ignored, includ-



ing the extremes. So not only is there a need to evaluate the whole
of the range to evaluate what value of the attribute is needed, but
also to evaluate whether a value needs to be set for that attribute.

6.2 Success/Failure Potential of FBC
In this section, we will present the our observations concern-

ing the potential for FBC to succeed and to fail compared to other
"you pick two" policies mentioned in §2. These observations are
based on the quartile charts and Mann-Whitney ranking presented
in figures 14 through 13. These charts show the normalized median
results, as well as the second and third quartiles, accompanied by
the ranking of each of the policy schemes. Some of the results pre-
sented here reiterate results that were mentioned in O. El-Rawas’
thesis [10].

We Start with the results for applying the best policies presented
in Figure 12 and Figure 13.The former present the quartile charts
and rankings for FBC and its derivate policies for the open ended
projects, and the latter for the NASA projects. When observing
these figures, we can see that FBC does well in general, especially
compared to “do nothing’. “do nothing” is a baseline result that is
produced for each of the projects without applying any policies to
them, and is supposed to represent how the project would end up
given its current shape and assuming all future decisions are ran-
domly chosen. The results presented in the aforementioned figures
show the FBC rarely out does its derivate policies, however it does
manage to stay close in terms of results, ranking close to the top
according to the Mann-Whitney rankings, and rarely ranking last
behind the “you pick two” policies. This supports the conclusion
presented in [10]: “BFC is a ‘jack of all trades, master of none’. It
works well in most instances, and provides a compromise solution
in balancing out model estimates.” This result in addition suggests
that FBC is a viable set of priorities to follow that does not have
a catastrophic cost side effects. Furthermore, FBC is capable of
avoiding model and project specific catastrophic side effects. Some
examples of such side effects include the following:

• For the open-ended projects in Figure 12, as well as OSP and
OSP2 in Figure 13, BC fails badly with regards months (de-
velopment time), even though it ranks first and has the low-
est normalized median estimates for defects in all the cases
but one. Infact, BC does worse than “do nothing” with OSP2
months, which is to say that development time would’ve been
better off in that case had we done nothing.

• For OSP and OSP2 in Figure 13, CF fails badly with de-
fects introduced, despite the fact that it ranks at the top with
months and effort in 3 of the 4 projects.

One interesting occurrence that we notice is that BF doesn’t seem
to fail catastrophically. In this case, we argue that this is due to the
nature of the relationship between the effort and the months mod-
els. More specifically, it is due to the fact that effort (or rather the
vast majority of the effort calculation) is included in the derivation
equations of months. This infers that by reducing months we are
subsequently reducing effort, but reducing effort doesn’t necessar-
ily reduce months. In other words, BF in this case is acting as a
pseudo-FBC due to this inter-model dependence.

Having discussed the results and analysis when applying the best
policies, we move on to the case where we apply the worst policies.
The reason this is done is to find the worst case scenario when ap-
plying a priority policy such as FBC, and the results are presented
in Figure 14 and Figure 15. “do nothing”, as presented previously,
is a baseline that is supposed to represent how the project would
end up given its current shape and assuming all future decisions are

randomly chosen. Since we are applying the worst policies, leaving
a project as is will naturally be better than applying such policies.
Hence the result where “do nothing” does best in the vast major-
ity of cases presented in this paper. By finding the worst scenario
for FBC and the “you pick two” policies, we try to find the poten-
tial damage that following these policies could cause on a software
project. The following observations can be made about the figure
results:

• In the case of CF, CF seems to have the least damage poten-
tial of all the policies when it comes to defects. In one case
it even has less potential damage pertaining to defects than
“do nothing”. This would make sense since CF has no con-
trol over defects of a project. Another such case is effort for
OSP2, which can be justified by the fact OSP2 is a very well
defined and restricted project, meaning that CF isn’t able to
control it as much as in the cases of flight and ground for
effort.

• In the case of BC, it exhibits lower damage with regards to
months for all the open ended projects, OSP and OSP2. we
can use the same argument as CF to justify this, i.e. BC does
not deal with or attempt to control the development time of a
project.

• BF doesn’t seem to exhibit the behavior of both CF and BC.
This can be justified by the same reasoning as above, where
the relationship between the effort and months models allows
BF to have an effect that is close to that of FBC.

In general the results for the worst case seem to reflect those for
the best case. This seems to infer that exploring this maximum
potential damage also tells about the control that a policy has over
certain aspects of the project’s performance. In addition to this,
the results presented here indicate that the failure behavior of FBC
is very similar to the derivate policies, ranking mid-pack most of
the time. This implies that, despite the larger feature coverage of
FBC, the potential for FBC to fail isn’t any higher. This reinforces
our previous conclusion concerning the viability of FBC, where the
use of FBC doesn’t seem to threaten a software project with a larger
failing potential in the case that bad decisions are made.

7. DISCUSSION AND VALIDITY
The results presented in §6.2 of this paper can be argued against

in various ways. All the analysis in this paper is done under the
assumption that COCOMO and its related models are models that
are able to provide us with close estimates, and we truly know the
tuning limits of this model. The fact is the limits we impose are
based on a limited dataset of projects sourced from a limited set
of development environments, mainly NASA. The other issue here
that comes up is that these models are in some cases related, bring-
ing the study of prioritizing development time (faster), defects in-
troduction (better), or person-months effort (cheaper) into question
since the models that measure these aspects aren’t independent of
each other. Or perhaps this is saying something more profound:
that we cannot solely prioritize one or two aspects of a project while
ignoring the third without considering the relationships between the
models. Either way, we run into the issue of dealing with models
which may or may not accurately represent aspects of a software
project

8. FUTURE WORK
Given the above discussion concerning the validity of the mod-

els, one possible future direction could be one where we attempt to



work independent of models, and move closer to case base reason-
ing (CBR) approaches. One way to do this could be using Figure 9
and Figure 10 and deriving a distance measure between a given
project and one that’s in the database with known real world or
simulated values. This would allow us to circumvent the process of
simulating the given project under certain models. What we have
done so far for evaluating a project is to:

1. randomly setting undetermined settings in a project to a value
that is within project parameters

2. running a simulation of the project
3. repeating 1 and 2 several thousand times in order to account

for random variance, and obtaining the median values.

By attempting to change our approach to one closer to CBR, we
could break free of our model dependence, while at the same time
reducing the amount of computation and verification needed poten-
tially giving us significant speedups, as well as additional dataset
exposure.

9. RELATED WORK
Much of the related work on uncertainty in software engineer-

ing uses a Bayesian analysis. For example, Pendharkar et.al. [32]
demonstrate the utility of Bayes networks in effort estimation while
Fenton and Neil explore Bayes nets and defect prediction [11] (but
unlike this paper, neither of these teams links defect models to
effort models). We elect to take a non-Bayesian approach since
most of the industrial and government contractors we work with
use parametric models like COCOMO.

The process simulation community (e.g. Raffo [35]) studies mod-
els far more elaborate than COCOMO or COQUALMO. While
such models offer more detailed insight into an organization, the
effort required to tune them is non-trivial. For example, Raffo spent
two years tuning one such model to one particular site [34].

Other related work is the search-based SE approach advocated
by Harmon [13]. Search-Based Software Engineering (SBSE) uses
optimization techniques from operations research and meta-heuristic
search (e.g. simulated annealing and genetic algorithms) to hunt for
near optimal solutions to complex and over-constrained software
engineering problems. The SBSE approach can and has been ap-
plied to many problems in software engineering (e.g. requirements
engineering [15]) but most often in the field of software testing [1].
Harmon’s writing inspired us try simulated annealing to search the
what-ifs in untuned COCOMO models [23]. However, we found
that SEESAW ran much faster and produced results with far less
variance than simulated annealing. In addition the the above related
work, a recent ICSP’09 paper by Orrego et. al [30] has explored the
merits of software reuse in the context of NASA projects using the
same USC models that we use in this paper. For that study the
same stochastic AI methods were used and showed that software
reuse doesn’t always benefit a project, recommending a case by
case evaluation of the appropriateness of software reuse.

10. CONCLUSION
Having discussed the concept of “Faster, Better, Cheaper” and

its history, we presented a stochastic AI tool which we used to run
several simulation in the absence of proper model tuning. We have
shown that the results produced by this tool are stable and reliable,
and proceeded to use this tool to find best and worst case scenarios
with the use of FBC.

With the help of quartile charts, we were able to show that FBC
is a viable option that doesn’t exhibit catastrophic consequences
with regards to any of the models used in this paper. We also found

that other “you pick two” policies exhibit such consequences. In
addition, they have varying behavior depending on the aspect of
the project being discussed and the project itself, while FBC has a
more uniform response.

Our final recommendation is that FBC is indeed a viable option
if it is implemented properly, that despite having lost credibility in
software development circles.
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B. QUARTILE CHARTS



Definition Low-end = {1,2} Medium ={3,4} High-end= {5,6}
Defect removal features
execution-
based testing
and tools
(etat)

all procedures and tools used for testing none basic testing at unit/ integration/
systems level; basic test data
management

advanced test oracles, assertion
checking, model-based testing

automated
analysis (aa)

e.g. code analyzers, consistency and
traceability checkers, etc

syntax checking with com-
piler

Compiler extensions for static
code analysis, Basic requirements
and design consistency, traceabil-
ity checking.

formalized specification and
verification, model checking,
symbolic execution, pre/post
condition checks

peer reviews
(pr)

all peer group review activities none well-defined sequence of prepara-
tion, informal assignment of re-
viewer roles, minimal follow-up

formal roles plus extensive
review checklists/ root cause
analysis, continual reviews,
statistical process control, user
involvement integrated with
life cycle

Scale factors:
flex development flexibility development process rigor-

ously defined
some guidelines, which can be re-
laxed

only general goals defined

pmat process maturity CMM level 1 CMM level 3 CMM level 5
prec precedentedness we have never built this kind

of software before
somewhat new thoroughly familiar

resl architecture or risk resolution few interfaces defined or
few risks eliminated

most interfaces defined or most
risks eliminated

all interfaces defined or all
risks eliminated

team team cohesion very difficult interactions basically co-operative seamless interactions
Effort multipliers
acap analyst capability worst 35% 35% - 90% best 10%
aexp applications experience 2 months 1 year 6 years
cplx product complexity e.g. simple read/write state-

ments
e.g. use of simple interface wid-
gets

e.g. performance-critical em-
bedded systems

data database size (DB bytes/SLOC) 10 100 1000
docu documentation many life-cycle phases not

documented
extensive reporting for each
life-cycle phase

ltex language and tool-set experience 2 months 1 year 6 years
pcap programmer capability worst 15% 55% best 10%
pcon personnel continuity

(% turnover per year)
48% 12% 3%

plex platform experience 2 months 1 year 6 years
pvol platform volatility

( frequency of major changes
frequency of minor changes )

12 months
1 month

6 months
2 weeks

2 weeks
2 days

rely required reliability errors are slight inconve-
nience

errors are easily recoverable errors can risk human life

ruse required reuse none multiple program multiple product lines
sced dictated development

schedule
deadlines moved to 75% of
the original estimate

no change deadlines moved back to 160%
of original estimate

site multi-site development some contact: phone, mail some email interactive multi-media
stor required % of available RAM N/A 50% 95%
time required % of available CPU N/A 50% 95%
tool use of software tools edit,code,debug integrated with life cycle

Figure 11: Features of the COCOMO and COQUALMO models used in this study.



Normalized
Case Rank (Mann median 2nd quartile, median,

estimated study Whitney 95%) what estimate 3rd quartile
defects Small 1 BC 0.14 r

1 CF 0.22 r
1 BF 0.37 r
1 FBC 0.37 r
2 do nothing 82.61 r

Medium 1 BC 0.08 r
2 BF 0.16 r
3 FBC 0.28 r
4 CF 1.14 r
5 do nothing 96.02 r

Large 1 BC 0.01 r
2 BF 0.38 r
2 CF 0.43 r
2 FBC 0.85 r
3 do nothing 95.62 r

months Small 1 CF 2.01 r
1 BF 3.02 r
1 FBC 3.02 r
2 BC 32.66 r
3 do nothing 64.32 r

Medium 1 CF 1.8 r
1 BF 2.52 r
1 FBC 3.6 r
2 BC 40.65 r
3 do nothing 94.96 r

Large 1 CF 2.57 r
1 BF 5.48 r
2 FBC 7.53 r
3 BC 38.36 r
4 do nothing 97.09 r

effort Small 1 CF 0.74 r
2 FBC 1.47 r
3 BF 2.33 r
4 BC 4.3 r
5 do nothing 77.03 r

Medium 1 CF 0.81 r
1 BF 0.91 r
2 FBC 1.92 r
3 BC 2.67 r
4 do nothing 96.76 r

Large 1 CF 1.58 r
2 BF 2.77 r
3 BC 2.9 r
4 FBC 3.83 r
5 do nothing 95.14 r

50%

Figure 12: Results for applying the best policies for the different target functions of FBC. Note that the mean values are normalized.



Normalized
Case Rank (Mann median 2nd quartile, median,

estimated study Whitney 95%) what estimate 3rd quartile
defects flight 1 BC 0.33 r

2 FBC 1.43 r
2 CF 1.7 r
2 BF 3.11 r
3 do nothing 91.11 r

ground 1 BC 0.34 r
2 BF 0.42 r
3 FBC 0.47 r
3 CF 0.67 r
4 do nothing 87.75 r

OSP 1 BC 1.18 r
2 FBC 2.9 r
3 BF 3.28 r
4 CF 58.36 r
5 do nothing 96.64 r

OSP2 1 FBC 0.34 r
1 BF 0.67 r
2 BC 4.61 r
3 CF 49.69 r
4 do nothing 62.71 r

months flight 1 CF 11.2 r
1 BF 11.62 r
1 FBC 11.62 r
2 BC 16.6 r
3 do nothing 95.02 r

ground 1 CF 8.46 r
2 BF 11.44 r
2 FBC 11.44 r
3 BC 15.42 r
4 do nothing 95.52 r

OSP 1 CF 16.85 r
2 FBC 22.47 r
2 BF 23.03 r
3 BC 65.17 r
4 do nothing 95.75 r

OSP2 1 BF 28.12 r
2 CF 36.46 r
3 FBC 43.71 r
4 do nothing 65.58 r
5 BC 83.33 r

effort flight 1 FBC 5.27 r
1 CF 5.27 r
1 BF 5.34 r
2 BC 7.89 r
3 do nothing 91.94 r

ground 1 CF 3.78 r
2 FBC 5.2 r
2 BF 5.59 r
3 BC 7.36 r
4 do nothing 91.06 r

OSP 1 CF 12.2 r
2 BC 20.59 r
3 BF 27.21 r
3 FBC 30.28 r
4 do nothing 97 r

OSP2 1 BC 6.1 r
2 FBC 29.14 r
3 CF 35.15 r
3 BF 36.7 r
4 do nothing 74.13 r

50%

Figure 13: Results for applying the best policies for the different target functions of FBC on NASA project templates. Note that the
mean values are normalized.



Normalized
Case Rank (Mann median 2nd quartile, median,

estimated study Whitney 95%) what estimate 3rd quartile
defects Small 1 do nothing 0.05 r

2 CF 3.18 r
3 BF 33.22 r
3 FBC 35.61 r
4 BC 96.03 r

Medium 1 do nothing 0.2 r
2 CF 7.73 r
3 FBC 40.15 r
3 BF 46.18 r
4 BC 81.13 r

Large 1 do nothing 0.03 r
2 CF 14.75 r
3 FBC 47.89 r
3 BF 48.01 r
4 BC 96.54 r

months Small 1 do nothing 0.72 r
2 BC 19.31 r
3 CF 68.41 r
4 BF 82.13 r
4 FBC 83.94 r

Medium 1 do nothing 0.2 r
2 BC 14.24 r
3 FBC 66.47 r
4 BF 76.77 r
4 CF 83.79 r

Large 1 do nothing 0.74 r
2 BC 18.75 r
3 FBC 70.06 r
4 BF 71.61 r
4 CF 84.74 r

effort Small 1 do nothing 0.51 r
2 BC 60.04 r
3 CF 66.27 r
4 FBC 66.37 r
4 BF 78.04 r

Medium 1 do nothing 0.14 r
2 BC 30.89 r
2 FBC 32.34 r
3 BF 46.46 r
4 CF 64.13 r

Large 1 do nothing 0.23 r
2 FBC 26.51 r
2 BF 28.97 r
2 BC 37.97 r
3 CF 58.97 r

50%

Figure 14: Results for applying the worst policies for the different target functions of FBC. Note that the mean values are normalized.



Normalized
Case Rank (Mann median 2nd quartile, median,

estimated study Whitney 95%) what estimate 3rd quartile
defects flight 1 do nothing 0.03 r

2 CF 12.87 r
3 BF 70.13 r
4 FBC 73.81 r
5 BC 90.87 r

ground 1 do nothing 0.14 r
2 CF 14.37 r
3 BF 48.39 r
4 FBC 63.22 r
5 BC 88.48 r

OSP 1 do nothing 0.75 r
2 CF 4.77 r
3 BF 78.16 r
4 FBC 87.71 r
5 BC 96.52 r

OSP2 1 CF 2.3 r
1 do nothing 2.48 r
2 BC 84.92 r
2 BF 85 r
2 FBC 85.39 r

months flight 1 do nothing 1.49 r
2 BC 61.92 r
3 FBC 77.98 r
4 BF 80.46 r
4 CF 85.43 r

ground 1 do nothing 1.13 r
2 BC 45.4 r
3 FBC 67.35 r
3 BF 69.61 r
4 CF 86.49 r

OSP 1 do nothing 2.62 r
2 BC 9.61 r
3 FBC 53.28 r
4 BF 67.25 r
5 CF 75.98 r

OSP2 1 BC 8.41 r
2 do nothing 39.25 r
3 BF 57.94 r
3 FBC 58.88 r
4 CF 91.59 r

effort flight 1 do nothing 0.5 r
2 BC 38.75 r
3 FBC 54.81 r
4 BF 59.81 r
4 CF 64.41 r

ground 1 do nothing 0.32 r
2 BC 22.83 r
2 FBC 46.86 r
3 BF 48.53 r
4 CF 73.68 r

OSP 1 do nothing 1.22 r
2 FBC 56.59 r
2 BC 58.23 r
2 CF 65.18 r
3 BF 78.63 r

OSP2 1 do nothing 10.98 r
1 CF 15 r
2 FBC 53.83 r
3 BF 54.52 r
4 BC 63.19 r

50%

Figure 15: Results for applying the worst policies for the different target functions of FBC on NASA project templates. Note that the
mean values are normalized.


