
A Second Look at Faster, Better, Cheaper

Oussama El-Rawas, Tim Menzies
LCSEE Dept., West Virginia University, USA

oelrawas@mix.wvu.edu, tim@menzies.us

Abstract

“Faster, Better, Cheaper” (FBC) was a systems development methodology used by NASA in the
1990s. While usually a deprecated practice, we find that, with certain caveats, it is a viable approach.
To determine this we utilized a stochastic AI tool to determine the behavior of FBC for several case
studies. In these case studies we compare results of using FBC with that of other optimization policies.
In our tests, FBC is as advantageous a policy to use with projects as other policies, while avoiding their
apparent downfalls.

Keywords: software engineering, predictor models, COCOMO, Faster Better Cheaper, sim-
ulated annealing, software processes

1 Introduction

“Faster, Better, Cheaper” (FBC) was a systems development philosophy adopted by the NASA administra-
tion in the mid to late 1990s. that lead to some some dramatic successes such as Mars Pathfinder as well as
a number highly publicized mission failures, such as the Mars Climate Orbiter & Polar Lander. It was later
on blamed for several other project failures at NASA.

FBC was advocated in the 1990s by the then-administrator of NASA, Daniel Goldin, as a method for
reducing the expenditure of NASA. FBC was in-line with the direction that the Clinton administration’s
approach of doing more for less. FBC was initially successful: projects that usually cost over a billion were
implemented at 1

4 th of that cost (e.g. Mars Pathfinder). However, subsequent failures (Mars Climate Orbiter
and Polar Lander; the Columbia Shuttle disaster) lead to much criticism of FBC. This failure had lead to
a suggestion by many experts that only two aspects of FBC can be optimized for at the same time. The
phrase: ”Faster, Better, Cheaper: pick any two” arose from this suggestion, presenting the idea that FBC
isn’t a viable optimization scheme.

We ask the question of whether FBC can simultaneously achieve all three of its objectives. Previous
papers by Menzies et al. [11,23] explored the validity of the general consensus on “Faster, Better, Cheaper?
Pick any two”. It was found that “Faster, Better, Cheaper” (FBC) is indeed feasible when maintaining a
balanced concern and concentration on the quality aspects of a project. For that study we used a stochastic
AI tool we named STAR. In this paper we seek to pose three separate questions regarding the use of our tool
(STAR) and FBC:

• Is STAR stable enough to rely on?

• How appropriate is STAR for conducting these studies?

• Do previous results presented in [11, 23] hold? Does using additional case studies produce similar
results, further validating the use of FBC?
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Specifically we wish to test three assertions:

[H1] The stochastic nature of STAR does not render it unusable and unreliable for the purposes of decision
making.

[H2] There are instances where the possible best case value for an attribute in not linear on the attribute
settings. This suggests the need to explore the whole range of possibilities using tools like STAR.

[H3] Not considering all aspects of a software project can be dangerous. This supports FBC as a viable
policy to follow.

We will start out by presenting FBC, followed by a brief background section. This will be followed by a
description of STAR, our stochastic tool, followed by presenting the case studies and methods used. Finally
we present the results obtained regarding the questions posed above.

2 “Faster, Better, Cheaper”

In the 1990s, the main approach to implementing FBC within NASA was to down size projects and reduce
their cost and complexity, concentrating on producing missions in volume. Reducing funding naturally
meant that less verification and testing was possible within budget and schedule constraints. The reasoning
behind this however was to be able to produce a larger volume of unmanned missions, which would coun-
teract the expected higher rate of mission failure. This would, optimally, yield more successful missions as
well as more scientific data produced by these projects. Another focus in this policy was allowing teams to
take acceptable risks in projects to allow for cost reduction, and possibly using new technology that could
reduce cost while possibly providing more capabilities. This was accompanied by the new view, being
pushed at NASA by Goldin, that “it’s ok to fail” [39], which was rather misunderstood. This new policy
was meant to eliminate huge budget missions of the past, that upon possible failure would yield large losses.
Project cost used to routinely exceed the $1 billion mark, while the first FBC project, the Mars Pathfinder,
was completed for a fraction of the cost, netting at about $270 million [10].

Some within NASA, like 30 year veteran Frank Hoban, supported these policies [10] who viewed these
new policies as a necessary break from traditional policies that were very risk averse. The additional cost
reduction, accompanied by the additional risk, was to allow for a path to cheap and commercial space
flight. Even given the reduced funding, the Mars Pathfinder mission, along with other first generation FBC
missions, were successes. This fueled enthusiasm to apply FBC across all of NASA to further reduce
spending per mission as well cutting the work force by one third. FBC was extended to be applied on
manned space missions as well, where funding was also reduced. Coming into a space shuttle program that
was starting to age and in need of updates, the new policies imposed cuts in funding from 48% of the NASA
budget to 38% [18], further straining that program. Further more, a single prime contractor (Lockheed
Martin) was used for missions in another bid to reduce cost and managerial complexity [41, 42].

This produced opposition within NASA, where traditionally issues pertaining to the shuttle were desig-
nated LOVC (Loss of Vehicle and Crew) and given priority over all other issues, including cost. However
the cost cuts and layoffs that ensued damaged morale leading to a string of early retirements of veteran
scientists, skilled engineers and managers [18].

Despite this, additional projects were planned including Mars Climate Orbiter and Polar Lander. These
two projects were more aggressive implementations of FBC, especially when it came to the Faster-Cheaper
part of those policies. Costs of the Orbiter and the Lander were brought down to $125 million and $165
million respectively [40]. This was much less than the previous Pathfinder mission (which itself cost slightly
less than $300 million) and a huge reduction from the previous Viking Mars missions (cost about $935
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million in 1974 Dollars, equivalent to $3.5 billion in 1997 dollars). The success of these missions would’ve
strengthen FBC within NASA and JPL, and been seen to break new ground in terms of mission completion
with the reduced staff and budget [13].

Both of these missions failed. Using a single contractor had weakened quality assurance and caused
loss of vehicle. These flaws where software issues that could have easily been rectified if they had been
discovered on the ground (e.g. a failure to convert from imperial to metric units, causing the loss of the
Climate Orbiter [31]). The Mars Program Independent Assessment Team Report [42] found that these
missions were under-staffed, under-funded by at least 30%, and too tightly scheduled.

Elsewhere, across the Atlantic in the UK, another Mars mission to deliver a lander, designated the
Beagle 2, was under way. This mission was also developed cheaply, applying the same concepts in design
and implementation that NASA was at the time using. The lander however was declared lost after not
establishing contact after separation from the mars express vehicle [30].

One other failure that FBC was blamed for was the Columbia Shuttle disaster in 2003. This was post-
Goldin, at a point where NASA had realized the excessive cost cutting and staff reducing policies needed to
be changed. After that disaster, critics quickly pointed the finger to these missions being under funded due
to FBC. There were many calls, especially politically, for throwing FBC “in the waste basket” [9, 15]. It
was these criticisms that turned NASA away from FBC towards policies concentrating on two of the three
aspects of FBC.

Having shown the history of the rise of infamousy of FBC, we will will proceed to briefly present some
background knowledge relating to the studies conducted. This will include the software engineering models
and the tool that we use in our study (STAR). We will also briefly present the case studies being used.

3 Background

3.1 Software Models

The software models used in this paper are USC COCOMO based. The COCOMO models represent FBC
in the following manner:

• Faster is represented by a “Months” model, which estimates the total development months needed for
a software project.

• Better is represented by a “Defects” model, which estimates the number of delivered defects per
KLOC (thousand lines of code).

• Cheaper is represented by a “Effort” model, which estimates the effort that is needed for a software
project in person-months, and hence can be used to estimate the cost of the development of the project.

Note that for all the models, lower is better. The tool combines estimates with utility weights {f, b, c}
(short for Faster, Better, Cheaper) using the following formula:

score =

√
f.M2 + b.D2 + c.E2

√
f + b+ c

(1)

This score value represents the Euclidean distance to the normalized values of the predictions of develop-
ment effort “E”; total development months “M”; and “D”, the number of delivered defects per KLOC.
This is the utility function that is used in order to assess any given set of “policies” that might be presented
to be implemented in a given software project. Given that we normalize the predictions min..max to 0..1
then Equation 1 has the range one to zero and lower scores are better. STAR searches for the minimal set
of project changes that most reduces this score. Hence, STAR can be used as a tool for assessing policies
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produced under FBC because of its ability to use the score function to conbine score from different aspects
of a software project.

By adjusting the various values of (f, b, c), we can compare the effects of methodologies that emphasize
different project goals:

• BF = “better, faster” i.e. c = 0 and b = f = 1;

• BC = “better, cheaper” i.e. f = 0 and b = c = 1;

• CF = “cheaper, faster” i.e. b = 0 and f = c = 1;

• FBC = “faster, better, cheaper” i.e. b = f = c = 1.

Regarding the COCOMO II model, Boehm et at. [6] advocated a certain functional form for generating
software development effort estimates. In that form, the development effort is linear on a set of effort
multipliers EMi and exponential on a set of scale factors SFj :

effort = A ·KSLOCB+0.01·
P

j βjSFj ·
∏
i αiEMi (2)

The particular effort multipliers and scale factors recommended by Boehm et al. are shown in Figure 1.
While Boehm et al offer default values for the Equation 6 variables, linear regression on local data can
tune the αi, βj values to the particulars of a local site. Also, if there is insufficient data for a full tuning of
α, β, then a coarse grain tuning can be achieved by just adjusting the A,B1. linear and exponential tuning
parameters.

A problem that has been under-explored in the literature is tuning variance. In data starved domains,
there is insufficient data to produce precise tunings. For example, At PROMISE 2005, we have reported
very large tuning variance in the post-tuning values of α and β [29]. Baker [3] offers a similar finding. After
thirty 90% random samples of that data, the A,B ranges found during tuning were surprisingly wide:

(2.2 ≤ A ≤ 9.18) ∧ (0.88 ≤ B ≤ 1.09) (3)

We are not the only research group to be concerns about tuning variance. At PROMISE 2007, Korte &
Port [20] explore the variance of automatically learned effort predictors. They comment that this variance is
large enough to confuse standard methods for assessing different predictive model generators.

Since 2005 [7, 28], we have been trying to reduce tuning variance. using feature subset selection
(FSS). However, despite years of work, we now report that FSS reduces but does not tame the variance
of A,B, α, β.

Having failed to tame tuning variance, we have been exploring a new approach. The STAR tool [11,24,
26]. that we describe below checks for stable conclusions within the space of possible tunings.

3.2 STAR

STAR uses Figure 2 as the inputs to a Monte Carlo simulation over a set of software models. STAR contains
not only the COCOMO effort E estimator [6] but also the COCOMO development months M estimator [6,
p29-57], and COQUALMO D defects estimator [6, p254-268]. These estimators generate the {E,M,D}
variables used by Equation 1 in the introduction.

We use COCOMO & COQUALMO since the space of possible tunings within these models is well
defined. Hence, it is possible to explore this tuning space. Recall from Equation 6 that the COCOMO
model includes {A,B, α, β} tuning values. Many of these variables are shared with the COQUALMO

1We will use uppercase B to denote the COCOMO linear tuning variable of Equation 6 and lower b to denote the business utility
associated with defect predictions of Equation 1
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Definition Low-end = {1,2} Medium ={3,4} High-end= {5,6}
Defect removal features
execution-
based
testing and
tools (etat)

all procedures and tools used for
testing

none basic testing at unit/ integra-
tion/ systems level; basic test
data management

advanced test oracles, as-
sertion checking, model-
based testing

automated
analysis
(aa)

e.g. code analyzers, consistency and
traceability checkers, etc

syntax checking with
compiler

Compiler extensions for
static code analysis, Basic
requirements and design
consistency, traceability
checking.

formalized specification
and verification, model
checking, symbolic exe-
cution, pre/post condition
checks

peer re-
views
(pr)

all peer group review activities none well-defined sequence of
preparation, informal as-
signment of reviewer roles,
minimal follow-up

formal roles plus exten-
sive review checklists/ root
cause analysis, continual
reviews, statistical process
control, user involvement
integrated with life cycle

Scale factors:
flex development flexibility development process

rigorously defined
some guidelines, which can
be relaxed

only general goals defined

pmat process maturity CMM level 1 CMM level 3 CMM level 5
prec precedentedness we have never built this

kind of software before
somewhat new thoroughly familiar

resl architecture or risk resolution few interfaces defined or
few risks eliminated

most interfaces defined or
most risks eliminated

all interfaces defined or all
risks eliminated

team team cohesion very difficult interac-
tions

basically co-operative seamless interactions

Effort multipliers
acap analyst capability worst 35% 35% - 90% best 10%
aexp applications experience 2 months 1 year 6 years
cplx product complexity e.g. simple read/write

statements
e.g. use of simple interface
widgets

e.g. performance-critical
embedded systems

data database size (DB bytes/SLOC) 10 100 1000
docu documentation many life-cycle phases

not documented
extensive reporting for
each life-cycle phase

ltex language and tool-set experience 2 months 1 year 6 years
pcap programmer capability worst 15% 55% best 10%
pcon personnel continuity

(% turnover per year)
48% 12% 3%

plex platform experience 2 months 1 year 6 years
pvol platform volatility

( frequency of major changes
frequency of minor changes

)

12 months
1 month

6 months
2 weeks

2 weeks
2 days

rely required reliability errors are slight inconve-
nience

errors are easily recoverable errors can risk human life

ruse required reuse none multiple program multiple product lines
sced dictated development

schedule
deadlines moved to 75%
of the original estimate

no change deadlines moved back to
160% of original estimate

site multi-site development some contact: phone,
mail

some email interactive multi-media

stor required % of available RAM N/A 50% 95%
time required % of available CPU N/A 50% 95%
tool use of software tools edit,code,debug integrated with life cycle

Figure 1: Features of the COCOMO and COQUALMO models used in this study.
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ranges values
project feature low high feature setting

prec 1 2 data 3
OSP: flex 2 5 pvol 2

Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
rely 3 5 tool 2

JPL data 2 3 sced 3
flight cplx 3 6

software time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418

ranges values
project feature low high feature setting

prec 3 5 flex 3
OSP2 pmat 4 5 resl 4

docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 1 4 tool 2
JPL data 2 3 sced 3

ground cplx 1 4
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Figure 2: The four NASA case studies. Numeric values {1, 2, 3, 4, 5, 6} map to {very low, low, nominal,
high, very high, extra high}.

defect predictor which also has a separate set of tuning variables, which we will call γ. Using 26 years of
publications about COCOMO-related models, we inferred the minimum and maximum values yet seen for
{A,B, α, β, γ}. For example, the A,B min/max values come from Equation 7. We use the variable T to
store the range of possible values for these tuning variables (see appendix for the space of tunings).

STAR runs as follows. First, a project P is specified as a set of min/max ranges to the input variables of
STAR’s models:

• If a variable is known to be exactly x, then then
min = max = x.

• Else, if a variable’s exact value is not known but the range of possible values is known, then min/max
is set to the smallest and largest value in that range of possibilities.

• Else, if a variable’s value is completely unknown then min/min is set to the full range of that variable
in Figure 1.

Second, STAR’s simulated annealer2 seeks constraints on the project options P that, normally, most
reduce the score of Equation 1 (for examples of P , see Figure 2). For finding the worst policies, STAR had
to be slightly adapted, where lookied for the policies that most increased Equation 1. A particular subset of
P ′ ⊆ P is scored by using P ′ as inputs to the COCOMO and COQUALMO. When those predictive models
run, variables are selected at random from the min/max range of possible tunings T and project options P .

In practice, the majority of the variables in P can be removed without effecting the score; i.e. our
predictive models exhibit a keys effect where a small number of variables control the rest [22]. Finding that
minimal set of variables is very useful for management since it reveals the least they need to change in order
to most improve the outcome. Hence, after simulated annealing, STAR takes a third step.

2Simulated annealers randomly alter part of the some current solution. If this new solution scores better than the current
solution, then current = new. Else, at some probability determined by a temperature variable, the simulated annealer may jump
to a sub-optimal new solution. Initially the temperature is “hot” so the annealer jumps all over the solution space. Later, the
temperature “cools” and the annealer reverts to a simple hill climbing search that only jumps to new better solutions. For more
details, see [19].
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In this third step, a Bayesian sensitivity analysis finds the smallest subset of P ′ that most effects the
output. The scores seen during simulated annealing are sorted into the (10,90)% (best,rest) results. Members
of P ′ are then ranked by their Bayesian probability of appearing in best. For example, 10, 000 runs of the
simulated annealer can be divided into 1,000 lowest best solutions and 9,000 rest. If the range rely = vh
might appears 10 times in the best solutions, but only 5 times in the rest then:

E = (reply = vh)

Prob(best) = 1000/10000 = 0.1

Prob(rest) = 9000/10000 = 0.9

freq(E|best) = 10/1000 = 0.01

freq(E|rest) = 5/9000 = 0.00056

like(best|E) = freq(E|best) · Prob(best) = 0.001

like(rest|E) = freq(E|rest) · Prob(rest) = 0.000504

Prob(best|E) =
like(best|E)

like(best|E) + like(rest|E)
= 0.66 (4)

Equation 4 is a poor ranking heuristic since it is distracted by low frequency (freq) evidence. For example,
note how the probability (Prob) of E belonging to the best class is moderately high even though its support
is very low; i.e. Prob(best|E) = 0.66 but freq(E|best) = 0.01. To avoid such unreliable low frequency
evidence, we augment Equation 4 with a support term. In Equation 5, likelihood (like) is chosen as our
support term. Support should increase as the frequency of a range increases, i.e. like(x|best) is a valid
support measure since it does exactly so. High support would indicate a higher number of examples that
”support” that E can be part of the best set. STAR1 hence ranks ranges via

Prob(best|E) ∗ support(best|E) =
like(x|best)2

like(x|best) + like(x|rest)
(5)

After ranking members of P ′, STAR imposes the top i-th ranked items of P ′ as model inputs, then runs the
models 100 times. This continues until the scores seen using i+1 items is not statistically different to those
seen using i (t-tests, 95% confidence). STAR returns items 1..i of P ′ as the least set of project decisions
that most reduce effort, defects, and development time. We call these returned items the policy.

Note that STAR constrains the project options P but not the tuning options T . Hence, STAR’s generated
policy contains subsets of the project options P that most improve the score, despite variations in the tunings
T . This approach means we can reuse COCOMO models without using local tuning data. The following is
a description that further details the manner in which STAR operates:

1. SAMPLE: To sample the ranges from the models, STAR runs the simulated annealer K1 times. Note
that here, we sample across the ranges of all the attributes. While most of the time we sample ran-
domly across the range, we also have a heuristic optimization called extreme sampling. This form of
sampling works in the following manner: for x% (x is set to 5 by default), STAR samples only the
extremums of the attributes.

2. DISCRETIZE: The data seen in the K1 samples is then discretized into D = 10 bins. Discretization
converts a continuous range into a histogram with n break points b1 . . . bn where (∀i < j : bi ≤ bj).
After discretization, many observations can fall into the same range between bi and bi+1 at frequency
counts ci. This study used equal width discretization; i.e.

∀i, j : (bi − bi−1) = (bj − bj−1)

3. CLASSIFY: The ranges are then classified into those seen in BEST% best or rest.
4. RANK: The ranges are then ranked in increasing order using Support-Based Bayesian Ranking using

Equation 5.
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5. PRUNE: Also called the back select stage. STAR runs K2 experiments with the models where the top
ranked ranges 1..X ranges are pre-set and the remaining ranges can be selected at random.

6. REPORT: STAR returns the 1..X settings that optimize the best for the fitness function being used
according to the weights applied to effort, defects, development time, and threats. These settings
are determined by iterating back from the minimum point achieved towards the first point that is
statistically similar to the minimum point. This statistical difference is tested via a standard t-test.

To run our experiments, we had to apply our engineering judgment to set the parameters. The following
are the default values:

K1 = 10, 000,K2 = 1, 000, D = 10, BEST = 10%

Previously [24] we have shown that this approach (that does not use local tuning) generates estimates
very similar to those generated by “LC” method proposed by Boehm (that does tune the model to local
data) [4]. We have explained this effect as follows. Uncertainty in the project options P and the tuning
options T contribute to uncertainty in the estimates generated by STAR’s models. However, at least for the
COCOMO and COQUALMO models used by STAR, the uncertainty created by P dominates that of T .
Hence, any uncertainty in the output can be tamed by constraining P and not T .

3.3 Case Studies and Methods

We use two categories of projects in this paper to study FBC. The one category includes three projects
of various sizes. Designated Small, Medium, and Large, they corresponded to projects of size ranges
7 ≤ KLOC ≤ 13, 70 ≤ KLOC ≤ 130, and 700 ≤ KLOC ≤ 1300 respectively. These projects are open
ended and are used to study whether there is an influence of project size purely on our study. Open ended
here meaning that there are no project limitations that are predetermined but that the only limitation is the
default limits of the models and the size of the projects.

The second category are the NASA project templates that we have previously used, and are presented in
Figure 2. These studies represent the NASA software, at increasing levels of specificity:

• Flight is a general description of flight software at NASA’s Jet Propulsion Laboratory.

• Ground is a general description of ground software at NASA’s Jet Propulsion Laboratory.

• OSP is a specific flight system: the GNC (guidance, navigation, and control) component of NASA’s
1990s Orbital Space Plane;

• OSP2 is a later version of OSP.

Figure 2 describes the details of flight, ground, OSP, and OSP2. Note that Figure 2 does not mention
all the features listed in Figure 1 inputs. For example, our defect predictor has inputs for use of automated
analysis, peer reviews, and execution-based testing tools. For all inputs not mentioned in Figure 2, values
are picked at random from the full range of Figure 1.

One aspect to note from Figure 2 is the number of open options not specified in the description of the
projects. Some of the features in Figure 2 are known precisely (see all the features with single values). But
many of the features in Figure 2 do not have precise values (see all the features that range from some low
to high value). Sometimes the ranges are very narrow (e.g., the process maturity of JPL ground software is
between 2 and 3), and sometimes the ranges are very broad.

Having presented the models, the tool (STAR) and the case studies used in this paper, we will proceed to
present our results. These results aim to answer the questions that we posed previously in the introduction
regarding STAR and its use, as well as regarding previous results.
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Large Medium Small
Policy % Used Policy % Used Policy % Used Policy % Used
acap=1.0 100 acap=1.0 100 acap=1.0 100 auto=2.0 80
apex=1.0 100 apex=1.0 100 apex=1.0 100 data=4.5 80
auto=1.0 100 auto=1.0 100 auto=1.0 100 pvol=4.5 80
ett=1.0 100 ett=1.0 100 ett=1.0 100 time=5.5 80
flex=1.0 100 flex=1.0 100 ltex=1.0 100 auto=1.5 70
ltex=1.0 100 ltex=1.0 100 pcap=1.0 100 docu=4.5 70
pcap=1.0 100 pcon=1.0 100 pcon=1.0 100 stor=5.5 70
pcon=1.0 100 peer=1.0 100 peer=1.0 100 cplx=5.5 60
peer=1.0 100 plex=1.0 100 plex=1.0 100 ett=1.5 60
plex=1.0 100 pmat=1.0 100 prec=1.0 100 ett=3.0 60
pmat=1.0 100 prec=1.0 100 rely=1.0 100 time=5.0 60
prec=1.0 100 rely=1.0 100 resl=1.0 100 auto=3.0 50
rely=1.0 100 resl=1.0 100 sced=4.0 100 data=4.0 50
resl=1.0 100 sced=4.5 100 sced=4.5 100 ett=2.0 50
site=1.0 100 sced=5.0 100 sced=5.0 100 ett=2.5 50
team=1.0 100 site=1.0 100 site=1.0 100 peer=2.0 50
sced=4.5 90 team=1.0 100 team=1.0 100 plex=1.5 50
tool=1.0 80 tool=1.0 100 flex=1.0 90 ruse=5.5 50
sced=5.0 50 pcap=1.0 90 pmat=1.0 90

sced=4.0 70 tool=1.0 90

Figure 3: The most common policies selected as bad policies to apply to the generic open ended projects.
Note that policies picked less than 50% of the time have been ommitted.

4 Results

Our results are presented in this section in two stages. In stage one we apply some sanity checks to ensure
that our tool is adequate and not unnecessarily engineered. In stage two (section 4.3), we return to our
assesment of FBC policies. Note that for these two stages, we use two distinct categories of projects, as
mentioned in the preceding section:

• Three open ended projects of various sizes: Small, Medium, and Large.

• The NASA project templates that we have previously used, and are presented in Figure 2. These
projects are derived from actual NASA projects that have used COCOMO based models for effort
estimation. These projects include: flight, ground, OSP, and OSP2.

In diversifying the types of case studies used, we aim at observing results that can span across multiple
project types.

4.1 Stability, Control and Validity

STAR is in essence a stochastic tool that randomly generates examples to learn from. Given this random
nature, we posed the question of whether STAR can produce fairly stable results. In order to determine the
stability of STAR in choosing policies, three open ended projects, of different sizes, were created. We ran
the three of those in STAR using FBC, with each case running ten times to account for the random variation
in the results. This was repeated twice: one with the intention of choosing the best policies, and the other the
worst policies. This was repeated for our NASA projects as well. All the projects used are briefly described
in §3.

Figures 3 through 6 present the stability results. The results show that STAR seams to be quite stable
in choosing both the best policies and the worst policies to apply. This is indicated by the large amount
of policies that are chosen at a high percentage rate. However, the policy generation is not equally stable
across the board. In the case of the open ended projects (small, medium, and large), the results presented
in Figure 3 and Figure 4 for the Small project seem to be less stable, generating a larger range of policies
compared to Medium and Large. This makes sense in small open ended projects, as the project would be
more sensitive to the small details within a project, which is reflected in the models as well. Take the case
of the COCOMO II model:
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Large Medium Small
Policy % Used Policy % Used Policy % Used
acap=5.0 100 acap=5.0 100 pcap=5.0 100
apex=5.0 100 apex=5.0 100 acap=5.0 100
flex=6.0 100 auto=6.0 100 apex=5.0 100
ltex=5.0 100 flex=6.0 100 flex=6.0 100
pcap=5.0 100 ltex=5.0 100 ltex=5.0 100
pcon=5.0 100 pcap=5.0 100 pcon=5.0 100
plex=5.0 100 pcon=5.0 100 plex=5.0 100
pmat=6.0 100 plex=5.0 100 prec=6.0 100
prec=6.0 100 pmat=6.0 100 sced=1.0 100
resl=6.0 100 prec=6.0 100 sced=1.5 100
site=6.0 100 resl=6.0 100 site=6.0 100
team=6.0 100 sced=1.0 100 team=6.0 100
sced=1.0 90 sced=1.5 100 auto=6.0 90
auto=6.0 80 site=6.0 100 pmat=6.0 90
sced=1.5 80 team=6.0 100 resl=6.0 90
ett=6.0 60 peer=6.0 80 cplx=1.5 80
peer=6.0 60 rely=5.0 80 ett=6.0 80
rely=5.0 60 cplx=1.5 70 docu=1.0 70

tool=5.0 70 cplx=1.0 60
data=2.5 60 data=2.5 60
docu=1.5 60 peer=6.0 60
ett=6.0 60 sced=2.0 60
docu=1.0 50 docu=1.5 50

pvol=2.0 50
pvol=2.5 50
rely=5.0 50
time=3.5 50
tool=5.0 50

Figure 4: The most common policies selected as good policies to apply to the generic open ended projects.
Note that policies picked less than 50% of the time have been ommitted.

flight ground OSP OSP2
Policy % Used Policy % Used Policy % Used Policy % Used
acap=3.0 100 acap=3.0 100 docu=2.0 100 ltex=2.0 100
auto=1.0 100 pmat=2.0 100 ett=1.0 100 auto=1.0 100
plex=1.0 100 auto=1.0 100 ltex=2.0 100 ett=1.0 100
ltex=1.0 100 pcon=1.0 100 acap=2.0 100 peer=1.0 100
pcon=1.0 100 ltex=1.0 100 apex=2.0 100 prec=3.0 100
site=1.0 100 site=1.0 100 pcon=2.0 100 pmat=4.0 95
pcap=3.0 100 flex=1.0 100 auto=1.0 100 docu=3.0 95
resl=1.0 100 resl=1.0 100 prec=1.0 100 sced=2.0 75
ett=1.0 100 ett=1.0 100 resl=1.0 100 pmat=4.5 50
flex=1.0 100 pcap=3.0 100 tool=2.0 100
rely=3.0 100 team=1.0 100 team=2.0 100
apex=2.0 100 apex=3.0 100 peer=1.0 100
team=1.0 100 prec=1.0 100 pmat=1.0 100
prec=1.0 100 peer=1.0 100 sced=1.0 80
peer=1.0 100 plex=1.0 95 flex=2.0 75
pmat=2.0 90 rely=1.0 55 cplx=5.0 60
stor=3.0 50

Figure 5: The most common policies selected as bad policies to apply for NASA projects. Note that policies
picked less than 50% of the time have been omitted.

• Equation 6 shows that when the size (KLOC) of the project decreases, the effort multipliers will
inherently have a larger relative effect on the effort of a project.

• On the other hand, if the size was large, the scale factors would have a much larger effect, meaning
that the effort multipliers that would be included in the policies need to have a large effect on the
project to “make the grade”.

In the case of stability for the NASA projects, we see a different stability result in Figure 5 and Figure 6,
where the more specific a project is the more restricted and stable are its results, for both searching for good
and bad policies. The reason for this is that more specified projects tend have a smaller search space, causing
smaller policy sets to created by STAR.

Having shown the stability of STAR, we will move on to briefly study the attribute ranges that STAR
selects. This will help explore whether STAR is too elaborate and exhaustive, given the general assumption
that the software models are linear.
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flight ground OSP OSP2
Policy % Used Policy % Used Policy % Used Policy % Used
pcon=5.0 100 plex=4.0 100 sced=1.0 100 peer=6.0 100
prec=6.0 100 resl=6.0 100 apex=3.0 100 auto=6.0 100
pmat=3.0 100 flex=6.0 100 team=3.0 100 pmat=5.0 100
ltex=4.0 100 team=6.0 100 peer=6.0 100 ett=6.0 100
site=6.0 100 prec=6.0 100 ltex=4.0 100 ltex=5.0 100
flex=6.0 100 acap=5.0 100 auto=6.0 100 prec=5.0 100
acap=5.0 100 pcon=5.0 100 resl=3.0 100 docu=4.0 95
resl=6.0 100 ltex=4.0 100 prec=2.0 100 sced=2.5 70
plex=4.0 100 apex=5.0 100 flex=5.0 100
apex=5.0 100 site=6.0 100 acap=3.0 100
team=6.0 100 pcap=5.0 100 pcon=3.0 100
pcap=5.0 95 pmat=3.0 95 ett=6.0 100
data=3.0 90 time=3.5 85 pmat=4.0 100
time=3.5 90 ett=6.0 75 tool=3.0 90
stor=4.0 85 stor=3.5 65 sced=1.5 65
pmat=2.5 80 data=2.5 65 cplx=6.0 60
data=2.5 80 stor=4.0 60 apex=2.5 60
time=4.0 70 data=3.0 60 prec=1.5 60
rely=5.0 70 rely=4.0 60 tool=2.5 60
peer=6.0 70 time=4.0 60 cplx=5.5 60
stor=3.5 65 pmat=2.5 60 acap=2.5 55
ett=6.0 55 peer=6.0 55 time=3.5 55
auto=6.0 50 auto=6.0 55 pcon=2.5 50

team=2.5 50

Figure 6: The most common policies selected as good policies to apply for NASA projects. Note that policies
picked less than 50% of the time have been ommitted.

4.2 Range Analysis

We ask the question of whether an AI tool that covers the full ranges of attributes is necessary or not. The
alternative might be a much simpler method that only explores the extremes Other works such as the work
of [26] seem to suggest that the nature of the models in use allow us to simply overlook the ranges of the
attributes while simply concentrating on the maxima and minima of the attributes.

Figure 7 presents the stable policies fort the open ended projects. The shaded cells indicated the range
for the particular attribute in that row, which in this case are the default values indicated in the COCOMO II
model. Also “N” and “M” show the locations of the best and worst stable policy respectively. Figure 8 and
Figure 9 represent the stable policies for the NASA projects. These stable results have been made to overlap
with the results of medium size projects, since most of the NASA projects fall in that category. The light
gray cells indicate the model ranges that aren’t within the project range, while the dark gray cells indicate
the ranges of attributes within the project. “N” and “M” represent the open ended medium-sized project’s
stable results, while “�” and “�” represent the NASA project’s stable results, best and worst respectively.

We have used a tool called SEESAW [26, 27] to explore the maxima and minima of attributes, avoid-
ing intermediate attribute values. Looking at Figure 7, we can see that there is support for this operating
assumption made by SEESAW in that most of the attributes (mainly those attributes that are proportional
to COCOMO II Effort) seem to to propagate to either extreme. Note however that there is also counter
evidence to that is presented in these tables. The obvious evidence is that fact that there seems to be policies
that aren’t on the extreme, especially for the medium and small open-ended projects. Not only that, but such
evidence occurs also in the specific projects in Figure 8 and Figure 9:

• In Figure 8, notice that there are policies that are ignored when analyzing these projects for the worst
case scenarios, such as cplx and ruse.

• In Figure 9 there are two instances where a policy is set at a median value. In OSP, time is set to high
(in the table refered to as “4”), even though its range extends from nominal to extremely high. Also,
for OSP2, sced at one point is set to nominal, a setting that is not an extreme for that attribute.

This seems to suggest that there is a need to explore the full ranges of the attributes, using tools like
STAR, in order to obtain the best policies. Another piece of evidence is the fact that there are several
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Ratings
Attributes Large Medium Small

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

prec M N M N M N
Scale flex M N M N M N

Factors resl M N M N M N
(COCOMO II) team M N M N M N

pmat M N M N M N
rely M N M N M N
data N N M M
cplx N N N M
ruse M

Effort docu N N N N M
Multipliers time N M M

(COCOMO II) stor M
pvol N N M
acap M N M N M N
pcap M N M N M N
pcon M N M N M N
apex M N M N M N
plex M N M N M M N
ltex M N M N M N
tool M M N M N
site M N M N M N
sced N N M N N M M N M M

Defect auto M N M N M M M N
Removal peer M N M N M M N

(COQUALMO) ett M N M N M M M N

Figure 7: Policy ranges open ended: This table shows the ranges of policies for the open ended size projects.
The gray filled cells represent the allowed range, and “N” and “M” the policies chosen while searching for
good and bad policies respectively.

Ratings
Attributes flight ground

1 2 3 4 5 6 1 2 3 4 5 6

prec �M �N �M �N
Scale flex �M �N �M �N

Factors resl �M �N �M �N
(COCOMO II) team �M �N �M �N

pmat M � � N M � � N
rely M � �N �M � N
data �N �N
cplx N N
ruse

Effort docu N N N N
Multipliers time � �

(COCOMO II) stor � � �
pvol �
acap M � �N M � �N
pcap M � �N M � �N
pcon �M �N �M �N
apex M � �N M � �N
plex �M � N �M � N
ltex �M � N �M � N
tool M N M N
site �M �N �M �N
sced N N M M N N M M

Defect auto �M �N �M �N
Removal peer �M �N �M �N

(COQUALMO) ett �M �N �M �N

Figure 8: Policy ranges part 1: This table shows the ranges for flight and ground. The dark gray filled cells
represent the allowed range, and “�” and “�” the policies chosen while searching for good and bad policies
respectively. This table is overlapped over the results for medium projects from Figure 9.

attributes that are not set in the medium and large projects. This indicates that sometimes the whole range
of an attribute can be ignored, including the extremes. So not only is there a need to evaluate the whole of
the range to evaluate what value of the attribute is needed, but also to evaluate whether a value needs to be
set for that attribute. In addition, this suggests that, even though the COCOMO II models are supposed to
be linear, there might be non-linear behavior in them which causes this behavior.
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Ratings
Attributes OSP OSP2

1 2 3 4 5 6 1 2 3 4 5 6

prec �M � N M � � N
Scale flex M � � N M N

Factors resl �M � N M N
(COCOMO II) team M � � N M N

pmat �M � N M � �� N
rely M M
data N
cplx N � � N
ruse

Effort docu N �N N N � �
Multipliers time �

(COCOMO II) stor
pvol
acap M � � N M N
pcap M N M N
pcon M � � N M N
apex M � � N M N
plex M N M N
ltex M � � N M � �N
tool M � � N M N
site M N M
sced ��N �N M M N �N � M M

Defect auto �M �N �M �N
Removal peer �M �N �M �N

(COQUALMO) ett �M �N �M �N

Figure 9: Policy ranges part 2: This table shows the ranges for OSP and OSP2. The dark gray filled cells
represent the allowed range, and “�” and “�” the policies chosen while searching for good and bad policies
respectively. This table is overlapped over the results for medium projects from Figure 9.

4.3 The Viability of FBC

The previous two sections were ”sanity checks” that we were using the right tool for this analysis. Having
passed these checks, we can now return to the main point of this paper: the analysis of the viability and utility
of FBC. In this section we will compare the performance of FBC to other ”pick any two” policies mentioned
in §2. The observations we will make are based on the quartile charts and Mann-Whitney ranking [21]
presented in figures 10, 11 and 12. In our results, a row gets a different if its median value is higher than the
rows above, in addition to being statistically significantly different.

These charts show the normalized median results, as well as the second and third quartiles, accompanied
by the ranking of each of the policy schemes. The first and fourth quartiles are not included in the charts in
order to negate the effect of outliers. Two results that we will present here are that:

1. FBC does well most of the time. Even though it does not get the absolute best results always, it is
able to compete with the other policies in .

2. FBC does not fail catastrophically by “cutting corners”. This will be made more clear in our analysis.

Note that some of the results presented here reiterate results that were mentioned in O. El-Rawas’ thesis
[11], and that the study method used in that document for studying FBC is also used in this section.

For Figure 10, Figure 11 and Figure 12, the first presents the quartile charts and rankings for FBC and its
derivate policies for the open ended projects, and the latter two for the NASA projects. “Derivate policies”,
in this context, means those that are geared to optimizing for two of the software project assessment factors
(eg. Cheaper, Faster (FC)) rather than the triple goals of FBC (Faster, Better, Cheaper).

When observing these figures, we can see that FBC does well in general, especially compared to “do
nothing’. “do nothing” is a baseline result that is produced for each of the projects without applying any
policies to them, and is supposed to represent how the project would end up given its current shape and
assuming all future decisions are randomly chosen.

The results presented in Figure 10 through Figure 12 show the FBC rarely out does its derivate policies,
however it does manage to stay close in terms of results, ranking close to the top according to the Mann-
Whitney rankings, and rarely ranking last behind all of the “pick any two” policies. This result in addition
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Normalized
Case Rank (Mann median 2nd quartile, median,

estimated study Whitney 95%) what estimate 3rd quartile
defects Small 1 BC 0.14 r

1 CF 0.22 r
1 BF 0.37 r
1 FBC 0.37 r
2 do nothing 82.61 r

Medium 1 BC 0.08 r
2 BF 0.16 r
3 FBC 0.28 r
4 CF 1.14 r
5 do nothing 96.02 r

Large 1 BC 0.01 r
2 BF 0.38 r
2 CF 0.43 r
2 FBC 0.85 r
3 do nothing 95.62 r

months Small 1 CF 2.01 r
1 BF 3.02 r
1 FBC 3.02 r
2 BC 32.66 r
3 do nothing 64.32 r

Medium 1 CF 1.8 r
1 BF 2.52 r
1 FBC 3.6 r
2 BC 40.65 r
3 do nothing 94.96 r

Large 1 CF 2.57 r
1 BF 5.48 r
2 FBC 7.53 r
3 BC 38.36 r
4 do nothing 97.09 r

effort Small 1 CF 0.74 r
2 FBC 1.47 r
3 BF 2.33 r
4 BC 4.3 r
5 do nothing 77.03 r

Medium 1 CF 0.81 r
1 BF 0.91 r
2 FBC 1.92 r
3 BC 2.67 r
4 do nothing 96.76 r

Large 1 CF 1.58 r
2 BF 2.77 r
3 BC 2.9 r
4 FBC 3.83 r
5 do nothing 95.14 r

50%

Figure 10: Results for applying the best policies for the different target functions of FBC. Note that the
mean values are normalized.
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Normalized
Case Rank (Mann median 2nd quartile, median,

estimated study Whitney 95%) what estimate 3rd quartile
defects flight 1 BC 0.33 r

2 FBC 1.43 r
2 CF 1.7 r
2 BF 3.11 r
3 do nothing 91.11 r

ground 1 BC 0.34 r
2 BF 0.42 r
3 FBC 0.47 r
3 CF 0.67 r
4 do nothing 87.75 r

OSP 1 BC 1.18 r
2 FBC 2.9 r
3 BF 3.28 r
4 CF 58.36 r
5 do nothing 96.64 r

OSP2 1 FBC 0.34 r
1 BF 0.67 r
2 BC 4.61 r
3 CF 49.69 r
4 do nothing 62.71 r

months flight 1 CF 11.2 r
1 BF 11.62 r
1 FBC 11.62 r
2 BC 16.6 r
3 do nothing 95.02 r

ground 1 CF 8.46 r
2 BF 11.44 r
2 FBC 11.44 r
3 BC 15.42 r
4 do nothing 95.52 r

OSP 1 CF 16.85 r
2 FBC 22.47 r
2 BF 23.03 r
3 BC 65.17 r
4 do nothing 95.75 r

OSP2 1 BF 28.12 r
2 CF 36.46 r
3 FBC 43.71 r
4 do nothing 65.58 r
5 BC 83.33 r

50%

Figure 11: Results for applying the best policies for the different target functions of FBC on NASA project
templates. Note that the mean values are normalized (part1).

suggests that FBC is a viable policy to follow that does not have a large cost side effects.
Furthermore, FBC is capable of avoiding model and project specific catastrophic side effects. Some

examples of such side effects include the following:

• For the open-ended projects in Figure 10, as well as OSP and OSP2 in Figure 11, BC fails badly with
regards months (development time), even though it ranks first and has the lowest normalized median
estimates for defects in all the cases but one. In fact, BC does worse than “do nothing” with OSP2
months, which is to say that development time would’ve been better off in that case had we done
nothing.

• For OSP and OSP2 in Figure 11, CF (Cheaper, Faster) fails badly with defects introduced, despite the
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Normalized
Case Rank (Mann median 2nd quartile, median,

estimated study Whitney 95%) what estimate 3rd quartile
effort flight 1 FBC 5.27 r

1 CF 5.27 r
1 BF 5.34 r
2 BC 7.89 r
3 do nothing 91.94 r

ground 1 CF 3.78 r
2 FBC 5.2 r
2 BF 5.59 r
3 BC 7.36 r
4 do nothing 91.06 r

OSP 1 CF 12.2 r
2 BC 20.59 r
3 BF 27.21 r
3 FBC 30.28 r
4 do nothing 97 r

OSP2 1 BC 6.1 r
2 FBC 29.14 r
3 CF 35.15 r
3 BF 36.7 r
4 do nothing 74.13 r

50%

Figure 12: Results for applying the best policies for the different target functions of FBC on NASA project
templates. Note that the mean values are normalized (part2).

fact that it ranks at the top with months and effort in 3 of the 4 projects.

One interesting occurrence that we notice is that BF does not seem to fail catastrophically. In this case,
we argue that this is due to the nature of the relationship between the effort and the months models. More
specifically, it is due to the fact that effort (or rather the vast majority of the effort calculation) is included
in the derivation equations of months. This infers that by reducing months we are subsequently reducing
effort, but reducing effort does not necessarily reduce months. One example of that are the results for BC
for OSP2. These show BC ranking first for effort in Figure 12, while simultaneously ranking even worse
than “do nothing” for months (development time). Hence we can state that BF in this case is acting as a
pseudo-FBC due to this inter-model dependence.

With the above results and observations, we are able to assert that FBC is indeed a viable policy to
follow. They also show the possible disastrous outcome of neglecting any one aspect of a project, at least
for development time (months) and quality (defects). In fact, we can speculate that the reason FBC failed
historically at NASA was because it was not implemented fully, as demonstrated by the deterioration in
quality that caused the failure of major missions.

5 Threats to Validity

The results and methods presented in this paper have several threats to their validity which would invalidate
them. For instace, all the analysis in this paper is done under the assumption that COCOMO and its related
models (COQUALMO) are models that are able to provide us with close estimates. We also assume that
we truly know the tuning limits of these models. These assumptions threaten the construct validity, where
undermining these models would invalidate this study.

However, we base our analysis on COCOMO and COQUALMO for several reasons. These are mature
models which have been developed, refined, and constrained over a very long period of time. The range of
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tuning options explored by STAR are taken from 30 years of modeling experience and regression studies of
hundreds of projects [5]. COCOMO and COQUALMO have been selected and tested by a large community
of academic and industrial researchers led by Boehm (this large group has meet annually since 1985). Un-
like other models such as PRICE TRUE PLANNING [33], SLIM [35], or SEER-SEM [17], the COCOMO
family of models are fully described in the literature. Also, at least for the effort model, there exist base-
line results [8]. Further, we work extensively with government agencies writing software. Amongst those
agencies, these models are frequently used to generate and justify budgets.

The internal validity is threatened by basing this study on a limited dataset of real world projects sourced
from a limited set of development environments, mainly NASA. We included other open ended size-based
project templates as well. However, it could be argued that seven distinct project templates are not enough to
conduct our study. It is important to recall here that these project templates are in fact used to generate super
sets of thousands of related projects. These super sets are in turn used by our search-based tool (STAR) for
the study. This is similar to the method used by Shepperd et al. [38] to generate projects, the only distinction
being that, while we use seven templates, only one was used in that study.

In addition to the above arguments, we have some evidence that the above potential threats to validity
do not compromise our conclusions. In fact, we argue that these conclusions are supported by historical
data, where among the 146 missions launched during the FBC-Goldin era at NASA, 136 missions actually
succeeded [1] (that is a success rate of about 93%).

We argue that the publicized catastrophic failures of FBC were due to not using that policy as intended,
but rather using it as CF (Cheaper, Faster). This falls in line with our results: using CF obviously compro-
mised quality in well defined and constrained projects (in this case OSP and OSP2).

6 Future Work

Given the above discussion concerning the validity of the models, one possible future direction could be
one where we attempt to work independent of models, and move closer to case based reasoning (CBR)
approaches. One way to do this could be using Figure 8 and Figure 9 and deriving a distance measure
between a given project and one that’s in the database with known real world or simulated values. This
would allow us to circumvent the process of simulating the given project under certain models. What we
have done so far for evaluating a project is to:

1. randomly setting undetermined settings in a project to a value that is within project parameters
2. running a simulation of the project
3. repeating 1 and 2 several thousand times in order to account for random variance, and obtaining the

median values.

By attempting to change our approach to one closer to CBR, we could break free of our model depen-
dence, while at the same time reducing the amount of computation and verification needed potentially giving
us significant speedups, as well as additional dataset exposure.

7 Related Work

Much of the related work on uncertainty in software engineering uses Bayesian analysis. For example,
Pendharkar et al. [34] demonstrate the utility of Bayes networks in effort estimation while Fenton and Neil
explore Bayes nets and defect prediction [12] (but unlike this paper, neither of these teams links defect mod-
els to effort models). We elect to take a non-Bayesian approach since most of the industrial and government
contractors we work with use parametric models like COCOMO.
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The process simulation community (e.g. Raffo [36]) studies models far more elaborate than COCOMO
or COQUALMO. While such models offer more detailed insight into an organization, the effort required
to tune them is non-trivial. For example, Raffo spent two years tuning one such model to one particular
site [37].

Other related work is the search-based SE approach advocated by Harmon [14]. Search-Based Soft-
ware Engineering (SBSE) uses optimization techniques from operations research and meta-heuristic search
(e.g. simulated annealing and genetic algorithms) to hunt for near optimal solutions to complex and over-
constrained software engineering problems. The SBSE approach can and has been applied to many prob-
lems in software engineering (e.g. requirements engineering [16]) but most often in the field of software
testing [2]. Harmon’s writing inspired us try simulated annealing to search the what-ifs in untuned CO-
COMO models [25]. However, we found that SEESAW ran much faster and produced results with far
less variance than simulated annealing. In addition the the above related work, a recent ICSP’09 paper
by Orrego et al. [32] has explored the merits of software reuse in the context of NASA projects using the
same USC models that we use in this paper. For that study the same stochastic AI methods were used and
showed that software reuse does not always benefit a project, recommending a case by case evaluation of
the appropriateness of software reuse.

8 Conclusion

This paper provides a resolution to the apparent perception that FBC (Faster, Better, Cheaper) is not a
viable software systems development policy. In fact, we argue that FBC is indeed a viable policy: this is
supported by historical data, where among the 146 missions launched during the FBC-Goldin era at NASA,
136 missions actually succeeded [1] (that is a success rate of about 93%), in addition to being demonstrated
in our study. We argue that the publicized catastrophic failures of FBC were due to not using that policy as
intended, but rather using it as CF (Cheaper, Faster).

We started out this study by stating three statements that we wanted to establish through this study:

[H1] STAR, despite its stochastic nature, is stable enough. More generally, the stochastic nature of a tool
does not render it unusable.

[H2] There are instances where the possible best case value for an attribute in the COCOMO models is not
on the extremes of its range. This suggests the need to explore the whole range.

[H3] Not considering all aspects of a software project can be dangerous. This supports FBC as a viable
policy to follow.

Having discussed the concept of “Faster, Better, Cheaper” and its history, we presented a stochastic AI
tool which we used to run several simulations in the absence of proper model tuning. Following this, we
presented our studies. Concerning [H1], we presented a study that showed that STAR is able to choose
certain solutions very consistently, making STAR a stable tool to use. We moved on to [H2] to show that the
effort in exploring the entire attribute range is worth it. We found that there are instances where intermediate
values are chose, which support [H2].

Having established the testbed being used, we moved on to [H3]. By presenting a study done on several
projects, and by comparing FBC to other policies, we were able to uncover downfalls to non-fully-inclusive
policies. In fact, these downfalls were serious enough at times that doing nothing to the project would have
been better. In doing so, we showed that not only is FBC viable, but that it would be reckless not to take
into consideration all aspects of a software project when it is being developed.

18



Our final recommendation is that FBC should be considered a viable policy, despite its current lack
of credibility, if it is implemented by regarding all the factors in FBC (Faster, Better, Cheaper) as equally
important.

A Tuning Variance in COCOMO

Boehm et at. [6] advocated a certain functional form for generating software development effort estimates.
In that form, called COCOMO, the development effort is linear on a set of effort multipliers EMi and
exponential on a set of scale factors SFj :

effort = A ·KSLOCB+0.01·
P

j βjSFj ·
∏
i αiEMi (6)

The particular effort multipliers and scale factors recommended by Boehm et al. are shown in Figure 1.
While Boehm et al offer default values for the Equation 6 variables, linear regression on local data can
tune the αi, βj values to the particulars of a local site. Also, if there is insufficient data for a full tuning of
α, β, then a coarse grain tuning can be achieved by just adjusting the A,B3. linear and exponential tuning
parameters.

A problem that has been under-explored in the literature is tuning variance. In data starved domains,
there is insufficient data to produce precise tunings. For example, At PROMISE 2005, we have reported
very large tuning variance in the post-tuning values of α and β [29]. Baker [3] offers a similar finding. After
thirty 90% random samples of that data, the A,B ranges found during tuning were surprisingly wide:

(2.2 ≤ A ≤ 9.18) ∧ (0.88 ≤ B ≤ 1.09) (7)

We are not the only research group to be concerned about tuning variance. At PROMISE 2007, Korte &
Port [20] explore the variance of automatically learned effort predictors. They comment that this variance is
large enough to confuse standard methods for assessing different predictive model generators.

Since 2005 [7, 28], we have been trying to reduce tuning variance. using feature subset selection
(FSS). However, despite years of work, we now report that FSS reduces but does not tame the variance
of A,B, α, β.

Having failed to tame tuning variance, we have been exploring several approaches, one of which is
STAR. The STAR tool [11, 24, 26]. that we have described checks for stable conclusions within the space
of possible tunings. In other words, STAR explores all the known space of possible tunings randomly. This
negates STAR’s dependency on model tuning, which ultimately allows us to conduct the studies in this
paper.
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