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for tools that allow us to simulate the behaviour of such projects at the startof the 1990s. With these tools, which are named Software Project Simulators(SPS), the project manager could experiment with di�erent management poli-cies at no cost, in order to take a decision that might be the most suitable andaccurate. Questions such as \what would happen if ...?" or \what is happening...?" or \what would have happened if ...?" are sometimes crucial.The achievement of the goals of a software project depends on three factors:� The initial estimations of the necessary resources.� The management policies to be applied.� The characteristics of the organization: maturity level, experience, availabi-lity of resources, etc.The dynamic models for software projects have a set of initial parameters thatde�ne the management policies to be applied. These policies are associatedwith the organization (maturity level, average delay, turnover of the project'swork force, etc.) and the project (number of tasks, time, cost, number oftechnicians, software complexity, etc.). The use of an SPS [2] will be complexif the number of parameters is very large. For example, the dynamic modelshown in [1] has about 60 parameters. Therefore, the impact on the projectof 60 di�erent features could be known. The more parameters the model has,the more complex the development of the project and the use of the model.If someone asked the project manager \what will be the averaged dedicationof the technicians?", the answer would probably be \from 70% to 80%", orsomething like that. Greater precision is unlikely (for example, an answerlike \76%"). The project manager usually adds contingency factors. Machinelearning techniques avoid some of these problems by using intervals insteadof simple values. In general, these techniques produce decision rules. Whendecision rules are used as management policies, they are called managementrules.Management rules are obtained by following the steps shown in Figure 1.
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Fig. 1. Automatic generation of management rules.2



Decisions made in any organizational setting are based on what informationis actually available to the decision{makers. The computer simulation tools ofdynamical systems provide us with the possibility of changing one or severalfactors while the remaining ones are kept unchanged. The implications ofmanagerial policies on the software development process could be analysed toinfer the best decision.However, a knowledge-based system might help us to determine a subset ofdecisions more accurately. The simulation of the project produces this know-ledge with the database. Then we only have to extract that knowledge ina comprehensible way, for example, decision lists or decision trees. In thesedata structures we can �nd an easy-to-understand action to match the actualproject results with the project estimations. The search for good decisionsfrom the database generated by simulation is a highly complex task.Evolutionary algorithms provide us with a method for �nding good solutions(in our case, decision rules) in a complex search space (database generated byan SPS) where parameters do not have an obvious relationship.Other modelling techniques have been applied for estimating e�ort or cost ofsoftware projects: ordinary least-squares regression, analogy-based estimation[6,12,14], genetic programming [4].2 Evolutionary AlgorithmEvolutionary Algorithms (EA) are a family of computational models inspiredby the concept of evolution. These algorithms employ a randomized searchmethod to �nd solutions to a particular problem [7]. This search is quite di�e-rent from the other learning methods. An EA is any population-based modelthat uses selection and recombination operators to generate new sample exam-ples in a search space. The main task in applying EAs to any problem consistsin selecting an appropriate representation (coding) and an adequate evaluationfunction (�tness). In classical EA the members of the population (typicallymaintaining a constant size) are represented as �xed-length strings of binarydigits. The length of the strings and the population size P are completelydependent on the problem. The population simulates the natural behaviour,since the relatively \good" solutions produce o�spring which replace the re-latively \worse" ones, retaining many of the features of their parents. Theestimate of the quality of a solution is based on a �tness function, whichdetermines how good an individual is within the population in each genera-tion. New individuals (o�spring) for the next generation are formed by using(normally) two genetic operators: crossover and mutation. Crossover combinesthe features of two individuals to create several (commonly two) individuals.3



Mutation operates by randomly changing several components of a selectedindividual.Our system used an EA to search the best solutions and produced a hierar-chical set of rules [10]. The hierarchy follows that an example will be classi�edby the ith-rule if it does not match the conditions of the (i � 1)th precedentrules. The rules are sequentially obtained until the space is totally covered.The behaviour is similar to a decision list [11]. The structure of the set ofrules will be as shown in �gure 2.If conditions Then classElse If conditions Then classElse If conditions Then class............................................Else \unknown class"Fig. 2. Hierarchical set of rules.As mentioned in [5], one of the primary motivations for using real-coded EAsis the precision to represent attributes values and another is the ability toexploit the gradualness of functions of continuous attributes. For that reasonour algorithm uses real coding.2.1 CodingIn order to apply EAs to a learning problem, we need to select an internalrepresentation of the space to be searched and de�ne an external functionthat assigns �tness to candidate solutions. Both components are critical forthe successful application of the EAs to the problem of interest.The representation of an individual takes the form shown in Figure 3, where liand ui are values representing an interval for the attribute. The last position(class) is the value for the class. The number of classes determines the set ofvalues to which it belongs, i.e. if there are �ve classes, the value will belongto the set 0; 1; 2; 3; 4.
l1 u1 l2 u2 lm um...... classFig. 3. Representation of an individual of the genetic population.Each rule will be obtained from this representation, but when li = min(ai)or ui = max(ai), where ai is an attribute, the rule will not have that value.For example, in the �rst case the rule would be [�; v] and in the second case4



[v;�], v being any value within the range of the attribute. If both values areequal to the boundaries, then the rule [�;�] arises for that attribute, whichmeans that it is not relevant. Under these assumptions, some attributes mightnot appear in the set of rules.2.2 AlgorithmThe algorithm is a typical sequential covering EA [8]. It chooses the bestindividual of the evolutionary process, transforming it into a rule which is usedto eliminate data from the training �le [13]. In this way, the training �le isreduced for the following iteration. A termination criterion could be reachedwhen more examples to cover do not exist. The method of generating theinitial population consists in randomly selecting an example from the training�le for each individual of the population. Afterwards, an interval to whichthe example belongs is obtained by adding and subtracting a small randomquantity from the values of the example.2.3 Fitness functionThe �tness function must be able to discriminate between correct and incorrectclassi�cations of examples. Finding an appropriate function is not a trivialtask, due to the noisy nature of most databases.The evolutionary algorithm maximizes the �tness function f for each indivi-dual. It is given by the equation 1.f(i) = 2(N � CE(i)) +G(i) + coverage(i) (1)where N is the number of examples being processed; CE(i) is the class error,which is produced when the example i belongs to the region de�ned by therule but does not have the same class; G(i) is the number of examples correctlyclassi�ed by the rule; and the coverage of the ith rule is the proportion of thesearch space covered by such rule. Each rule can be quickly expanded to �ndmore examples thanks to the coverage in the �tness function.3 Post-mortem analysis of a software projectThe project selected for study in this paper is a Personnel Management Systemproject which was carried out jointly by two local software companies. The5



Name Interval Description Estimated ValueADMPPS (0.3-1) Average daily manpower per sta� (day/day) 0.4AQADLY (5-15) Average delay for quality assurance (days) 5HIASDY (5-100) Average hiring and assimilation delay (days) 20INUDST (0.3-1) Initial understa�ng factor (dimensionless) 1MNHPXS (1-4) Most new hires per experienced sta� (tech./tech.) 1.5MXSCDX (1-1E6) Maximum schedule completion date extension (dim.) 5TRNSDY (1-15) Time delay to transfer people out (days) 1DLINCT (5-15) Average delay in incorporating discovered tasks (days) 5AVEMPT (500-1000) Average employment time (days) 1000TRPNHR (0.1-0.4) Number of trainers per new employee (dimensionless) 0.15UNDESM (0-50) Man-days underestimation fraction (dimensionless) 48UNDEST (0-50) Tasks underestimation fraction (dimensionless) 15Table 1Parameters and variables of the environment of the project and organization. (Thisnotation is the one used in the works of Abdel-Hamid [1].)data pertain to the design, coding and test phases. Therefore, the analysisphase and other �nal activities are not considered. The data for initialisingthe parameters of the SPS were collected from the tracking documents of theoriginal project and the experience of the project manager.Initially, the e�ort expended on the project was estimated to require 208 man-days and the project was estimated to be completed in 101 days. The actual�gures were 404 man-days and 141 days, respectively. Therefore, the underes-timations of e�ort and time for this project were 48% and 28%, respectively.The average number of technicians involved in the project was 6 and the num-ber of lines of code (LOC) was 67800. The project manager de�ned a task as270 LOC.The real e�ort spent on the activities of development (design and coding) was85% (404�0:85 = 343), the rest being spent on tests. Assuming that the 10%of the e�ort expended on development (343� 0:1 = 34) was used for revisionactivities, the total e�ort of development was 309 man-days (343� 34 = 309).Thus, the development productivity for this project was as follows:software development productivity= size in LOCdevelopment e�ort == 67800309 = 219:4 LOC=m� dSome interesting data from the project are shown in Table 1. Each row containsthe name of the parameter in the model, the range of values it can assume, abrief description of its meaning and the estimated value at the beginning ofthe project. 6



Name Numeric Interval Qualitative DescriptionADMPPS (0.3-0.5)(0.5-0.75)(0.75-1.0) LowAverageHighUNDESMUNDEST (0-15)(15-35)(35-50) LowAverageHighTRPNHR (0.1-0.15)(0.15-0.25)(0.25-0.40) LowAverageHighTable 2Qualitative description of the parameters.Several qualitative labels, which are illustrated in Table 2, were assigned toeach parameter, depending on its range of numeric values. This informationwas provided by the project manager.3.1 Project simulationThe evolution of the necessary e�ort, delivery time and pending tasks requiredin order to complete the Personnel Management System obtained by the SPS isillustrated in Figure 4. If the results are compared with the real values, we canobserve that in the simulation the estimated delivery time is 151 days (insteadof 141) and the estimated e�ort is 410 man-days (instead of 404). This meansthat the absolute percentage error was about 6.62% and 1.46%, respectively.If an SPS had been used at �rst, we would have known the behaviour ofthe project, and the absolute percentage error might have been smaller. Inaddition, in Figure 4 it is possible to note that the �rst adjustments weremade near the middle of the project (around 70 days) when it was detectedthat the number of pending tasks was greater than that expected. The decisioncoincided with the real evolution of the Personnel Managment System, sincemore than half of the estimated time had been spent when more than halfof the pending tasks remained still un�nished. Time and �nal e�ort mightincrease if the gradient of the pending tasks does not change. Two additionalconsiderations can be observed in Figure 4: �rst, the estimated initial e�ortis modi�ed before the time, as is usual in the majority of the projects beingdeveloped by the two local software{development companies; and second, thechanges applied to e�ort and time are made simultaneously.Data from the real evolution of the project were not collected by the compa-nies. We only know the initial and �nal data provided by the project manager.Therefore, if both simulated and real behaviours are compared (this was possi-ble, thanks to the help of the project manager), we could only see that the �nal7
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Fig. 4. Evolution of the necessary e�ort, delivery time and pending tasks for the Per-sonal Managment Software (nominal simulation), obtained by the Software ProjectSimulator.estimated time and e�ort obtained by means of simulation are in agreementwith the reality. This is especially true in two respects:� The early revisions were done when half of the time had been spent.� The revisions that were carried out to adjust the detected deviations a�ectedboth the time and the e�ort simultaneously.The utility of an SPS in analysing the evolution of projects carried out by ourlocal software{development companies has been demonstrated, and generallyany project could be analysed in the same way [1].
4 Management rules4.1 The goals of the projectThe two goals of the management rules that we are going to obtain are thefollowing:� We would wish that the values for e�ort were less than or equal to the valueobtained by the simulation (410 m-d). These possible values are labelled asGOOD. The values greater than 410 m-d are labelled as BAD.� We would wish that the development time were less than or equal to thevalue obtained by the nominal simulation (151 days). These values are la-belled as GOOD. The values greater than 151 are labelled as BAD.8



4.2 Management rules from evolutionary algorithmsManagement rules are obtained by the following steps (see Figure 1):� De�ne the intervals of values for the parameters of the dynamic model (seeTable 1).� De�ne the goals of the project (values for time and cost).� Generate the database automatically: Each simulation produces a recordwith the values of the parameters and the values of the variables (cost andtime) and this record is saved in a �le.� From the �le generated in the preceding step, a set of management rules isprovided automatically for the decision-making task.It is important to note that the �rst two steps aforementioned are performedby the project manager and the next two items are executed automatically.The management rules obtained by evolutionary algorithms for estimatingsimultaneously GOOD results for both time and e�ort are shown in Figure 5.The number of the rule and the number of records from the database coveredby the rule are shown respectively, in brackets.ADMPPS � 0.52, TRPNHR � 0.38UNDESM � 6, UNDEST � 48INUDST � 0.96, HIASDY � 32 (Rule 1, 21)TRPNHR � 0.15, UNDESM � 3715 � HIASDY � 33 (Rule 2, 7)ADMPPS � 0.75, UNDESM � 15INUDST � 0.82, 34 � HIASDY � 45 (Rule 3, 6)0.55 � ADMPPS � 0.7, TRPNHR � 0.2UNDEST � 14, INUDST � 0.4716 � HIASDY � 68 (Rule 4, 3)Fig. 5. Management rules obtained by the evolutionary algorithm for estimatinggood results for the necessary e�ort and delivery time simultaneously.The rules chosen to analyse the project are Rule 1 and Rule 2, since Rule 1covers more than half the cases forecast as GOOD and Rule 2 has the smallernumber of parameters. Another good criterion for selecting the most adequatedecision rule is choosing the rule having parameters which are easier to mo-dify and control and, if possible, the rule involving the smallest number ofparameters. Once the rule set is obtained, we have to select which parame-ters do not match the initial values. Observing Table 1, we could rewrite themanagement{rule set by eliminating the conditions that are matched with theinitial values. The new management{rule set is illustrated in Figure 6.9



if ADMPPS � 0.52 and INUDST � 0.96 (Rule 1, 21)if UNDESM � 37 (Rule 2, 7)if ADMPPS � 0.75 andUNDESM � 15 and 34 � HIASDY � 45 (Rule 3, 6)if 0.55 � ADMPPS � 0.7 (Rule 4, 3)Fig. 6. Final hierarchical set of management rules.For example, in the Rule 1 from Figure 5 the values of the parameters TRP-NHR, UNDESM, UNDEST and HIASDY were initially estimated as belongingto the interval de�ned by the rule (see Table 1), so that the parametersADMPPS and INUDST must be the only ones to be modi�ed in order toobtain good results (see Figure 6), since the project is already �nished.Analysing the rules, we could state the following:� Rule 1: if the average daily manpower per sta� (ADMPPS) was greater than52% and the initial understa�ng factor (INUDST) was less than 96%, thenthe project tended to be towards GOOD.� Rule 2: if the man-days underestimation fraction (UNDESM) was less than37%, then the project tended to be towards GOOD (if the error in the initialnecessary e�ort had been less than that estimated; in this project the valueof UNDESM was 48%).Although each rule permits good estimates, the SPS allows us to compare theresults of the simulation with those which would be obtained by applying eachmanagement rule.For example, the results obtained by the application of Rule 2 are shownin Figure 7. Both e�ort and time are remarkably lower than those obtainedfrom the simulation. In concrete terms, the necessary e�ort and time wouldbe reduced to 26 man-days and 13 days, respectively, if Rule 2 had beenapplied. With this information, the project manager decides which rule ismore appropriate for achieving the aims.The SPS plays an important role in the decision{making task: �rst, post-mortem projects can be analysed in order to infer which actions could improvethe results; second, an a priori analysis would indicate the intervals withinwhich the values of the parameters have a tendency to achieve the aims of theproject.Taking an e�ective decision is a very complex task. Some criteria are contra-dictory. For example, in general, keeping to the project deadline has highestpriority, i.e. if the project schedule is at risk, more manpower will be addedto the project [9]. However, the Brooks' Law states that adding more people10
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4.3 Another approachIn the previous section, we saw how an evolutionary algorithm automaticallyprovides management rules from a database generated by an SPS. Another in-teresting approach consists in presenting graphically the relationship betweentwo parameters in the cases in which good results were obtained. These gra-phics inform the project manager about the range of values for the parametersbeing analysed. An example of this kind of analysis is shown in Figure 8, wherethe parameters TRPNHR and ADMPPS are compared, indicating when thee�ort and the time are simultaneously good. In Figure 8, each axis is a pa-rameter of the model and each case labelled as GOOD (in the database) isrepresented by a point (in the �gure). In most of the cases in which the nece-ssary e�ort and the delivery time are simulataneously GOOD, the number oftrainers per new employee (TRPNHR) is less than 25% and the average dailymanpower per sta� (ADMPPS) is greater than 75%.Logically, this information is not obtained automatically, and we could notknow whether the parameters that are represented have an inuence on theresults. 11
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0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00Fig. 8. Relationship between the average daily manpower per sta� and the numberof trainers per new employee.5 ConclusionsThe use of simulators and systems that learn decision rules helps to esti-mate software projects and to produce management rules automatically forthe decision{making task. These management rules could be applied:� Before the project has begun: de�ning more adequate managerial policies.� After the project has �nished: doing a post-mortem analysis.� When the project is running: taking immediate decisions (monitoring).Management rules make it possible to:� obtain values considered as good (very good, normal, bad, etc.) for anyvariable of interest (time, e�ort, quality, number of technicians, etc.), inde-pendently or together with other variables.� analyse managerial policies capable of achieving the aims of the project.� know to which range of values the parameters must belong in order to obtaingood results.In short, it is possible to generate management rules automatically for anysoftware project and to know the managerial policies that ensure the achieve-ment of the initial aims. The deviations from the initial forecast could bedetected (monitoring) and the behaviour of the process is well understoodthrough the management{rule set.Evolutionary Computation provides an interesting approach for dealing withthe problem of extracting knowledge from databases generated by SoftwareProject Simulators. The results demonstrate that evolutionary algorithms �ndgood solutions in the search space. And, what is more important, the results(management rules) are applicable and bene�cial.12
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