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Abstract

Managing a large software project involves initial esti-
mates that may turn out to be erroneous or that might be
expressed with some degree of uncertainty. Furthermore,
as the project progresses, it often becomes necessary to re-
work some of the work packages that make up the overall
project. Other work packages might have to be abandoned
for a variety of reasons. In the presence of these difficul-
ties, optimal allocation of staff to project teams and teams
to work packages is far from trivial.

This paper shows how genetic algorithms can be com-
bined with a queuing simulation model to address these
problems in a robust manner. A tandem genetic algorithm
is used to search for the best sequence in which to process
work packages and the best allocation of staff to project
teams. The simulation model, that computes the project es-
timated completion date, guides the search. The possible
impact of rework, abandonment and erroneous or uncertain
initial estimates are characterised by separate error distri-
butions.

The paper presents results from the application of these
techniques to data obtained from a large scale commercial
software maintenance project.

Keywords: Software Project Management, Genetic Al-
gorithms, Queuing Simulation

1 Introduction

Planning a large scale software project involves a set of
initial effort estimates and an allocation of programmers to

teams and teams to work packages (WPs). The work pack-
ages are typically derived from a Work Breakdown Struc-
ture (WBS), with each WP being assigned to a particular
team.

In a perfect world, the initial estimates would be accurate
and the teams would successfully complete the WPs in the
estimated time. No WP would need to be abandoned and
there would be no need to revisit and re-work a WP once
complete. Of course, we do not live in a perfect world and
issues of erroneous, inaccurate or uncertain estimates are
known to plague the manager’s role in assigning staff to
teams and teams to WPs.

Furthermore, even if the initial effort estimates for each
WP turned out to be astonishingly accurate and certain,
there are eventualities which might crop up during the
progress of the project which need to be taken into account
as far as possible, in the initial allocations. Two of these
are the need of re-work and abandonment. Rework may be
required for a variety of reasons. For instance, the specifica-
tion of a WP might change, or there may be a suspicion over
the way in which a WP was initially carried out. Likewise,
there are many reasons why a WP might be abandoned; per-
haps it turned out to be no longer required, perhaps it was
simply impossible to complete or it became a casualty of
forced economy.

In this paper we study this problem from the perspec-
tive of a massive software maintenance project (such as
Y2K remediation, Euro conversion or phone numbering
change) involving a large number of applications simulta-
neously [14]. Such maintenance activities present partic-
ularly acute problems for managers, since they have fixed
hard deadlines and cut right across an entire software port-
folio, touching almost every software asset possessed by the
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organisation.
Having obtained initial effort estimates, the next task is

to determine the staffing level (i.e., the number of people
needed, and their distribution among teams) and the project
planning (i.e., the WP assignment to teams). Resource al-
location is likely to be subject to constraints and negotia-
tion. Corporate guidelines, strategies and available budget,
as well as the experience on previous projects may serve to
determine an early estimate of the staffing level (i.e., num-
ber of allocated people). Usually, at project inception re-
sources are negotiable and, more generally, re-staffing may
occur during the project life thus team organisation may
vary over time.

Given a fixed amount of resource available, project man-
agers have to optimize them by i) determining the distribu-
tion of people into teams and ii) by assigning maintenance
activities to teams. The two factors are clearly interwoven.
Given a fixed distribution of people into teams, there exists
a WP assignment to teams which minimizes the time re-
quired to carry out the project. This can also be thought of
as the optimal order in which the WPs flow into a queuing
network that models the maintenance process [3].

On the other hand, given a fixed WP ordering, there ex-
ists an optimal people distribution into teams. Such re-
source allocation problems are instances of the ‘bin pack-
ing problem’, the solution of which is NP-hard [8] and,
for which, search based techniques are known to be effec-
tive [13].

This paper proposes a tandem-approach to account for
two distinct phases. In a first stage, for a given staffing level
and a random or uniform people distribution across teams,
an optimal WPs ordering is determined. In a second stage,
given the staffing level and the WPs ordering previously de-
termined an optimal organisation of teams is computed.

The two steps are repeated until a negligible planning
modification is observed. The two different stages rely on
Genetic Algorithms (GAs) to find the optimal WP ordering
and the optimal staff allocation. In particular, a genome en-
coding, modelling the WP ordering problem, is used. The
fitness function has been implemented basing on a queu-
ing simulator described in [3]. The approach caters for the
effects of re-work and abandonment and the uncertainty in-
herent in the effort estimation process [24].

The approach is validated by an empirical study, using
historical data from a real–world massive Y2K maintenance
intervention, conducted on a financial system for a Euro-
pean company. Sensitivity analysis is used to evaluate the
effect of manager uncertainty in the effort estimation, as
well as the effect of rework on WP or abandonment (i.e.,
cases in which some stages of a maintenance task are not
needed).

The primary contributions of this paper are as follows:

• The paper considers the problem of software project

resource allocation and project planning using Search–
Based approaches. In particular, a tandem–approach,
aiming at determining two different factors of the
project, i.e., the people distribution and WP assign-
ment to teams, is proposed;

• The paper explicitly accommodates into the alloca-
tion process both abandonment and rework allowing
for quantification of the effect on the overall project
planning for different hypothesized rework and aban-
don levels;

• The paper also presents results of a study into the ef-
fect of project manager error in estimating the effort
required to accomplish WPs maintenance.

The remainder of the paper is organised as follows. Af-
ter a brief overview of existing scheduling approaches and
application of heuristic approaches to software project man-
agement, Section 3 presents, for sake of completeness, an
introduction to GA and stochastic simulation, while Sec-
tion 4 describes the proposed approach. Section 5 reports
and discusses the results from the empirical study, also in-
dicating which are the assumptions made. Section 6 con-
cludes.

2 Related Work

An application of search–based techniques to project
scheduling was done by Davis [6]. A survey of the appli-
cation of GAs to solve scheduling problems has been pre-
sented by Hart et al. in [12]. The mathematical problem
encountered is, as described by the author, the classical,
NP-hard, bin packing or shop-bag problem. A survey of ap-
proximated approaches for the bin packing problem is pre-
sented in [5]. More recently Falkenauer published a book
devoted to the GA and grouping problems [7]. The theme
of the book and the proposed genome encoding are highly
relevant to the problem addressed in this paper. Schema in-
terpretation and bin packing genome encoding described in
the book were a source of inspiration although our problem
is slightly different. The order on which WPs are presented
to the teams is relevant whereas bin packing doesn’t impose
a packing order to reach an optimum.

Search heuristics have been applied in the past to solve
some related software project management problems. In
particular, Kirsopp et al. reported a comparison of random
search, hill climbing and forward sequential selection to se-
lect the optimal set of project attributes to use in a search–
based approach to estimating project effort [17]. A com-
parison of approaches (both analytical and evolutionary)
for prioritizing software requirements is proposed in [15],
while Greer and Ruhe proposed a GA-based approach for
planning software releases [10].
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More commonalities can be found with the work of An-
toniol et al. [3]. The paper [3] focuses on problem of
staffing a software maintenance project using queuing net-
works and discrete-event simulation. Given an (ordered)
distribution of incoming maintenance requests, the goal of
Antoniol et al. was to determine the staffing levels for each
team. The present paper relies on that approach to deter-
mine the initial staffing, and on the queuing simulator pro-
posed to implement the objective function of our GAs.

Issues connected to empirical studies of software pro-
cess simulation modelling are also discussed by Raffo et
al. [22], with particular reference to the estimate of simula-
tion parameters from real-world data, and to compare actual
results to the model’s results. Abdel-Hamid [2] published
an approach based on system dynamics modelling to ver-
ify the degree of interchangeability of men and months [4].
Results from the analysed case study do not fully support
Brooks’ law.

Queueing theory was also recently applied by Ra-
maswamy [23] to model software maintenance requests.
Simulations of a software maintenance process were per-
formed by Podnar and Mikac in [20] with the purpose of
evaluating different process strategies rather than staffing
the system.

3 Background

To tackle the project planning and resource allocation
problems GA and stochastic simulation were applied to
information obtained from manager estimates and project
WBS.

3.1 Genetic Algorithms

GAs originate with an idea, born over 30 years ago, of
applying the biological principle of evolution to artificial
systems. Roughly speaking, a GA may be defined as an iter-
ative procedure that searches for the best solution of a given
problem among a constant-size population, represented by
a finite string of symbols, the genome. The search is made
starting from an initial population of individuals, often ran-
domly generated. At each evolutionary step, individuals are
evaluated using a fitness function. High-fitness individuals
will have the highest probability to reproduce.

The evolution (i.e., the generation of a new population)
is made by means of two operators: the crossover opera-
tor and the mutation operator. The crossover operator takes
two individuals (the parents) of the old generation and ex-
changes parts of their genomes, producing one or more new
individuals (the offspring). The mutation operator has been
introduced to prevent convergence to local optima, in that
it randomly modifies an individual’s genome (e.g., by flip-
ping some of its bits, if the genome is represented by a bit

string). Crossover and mutation are performed on each in-
dividual of the population with probability pcross and pmut
respectively, where pmut � pcross. Further details on GA
can be found in [7, 9].

GA are effective in finding optimal (or near optimal) so-
lutions for problems where:

• The search space is large or complex;

• No mathematical analysis is available;

• Traditional search methods did not work; and, as in our
case

• The solution of the problem is NP-hard [8].

A GA does not guarantee to converge: the termination
condition is often specified as a maximal number of gener-
ations, or as a given value of the fitness function.

3.2 Queuing Theory and Stochastic Simulation

A queuing system can be described as customers arriv-
ing for service, waiting for service if it is not immediate, and
leaving the system after being served (by servers). The term
customer is used in a general sense and does not necessarily
imply a human customer (e.g., maintenance requests can
be thought of as customers). Further details can be found
in [11]. Traditional queuing theory only models the steady
state of the process. In particular, it models parameters such
as the waiting time of a request, or the coefficient of use of
a server, given an arrival traffic rate, a service time distribu-
tion, a queue discipline and capacity. To deal with transient
situations, stochastic simulation is needed.

Simulation attempts to build a model that will mimic a
real system for most of its relevant aspects. A simulation
may be deterministic or stochastic. In the first case, the be-
haviour is “point-wise” defined by the output of the model,
and results are repeatable. Stochastic simulation involves
randomness: multiple runs may generate different values.
Moreover, a simulation may be static or dynamic, depend-
ing upon whether or not it involves time.

Finally, simulation may be further classified as system
dynamics simulation, discrete-event simulation [16, 19] and
state-based simulation [21]. In particular, discrete-event
simulation describes process steps, and is well suited to
model queuing systems such as system modelling software
development or maintenance were requirements, use cases,
test incident reports, bug reports or maintenance interven-
tions are queued and handled by teams of programmers.

To compute the fitness function of our GAs, we modelled
the software maintenance process as a queuing system. As
proposed in [3] our fitness function is computed via stochas-
tic, dynamic, discrete-event simulations.
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Figure 1. Activity diagram of the proposed approach

4 The Approach

This section explains how we formulated the problem
stated in the introduction as a search–based problem, using
a tandem, two–phased approach applying different GAs in
the two phases. The approach is represented, as an activity
diagram, in Figure 1.

At a first level of approximation the maintenance task is
considered as a monolithic step task (i.e., the single queue,
multi-server model of Antoniol et al. [3]). More sophis-
ticated maintenance processes have no impact on the pro-
posed approach, because the queuing model, as it will be-
come clear later, is encapsulated by the fitness function.

The first activity of the process aims at defining the list of
WPs to be maintained, and to negotiate the number of peo-
ple available. Initially, people are equally distributed among
the maintenance teams (i.e., the queuing model servers). In
our case study, we initially instantiated singleton teams of
people.

Two GAs were used in tandem. The first GA aims to
find an optimal (or near optimal) solution to the problem
of determining the ideal order in which to present work
packages to the process; the WP ordering. The second GA
aims to find a good (hopefully optimal) allocation of staff to
project teams to maximize the throughput for the WP order-
ing found by the first GA. The overall optimisation process
is iterative; the results of the second GA are fed back into
the first GA, which attempts to find tune the optimisation
of WP ordering1. This repetition continues until the search

1The process can also work by first determining the people distribution,

stabilises on a solution.
The initial team organisation and a random WP ordering

are the seeds to the first GA, that determines, for fixed team
organisation, the optimal WP ordering. The aim here is to
minimize the project completion time. The obtained order
is seed into the second GA, which, while maintaining the
WP ordering invariant, computes the optimal grouping of
staff into teams.

This newly defined team allocation is fed back into the
first GA. This is necessary because changing the structure
of teams may require a different WP ordering to that ini-
tially found by the first GA. The process is iterated until no
substantial modification in the project planning is observed;
stability has been reached (helpfully on a highly optimal so-
lution).

Finally, the obtained ordering and staff allocation are
presented to a queuing simulator that analyses the sensitiv-
ity of the result with respect to possible effort estimation
errors, of potential reworks on a given percentage of main-
tenance tasks. Perhaps the sensitivity analysis will reveal
that the solution obtained by the tandem-GA is too vulnera-
ble to fluctuations in estimates of WP effort (perhaps arising
either from error or uncertainty on the part of the manager).
Furthermore, even where the solution obtained is highly ro-
bust, the ultimate project completion date might miss the
projected deadline. The purpose of this final stage is to rec-
ognize these two possible problems. In either case, we will
require a negotiation of further people and a successive it-
eration of the entire process.

and then the WP ordering
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The next two subsections will present details of the two
GAs, describing the genome encoding, the fitness function
as well as the crossover and mutation operators.

Figure 2. GA Genomes: a) WP ordering and
b) People assignment to teams

4.1 GA stage 1: determining the optimal WP or-
dering

To encode the WP assignment to teams in a genome, we
adopted a scanning genome. The genome is encoded as
an N -sized array, the value of a genome element indicates
the position of the WP in the incoming queue, for a single-
queue/multi-server queuing system. The genome schema is
shown in Figure 2-a.

The fitness function takes as input the genome (i.e., the
WP sequence) and estimates the project completion time us-
ing the queuing simulator described in the paper [3]. In par-
ticular, the single-queue/multi-server model is instantiated
considering the people distribution obtained at the previous
iteration (or an uniform people distribution across teams for
the first iteration). Once the queuing system configuration
and the WP effort are known, the queuing simulator esti-
mates the completion time simulating WP flowing in the
maintenance process as time passes.

The mutation operator randomly selects two WPs (i.e.,
two array items) and exchanges their position in the queue.
The crossover operator is somewhat more complex. Two
offspring (o1 and o2) are formed from two parents (p1 and
p2), as follows:

1. A random position k, is selected in the genome.

2. The first k elements of p1 become the first k elements
of o1.

3. The last N -k elements of o1 are the sequence of N -k
elements which remain when the k elements selected
from p1 are removed from p2.

4. o2 is obtained similarly, composed of the first N -k el-
ements of p2 and the remaining elements of p1 (when
the first N -k elements of p2 are removed).

For instance, if k = 2 and p1 ≡ {4, 2, 3, 6} and p2 ≡
{4, 6, 3, 2}, then o1 ≡ {4, 2, 6, 3} and o2 ≡ {4, 6, 2, 3}.

This approach to crossover has the advantage that it guar-
antees that each offspring contains precisely one position in
the sequence per WP. It therefore avoids the need for repair,
or some other mechanism which might be required to deal
with duplication of sequence numbers in a more simple-
minded crossover operator.

4.2 GA stage 2: determining the optimal assign-
ment of people across teams

The problem to assign people to teams is an instance of
the pigeon hole problem; the genome is an array of N inte-
gers, where N is the number of programmers. Each value of
the array indicates the team that a programmer is assigned
to. The genome schema is shown in Figure 2-b.

The fitness function is the same as that used at the previ-
ous stage (that is, the overall project duration is to be mini-
mized). To implement a GA for this encoding, the mutation
operator randomly selects a WP and randomly changes its
team. It is worth pointing out that the random number gen-
erated by the mutation operator is an integer ranging from
1 to the maximum number of people available. The cardi-
nality of the set of numbers present in the genome deter-
mines the number of teams (servers) of the queuing model.
Clearly, a cardinality equal to the number of people avail-
able indicates that each team is composed of a single person,
while a cardinality equal to one indicates that a single server
(composed of all people) is used.

The crossover operator is the standard single point
crossover [9].

4.3 Rework, abandonment and effort estimation
error and uncertainty

After the tandem-GA has been used to determine the op-
timal staff distribution across teams, and the optimal WP
ordering, a sensitivity analysis is performed to model the
effect of i) uncertainty in the effort estimation, ii) abandon-
ment, and iii) rework.

The queuing system used was simple in order to al-
low these factors to be explored in isolation; a single-
queue/multi-server maintenance process was used to sim-
ulate the project activities. In such a model, rework is ac-
counted for by an additional effort value assigned to a given
percentage of WPs. The value of this additional effort is
modelled by an exponential random distribution or, if fine–
grain data is available (as in our case study), by repeat-
ing some activities for a random percentage or WPs (e.g.,
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repeating enactment and testing, mimicking situations in
which the test fails).

Abandonment occurs when some substantial mainte-
nance phase was not needed, or became impractical. In
this situation a substantial effort (or, if data is available, the
effort related to some maintenance phases) might be sub-
tracted from a given percentage of WPs. Overall, abandon-
ment can be modelled similarly to rework.

Finally a maintenance effort estimate may be over–
optimistic, over–pessimistic or neutral. This uncertainty (or
error term) was modelled via a Gaussian distribution with a
mean corresponding to:

• the WP actual effort (neutral estimate, that models a
manager that both performs optimistic and pessimistic
estimates),

• the WP actual effort, plus a given percentage (over–
pessimistic estimate), or

• the WP actual effort, minus a given percentage (over–
optimistic estimate),

and with a standard deviation corresponding to a given per-
centage (hereby referred as “uncertainty level”) of the actual
effort value.

5 Empirical Study

The empirical study proposed in this paper aims at defin-
ing a near optimal project staffing and scheduling for main-
tenance activities of WPs coming from a massive mainte-
nance project, related to fixing the Y2K problem in a large
financial software system from a European financial organ-
isation.

5.1 Context description

According to its WBS, the application was decomposed
into WPs, i.e. loosely coupled, elementary units (from one
to nine for each application) subject to maintenance activ-
ities; each WP was managed by a WP leader and assigned
to a maintenance team. Overall, the entire system was de-
composed in 84 WPs, each one composed, on average, of
300 COBOL and JCL files. The project followed a phased
maintenance process (similar to that defined by the IEEE
maintenance standard [1]), encompassing five phases:

1. Inventory: deals with the decomposition of the appli-
cation portfolio into WPs;

2. Assessment: identifies, for each WP, candidate im-
pacted items for the maintenance task;

3. Technical Analysis (TA): deals with the analysis of im-
pacted items and identifies a candidate solution;

4. Enactment (Enact): an automatic tool was used to ap-
ply Y2K patches based on windowing [18]; and

5. Unit Testing (UT) performed on each impacted WP.

Further details can be found in [3].
Figure 3 depicts the WP effort histogram (efforts are ex-

pressed in person days).

Figure 3. WP effort histogram

5.2 Assumptions

Because the maintenance intervention studied here was
performed almost semi-automatically and involved highly
standardized activities, it is possible to make the assumption
of interchangeability between people and months. That is,
given a maintenance team size, s and the effort required e,
the time t necessary to perform the task is:

t � e

n
(1)

Due to Brooks’ law [4], this could be an overly optimistic
assumption. However, as other authors have noted [2],
given the small team sizes (fewer than eight people) and
the standard (training–free) nature of the maintenance task,
this approximation was considered reasonable. The model
can be generalised to situations in which Brooks’ law does
apply by the simple introduction of a non-linearity factor.

A further simplification introduced with our study is the
absence of dependencies between WPs (i.e., there is no con-
straint on possible orderings which can be selected), how-
ever, if needed such a constraint could be incorporated into
the first GA, for example adopting the approach proposed
in [7] to model the line balancing problem.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04) 
1530-1435/04 $ 20.00 IEEE 

Authorized licensed use limited to: West Virginia University. Downloaded on November 13, 2008 at 21:56 from IEEE Xplore.  Restrictions apply.



 100

 120

 140

 160

 180

 200

 220

10 20 30 40

P
ro

je
ct

 c
om

pl
et

io
n 

tim
e 

(d
ay

s)

Iterations

50 people45 people

40 people

35 people

30 people

25 people

20 people

Figure 4. Estimated project completion time obtained with different number of people and different
algorithm iterations

5.3 Threats to Validity

Construct validity threats may be due to the simplifica-
tions made on the maintenance process modelled, as well as
to the assumptions made in Section 5.2. However, the effect
of these threats is limited because i) the applicability of the
GA tandem model does not depend from the topology of the
maintenance process (i.e., a more complex model simply re-
quires that the objective function should be computed over a
queuing network instead of over a single-queue system) and
ii) for the case study adopted there were no dependencies at
all.

Internal validity threats, in our case study, can be due to
the randomness of the results obtained from simulation and
GA. To avoid such a threat, different actions were taken:

• First and foremost, we carefully calibrated the number
of generations and population size needed by GA. The
chosen values were determined ensuring that further
increases do not significantly affect the results;

• Similarly, we calibrated the number of iterations re-
quired by the whole approach. As it will be detailed in
Section 5.4, further increases over 40 iterations do not
produce improvements in our fitness function.

• To avoid results being affected by randomness, GAs
were executed 20 times and we verified that the ob-
tained fitness function at the last stage do not change
among the iterations.

With regards to external validity, as explained in Sec-
tion 5.2 our approach and the results obtained can be ex-
tended as is to situations in which i) the Brooks’ law is not
valid and ii) there are no dependencies between WPs. For
all the other cases, there is the need for a more complex
model. First and foremost, there may be the need to account
for non-linearity factors in Equation (1), or to consider the
constraints due to the WP dependencies.

Finally, as detailed in Section 4.3 and as it will be
shown in Section 5.4.2, realistic situations such as rework,
abandonment and effort estimate uncertainty have been ac-
counted in the overall approach.

5.4 Empirical study results

This section reports results obtained re-planning the
above described case study with the proposed approach.

Simulations were run considering the following parame-
ters:

• elitist GA;

• 100 individuals;

• 1000 generation for each GA;

• mutation probability 0.1, crossover probability 0.6;

• 40 iterations of the tandem (we experienced no further
improvement after that, until 100 iterations).
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5.4.1 Determining the WP ordering and team alloca-
tion: the ideal case

Figure 4 shows how the tandem approach adjusts the WP
ordering and the team organisation with the aim of min-
imizing the number of days required for the maintenance
task, hereby referred as “project completion time”. It is
worth pointing out how, for both staffing levels of 45 and 50
people, the completion time obtained is the same (although
the algorithm is slightly slower to converge for 45 people).
This indicates an “upper-bound” in the staffing level, over
which there is no substantial improvement in terms of time
required. Not surprisingly, 45 people corresponds to the op-
timal staffing level indicated in [3].

In correspondence to each minimum project completion
time determined for each staffing level, the algorithm out-
puts the optimal WP ordering and the people distribution
across teams. Figure 5 plots the optimal number of teams
allocated, for each staffing level, after a given number of
iterations of the algorithm. It is worth pointing out how
sometimes, in correspondence to the optimal critical path,
the number of teams is subject to oscillations (as the cases
for 45 and 50 people). In other words, the algorithm tries to
reduce the number of teams but, after exploring the search
space corresponding to the new number of teams, is not able
to improve the fitness function anymore, thus it restores the
previous value.

For each staffing level (i.e., total number of people avail-
able) and number of teams, the algorithm determines a a

distribution of people across teams. Table 1 reports details
about such a distribution, indicating, for each staffing level,
the number of teams of each size the algorithm has allo-
cated. For example, given a staffing level of 20 people, the
algorithm has allocated two teams of 5 people, two of four
people and one of two people.

Team Staffing Level
Size 20 25 30 35 40 45 50

1 - - 2 1 7 5 10
2 1 1 1 3 7 10 14
3 - 1 4 5 5 4 4
4 2 1 1 2 1 2 -
5 2 2 2 1 - - -
6 - 1 - - - - -

Table 1. Number of teams of different sizes
for different staffing levels

The table gives us several insights about how the algo-
rithm tends to allocate people for different staffing levels,
and which could be the risk this implies.

When few people are available, the algorithm tends to
create large teams. The phenomenon is highlighted by the
5 people teams created with staffing levels of 20, 25 and
30 people, as well as the 6 people team created with a
staffing level of 25 people. This can be explained by the
fact that, when the number of people available is not very
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high, they should work together to quickly accomplish the
longest tasks (WP). Each incoming WP that requires a big
effort is thus dispatched to such a team. Since the staffing
level of that team is high, the task is completed very quickly,
and the team will be ready for any next incoming long task.
On the contrary, if the staffing level is higher, it is prefer-
able to have more medium/small size teams. Such teams
will take more time to accomplish a long task; however,
each other incoming (long) task will not have to wait in the
queue, since it can be dispatched to one of the other teams.

Attention should however be paid to avoid creating ex-
cessively large teams. Although for our case study (see Sec-
tion 5.2) the communication overhead is almost negligible
and Brooks’ law not applicable, there is still an upper bound
over which further increase of a team size could produce a
negative effect. This parameter is to be decided case by case
from the project manager, and can easily be modelled in our
GA by introducing a penalty factor in the fitness function of
the second stage (i.e., the stage that determines the people
allocation) when the maximum team size exceeds a given
threshold.

On the other hand, when the number of available people
increases, the algorithm tends to create a larger number of
small teams, even singleton teams. From one point of view,
this tends to parallelize small tasks (that constitutes, as high-
lighted form Figure 3, the largest part of our case study).
However, having single people teams can be cause of unex-
pected delays, since the task outcome totally depends from
the availability and performance level of the single person.
The project manager should avoid that whenever possible,
by i) considering, as a working unit, pairs instead single-
tons; or ii) similarly to the previous case, relying on a GA
penalty factor for teams below a given threshold.

Following the second approach, we run again the tandem

People Average Min Max Std. Dev.
20 201.25 198 204 2.38
25 164.83 163 167 1.46
30 139.14 133 141 2.53
35 119.50 117 122 1.44
40 106.10 99 114 5.00
45 93.95 82 102 6.03
50 82.29 65 102 13.25

Table 2. Project completion time variability
across teams

GA for the 30 person staffing level, introducing a penalty for
teams below 2 people. Figure 6 plots the size of each team
determined with (Figure 6–b) or without (Figure 6–a) the
penalty factor. The figure shows how the maximum team
size has been reduced (from 5 to 4), and people more uni-
formly distributed across teams, avoiding singletons. Inter-
estingly, the achieved project completion time was exactly
the same.

5.4.2 The real world model: accounting for abandon-
ment, rework and uncertainty

For a given people distribution and estimated project com-
pletion time, it is worth knowing the resource usage dur-
ing the maintenance period. In other words, the estimated
project completion time of each team gives us information
about the availability of people at a given date. When some
teams finish their task, the manager could use resource for
i) back-up to cover for emergencies in other teams. Of
course here, the manager would need to pay attention to
avoid the mythical man month problem [4]; or ii) allocating
free resources on other projects. In addition, the variability

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04) 
1530-1435/04 $ 20.00 IEEE 

Authorized licensed use limited to: West Virginia University. Downloaded on November 13, 2008 at 21:56 from IEEE Xplore.  Restrictions apply.



 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6 7 8 9 10 11

P
ro

je
ct

 c
om

pl
et

io
n 

tim
e 

(d
ay

s)

Teams

30 people

 0

 20

 40

 60

 80

 100

2 4 6 8 10 12 14 16 18 20 22

P
ro

je
ct

 c
om

pl
et

io
n 

tim
e 

(d
ay

s)

Teams

45 people

Figure 7. Examples of resulting Gantt charts
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Figure 8. Project completion time variation
in case of abandonment and rework (for a
staffing level of 35 people)

across teams also indicates how optimal is, given an avail-
able staffing level, the resource usage the algorithm is able
to achieve.

As shown in Table 2, while for small numbers of peo-
ple available the resource usage is optimal (i.e., the project
completion time variability across teams is limited), the
variability tends to increase when distributing a larger
staffing (i.e., from 40 to 50 people). Summary results shown
in the table are confirmed by the detailed Gantt shown in
Figure 7: while for 30 people all the teams finish around 140
days, when the number of available people increases (e.g.,
45 people), the algorithm is not able anymore to determine a
people allocation that, at the same time, both minimizes the
project completion time and maximizes the resource usage.
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Figure 9. Project completion time variation
in case of effort estimate uncertainty (for a
staffing level of 35 people)

A possible explanation of this result could be found in
the fitness function we chose (that minimizes, among all
teams, the maximum project completion time, regardless of
what happens for all the other teams). However, we also
tested a different fitness function, aiming at minimizing the
project completion time standard deviation, obtaining the
same completion time and variability.

The proposed approach implies that the manager is able
to obtain precise effort estimate. This, however, is not re-
alistic: estimate errors should be modelled and simulated.
Moreover, as detailed in [3], it may happen that some main-
tenance phases require a rework. For example, testing may
fail and thus require further implementation and testing ac-
tivities. On the other hand, there may be some WPs that do
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Figure 10. Sizes of the teams working on the
projects

not require some phases, e.g. we may realize, after technical
analysis, that no enactment is needed.

To analyze the impact of rework and abandonment, we
randomly selected a percentage of the WPs (from 5% to
20%) and simulated rework on enactment and testing, as
well as abandonment after technical analysis (i.e., no enact-
ment and testing). Figure 8 show, for a staffing level of 35
people, how the project completion time changes with aban-
donment and rework. These curves allow the project man-
ager to better simulate realistic situations and, if needed,
re-calibrate the staffing and/or delay the project deadline.
Being the abandonment and rework modelled in the same
way, their effect is symmetric.

Finally, Figure 9 shows which is the variation of the com-
pletion time with the uncertainty in the effort estimate. For
the neutral estimate the figure shows that, as the uncertainty
level increases, there is an increment of the estimated com-
pletion time, due to the fact that the instantiated project
planning (i.e., the above obtained WP ordering and peo-
ple allocation) suffers from such effort variations. However,
with further increases of the uncertainty level, the positive
variability (due to pessimistic estimates) is balanced by the
negative variability (due to optimistic estimates) and thus
the project planning appears to be robust against such vari-
ations.

The other two curves models the over–optimistic and
over–pessimistic estimates, highlighting how risky could
be the former. The over–pessimistic estimate can cause a
project over–staffing. However, it is rather conservative, al-
lowing the managers to account for real-world project risks.
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Figure 11. Number of teams staffed in the ac-
tual project at a given day

5.4.3 Actual project staffing

Finally, it is interesting to compare the results of our ap-
proach with the real project staffing level and people organ-
isation. The staffing level was of about 80 people, however
not working full-time on this project, and the completion
time of 155 working days. The number of teams and the
people allocation among teams varied during the time, as
shown in [3]. Figure 10 reports the size of the teams that
worked on each WP. Such a size varies from 2 to 27, with a
median value of 6.

The number of teams working concurrently in a given
day (thus the number of servants in a queuing model) is
shown in Figure 11. Such a number varies from 1 to 12,
with a median value of 6. This confirms the fact that indus-
try managers avoided having a large number of teams com-
posed of few people, preferring, instead, few teams com-
posed of more people. This permitted to minimize the risks,
also because people were also working on other, different
tasks. For example, a deadline on a concurrent project could
have seriously affected the project success if over-staffing
were not performed.

6 Conclusion

This paper presented an approach to determine the op-
timal people allocation across teams and the optimal WP
assignment to teams, with the aim to minimize the project
completion time. The approach is based on a tandem of
GAs, the first aiming at determining the WP assignment, the
second aiming at determining the people allocation. Queu-
ing simulation has been used to implement the fitness func-
tion.
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The results obtained on the available data showed that,
over 45 people, there is no improvement in terms of comple-
tion time, basically confirming the results obtained in [3].
The results also showed that, while with few people avail-
able the algorithm tends to create few large teams, increas-
ing the staffing level several medium/small teams are pre-
ferred. In both case, the managers should carefully deter-
mine the upper and lower bounds, to avoid communication
overhead in large groups or, even worse, singleton groups,
for which the single people availability or performance can
seriously affect the project likelihood of success.

With a low staffing level, the algorithm also tends to op-
timize the resource usage, as highlighted by the small vari-
ability across the completion time of different teams. As the
staffing level increases, an optimal resource usage can result
as difficult, even choosing alternative fitness functions, such
as minimizing the standard deviation across teams.

Finally, we simulated the effect of rework, abandonment
and uncertainty estimate, to model realistic maintenance
tasks as well as manager errors, thus making our approach
applicable in the practice. Clearly, tool suggestion should
serve as a support to manager’s decisions, also influenced,
of course, by factors such as people domain expertise, avail-
ability and seniority.

Work-in-progress is devoted to apply the approach on
further case study, to improve the external validity and,
above all, to apply it in situations in which there are depen-
dency relationships among WPs. A comparison with other
optimization techniques, such as constraint programming,
will also be performed.
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