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Abstract

This paper evaluates the use of three different search–
based techniques, namely genetic algorithms, hill climbing
and simulated annealing, and two problem representations,
for planning resource allocation in large massive mainte-
nance projects. In particular, the search–based approach
aims to find an optimal or near optimal order in which to
allocate work packages to programming teams, in order to
minimize the project duration.

The approach is validated by an empirical study of a
large, commercial Y2K massive maintenance project, which
compares these techniques with each other and with a ran-
dom search (to provide base line comparison data).

Results show that an ordering-based genome encoding
(with tailored cross over operator) and the genetic algo-
rithm appear to provide the most robust solution, though the
hill climbing approach also performs well. The best search
technique results reduce the project duration by as much as
50%.

Keywords: Massive Remedial Maintenance, Search-
Based Software Engineering

1 Introduction

In software maintenance, as in other large scale engineer-
ing activities, effective project planning is essential. Fail-
ure to plan and/or poor planning can cause delays and costs
that, given timing and budget constraints, are often unac-
ceptable, leading to business–critical failures. Traditional
tools such as the Project Evaluation and Review Technique
(PERT), the Critical Path Method (CPM), Gantt diagrams
and Earned Value Analysis help to plan and track project

milestones. While these tools and techniques are important,
they cannot assist with the identification of optimal schedul-
ing assignment in the presence of configurable resource al-
location.

Furthermore, maintenance projects have their own char-
acterisations and properties that require particular attention.
Most large–scale maintenance interventions involve several
teams of programmers and many individual project Work
Packages (WPs). As such, the optimal allocation of teams
of programmers (the primary resource cost drivers) to WPs
is an important problem which cannot be overlooked.

This paper studies the problem of resource allocation in
the context of a large–scale massive maintenance interven-
tion. It investigates the use of search–based software engi-
neering [23] techniques to address problems associated with
optimal allocation of WPs. Specifically, the paper addresses
problems associated with the determination of the optimal
order in which to process WPs (and their consequent allo-
cation to teams of programmers).

From the perspective of search–based software engineer-
ing, this is an example of a scheduling problem. Scheduling
problems, of both general and specific characters, have re-
ceived a great deal of attention from the search community,
yet there has, to date, been little work on the application of
search to the problem of software project planning.

In order to validate the techniques introduced in this pa-
per, empirical results are presented from a large-scale case
study of a massive maintenance project from a large Euro-
pean financial organisation. The case study concerns reme-
dial work arising from the need to address the Y2K prob-
lem. The project involves 84 WPs, each of which involve
the maintenance and reverse engineering of approximately
300 Cobol and JCL files.

Such ‘massive maintenance’ projects are becoming sur-



prisingly prevalent. They involve maintenance and reverse
engineering on a wide scale, across the organisation, plat-
forms and systems for both code, design and data. Recent
examples include Y2K remediation, Euro currency conver-
sion, zip code and phone numbering changes [25]. Such
maintenance activities present particularly acute problems
for managers, since they have fixed hard deadlines and cut
right across an entire software portfolio, touching almost
every software asset possessed by the organisation. For-
tunately, as this paper will demonstrate, some of the fea-
tures of the planning process for these massive maintenance
projects lend themselves to solution by search techniques.

The primary contributions of this paper are as follows:

• the paper shows how three different search algorithms,
namely Genetic Algorithms (GAs), hill climbing and
simulated annealing, can be applied to maintenance
project process planning and studies two different rep-
resentations of the problem. The results are encourag-
ing. In comparison with the real-world data from the
project, the search-based optimizations were capable
of reducing the duration of the maintenance process
by as much as 50%, simply by finding more optimal
allocations;

• for each search technique, the paper compares the ef-
fectiveness of two different genome encodings; and

• the paper also presents results of a separate empirical
study into the effect upon completion time of changes
in staffing levels.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a brief overview of the software maintenance
process studied in the paper. Section 3 explains the three
search algorithms and two problem representations that we
implemented to study the application of search to massive
maintenance planning, while Sections 4 and 5 present the
empirical results of the paper. In particular, Section 4 in-
vestigates the optimal choice of search technique and repre-
sentation, while Section 5 presents the results of the effect
of different allocations of staff to project teams, comparing
the results obtained by search with the actual project staffing
and timeline. Section 6 presents related work and Section 7
concludes.

2 Context: The Massive Maintenance
Project

The application we studied was a large scale financial
system for which Y2K remediation was required. The
maintenance task was decomposed into WPs, i.e., loosely
coupled, elementary units (from one to nine for each ap-
plication) subject to maintenance activities; each WP was

managed by a WP leader and assigned to a maintenance
team (the average team size was approximately four pro-
grammers). Overall, the entire system was composed of 84
WPs, each of which comprised, on average, of 300 COBOL
and JCL files.

The project followed a phased maintenance process
(similar to that defined by the IEEE maintenance stan-
dard [1]), encompassing five macro-phases:

1. Inventory: deals with the decomposition of the applica-
tion portfolio into independent applications, and suc-
cessive decomposition of each application into WPs;

2. Assessment: identifies, for each WP, candidate im-
pacted items, using automatic tools;

3. Technical Analysis (TA): deals with the analysis of im-
pacted items and identifies a candidate solution among
a set of pre-defined solution patterns;

4. Enactment (Enact): an automatic tool was used to ap-
ply patches to the problems identified and analyzed in
the previous phases. The solution was usually based
on windowing [31];

5. Unit Testing (UT) was performed on each impacted
WP; tools were used for automatic generation of test
cases.

Because the intervention was performed almost semi-
automatically and involved highly standardized activities,
it was possible to make an assumption that it is valid to
interchange between people and months. That is, given a
maintenance team size, s and the effort required e, the time
t necessary to perform the task is:

t '
e

s
(1)

Due to Brooks’ law [7], this could be an overly opti-
mistic assumption. However, as other authors have noted
[2], given the small team sizes (fewer than eight people)
and the standard (training–free) nature of the maintenance
task, this approximation can be considered reasonable. The
model can be generalized to situations in which Brooks’ law
does apply by the simple introduction of a non-linearity fac-
tor. A further simplification introduced with our study is the
absence of dependencies between WPs (i.e., there is no con-
straint on possible orderings which can be selected).

The research questions this paper seeks to answer, by
the application of search techniques to the planning of this
maintenance task are as follows:

• For a fixed staffing level, what is the optimal order in
which to present the WPs for action?

• How do the results vary with team size and distribu-
tion?



• What is the difference between GA, hill climbing and
simulated annealing, both in terms of result quality and
number of required fitness evaluations?

• Which is the best genome representation for the prob-
lem described in this paper?

3 The Different Approaches

This section explains how we formulated the problem
as a search–based problem, using two different representa-
tions, GAs, hill climbing and simulated annealing. A ran-
dom search was also implemented for each encoding, to
provide base line (worst case) data.

The overall implementation, combining the search-based
heuristics (GA, hill climbing, simulated annealing) and the
two representations is shown in Figure 1. The two differ-
ent schemas of encoding (and associated fitness functions)
are the pigeon hole representation and the ordering repre-
sentation. These are described in Section 3.1, while Sec-
tion 3.2 describes the algorithms constructed for Hill Climb-
ing, Simulated Annealing and GAs. For further details the
reader can refer to books such as the one by Michalewicz
and Fogel [34].

3.1 Genome Encodings

3.1.1 The pigeon hole representation

The pigeon hole representation describes the solution as
an array of N integers, where N is the number of WPs.
Each value of the array indicates the team the WP is as-
signed to. The representation schema is shown in Figure 1-
a. The fitness function (which is minimized) is simply the
value of the project’s overall deadline. That is, for a single-
step/multi-server maintenance process, the maximum com-
pletion time among the different servers.

3.1.2 The ordering representation

The ordering representation also represents the problem as
an N -sized array, but the value of a representation element
indicates the position of the WP in the incoming queue, for
a single-queue/multi-server queuing system. The represen-
tation schema is shown in Figure 1-b.

The fitness function takes as input, the representation
(i.e., the WP sequence) and computes the finishing deadline
using the queuing simulator of Antoniol et al. [3].

3.2 The Different Search Techniques

3.2.1 The Hill Climbing Approach

In hill climbing, the search proceeds from a randomly cho-
sen point in the search space by considering the neighbours

of the point. Once a fitter neighbour is found this becomes
the current point in the search space and the process is re-
peated. If there is no fitter neighbour, then the search ter-
minates and a maxima has been found (by definition). The
approach is called hill climbing, because when the fitness
function is thought of as a landscape, with peaks represent-
ing points of higher fitness, the hill climbing algorithm se-
lects a hill near to the randomly chosen start point and sim-
ply moves the current point to the top of this hill (climbing
the hill). Clearly, the problem with the hill climbing ap-
proach is that the hill located by the algorithm may be a
local maxima, and may be far poorer, in terms of fitness,
than the global maxima in the search space. However, hill
climbing is a simple technique which is easy to implement
and has been shown to be a useful and robust technique
for the software engineering applications of modularization
[19, 35] and cost-estimation [28].

The hill climbing approach constructed for software
project planning used in this paper works as follows:

1. It starts with a initial solution where each WP is ran-
domly assigned to a team;

2. It randomly takes a WP and assigns it to a new, ran-
domly selected, team.

3. The new configuration is accepted if and only if it leads
to a finishing deadline smaller than the one obtained
with the previous configuration.

4. The algorithm iterates through step 2, either for a given
number of times, or until the fitness function remains
unchanged for a given number of iterations.

3.2.2 The Simulated Annealing Approach

Simulated annealing [33], like hill climbing, is a method
of local search. However, simulated annealing has a ‘cool-
ing mechanism’ (referred to as the ‘temperature’) which ini-
tially allows moves to less fit solutions. The effect of ‘cool-
ing’ on the simulation of annealing is that the probability of
following an unfavorable move is reduced. This (initially)
allows the search to move away from local optima in which
the search might be trapped. As the simulation ‘cools’ the
search becomes more and more like a simple hill climb.

When minimizing, the objective function is usually re-
ferred to as a cost function. When maximizing it is usually
referred to as a fitness function.

The simulated annealing approach constructed for soft-
ware project planning used in this paper works as follows:
From the current assignment of WPs to teams, select a WP
and assign it to a new team. This produces a move to a near
neighbour in the search space. Unlike hill climbing, how-
ever, if the neighbour has a higher value for the objective



Figure 1. a) The Pigeon Hole representation - b) The Ordering representation - c) The proposed
approach

function (the value of which is to be minimized), the new
configuration can be accepted if:

p < m (2)

where:

• p is a random number in the range [0 . . . 1] and

• m = e∆fitness/t

where t (the fitness temperature) was chosen as

t =
α

log(x + β)
(3)

α and β are constants of the same order of magnitude of
∆fitness, and x is the current number of iterations.

This ability to select possibly worse solutions, allows the
simulated annealing approach to avoid local optima.

3.2.3 The Genetic Algorithm Approach

GAs originate with an idea, born over 30 years ago, of ap-
plying the biological principle of evolution to artificial sys-

tems. Roughly speaking, a GA may be defined as an itera-
tive procedure that searches for the best solution of a given
problem among a population, represented by a finite string
of symbols, the genome. The search is made starting from
an initial population of individuals, often randomly gener-
ated. At each evolutionary step, individuals are evaluated
using a fitness function. High-fitness individuals will have
the highest probability to reproduce.

The evolution (i.e., the generation of a new population)
is made by means of two operators: the crossover opera-
tor and the mutation operator. The crossover operator takes
two individuals (the parents) of the old generation and ex-
changes parts of their genomes, producing one or more new
individuals (the offspring). The mutation operator has been
introduced to prevent convergence to local optima; it ran-
domly modifies an individual’s genome (e.g., by flipping
some of its bits, if the genome is represented by a bit string).
Crossover and mutation are performed on each individual
of the population with probability pcross and pmut respec-
tively, where pmut � pcross. Further details on GAs can
be found in the literature [15, 17].



GA are effective in finding optimal (or near optimal) so-
lutions for problems where:

• the search space is large or complex;

• no mathematical analysis is available;

• traditional search methods did not work; and, as is the
case for the problems considered in the present paper

• the solution of the problem is NP-hard [16].

A GA is not guaranteed to converge: the termination
condition is often specified as a maximal number of gen-
erations, or as a given value of the fitness function. To im-
plement a GA for the pigeon hole encoding, the mutation
operator randomly selects a WP and randomly changes its
team. The crossover operator is the standard single point
crossover.

To implement a GA for the ordering encoding, the mu-
tation operator randomly selects two WPs (i.e., two array
items) and exchanges their position in the queue. The
crossover operator is somewhat more complex. Two off-
spring (o1 and o2) are formed from two parents (p1 and p2),
as follows:

1. A random position k, is selected in the genome.

2. The first k elements of p1 become the first k elements
of o1.

3. The last N -k elements of o1 are the sequence of N -k
elements which remain when the k elements selected
from p1 are removed from p2.

4. o2 is obtained similarly, composed of the first N -k el-
ements of p2 and the remaining elements of p1 (when
the first N -k elements of p2 are removed).

For instance, if k = 2 and p1 ≡ {4, 2, 3, 6} and p2 ≡
{4, 6, 3, 2}, then o1 ≡ {4, 2, 6, 3} and o2 ≡ {4, 6, 2, 3}.

This approach to crossover has the advantage that it guar-
antees that each offspring contains precisely one position in
the sequence per WP. It therefore avoids the need for repair,
or some other mechanism which might be required to deal
with duplication of sequence numbers in a more simple-
minded crossover operator.

4 Empirical Study I: Comparing Search
Techniques and Representations

First and foremost, we will analyze the difference i) be-
tween the two types of genome, i.e., the ordering genome
and the pigeon hole genome, and ii) between all the dif-
ferent approaches described in Section 3. Results for all

eight possible combinations are shown in Figure 2. For ro-
bustness, the average over ten runs for each encoding/search
algorithm was used to produce the results reported in Fig-
ure 2. For the GA, the following parameters were chosen:

• Population size: 100 individuals;

• Type of GA: simple (non overlapping), however with
elitism keeping the best individual alive over subse-
quent generations;

• Crossover probability: 0.6;

• Mutation probability: 0.1; and

• Roulette–wheel selection.

The comparison was performed considering a queuing
network configuration with 20 teams (servers) composed of
1 person each one.

The figure clearly shows that the ordering genome en-
coding outperforms, in general, the pigeon hole genome en-
coding (the Mann–Whitney test showed that pigeon hole
genome always performed significantly better, with a sig-
nificance level of 95%). This supports the usefulness of the
proposed approach that combines search–based heuristics
with queuing simulation. The ordering genome is effective
not only for speed of convergence, but also for the possibil-
ity it gives of modeling more complex maintenance tasks.
A queuing simulator allows modeling multi–stage mainte-
nance processes, even accounting for rework or abandon-
ment after a given phase, as well as for priority queues and
for dependencies between WPs.

The results also highlight the fact that applying search–
based heuristics is a sensible approach because they signif-
icantly outperform a randomly-generated staff allocations.
Only the GA–based pigeon hole algorithm reaches results
comparable with the ordering genome, although requiring a
high number of generations. The comparison of the differ-
ent approaches, implemented using the ordering genome,
highlights that the GA seems to exhibit a faster start (due
to its intrinsic parallelism), although it is then overtaken by
the hill climber. After 400/500 generations/iterations the
results are exactly the same. Also the simulated annealing
approach reaches, after about 100 generations, the same re-
sult of GA and hill climbing. It exhibits a slower start due to
the likelihood (higher for the first generations) of accepting
a worsening solution. The Mann–Whitney test showed no
significant difference when comparing the three techniques.

5 Empirical Study II: Determining Staff Al-
location to Teams

The remaining research questions from Section 2 are:
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1. How does the estimated finishing time vary with the
number of people available? and

2. What happens if we consider groups of different size?
That is, like Di Penta et al. [13], we may have
some fast lanes in the queuing model. However,
while in [13] the authors dedicated some servers to the
shortest maintenance requests (similar to the fast lane
checkout in a supermarket), here we can differently
distribute the available people, having a given percent-
age of double–sized teams, i.e., fast servers to which
the longest requests will be dispatched. As before, this
assumes that Brooke’s law is avoided because of the
nature of the project (See Equation 1).

Results for different numbers of people available in to-
tal, and for different percentages of double–sized teams are
shown in Figure 3. In particular, each line represents a dif-
ferent number (from 10 to 40) of people involved, the Y axis
represents the result of the staffing (i.e., the estimated fin-
ishing time), while the X axis represents the percentage of
double–sized teams. For instance, a percentage of 10% for
a total of 10 people available means that 10% of the teams
will be composed of two people instead of one only. In this
case we will have a total of 9 teams, 8 composed of one per-

son and one (about 10% of 9) composed of two people. As
explained above, such a team can be used to handle (in less
time) the longest requests; the fitness function will therefore
tend to reward the assignment of a long task to a double–
sized team, in that the resulting overall finishing time will
be shorter. On the other hand, assigning short tasks to such
a team will be almost useless, and could prevent the correct
assignment of the longest tasks (by occupying the resource).

The figure shows that, for a small number of people
available (between 10 and 15), it is not convenient to have
any fast servers, since it implies a reduction of the total
number of servers; for such a staffing level this is unac-
ceptable. However, when the staffing increases, instead of
excessively increasing the number of servers it turns out to
be useful to have at least a small percentage of fast servers.
These fast servers are able to prevent the longest task du-
ration from determining the overall project finishing time.
For example, let us suppose that the longest task requires
60 days, while all the remaining ones can be accomplished
in 30 days. In that case, the total duration of the project can-
not be smaller than 60 days. However, if instead, we double
the size of the team working on that task, the total finishing
time could be, for example, 40 days (because the longest
task now completes in 30 days and that the reduction in the
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number of people available for the other tasks causes them
to finish in 40 days).

A further increase of staffing tends to increase the opti-
mal percentage of fast servers, moving the minimum point
of the ‘bathtub curve’ to the right.

5.1 Actual project staffing

The actual staffing level of the project which was subject
of our case study was 80 people. However, by analyzing
the time sheets we noticed that these people did not work
full–time on the project (i.e., the worked in parallel on other
projects). The number of working teams and people allo-
cated to teams varied during the project timeline, as also
explained in previous work [3, 4]. In other words, people
were moved from a team to another during the project. The
number of days necessary to complete the project was of
155 working days.

Teams working on the different WPs varied in size from
2 to 27 (see Figure 4), with a median value of 6. Although
the project manager did not adopt the “fast lane” model,
at least they allocated some bigger teams to quickly main-
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Figure 4. Sizes of the teams working on the
projects

tain the bigger WPs. Finally, the number of teams working
concurrently on the project (corresponding, in the queuing
model, to the number of servers) varied from 1 to 12, with



a median value of 6.
As shown in Figure 3, a staffing (working full time on the

project) of 40 people, organized in 20 single-person team
and 10 teams of two persons, would suffice to complete the
project within the 155 days. This is in agreement with the
result presented by Antoniol et al. [3], and confirms how
the combination of queuing simulation and search heuristics
can be used as a support for project management.

5.2 Threats to Validity

In a study like that reported in the present paper, there are
three primary sources of treat to the validity of the results
obtained. These concern the construct validity and inter-
nal and external validity of the results obtained. Construct
validity concerns the methodology used to construct the ex-
periment. Internal validity concerns possible courses of bias
in the manner in which the results were obtained, while ex-
ternal validity concerns the possible bias of choice of exper-
imental subjects (that is, to what extent can one generalised
from these results).

Construct validity threats may be due to the simplifica-
tions made on the maintenance process modelled, as well as
to the assumptions made in Section 2. However, the effect
of these threats is limited because:

1. the applicability of the search techniques do not de-
pend from the topology of the maintenance process
(i.e., a more complex model simply requires that the
objective function should be computed over a queuing
network instead of over a single-queue system) and

2. for the case study adopted there were no dependencies
at all.

Internal validity threats, in the case study, can be due to
the randomness of the results obtained from simulation and
GA. To avoid such a threat, different actions were taken:

• first and foremost, the number of generations and pop-
ulation size needed by GA were carefully calibrated.
The chosen values were determined ensuring that fur-
ther increases do not significantly affect the results;

• similarly, the number of iterations required by the
whole approach was calibrated. Increases over 40 it-
erations do not produce improvements in the fitness
function; and

• to avoid results being skewed by the randomness in-
herent in metaheuristic search techniques of the kind
studied here, GAs were executed 20 times and it was
verified that the fitness function values obtained by the
final generation do not change among the iterations.

With regards to external validity, the approach and the
results obtained can be extended as is to situations in which

1. Brooks’ law is not valid and

2. there are no dependencies between WPs.

For all the other cases, there is the need for a more com-
plex model. First and foremost, there may be the need to
account for non-linearity factors in Equation (1), or to con-
sider the constraints due to the WP dependencies.

6 Related Work

Search techniques have previously been applied to
scheduling problems in general [11], with good results.
The present authors introduced the idea of using search-
techniques in software project planning [4]. However, this
previous work only considered the application of GAs to the
problem. The primary contribution of the present paper is to
compare the use of GAs with a variety of other widely-used
search techniques and encodings. This section explains the
relationship between the work presented in the present pa-
per and previous work on search–based scheduling, search
based software engineering and software project planning.

An application of search–based techniques to project
scheduling was done by Davis [11]. A survey of the ap-
plication of GAs to solve scheduling problems has been
presented by Hart et al. in [24]. The mathematical prob-
lem encountered is, as described by the author, the classical,
NP-hard, bin packing or shop-bag problem. A survey of ap-
proximated approaches for the bin packing problem is pre-
sented in [10]. More recently Falkenauer published a book
devoted to the GA and grouping problems [15]. The theme
of the book and the proposed genome encoding are highly
relevant to the problem addressed in this paper. Schema in-
terpretation and bin packing genome encoding described in
the book were a source of inspiration although our problem
is slightly different. The order on which WPs are presented
to the teams is relevant whereas bin packing doesn’t impose
a packing order to reach an optimum.

Search heuristics have been applied in the past to solve
some related software project management problems. In
particular, Kirsopp et al. reported a comparison of random
search, hill climbing and forward sequential selection to se-
lect the optimal set of project attributes to use in a search–
based approach to estimating project effort [27]. A com-
parison of approaches (both analytical and evolutionary)
for prioritizing software requirements is proposed in [26],
while Greer and Ruhe proposed a GA-based approach for
planning software releases [18]. Release planning was also
considered by Bagnall et al. [5], who applied a variety of
techniques including greedy algorithms and simulated an-
nealing to a set of synthetic data created to model features



for the next release and the relationships between them. The
aim was to determine the subset of features which should
optimally appear in the next release (the ‘next release prob-
lem’), in order to maximize user satisfaction while minimiz-
ing cost. As such, their work can be viewed as an instanti-
ation of a feature subset selection search problem, where as
the set of problems considered in the present paper is char-
acteristic of a scheduling search problem.

All of these approaches are examples of the wider class
of problems embodied in the phrase ‘search–based software
engineering’ [9, 23], which has become a fast growing sub-
area of activity with software engineering [8, 12, 22, 30],
and into which category the work reported in the present
paper also falls. Search based software engineering has
proved successful in requirements engineering [5], project
cost estimation [14, 29], testing [32] software maintenance
and reverse engineering [20, 36] and program transforma-
tion [6, 21].

7 Conclusions

This paper has evaluated the use of search-based tech-
niques for project planning in the context of a massive main-
tenance intervention. Three search based techniques were
evaluated. Each was applied to two very different encod-
ing strategies. Each encoding represents the way in which
the WPs of the overall project are to be allocated to teams
of programmers. The results from the case study show that
the use of optimization can reduce project duration dramat-
ically (by 50% over the results from the actual project).

The ordering encoding, which combines the search–
based approach with a queuing simulation model, was
found to outperform the other approaches. For the less opti-
mal encoding, the GA performed significantly better than
the other approaches. For the optimal encoding, though
GA initially performs better, simulated annealing and hill
climbing approaches soon catch up, so that the overall dif-
ference between the three approaches appears to be small,
compared to the problem of establishing an effective encod-
ing.

Finally, the paper reports the results of experiments that
alter the size of the project teams. While, for a small overall
staffing levels, double-sized teams do not improve perfor-
mance, for larger staffing levels, the effect can be dramatic.
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