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Abstract

A Hybrid Approach to
Expert and Model Based

Effort Estimation

Daniel Ryan Baker

It is important to have a good cost estimate in order to budget a new project. Unfortunately, soft-
ware effort estimation methods are often inaccurate. Molokken and Jorgensen report that 60-80%
of the time a software project will overrun its estimate by an average of 30% [98]. Furthermore,
most estimates do not describe the uncertainty of the estimate [52,54,118]. In addition, each source
of uncertainty, as described by Kitchenham and Linkman [68], has yet to be represented.

In this thesis, the design principles of an effort estimation tool called 2CEE are discussed. This
tool is currently being deployed at NASA’s Jet Propulsion Laboratory, and feedback regarding
the methodology improvements to industry is reported. This tool represents an approach to effort
estimation that provides greater interaction of the cost analyst with the estimation model. The
approach places an emphasis on representing estimation uncertainty which, among other benefits,
allows estimates with increasing confidence throughout the software lifecycle.

Previously, Jorgenson has argued that most effort estimation is done manually [49, 52]. How-
ever, manual methods have difficulty sampling the space of uncertainty [54]. This thesis describes
how 11 of Jorgensen’s 12 expert judgment best practices may be automated in a model, 7 of which
are demonstrated in 2CEE. Thus, the distinction between manual and automated methods for ef-
fort estimation is questioned. Instead, an alternate ideology is proposed where neither manual nor
automatic estimation methods dominate, but rather each augments the other.

In addition, the techniques of feature subset selection, bagging, and boosting are explored for
the COCOMO software effort estimation model. These methods are evaluated using nonparametric
techniques to compensate for the non-Gaussian error distributions [95]. Improved estimation ac-
curacy is reported. Finally, a startling discovery regarding the stability of the COCOMO software
effort estimation model is reported.
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Chapter 1

Introduction

Software effort estimation is the task of approximating the amount of work required to develop a

software project. This estimate is made using a unit of effort such as work-months, the amount

of work accomplished by one employee working full time for a month. Effort estimates can then

be converted into cost estimates by factoring in the salaries of the employees. The primary reason

estimates are first made in terms of effort instead of cost is that it makes the estimates and data

involved more compatible across time periods, geographic locations, and domains of the industry.

For example, project data and effort estimates from 10 years ago can be useful without having to

adjust for inflation.

Software effort estimation is not a precise science. Mistakes are common and those mistakes

can waste hundreds of millions of dollars. For example:

”To gain control over its finances, NASA last week scuttled a new checkout and launch

control system (CLCS) for the space shuttle. A recent assessment of the CLCS, which

the space agency originally estimated would cost $206 million to field, estimated that

costs would swell to between $488 million and $533 million by the time the project

was completed.

” – June 11 2003, Computer News

The CLCS experience is hardly unique. Boehm cautions that early life-cycle estimates of

software effort can be inaccurate by up ±400% [8, p310]. Molokken and Jorgensen report that,

according to their survey, 60-80% of the time a software project will overrun its estimate by an
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average of 30% [98]. The 2001 Standish Group ”Chaos Report” [127] showed an average overrun

of 45%. In addition, they [127] found only 28% of projects to finish on time and on budget.

Unfortunately, many of these successful projects were far under budget [127]. A study [101] by

Ostvold et al. of the Norwegian software industry found 76% of projects had effort overruns

with a mean overrun of 41% and a median overrun of 21%. They also found that estimates for

internally developed projects were much more accurate than externally developed projects [101].

Other authors have cautioned that off-the-shelf “un tuned” effort estimation models have been up

to 600% inaccurate in their estimates, e.g. [102, p165] and [58]. Clearly there is a strong need for

better software effort estimation methods.

There are many software effort estimation approaches, which are outlined in sections 2.1, 2.2,

and 2.3. This thesis focuses on the use of the COCOMO model and variations of this model due

to the public description of the algorithm, available data, as well as prior use and research by the

research client, NASA’s Jet Propulsion Laboratory. COCOMO is a popular model, developed by

Barry Boehm [8,10] of USC, which defines a linear relationship between effort and code size. The

model includes several cost drivers, such as programmer capability and required reliability, which

affect the estimate either as a linear scalar value, or as a slight exponential change. COCOMO is

typically calibrated on the historical data local to an organization, but it has predefined calibration

values which may be used in the absence of data.

Although there are several approaches to software effort estimation, the industry uses mostly

expert judgment to make their estimates [44]. One of the major goals of this thesis is to make

progress towards a conceptual framework of integration of expert and model-based methods. There

are several ways this can be done. One way is to explicitly develop a method that combines experts

and models. The simplest way to do this would be to combine estimates from each, or develop

a radically new approach of integration from scratch. Another way would be to either look at

model-based methods and add aspects of expert-based methods, or vice versa. This would allow

some benefits of integration without having to build a new model from scratch. In this thesis, the

second approach which adds aspects of expert-judgment to a model paradigm was chosen because

this research was in collaboration with the Jet Propulsion Laboratory which is required to provide

model-based estimates.

What is a good way to adds aspects of expert-judgment to a model-based paradigm? Jor-
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gensen [49] has described 12 expert-based best practices. These expert best practices could be

automated in a model to add aspects of good expert judgment to the model. Jorgensen’s 12 expert-

based best practices are:

1. evaluate estimation accuracy, but avoid high evaluation pressure;

2. avoid conflicting estimation goals;

3. ask the estimators to justify and criticize their estimates;

4. avoid irrelevant and unreliable estimation information;

5. use documented data from previous development tasks;

6. find estimation experts with relevant domain background;

7. estimate top-down and bottom-up, independently of each other;

8. use estimation checklists;

9. combine estimates from different experts and estimation strategies;

10. assess the uncertainty of the estimate;

11. provide feedback on estimation accuracy; and,

12. provide estimation training opportunities.

Jorgensen strongly endorses expert predictions by claiming that formal models should not re-

place expert judgment, but should instead support expert prediction [53]. The justification for this

is that, ”expert predictions may include detailed knowledge about the maintainer and the environ-

ment which it is not practical to include in a formal model [53].” However, Jorgenson is silent on

how this might be best accomplished. The challenge of this thesis was to see how to integrate

automated model-based support with the above list.

Total coverage of the whole list is not possible. For example, the second item, avoiding con-

flicting estimation goals, remains in the domain of the user, and it is up to them to properly use the

model. However, automated model-based support tools can be offered for most of this list.

3



How is it that these expert practices might be included in a model? The first practice may

be accomplished by evaluating the model with historical data. The third practice is accomplished

by basing estimates off of past experience via historical data, as well as by using validating the

method with historical data, and assessing the uncertainty in the estimate. The fourth practice

may be accomplished by using feature and record selection algorithms to prune irrelevant and

unreliable information. The fifth practice is inherently accomplished by any model calibrated on

historical data. The sixth practice, ”find estimation experts with relevant domain background”, can

be thought of as using the best models available with relevant calibration data. The seventh practice

would require a lot of development to create the bottom-up assessment tools, but it could be done.

The eighth practice could be implemented by requiring specific steps be taken in the application.

The ninth practice could be done by stacking, or combining, the estimates of different models. The

tenth practice may be handled by representing each source of uncertainty and providing a range or

distribution of estimates instead of a single number. The eleventh practice may be accomplished

by making an estimate for a project in which you don’t know the actual effort, and then having

the actual effort revealed to you. Finally, providing estimation training opportunities could be built

into a model as an interactive training guide.

In addition, involving the cost analyst, or expert, in the model’s operation further increases the

integration of the hybrid approach. This thesis contends that the model’s operation shouldn’t be

viewed as a ”black box” from the expert, allowing them to be ignorant of the model’s decision

making structure. Rather, if the expert understands both how the model works and can see and

guide its operation, then much greater insight into the final estimate is obtained.

What model based methods should be included in the hybrid combination? As mentioned

before, this thesis focuses on the COCOMO family of regression models due to available exper-

imental datasets. Other models may well be worthy of inclusion in a hybrid system, but were

not investigated in this thesis. This thesis investigates several methods to improve the COCOMO

model which may be worth using including feature subset selection, bagging, and boosting. Fea-

ture selection tries pruning unnecessary, irrelevant, and noisy features to improve performance and

create a simpler model. It is described in section 2.6 and experiments using it are found in sec-

tion 3.2. One benefit of feature selection is that it helps satisfy Jorgensen’s fourth best practice.

Bagging and boosting, described in sections 2.8.2 and 2.8.3, build several deviations of the same
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model and combine their estimates to achieve a theoretically better estimate. Boosting does this

by focusing on the training instances that are the most difficult to classify. Our prior research [95]

found a small number of severe outliers in the estimation errors. Thus, this technique is appeal-

ing for cost estimation. Before using these techniques, their efficacy should be demonstrated with

existing effort estimation data. Thus, the Chapter 3 details research and experiments on feature

subset selection, bagging, and boosting of the COCOMO model. In addition, Jalali [46] has found

an automated record selection algorithm named LOCOMO to be useful for COCOMO estimation,

which helps satisfy practice # 4. For this reason as well as its performance gains, LOCOMO is

included in model based methods used in the hybrid combination.

Another important aspect of this thesis is the representation of uncertainty in the estimate.

Most software effort estimates are made using a point estimate, however software effort estimation

is widely recognized as an inherently uncertain task [37,52,54,68,72,103,109,118]. Thus, project

managers should be provided with a representation of the uncertainty in the estimate as well so

that they may consider the risk of an overrun when planning a project. Kitchenham and Linkman

have described four sources of estimate uncertainty [68].

• Measurement error is error from accuracy limitations in the input variables of the model.

• Model error is error due to the model’s abstractions from reality.

• Assumption error is error from making incorrect assumptions about a model’s input param-

eters.

• Scope error is error from estimating outside the model’s domain.

To the best of our knowledge, no estimation strategy incorporates all four of Kitchenham’s sources

of uncertainty. This thesis provides a more comprehensive handling of these uncertainty operators

and offers methods that may reduce the actual uncertainty.

Molokken-Ostvold et al. [101] found that most research treats an estimate as a single point, but

in industry there are several estimates. This is because estimates are needed at different stages of

development. For example, an early estimate with ambiguous requirements may be made, but later

a requirements specification is produced and a new estimate is made.
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Considering the need for estimates at different stages in the software life cycle, an estimation

model would benefit from being usable and effective at each stage. Thus, one of the goals of this

thesis is to provide estimation methods useful at different software life-cycle stages.

Grimstad et al. [36] recommend the use of a consistent effort estimate terminology among

researchers. Molokken-Ostvold et al. suggest, ”If the goal is to investigate the estimation accuracy

of professionals in a company”, then, ”it is meaningful to use the most likely estimates at the

planning stage, instead of, for example, early estimates communicated to clients.” [101] A most-

likely estimate has equal likelihood of being above or below the actual estimate. This contrasts

with other types of estimates such as estimates to win a bid or to budget a project. For example,

when budgeting a project, a value above the most-likely, or 50 percentile estimate, is typically used

to increase the likelihood of finishing the project. In this thesis, the accuracy of the estimate is

important when comparing methods. The most-likely estimate will be closer to the actual estimate

more often than an adjusted budget estimate. Thus, the estimates made in this thesis refer to most-

likely estimates.

The results of this thesis research have been implemented in a tool known as 2CEE for NASA’s

Jet Propulsion Laboratory. An important quality of this thesis is the application, feedback, and

validation of the novel research methods in an industrial environment. Why is this important?

In a recent review of software effort estimation studies, Jorgensen and Shepperd discovered a

disconnect between research and the actual use of effort estimation methods [52]. By receiving

industrial feedback on the research of this thesis, and by validating the methods in the industrial

environment, this thesis makes a step toward breaching the research to reality divide.

The 2CEE tool increases the experts involvement with the model, and it implements 7 of Jor-

gensen’s 12 expert based best practices. This makes a good improvement towards a hybrid ap-

proach to expert and model based effort estimation. In addition, it represents the uncertainty of

the estimate, and provides numerous calibration options. The tool is currently available from the

Jet Propulsion Laboratory. To obtain a copy, send an email to softwarerelease@jpl.nasa.gov

with your name, citizenship, affiliation, and the name of the software that you are requesting,

2CEE.

6



1.1 Contribution of This Thesis

This thesis contributes a variety of finds to the literature, including:

• A new approach to estimation that increases expert involvement with the estimation model.

• Integration of 7 of Jorgensen’s 12 expert judgment best practices into an estimation model.

• A more comprehensive representation of estimate uncertainty by considering the sources of

uncertainty.

• A near linear time feature subset selector providing improvements just as good as an exhaus-

tive search.

• An industrial case study of the development and introduction of these methods at NASA’s

Jet Propulsion Laboratory.

• Much different COCOMO calibration coefficients than have previously been observed.

• One of the few studies to evaluate software effort estimation methods using nonparametric

analysis due to the non-Gaussian distribution of errors.

1.2 Structure of This Document

The remainder of this document is organized as follows:

• Chapter 2 is a literature review describing related work

• Chapter 3 details some laboratory studies using some techniques described in the related

work

• Chapter 4 describes a new software effort estimation methodology called 2CEE

• Chapter 5 details the implementation and experimental validation of 2CEE in the industry

• Chapter 6 concludes the study by summarizing the accomplishments towards each thesis

goal, and describes future work
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In addition, an appendix containing more experimental results is freely available online at http:

//unbox.org/wisp/var/dan/extras/appendix.pdf.
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Chapter 2

Related Work

2.1 Software Effort Estimation Taxonomy

There are many types of software effort estimation models. Myrtveit et al. have described a

hierarchy [106] of these models as shown in figure 2.1. Myrtveit’s taxonomy groups estimation

models into sparse-data methods, which need little to no historical data, and many-data methods,

which need significantly more data records [106].

2.2 Sparse Data Methods for Software Effort Estimation

Myrtveit et al. list three types of sparse-data methods for software effort estimation: [106]

• Expert Judgment

• AHP - Analytic Hierarchy Process

• CBR - Case Based Reasoning

2.2.1 Expert Judgment

In software effort estimation, expert judgment refers to the creation of an estimate where, ”a sig-

nificant part of the estimation process is based on a non-explicit and non-recoverable reasoning
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Figure 2.1: Myrtveit’s taxonomy of software effort estimation methods. [106]

process, i.e., intuition [49].” Its use ranges from, ”unaided intuition”, to, ”expert judgment sup-

ported by historical data, process guidelines and checklists. [49]”

Roughly 21% of research in software effort estimation between 2000 and 2004 involved the

expert judgment estimation approach [52]. Although researched less than some other methods,

expert judgment is highly prevalent in the industry. In 1991, Hihn and Habib-Agahi’s reported

that only 7% of software effort estimators primarily used formal models [44]. Conversely, 83%

primarily used informal analogy, 4% formal analogy, and 6% rules of thumb [44]. Here, informal

analogy was expert judgment where, ”documented data was not used to support the estimate”,

formal analogy was expert judgment that considered documented data, and rules of thumb may

have been, ”derived from actual project data”, or from expert opinion [44].

Similarly, other reports indicate that although expert judgment research is low, its use in in-

dustry ranges from 62%, 72%, 84%, to 86% prevalent [49]. It is possible that expert judgment’s

dominance in the industry is because it leads to better estimates. Jorgensen considered this and in-

vestigated fifteen studies using both expert and model-based methods [49]. He found that of, ”the

fifteen studies, we categorize five to be in favour of expert estimation, five to find no difference,

and five to be in favour of model-based estimation [49].” Perhaps this conclusion instability is due

to the same problems discussed in section 2.5.3.
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Considering the popularity of expert based approaches, it is important for the potential effort

estimator to know how to properly utilize this method. Jorgensen offers twelve ”best practice”

guidelines for expert based software effort estimation [49, 50]. For more on these best practices,

see section 2.4.

Expert-based estimation approaches often utilize multiple experts to improve the estimate.

Passing and Shepperd [108] discuss the group approach:

”There are two main reasons why group discussions are supposed to improve expert

estimation. First, group discussions lead to the acquisition of new knowledge through

group discussion. And second, exchanging assumptions and views on possible threats

to the estimates can lead to better estimates, because more aspects are taken into ac-

count than group members could have determined individually [60, 77, 99].

There are various group techniques available. The one most often mentioned for esti-

mation meetings is the Wideband Delphi Technique [8]. It is an iterative process aimed

at avoiding group pressure effects through anonymous estimates. Group members dis-

cuss relevant issues openly, but do not have to agree on a consensus estimate. Instead,

each member notes his personal estimate after the discussion. This has been found

to reduce possible compliance to a majority opinion [4]. The personal, anonymous

estimates are then given as an input to the following round. The goal is to seize the

positive effects of group discussions as mentioned above, while avoiding compliance

to group pressure or dominant individuals [77].” [108]

Passing and Shepperd [108] found improved accuracy using a group of experts instead of one.

Another benefit reported by Molokken and Jorgensen is that groups of experts produce less opti-

mistic and more realistic estimates than individual expert estimates [100]. Considering that most

estimates are overly optimistic, this is a useful benefit. For more on this phenomenon, see section

2.5.6.

Jorgensen strongly endorses expert predictions by claiming that formal models should not re-

place expert judgment, but should instead support expert prediction [53]. The justification for this

is that, ”expert predictions may include detailed knowledge about the maintainer and the environ-

ment which it is not practical to include in a formal model [53].”
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Combining Expert Judgment and Model-Based Estimation

Many effort estimators staunchly support one ideology: for example, either expert judgment or

model-based estimates. Some conduct more than one estimate, using one to support the other.

Others combine estimates from multiple approaches. A few integrate the multiple methods into

one.

Meli [86] has suggested such an integrated approach combining expert judgment with models:

”People and methods are tremendously important to gain a high quality in the esti-

mation results. Instead of conceiving them as alternative means we should consider

them as synergic resources. This may happen if we are supported by a conceptual

framework of integration and a set of operational rules to follow.” [86]

One of the goals of this thesis is to make progress towards the, ”conceptual framework of

integration”, suggested by Meli. A recent review [118] by Shepperd echoes Meli’s sentiment:

”Another area in which more research is needed is the less formal combining of pre-

diction systems with expert judgement. In the past the implication if unvoiced in-

cluding from some of the authors work has been that formal prediction systems will

one day replace experts. However this is extremely unlikely not least because software

project cost predictions are infrequent but very high value decisions. Hence we need

more work to consider how formal models might support and assist experts rather than

replace them.” [118]

One method with characteristics of both expert and model based systems is the Analytic Hier-

archy Process.

2.2.2 Analytic Hierarchy Process

The Analytic Hierarchy Process [116], AHP, is a decision-making technique used in many dis-

ciplines for, ”dealing with problems which involve the consideration of multiple criteria simulta-

neously. [112]” Although it’s use for software effort estimation technically qualifies AHP as an

expert judgment approach, As a technique for software effort estimation, AHP combines historical

data and expert opinion by quantifying subjective judgment. Shepperd and Cartwright have found
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AHP to provide good software effort estimates, possibly because it allows the expert to, ”view the

problem in a more structured and systematic way. [121]”

The AHP involves building a hierarchy of the problem with the goal as the root and the relevant

attributes are placed in the level(s) below it [112]. Weights are assigned to each node and many

pairwise comparisons and matrix multiplications are made [112]. It is beyond the scope of this

study to describe the details of calculating these weights. Next, The end result is a method which,

”provide[s] a formal, systematic means of extracting, combining, and capturing expert judgments

and their relationship to analogous reference data [43, 116].” An evolution of this technique for

software effort estimation is the use of probabilistic pairwise comparison matrices as suggested by

Hihn and Lum [43] to include uncertainty in the expert-based estimates. It is important to assess the

uncertainty of an estimate to understand the risk involved; providing a range of estimates instead

of a point estimate is an intuitive way to do this. The problem of uncertainty is discussed in more

detail in section 2.5.4.

2.2.3 Case Based Reasoning

Case-based reasoning, CBR, is machine learning technique that may be used for effort estimation.

Kolodner define case-based reasoning:

”Case-based reasoning systems are systems that store information about situations in

their memory. As new problems arise, similar situations are searched out to help

solve these problems. Problems are understood and inferences are made by finding

the closest cases in memory, comparing and contrasting the problem with those cases,

making inferences based on those comparisons, and asking questions when inferences

can’t be made.” [71]

CBR is well received among researchers because it, ”has an intuitive appeal for use in software

effort estimation as it has the capability to model the way expert estimation is performed as well

as explaining the reasoning applied to adapt past cases.” [30] CBR follows a cycle of four basic

processes [2]:

1. RETRIEVE the most similar case or cases
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2. REUSE the information and knowledge in that case to solve the problem

3. REVISE the proposed solution

4. RETAIN the parts of this experience likely to be useful for future problem solving

The CBR approach doesn’t require constraints on the information recorded about software

projects. This contrasts with models like COCOMO [8, 10] that predefine what information to

collect about software projects. CBR, ”allow[s] estimators the freedom to utilise those features that

they believe best characterize their projects and are most appropriate to their environments [57].” It

is no surprise then, that feature subset selection methods are very useful for case-based reasoning

models [57, 63, 64]. Delany et al. [24] write that there, ”is a need to identify abstract features that

capture similarity across domains.”

At its lowest level, CBR often boils down to a nearest neighbor algorithm. For example, a

CBR model may use the, ”k-nearest-neighbor strategy, where some fixed, small, number k of

nearest neighbors–say five–are located and used together to [estimate] [135].” This introduces

some algorithmic choices to make. For example, what is the best value of k? Determining the

nearest neighbors usually involves calculating an n-dimensional distance calculation between the

new project and each past project, where n is the number of features. Normalization is commonly

done equalize the impact of each feature on the distance measure.

CBR has been researched for software effort estimation for many years [24, 30, 57, 63, 64].

For example, Shepperd et al. developed ANGEL [122], which is a CBR tool for software effort

estimation that works with, ”arbitrary sets and types of features.” Thus, ANGEL does not make an

assumption about the form of the relationship between the data and the estimate. ANGEL can be

thought of as a nearest neighbor algorithm that estimates a new project by reasoning from similar

cases. It normalizes features such that, ”the influence of a feature is not related to the choice of

unit [64].” Shepperd and Schofield, ”found that ANGEL performed as well or better than a stepwise

regression model across 9 datasets [64, 120].”

CBR sounds a lot like EBA. Indeed, Aamodt and Plaza equate one to the other, but with one

slight difference:

”Analogy-based reasoning: This term is sometimes used, as a synonym to case-based

reasoning, to describe the typical case-based approach. However, it is also often used
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to characterize methods that solve new problems based on past cases from a different

domain, while typical case-based methods focus on indexing and matching strategies

for single-domain cases.” [2]

This explains why Myrtveit et al. grouped EBA as a many-data approach and CBR as a sparse data

approach [106]: CBR typically considers similar in-house data, while EBA considers much more

by casting its net into cross-company data. Unfortunately, this distinction is not required or clear

to many researchers, so CBR is essentially the same as EBA.

2.3 Many Data Methods for Software Effort Estimation

Myrtveit et al. describe two types of many-data estimation methods: AFA’s and Functions [106].

In this context, Functions, assume, ”there is a mathematical relationship between the variables ex-

pressed in a formula”, typically of, ”the general form y = AxB [106].” AFA’s, or Arbitrary Function

Approximators, do not make this assumption.

2.3.1 Arbitrary Function Approximators

Myrtveit et al. list three types of AFA’s for software effort estimation: [106]

• EBA - Estimation by Analogy

• ANN - Artificial Neural Networks

• CART - Classification And Regression Tree

Estimation by Analogy

Estimation by Analogy is similar to case-based reasoning, although it has a connotation that implies

the use of more relevant data from other organizations [2]. For more on this, see section 2.2.3.

EBA is similar in principle to the other methods described except it does not make a functional

assumption about the relationship between project data and effort. It can be thought of as a nearest

neighbor approach that makes an estimate using the actual efforts of the historical records deemed
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relevant. This is done by describing the novel project being estimated, and then using this descrip-

tion to find similar historical projects. The actual efforts from these past projects are, ”then used,

possibly with adjustment, to generate the predicted value. [122]” EBA is a popular technique which

is heavily research for software effort estimation [76, 82, 105, 119, 126, 128]. A study comparing

estimation by analogy with regression based estimation was unable to consistently determine one

method superior to the other [82].

Artificial Neural Networks

”A neuron is a cell in the brain whose principal function is the collection, processing,

and dissemination of electrical signals. The brain’s information-processing capacity is

thought to emerge primarily from networks of such neurons.” [114]

Artificial Neural Networks, or ANNs, are machine learning algorithms that mimic the human

brain in order to solve problems in a myriad of domains. They, ”provide a general, practical method

for learning real-valued, discrete-valued, and vector-valued functions from examples [97].” One

potential use for an ANN is software effort estimation. Using ANNs to estimate software effort

is not a new idea. Jorgensen’s Systematic Review of Software Development Cost Estimation Stud-

ies [52] found 11 studies using ANN for software effort estimation from 1990-1999, and another

11 studies from 2000-2004. In 1995, Srinivasan and Fisher [125] found ANN to be, ”competi-

tive with SLIM, COCOMO, and FUNCTION POINTS as represented in a previous study [58] by

Kemerer.” A simulation study by Finnie and Wittig [30] showed good software effort estimates

by ANN. Conversely, a more recent simulation study by Shepperd and Kadoda found ANN had

the least number of wins compared to stepwise regression, rule induction, and case-based reason-

ing [119]. Even more recently, Tronto et al. found ANN to outperform COCOMO and some other

popular models [23].

Classification And Regression Tree

The Classification and Regression Tree, originally by Breiman et al. [12], is a nonparametric deci-

sion tree machine learning technique. In the context of software effort estimation, the goal is not

to classify between different distinct classes, but is instead to estimate the effort. Thus the relevant
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aspect of CART in this context is the regression tree, which has a numeric value at each leaf node.

CART works by first building a decision tree until a ”maximal” tree has been made that overfits

the training data [75]. Then, the tree is simplified by pruning unnecessary branches [75]. Finally,

a tree is created which ”fits the information in the learning dataset, but does not overfit the infor-

mation, is selected from among the sequence of pruned trees [75].”

CART, or more specifically regression trees have seen limited use for software effort estima-

tion [14–17, 67, 125] In 1995, Srinivasan and Fisher [125] found CART to be, ”competitive with

SLIM, COCOMO, and FUNCTION POINTS as represented in a previous study [58] by Kemerer.”

In 1998, Briand et al. found [17] that, ”despite a general poorer accuracy [than a least-squares

regression model], the regression tree models are more intuitive and easy to use for benchmarking

purposes.” However, a year later, Briand et al. found [16], ”simple CART models perform a little

better than other modeling approaches.”

2.3.2 Function Based Software Effort Estimation

The only type of function based software effort estimation shown by Myrtveit et al.’s taxonomy

(figure 2.1) is regression analysis [106]. Regression is the act of, ”learning a continuous func-

tion [114].” Regression is the most heavily researched form of software effort estimation [52].

Roughly 51% of research in software effort estimation between 2000 and 2004 involved a regres-

sion based estimation approach [52]. Regression was found [47] to have the lowest median MRE

of several methods using, ”a large-scale industrial data set which is professionally maintained by

the International Software Standards Benchmarking Group (ISBSG).” There are many regression

based effort estimation models [3, 8, 10, 21, 52]. This thesis focuses on the COCOMO family of

regression models due to available experimental datasets.

COCOMO

The experimental case study data for this thesis uses COCOMO-format data. COCOMO, the Con-

structive Cost Model, was originally developed by Barry Boehm in 1981 [8] and was extensively

revised in 2000 [10]. COCOMO helps software developers reason about the cost and schedule im-

plications of their software decisions such as software investment decisions; setting project budgets
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and schedules; negotiating cost, schedule, and performance trade-offs; making software risk man-

agement decisions, and making software improvement decisions. One advantage of COCOMO

is that unlike many other costing models such as SLIM or SEER, COCOMO is an open model

with numerous published data [8, 10]. COCOMO measures effort in calendar months where one

month is 152 hours which includes development and management hours. The core intuition behind

COCOMO-based estimation is that as a program grows in size, the development effort grows ex-

ponentially. More specifically: In addition, the COCOMO II model, ”has been validated using JPL

data and provides reasonable flight and ground software estimates in the JPL environment [78].”

e f f ort(personmonths) = a∗
(

KLOCb
)
∗

(
∏

j
EM j

)
(2.1)

Here, KLOC is thousands of delivered source instructions. KLOC can be estimated directly or

via a function point estimation. Function points are a product of five defined data components

(inputs, outputs, inquiries, files, external interfaces) and 14 weighted environment characteristics

(data comm, performance, reusability, etc.) [10, 48]. A 1,000 line Cobol program would typically

implement about 14 function points, while a 1,000-line C program would implement about seven1.

In equation 2.1, EM j is one of the many effort multipliers such as cplx (complexity) or pcap

(programmer capability). Figure 2.1 describes the COCOMO 81 effort multipliers and illustrates

which positively and negatively influence the effort estimate. Increasing the upper and lower

groups of variables will decrease or increase the effort estimate, respectively. In order to model the

effects of EM j on development effort, Boehm proposed reusing numeric values which he generated

via regression on historical data for each value of EMi (best practice #13 in figure 2.6). Table 2.2

shows Boehm’s EM values for COCOMO 81.

Note that in COCOMO 81, Boehm identified three common types of software: embedded,

semi-detached, and organic. Each has their own characteristic “a” and “b” (see figure 2.2).

COCOMO-II ignores these distinctions. This study used data sets in both the COCOMO 81 and

COCOMO-II format.

COCOMO II is Barry Boehm’s 2000 improvement to COCOMO [10]. In COCOMO II, the

exponential COCOMO 81 term b was expanded into the following expression:

b+0.01∗∑
j

SFj (2.2)

1http://www.qsm.com/FPGearing.html
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upper: acap: analysts capability

increase pcap: programmers capability

these to aexp: application experience

decrease modp: modern programming practices

effort tool: use of software tools

vexp: virtual machine experience

lexp: language experience

middle sced: schedule constraint

lower: data: data base size

decrease turn: turnaround time

these to virt: machine volatility

increase stor: main memory constraint

effort time: time constraint for CPU

rely: required software reliability

cplx: process complexity

Table 2.1: COCOMO Features from [8]. Most range from “vl” for “very low” to “xl” for “ex-

tremely high”.

vl l n h vh xh

upper ACAP 1.46 1.19 1.00 0.86 0.71

(increase PCAP 1.42 1.17 1.00 0.86 0.70

these to AEXP 1.29 1.13 1.00 0.91 0.82

decrease MODP 1.2 1.10 1.00 0.91 0.82

effort) TOOL 1.24 1.10 1.00 0.91 0.83

VEXP 1.21 1.10 1.00 0.90

LEXP 1.14 1.07 1.00 0.95

middle SCED 1.23 1.08 1.00 1.04 1.10

lower DATA 0.94 1.00 1.08 1.16

(increase TURN 0.87 1.00 1.07 1.15

these to VIRT 0.87 1.00 1.15 1.30

increase STOR 1.00 1.06 1.21 1.56

effort) TIME 1.00 1.11 1.30 1.66

RELY 0.75 0.88 1.00 1.15 1.40

CPLX 0.70 0.85 1.00 1.15 1.30 1.65

Table 2.2: The COCOMO-I βi table [8]. For example, the bottom right cell is saying that if

CPLX=xh, then the nominal effort is multiplied by 1.65.
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Mode a b notes

Organic 3.2 1.05 projects from relatively small

software teams develop software

in a highly familiar, in-house en-

vironment.

Embedded 2.8 1.2 projects operating within (is em-

bedded in) a strongly coupled

complex of hardware, software,

regulations, and operational pro-

cedures.

Semi-Detached 3.0 1.12 An intermediary mode between

organic and embedded.

Figure 2.2: Standard COCOMO 81 development modes.

where b is 0.91 in COCOMO II 2000, and SFj is one of five scale factors that exponentially

influence effort. Other changes in COCOMO II included dropping the development modes of

figure 2.2 as well as some modifications to the list of effort multipliers, as shown in figure 2.3, and

their associated numeric constants, as shown in table 2.4. Despite these improvements, COCOMO

81 is still used for research because of its publically available data. For more on this, see section

3.1.1.

Learning with Linear Regression

Linear regression assumes that the data can be approximated by one linear model that includes

lines of code (KLOC) and other features f seen in a software development project:

e f f ort = β0 +∑
i

βi · fi

Linear regression adjusts βi to minimize the prediction error (the difference between predicted and

actual values for the project).

Boehm argues that effort is exponential on the amount of code KLOC [8]:

e f f ort = a ·KLOCb ·∏
i

βi
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scale prec: have we done this before?

factors flex: development flexibility

(exponentially resl: any risk resolution activities?

decrease team: team cohesion

effort) pmat: process maturity

upper acap: analyst capability

(linearly pcap: programmer capability

decrease pcon: programmer continuity

effort) aexp: analyst experience

pexp: programmer experience

ltex: language and tool experience

tool: tool use

site: multiple site development

sced: length of schedule

lower rely: required reliability

(linearly data: secondary memory storage requirements

increase cplx: program complexity

effort) ruse: software reuse

docu: documentation requirements

time: runtime pressure

stor: main memory requirements

pvol: platform volatility

Figure 2.3: The COCOMO II scale factors and effort multipliers.

21



extra very very extra

low low low nominal high high high

scale prec 6.20 4.96 3.72 2.48 1.24 0.00

factors flex 5.07 4.05 3.04 2.03 1.01 0.00

(exponentially resl 7.07 5.65 4.24 2.83 1.41 0.00

decreases team 5.48 4.38 3.29 2.19 1.10 0.00

effort) pmat 7.80 6.24 4.68 3.12 1.56 0.00

upper acap 1.42 1.19 1.00 0.85 0.71

(linearly pcap 1.34 1.15 1.00 0.88 0.76

decreases pcon 1.29 1.12 1.00 0.90 0.81

effort) aexp 1.22 1.10 1.00 0.88 0.81

pexp 1.19 1.09 1.00 0.91 0.85

ltex 1.20 1.09 1.00 0.91 0.84

tool 1.17 1.09 1.00 0.90 0.78

site 1.22 1.09 1.00 0.93 0.86 0.80

sced 1.43 1.14 1.00 1.00 1.00

lower rely 0.82 0.92 1.00 1.10 1.26

(linearly data 0.90 1.00 1.14 1.28

increases cplx 0.73 0.87 1.00 1.17 1.34 1.74

effort) ruse 0.95 1.00 1.07 1.15 1.24

docu 0.81 0.91 1.00 1.11 1.23

time 1.00 1.11 1.29 1.63

stor 1.00 1.05 1.17 1.46

pvol 0.87 1.00 1.15 1.30

Figure 2.4: The precise COCOMO II numerics.
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(where a and b are domain-specific constants). Such exponential functions can be learned via

linear regression after they are converted to the following linear form:

log(e f f ort) = log(a)+b·log(KLOC)+∑
i

log(βi)

Local Calibration

Local calibration (LC) can refer to any local tuning of a regression model. However, in this context,

it refers to a specialized form of the linear regression of COCOMO developed by Boehm [8, p526-

529].

Recall that COCOMO assumes project effort is exponential on KLOC; i.e.

e f f ort = a ·KLOCb ·∏
i

βi

Figure 2.2 shows the βi values recommended by Boehm (the names on the left hand side are defined

in figure 2.1).

To operate, LC linearizes the exponential equation to generate

log(e f f ort) = log(a)+b·log(KLOC)+∑
i

log(βi)

Linear regression would try to adjust all the βi values. This is not practical when training on a very

small number of projects. Hence, LC fixes the βi values while adjusting the < a,b > values to

minimize the prediction error. We shall refer to LC as “standard practice” since, in the COCOMO

community at least, it is the preferred method for calibrating standard COCOMO data [10].

SCAT

SCAT, short for Software Cost Analysis Tool, is a state of the art effort estimation tool developed

and used by the NASA Jet Propulsion Laboratory [79, 80]. It has been used as JPL’s standard

software effort estimation method since 2003.

SCAT is part of a class of probabilistic software estimation methods that aim to represent the

uncertainty of the estimate. This class of methods includes the use of fuzzy logic [84, 103, 131],

Bayes algorithm [21, 109], and Monte Carlo simulation [5, 13]. More specifically, SCAT is part of

the latter group of methods that use Monte Carlo simulation. Most of the probabilistic software
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Figure 2.5: Example of SCAT’s probabilistic output. [80]

estimation methods internally represent the model’s variables with some form of distribution or

range. On the other hand, since Monte Carlo simulation samples discrete instances from a dis-

tribution and calls an existing model that uses discrete input, it is a natural choice for existing

models such as COCOMO that use discrete inputs. This is the technique chosen by SCAT, being,

”an adaptation to COCOMO II that allows the use of a range of inputs (Low, Most Likely, High)

to capture uncertainty and generate probability distributions through the use of Monte Carlo tech-

niques [79].” SCAT does not work directly with historical calibration data but is instead set with a

fixed linear and exponential COCOMO coefficient. The topic of uncertainty is described in more

detail in section 2.5.4.

An example of the probabilistic output of SCAT is shown in figure 2.5. Note that JPL advises

use of the 70% confidence estimate. This increases the likelihood of offering a sufficient budget.
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2.4 Software Effort Estimation Best Practices

Software contracts often stipulate the use of industry best practice. In addition, most working

professionals will want to use the best practices available even if not legally required. What is

included in the best practice isn’t always easy to define. In addition, once a ”best practice” is

found and chosen to be implemented, there is usually resistance to the process change within an

organization. Keung et al. [61] recognize this problem and suggest that, ”managers should develop

a set of strategies to incrementally change the process according to the needs of the organisation.”

Laird offers three golden rules of estimation [72]:

• Require all estimates to be justified. Gut feeling is not an adequate justification.

• Dont use methods or tools blindly. Try estimating previous (completed) projects

to validate and tune the methods.

• Educate your estimators. Knowing how to do something doesnt mean you know

how long it will take. Train people in estimation. Accuracy is correlated with

training and the ability to see results, not development experience.

An expanded list of software effort estimation best practices compiled by Menzies et al. [93] is

shown in figure 2.6. One of the goals of this thesis is to utilize as many of the best practices as is

practical.

2.5 Open Issues in Software Effort Estimation

2.5.1 Inaccuracy

”There are really only two kinds of estimates: “Lucky” or “Lousy.”” - Standish Chaos

Report 2001 [127]

Section 1 clearly describes how notoriously inaccurate software effort estimates can be. What

is the source of all of this inaccuracy? Jorgensen and Molokken-Ostvold found the source of the

error changes depending on who you ask: the sources of error were typically factors outside of the

control of those asked, and the sources of an accurate estimate were typically factors inside of the

control of those asked [55].
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According to Jorgensen [49], expert-based best practices include:

1. evaluate estimation accuracy, but avoid high evaluation pressure;

2. avoid conflicting estimation goals;

3. ask the estimators to justify and criticize their estimates;

4. avoid irrelevant and unreliable estimation information;

5. use documented data from previous development tasks;

6. find estimation experts with relevant domain background;

7. estimate top-down and bottom-up, independently of each other;

8. use estimation checklists;

9. combine estimates from different experts and estimation strategies;

10. assess the uncertainty of the estimate;

11. provide feedback on estimation accuracy; and,

12. provide estimation training opportunities.

According to Boehm [8, 10]; Chulani [21, 115]; Kemerer [58]; Stutzke [130]; Shepperd [120]; our own
work [19, 20, 92]; and a recent tutorial at the 2006 International Conference of the International Society of Para-
metric Analysts [1], best practices for model-based estimation include at least the following:

13. Reuse regression parameters learned from prior projects on new projects;

14. Log-transforms on costing data before performing linear regression to learn log-linear effort models;

15. Model-tree learning to generate models for non-linear relationships;

16. Stratification, i.e. given a database of past projects, and a current project to be estimated, just learn models
from those records from similar projects;

17. Local calibration, i.e. tune a general model to the local data via a small number of special tuning parameters;

18. Hold-out experiments for testing the learned effort model [92];

19. Assessing effort model uncertainty via the performance deviations seen during the hold-out experiments of
item #17;

20. Variable subset selection methods for minimizing the size of the learned effort model [19, 20, 63, 96].

This separation of model-based and expert-based methods is not a strict division since some practices fall into both
categories: e.g. #4 & #20 are similar as are #10 & #19. Also, one way to view model-based methods is that they
seek algorithms to make maximal use of #5. Further, some research actively tries to combine the two approaches:

21. Shepperd’s case-based reasoning tools [120] explore algorithmic methods for emulating expert analogical
reasoning;

22. Chulani & Boehm’s Bayesian tuning method [21] for regression models allows an algorithm to carefully
combine expert judgment with the available data;

23. This paper will argue for the use of heuristic rejection rules to represent expert intuitions on how to rank
different effort models.

Figure 2.6: Three different categories of effort estimation best practices: expert-based (at top);
model-based (in the middle); methods that combine expert and model-based (at bottom).
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Ideally estimation models should be made to be as accurate as possible. One of the goals of

this thesis is to improve estimation accuracy. Unfortunately, this is an inherently difficult problem,

but why should it be? To answer this question, some researchers [37, 72] refer to a quote from

Alfred Pietrasanta of the IBM Systems Research Institute in 1968:

”Anyone who expects a quick and easy solution to the multi-faceted problem of re-

source estimating is going to be disappointed. The reason is clear: computer program

system development is a complex process; the process itself is poorly understood by

its practitioners; the phases and functions which comprise the process are influenced

by dozens of ill-defined variables; most of the activities within the process are still pri-

marily human rather than mechanical, and therefore prone to all the subjective factors

which affect human performance.” [110]

Nevertheless, it is inspiring that the existing models predict as well as they do. For example,

figure 5.2 on page 94 shows the methods described later in this thesis produced a median MRE of

5.4% when estimating the software development effort of flight based NASA projects.

2.5.2 Scarce Data

Menzies et al. [93] warn that there is not enough data available to properly calibrate software effort

estimation models. A common guideline for regression models is that 5 to 10 records are needed

for each variable in the model [69]. Otherwise, the variations in the records have too strong of

an impact an the regression results aren’t reliable. Thus COCOMO with its 16 variables should

have at least 80 to 160 records. COCOMO II is even worse, needing at least 110 to 220 records to

accurately calibrate to its 22 variables. Unfortunately, software effort estimation models typically

do not have this much calibration data [10, 29, 92]. This is due to the slow generation of software

projects and the desire to calibrate using similar, preferably in-house, data. This lack of data

suggests the use of feature subset selection methods should provide more stable calibrations of

effort estimation models by reducing the data necessary for regression.

It is possible to make software effort estimates without tuning to your organization’s local

experience. Many estimation models may be used off the shelf without any local tuning. This
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approach doesn’t guarantee the best performance, especially if your organization differs greatly

from the industry as a whole, and may be as much as 600% inaccurate [58].

Another approach is to calibrate using similar projects from other organizations. Kitchen-

ham et al. note that while many researchers have recommended developing models using only

single-company data only, in some cases cross-company data will suffice [65]. However, they

are still researching the conditions affecting the usefulness of cross vs within-company datasets.

A study [134] by Wieczorek and Ruhe, ”found that in general the local models developed using

company-specific data do not perform significantly better than the global models.” However, Mac-

Donell and Shepperd recently concluded that more research was necessary to make a conclusion

regarding the topic of cross vs within-company datasets [81].

Working with limited datasets brings with it some unique concerns. The good news is that

some algorithms that would be too slow to run with larger datasets will run quickly with a small

dataset. The bad news is that the scarce dataset makes it difficult to statistically justify algorithmic

decisions, tuning the model, and even experimental results. The public effort estimation data

available is also limited, making it difficult to generalize research claims from this data to the

industry as a whole.

2.5.3 Method Evaluation

In order for new research to discover improved effort estimation methods, it is necessary to have

an oracle that can evaluate the competing method’s effectiveness. In our previous work, we cau-

tion that, ”while the need for better estimates is clear, there exists a very large number of effort

estimation methods [49, 52] and no good criteria for selecting between them [95].”

Parametric Evaluation

Parametric statistics assume the population fit some distribution, typically the normal distribution.

The performance of models generating continuous output can be assessed in many ways using

parametric evaluation, including PRED(30), MMRE, correlation, median MRE, etc. PRED(30)

is a measure calculated from the relative error, or RE, which is the relative size of the difference

between the actual and estimated value. One way to view these measures is to say that training data
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contains records with variables 1,2,3, ..,N and performance measures add additional new variables

N +1,N +2, ....

The magnitude of the relative error, or MRE, is the absolute value of that relative error:

MRE = |predicted−actual|/actual

The mean magnitude of the relative error, or MMRE, is the average percentage of the absolute

values of the relative errors over an entire data set. Given T tests, MMRE is calculated as follows:

MMRE =
100
T

T

∑
i

|predictedi−actuali|
actuali

The median MRE for a set of T tests is calculated by sorting the T tests and choosing the

middle MRE value if T is odd, or the average of the middle two MRE values if T is even.

PRED(N) reports the average percentage of estimates that were within N% of the actual values.

Given T tests, then:

PRED(N) =
100
T

T

∑
i

 1 i f MREi ≤ N
100

0 otherwise

For example, a PRED(30)=50% means that half the estimates are within 30% of the actual.

Another performance measure of a model predicting numeric values is the correlation between

predicted and actual values. Correlation ranges from +1 to -1 and a correlation of +1 means

that there is a perfect positive linear relationship between variables. Given a test set of size T ,

correlation is calculated as follows:

p̄ = ∑
T
I predictedi

T ā = ∑
T
I actuali

T

Sp = ∑
T
i (predictedi−p̄)2

T−1 Sa = ∑
T
i (actuali−ā)2

T−1

Spa = ∑
T
i (predictedi−p̄)(actuali−ā)

T−1

corr = Spa/
√

Sp ∗Sa

All these performance measures (correlation, MMRE, median MRE, and PRED) address subtly

different issues [66]. Overall, PRED measures how well an effort model performs while MMRE

measures how poorly it performs. A single large mistake can skew the MMREs and not effect the

PREDs. Shepperd and Schofield comment that:
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MMRE is fairly conservative with a bias against overestimates while PRED(30) will

identify those prediction systems that are generally accurate but occasionally wildly

inaccurate [120, p736].

Foss et al. report that MMRE is an, ”unreliable selection criteria”, that has a tendency to, ”prefer a

model that underestimates [31].”

Nonparametric Evaluation

Nonparametric statistics do not make any assumptions about the distribution of the population.

Most of these methods use some sort of rank-order technique.

There is significant cause to use nonparametric methods to evaluate software effort estimation

methods. Mair and Shepperd were unable to find a consistent result when comparing regres-

sion based software effort models with analogy based approaches [82]. Most of the studies in

their review used parametric statistics such as MMRE. Demsar [25] has recently warned that non-

Gaussian populations are common enough to require a methodological change in data mining.

In addition, Myrtveit et al. found that the best effort estimation model changed based on which

parametric accuracy measure was used, and even how the cross validation was sampled [106].

Similarly, Menzies et al. noticed alarmingly large standard deviations of the MRE values in their

software effort estimation experiments [90]. Their initial research into this phenomenon discovered

that data pruning techniques [20, 45, 90] and some data mining techniques [93] reduce this devia-

tion. Finally, our previous work reported a simple discovery that explains all of these inconsistent

results: the effort estimation errors do not fit a Gaussian distribution, but rather have a small num-

ber of very large outliers [95]. Thus, we suggest using nonparametric statistical measures. After

reviewing available nonparametric methods, we suggested the Mann Whitney Wilcoxon rank-sum

test: [83]

Using this evaluation criteria, our previous work was, ”the first [report] to offer stable conclu-

sions regarding effort estimation across such a wide range of methods [95].” One of the goals of

this thesis is to evaluate methods using nonparametric evaluation. For an example of the use of the

Mann-Whitney U test, see figure 2.7. For more on the use of nonparametric statistics in evaluating

effort estimation models, see Jalali [46]. Our previous work suggests that, ”since we seek methods

that can be rejected, the value of interest to us is how often methods lose [46, 95].”
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The sum and median of A’s ranks is

sumA = 1+2.5+5.5+7+9.5 = 25.5

medianA = 5.5

and the sum and median of B’s ranks is

sumB = 2.5+4+5.5+8+9.5+11 = 40.5

medianB = 6.75

The U statistic is calculated from Ux = sumx− (N1(N2 +1))/2:

UA = 25.5−5∗6/2 = 10.5

UB = 40.5−6∗7/2 = 19.5

These can be converted to a Z-curve using:

µ = (N1N2)/2 = 516.4

σ =
√

N1N2(N1+N2+1)
12 = 5.477

ZA = (UA−µ)/σ = −0.82

ZB = (UB−µ)/σ = 0.82

(Note that ZA and ZB have the same absolute value. In all case, these will be the same, with opposite signs.)

If abs(Z) < 1.96 then the samples A and B have the same median rankings (at the 95% significance level). In this

case, we add one to both tiesA & tiesB. Otherwise, their median values can be compared, using some domain

knowledge. In this work, lower values are better since we are comparing errors. Hence:

• If medianA < medianB add 1 to both winsA & lossesB.

• Else if medianA > medianB add 1 to both lossesA & winsB.

• Else, add 1 to both tiesA & tiesB.

Figure 2.7: An example of the Mann-Whitney U test from Menzies et al [95].
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Cross Validation

It is important to evaluate a method using different datasets for training, or model calibration, and

testing the method’s performance. Failing to do this risks making a claim about performance that

will not generalize well to the actual performance in the real world. Unfortunately when there is not

much available data, separating the dataset into a single training and test set is inadequate. In this

case, a more advanced technique, cross-validation, should be used. A cross-validation experiment

splits the data into a predefined number of equal partitions called folds [135]. Then each parti-

tion is used in turn for testing while the rest of the data is used for training. This process is done

randomly several times in order to produce a stable performance score. The standard procedure

for cross-validation is to use 10 by 10-fold cross-validation and average the scores [135]. There is

a, ”debate [that] continues to rage in machine learning and data mining circles about what is the

best scheme for evaluation [135].” Although 10-fold cross-validation is considered standard prac-

tice, other popular techniques include leave-one-out cross-validation and cross-validation through

bootstrapping.

Leave-one-out cross-validation [135], also known as n-fold cross-validation, equates the num-

ber of folds to the number of instances in the dataset, n. N-fold cross-validation benefits from

using as much data as possible in each training instance. This may be useful for especially small

datasets because reducing the training data too much could handicap the learner. In addition, n-

fold cross-validation is deterministic. Therefore, it is not necessary to repeat the cross-validation

several times because there is no random sampling in the operation. This is useful for making eas-

ily repeatable experiments because there is no need to record the random number generator used

and the seed used to initialize it. Unfortunately, n-fold cross-validation requires n calibrations and

uses of the learning algorithm. When n is very high this computational cost can make this cross-

validation technique impractical. Witten and Frank comment that, ”leave-one-out seems to offer a

chance of squeezing the maximum out of a small dataset and obtaining as accurate an estimate as

possible [135].”

Bootstrapping is a popular statistical operation based on sampling with replacement that can be

used for cross-validation. Sampling with replacement implies that when building a training dataset

any record may be selected multiple times. To use this technique for cross-validation, many times
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a bootstrap sample is randomly generated. This bootstrap sample contains n records, where n is

the number of records in the original dataset. However, each record in the bootstrap sample is

randomly selected with replacement from the original dataset. Thus, the bootstrap sample will

contain some of the original records multiple times, and others not at all. The testing dataset is

simply all of the records not chosen in the bootstrap sample. In the unlikely occurrence that the

original dataset is replicated as a bootstrap sample, there will be no testing set, so fail safes should

be programmed to avoid this possibility. It has been shown mathematically that a typical bootstrap

sample will contain 63.2% of the original data instances. Witten and Frank comment that, ”the

bootstrap procedure may be the best way of estimating error for very small datasets [135].”

2.5.4 Uncertainty

Musilek et al. have demonstrated that small errors in the COCOMO II model can lead to large

changes in the estimate [104]. Clearly, to get an accurate effort estimate, relevant project metrics

must be measured carefully and consistently.

Size and effort multipliers are very important and adequate time and resources should

be devoted to their accurate evaluation. The scale factors are much less important and

could be neglected (set to their nominal values) if necessary.

[104]

The sensitivity issue shown by Musilek highlights a symptom of the larger problem of uncer-

tainty. Indeed, software effort estimation is widely recognized as an inherently uncertain task [37,

52,54,68,72,103,109,118]. Assessing the uncertainty of the estimate is one of Jorgensen’s twelve

best practice guidelines for effort estimation [49]. This uncertainty may be a contributing factor to

the deviance problem.

Beyond carefully collecting metrics, Musilek et al. proposed using fuzzy sets for the input vari-

ables, and concluded that the manager should, ”no longer [be] left with a single number estimate

that could be highly misleading [104].” This implies that the uncertainty of the input variables is

gathered. This is an important task too often ignored by the effort estimation research community.

Jorgensen has investigated the psychology of gathering metric ranges from developers, and found

that merely changing the phrasing of the question changing the metric ranges [54].
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Instead of asking the estimators to provide the minimum and maximum effort values

based on given confidence levels, e.g., ”almost sure” or ”90 percent confident,” it

seems to be better to ask them to assess the probability of the actual effort being higher

or lower than a certain value. For example, our results suggest that it is better to ask the

estimator, ”How likely is it that the project will require more than 1.700 work-hours?”,

rather than, ”What is the maximum cost of the project? Be 90 percent confident.” [54]

In addition, Jorgensen found that the developers might have other motives than realism when pro-

viding ranges of uncertainty. In the words of one of the developers in his study:

I feel that if I estimate very wide effort minimum-maximum intervals, this indicates

a total lack of competence and has no informative value for the project manager. I’d

rather have fewer actual values inside the minimum-maximum interval, than providing

meaningless, wide effort intervals. [54]

This is an unfortunate reality, especially considering that, ”low estimation accuracy is not neces-

sarily an indicator of low estimation skills when the software development project work is highly

uncertain [49, 56].”

Kitchenham and Linkman have described four sources of estimate uncertainty [68].

• Measurement error is error from accuracy limitations in the input variables of the model.

• Model error is error due to the model’s abstractions from reality.

• Assumption error is error from making incorrect assumptions about a model’s input param-

eters.

• Scope error is error from estimating outside the model’s domain.

Another source of error mentioned by Doban and Pataricza [26] is a, ”statistically insufficient

number or representativeness of the basic data set serving for extrapolation.” This is an important

factor that is easily ignored. Tuned models should be given a sufficient amount of data for cali-

bration. Boehm [10] recommends a minimum of 5 records for local calibration of his COCOMO

model. Ideally there should be many more records.
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This literature review has been unable to find any research actively addressing all of Kitchen-

ham’s uncertainty operators. However, many models have adapted to incorporate measurement

error. This is done by representing the both the input variables and the output estimate as a range

instead of point values. For example, Tian and Noore warn that the discretization of effort mul-

tipliers used in COCOMO into six categories results in an inherent uncertainty in the historical

data, and thus methods such as fuzzy logic should be used to account for this inherent ambigu-

ity [131]. This has been accomplished for effort estimation using fuzzy logic [84,103,131], Bayes

algorithm [21, 109], and through monte carlo simulation [13]. Fuzzy logic and Bayes algorithm

require developing an estimation model to work directly with their distributions, but the monte

carlo simulation does not. This is because it simply samples discrete instances from a distribution

and calls an existing model used to discrete input. Thus, monte carlo simulation is better suited

for use with pre-existing models, while the other two methods should be considered if developing

a new model.

A more severe source of measurement error is estimation with incomplete data. Although

techniques exist for estimating effort with incomplete data [129], it is still advised to use complete

datasets. In an impressive display of ability despite incomplete data, Menzies et al. considered

uncertainty from a more positive angle and realized that if you can describe all of your model’s

input parameters using ranges found from industry, then it is possible to make estimates without

calibration data at all [87, 88].

Further evidence of uncertainty in software effort estimation is the attribute instability problem

identified by Menzies et al. [94] regarding Boehm’s delta estimation method [9]. The delta esti-

mation method proposed by Boehm works by basing the estimate off of similar previous projects

and adjusting for the delta between the new and the old using the COCOMO cost drivers [9]. Each

of Kitchenham’s uncertainty operators can potentially explain this instability. The most unsettling

potential cause is that of scope error in the case in which the true correlation between the attributes

and target variable has indeed changed due to the different domain.

Jorgensen found experts tend to be overconfident about the uncertainty of their estimates [50].

A study by Gruschke and Jorgensen investigated the ability of experts to improve at uncertainty es-

timation using a feedback mechanic [37]. They found some experts could improve, however, they

also found, ”that we cannot expect uncertainty assessments to improve when they are dominantly
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intuition-based [37].” This result suggests that more structured methods for uncertainty assessment

should be used. Model-based effort estimation methodologies have the potential to excel at rep-

resenting this uncertainty. One of the goals of this thesis is to represent estimation uncertainty by

accounting for Kitchenham’s sources of estimation error. In addition, a goal of this thesis is to

reduce estimation uncertainty.

User Distributions

One way to represent the uncertainty in a variable is to use a distribution. The distributions used

in this thesis are triangular for their simplicity and ability to skew the median. Triangular dis-

tributions are often used in business simulations or project management simulations when there

is only limited sample data (e.g. the relationship between variables is known but data is scarce).

Formally, a triangular distribution is a continuous probability distribution with lower limit a, mode

c and upper limit b with the ranges a ∈ (−∞,∞), b > a, a ≤ c ≤ b and probability density function

(PDF):

PDF(x | a,b,c) =



0 for x < a

2(x−a)
(b−a)(c−a) for a ≤ x ≤ c

2(b−x)
(b−a)(b−c) for c < x ≤ b

0 for x > b

2.5.5 The ”Research to Reality” Divide

In a recent review of software effort estimation studies, Jorgensen and Shepperd have discovered a

disconnect between research and the actual use of effort estimation methods [52]. They describe a,

”lack of in-depth studies on the actual use of estimation methods and real-life evaluations published

as journal papers”, and warn that, ”there is a problem when there are few or no groups that conduct

research on the actual use and effect of an estimation method in real-life settings [52].” Of all of

the literature reviewed in their study, they could, ”find no study that had an in-depth data collection

and analysis of how estimation methods were actually applied [52]!”
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One of the goals of this thesis is to provide methodology improvements that are both useful

and used by industrial effort estimators, and to report feedback concerning the method’s real-life

use.

2.5.6 Overly Optimistic Estimation

Molokken and Jorgensen report that, according to their survey, 60-80% of the time a software

project will overrun its estimate by an average of 30% [98]. The 2001 Standish Group ”Chaos

Report” [127] shows an average overrun of 45%. This is about the same as the mean overrun

of 50% reported 10 years prior by Heemstra [42]. Considering the nonparametric distribution of

errors observed by our previous study [95] and discussed in section 2.5.3, these reports should

consider reporting median errors and overruns. Regardless, the fact that most projects experience

a cost overrun is cause for alarm.

All of these reports beg the question, ”Why should it be more likely to estimate too low than

too high?” Jorgensen and Grimstad [51] describe one reason, the winner’s curse:

”The winners curse is a result of the selection of software providers among those with

the lowest bid, i.e., those with a tendency towards the highest level of overoptimism.

The winners curse has not been extensively analyzed in software cost estimation stud-

ies, but is a well known phenomenon in domains such as auctioning.” [51]

Unfortunately, managers may drive the budget down even further [98]. This happens because

the managers may be given realistic estimates initially, but they consider the estimates too high and

pressure the analysts to lower the estimates.

Finally, the initial estimate may simply be too low. It is interesting to note that one study [99]

found that non-technical professionals involved in the software process provided more realistic

estimates than the technical experts. Molokken and Jorgensen suggest this could be because the,

”technical competence induces a bottom-up, construction-based estimation strategy”, that would

tend to be overly-optimistic by failing to sufficiently consider the history of previous projects [99].

Clearly, one cause for overly optimistic estimates is that the estimation model or expert judgment

used doesn’t consider all of the factors that influence cost. To compensate for all of these problems,
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it isn’t uncommon for IT executives to, ”get their best estimate, multiply by two, and then add a

half.” [127]

2.6 Feature Selection

A model is a simplification of reality. Similarly, any machine learning model must make abstrac-

tions from reality due to finite computing power. Human intuition guides this initial definition of

features. Ideally, human bias wouldn’t impede the algorithm’s success. Unfortunately, human er-

ror is all too common, and sometimes features are selected that do not have a relationship with the

target concept. This is one reason that additional features do not necessarily improve performance.

The features may be poorly measured which can result in errors, or they may be redundant, need-

lessly adding to an algorithm’s complexity. The final and most subtle reason lies in the curse of

dimensionality which implies that, ”the demand for a large number of samples grows exponentially

with the dimensionality of the feature space” [28]. Feature selection is an effective tool to mitigate

these problems and apply an audit, albeit limited, on human bias.

Feature selection is a technique common to machine learning domains such as data min-

ing [135] and pattern recognition [28]. It goes by many names: feature subset selection, attribute

selection, feature pruning, or with COCOMO datasets it is often called column pruning. Whatever

it is called, feature selection remains the task of selecting a subset of features to use for learning

while ignoring the rest in an effort to improve the algorithm’s quality and efficiency. Another

benefit of feature selection is that it simplifies metric collection which requires, ”time and human

resources and sometimes it is difficult to collect certain metrics [62].” Some feature selectors in-

clude priori knowledge from the user in their decision making process [35], but the vast majority

run independently of direct human involvement. Indeed, some feature selectors use interactive

visualization to guide the user in selecting attributes [107]. One of the goals of this thesis is to ex-

plore the use of feature selection for software effort estimation. Most feature selection algorithms

can be classified into one of two groups: filters and wrappers [70].
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2.6.1 Filters

A filter is a selection technique that evaluates subsets without consulting the learning algorithm [39,

135]. Instead, a filter relies on some heuristic assumption to define a feature’s relevance. They are

usually based on mathematical calculations such as entropy, correlation, or standard deviation.

Other filters are based on a more formal definition of relevance [6]. Lashkia and Anthony argue

that selecting relevant, irredundant features provides better classification accuracy than ”searching

for an optimal subset of attributes [73].” Filters such as Correlation-based Feature Selection(CFS)

and FCBF can be very effective at eliminating redundant features [38, 39, 41, 136]. The most

practical advantage of filters are that they are typically much less computationally complex than

wrappers.

In addition, other machine learning algorithms may used for attribute selection [135]. For

example, a decision tree might be used to select the attributes used by a nearest neighbor classifier.

In this way, separate algorithms may be stacked.

2.6.2 Wrappers

A wrapper is a selection technique that evaluates feature subsets by their performance with the

target learning algorithm [39, 135]. Although typically slower than filters, and more limited in

their exploration of the attribute space, wrappers often generalize well to improved performance.

Since wrappers do not ignore the effect of the features on the learning algorithm, researchers have

argued that wrappers provide superior performance when compared to filters [18, 70]. Indeed,

when benchmarking feature selection methods, Hall and Holmes find that the wrapper provides

the best improvement in accuracy [39]. However, they also find it to be the slowest method.

By using an evaluation function based on the target learner, a wrapper designer is forced to

decide how to define their training and validation datasets. Since feature selection is interested in

an evaluation measure to make an internal decision and is not being used to benchmark the learner’s

performance, it is ok to use the same dataset for training and validation. However, this may lead

to overfitting in feature selection. Any of the common cross-validation techniques, such as 10-

fold cross-validation, leave-one-out cross validation, or bootstrapping, may be used [135]. Singhi

and Liu report that, ”in current practice separate datasets are seldom employed for selection and
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learning, because dividing the training data into two datasets for feature selection and classifier

learning respectively reduces the amount of data that can be used in either task [123].” In their

study, they conclude that, ”under normal circumstances, one does not need to use separate data for

feature selection and learning as recommended in the Statistics literature.”

2.6.3 Feature Space

All feature selection algorithms make evaluations on instances of data. However, not all feature

selection algorithms evaluate all of the feature set combinations. Given n features, there are 2n

possible subsets of features. Obviously, an exhaustive search of all 2n subsets is only practical when

n is sufficiently small, and the evaluation function sufficiently fast. Thus, suboptimal searches of

the attribute space are often used.

There are many heuristics that may be used to reduce the search complexity. Filters often

consider each feature in isolation, but wrappers take a more guided approach considering combi-

nations of features. This is often done employing either a forward selection approach in which the

search is begun with the empty set and features are added one at a time, or a backward elimination

search is used in which the search initialized with all of the features and features may be removed

one at a time [135]. Alternatively, the algorithm may employ a combination of forward selection

and backward elimination to allow backtracking in an effort to avoid local minima. Some search

strategies choose to evaluate each remaining candidate feature at each stage of the search. Others

cut complexity by ranking the features and using this to determine which feature to consider at

each stage. This allows for combinations of filters and wrappers by guiding the wrappers search

with the quicker filter.

As with most search problems, popular artificial intelligence search optimization strategies

such as genetic algorithms, beam search, and best-first search may all be beneficial in managing

search complexity for feature selection [40, 135].

2.6.4 Feature Selection for Software Effort Estimation

Research into the application of feature subset selection techniques on software effort estimation

models has been limited. A few studies by Menzies et al. have investigated the usefulness of
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feature selection for the COCOMO model [19, 20, 93]. In addition, feature selection has been

explored for use with case-based reasoning software effort prediction models [63,64]. Alternately,

in analogy-based cost estimation, instead of removing features, weights may be assigned to each

feature to emphasize the better attributes [76, 132]. Menzies et al. have suggested that feature

selection is useful in mitigating the deviance problem of cost estimation [90], and also found it

useful in handling the instability problem of delta estimation [91](see page 35 for more on delta

estimation). This is a natural reversal of the curse of dimensionality: using less features requires

less instances for meaningful, stable conclusions. In light of the benefits of feature selection for

effort estimation, especially considering the small datasets common to the field, there is a high

demand for more in-depth research in this application.

2.7 Record Selection

Picking the correct features to use in an effort estimation model is not the only consideration to

make regarding the input data. It is also useful to be critical of the data records themselves because

they may suffer from the same kinds of problems as the features. In addition, depending on the

novel estimation being made, not all of the records may be relevant. For example, when estimating

for a very large project, very small historical projects are unlikely to be as useful as other large

projects.

Thus, it is no surprise that, whereas feature selection considers subsets of features, record

selection entails methods that consider subsets, or even supersets, of records for model calibration.

This may be used instead of feature selection or in addition to it. The intuition behind most record

selection techniques is that tuning a model with the records most relevant to the novel prediction

will generalize better for improved accuracy.

There are many resampling strategies to consider. Most of these can be categorized as either

oversampling, in which certain records are included in training multiple times, or subsampling, also

known as undersampling, in which the training set is pruned to remove certain records. Unlike in

numerical predictions like effort estimation in which resampling is done for improved regression

accuracy, oversampling and undersampling are traditionally used in machine learning to balance

the class variable [22]. Other strategies, such as bootstrapping, or sampling with replacement,
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will result in certain records being removed and others added multiple times. Useful record selec-

tion methods to consider for effort estimation include subsampling methods such as stratification

and nearest neighbor preprocessing, and oversampling methods such as the use of boosting and

bagging.

2.7.1 Manual Record Selection

The data used for calibration may be chosen manually. Experts may find outliers and discard those

records from the model. Alternately, they may use a subset of the training data that fits some

common descriptor. This is known as stratification. For example, if the training data has records

from past NASA flight and ground projects, it may be best to calibrate using only the ground

records when predicting for a new ground project. Stratification requires the provision of suitable

labels for the training data, and imposes the bias that the distinctions chosen are relevant.

The effectiveness of using stratification for software effort estimation models is debatable [89].

Some have found the technique of great value [21, 120], while others find it offers no improve-

ment [45]. Obviously, when making an estimate it is best to consider only relevant historical

data. However, removing records that aren’t quite relevant enough reduces the amount of available

training data, which can be a serious problem with sufficiently small datasets.

2.7.2 Automatic Record Selection

Instead of using manual techniques, algorithms may be used that automate the selection of a subset

of calibration records. These techniques use some heuristic, or rule of thumb, to select a more

favorable set of calibration records.

One such rule of thumb is to select records that are similar to the novel project being predicted.

When this similarity is defined by a distance metric of the records features, then a nearest neigh-

bor algorithm is being employed. Nearest-neighbor, or NN, refers to a family of instance-based

learning models based upon the idea that, ”the properties of any particular input point x are likely

to be similar to those of points in the neighborhood of x [114]. Because of this distance function,

NN works best with numeric features.

In our previous work, Jalali describes a method for nearest neighbor preprocessing for the
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COCOMO model [46, 95]. This method, known as LOCOMO, uses a nearest neighbor algorithm

to select the training records closest to the novel record to use for calibration. This is accomplished

by using a Euclidean distance function and normalizing each feature. Once the subset of training

records is selected, the COCOMO algorithm is locally calibrated and used to make an estimate.

LOCOMO determines the number of records to use in calibration, k, at run time by evaluating each

possible k by its performance in a cross-validation experiment of the training data.

The methods of bagging and boosting, described in the next section, have much in common

with automated record selection techniques because they tune the calibration records to focus on

the misclassified instances. However, since these methods fundamentally change the model by

combining the estimates of multiple versions of the original algorithm, they are more than simply

record selection techniques.

2.8 Meta-learners

Witten and Frank describe a meta-learner as an algorithm that learns the best way to combine the

predictions from multiple different models [135]. This definition pertains to the first combination

strategy discussed in this thesis, stacking (section 2.8.1). However, in this report, the meaning of

meta-learner is extended to include the techniques of bagging (section 2.8.2) and boosting (section

2.8.3) which combine predictions from different derivatives of the same model. One of the goals

of this thesis is to explore the use of meta-learners for software effort estimation.

Shepperd recently conducted a study [118] to evaluate the current, ”research progress in the

field of software project economics with a view to identify important challenges and promising

research directions.” One of the promising areas of research suggested is the combination of pre-

diction systems [118]. Shepperd also comments that, ”another area in which more research is

needed is the less formal combining of prediction systems with expert judgement [118].”

2.8.1 Stacking

In this context, stacking is the class of meta-learners that combine models, ”built by different

learning algorithms [135].” There are many ways that stacking may combine models:
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• equal vote

• weighted vote

• use one model as a preprocessor to another model

• intelligently select the best model using some heuristic

Menzies et al. have proposed the use of stacking for software effort estimation, and offer an

”effort-modeling workbench” called COSEEKMO [93] as an example of how this can be done.

COSEEKMO uses internal cross-validation and a set of heuristic ”rejection rules” to assess the

results of different models. Used as a learner, COSEEKMO’s final output is the estimate from the

learner it finds to perform the best. In this way COSEEKMO may reduce both the error and the

variance of the estimate [93]. Recently, Jalali et al. found feature selection techniques to be more

valuable than stratification using COSEEKMO [45].

2.8.2 Bagging

Bagging is a popular technique in data mining that combines the predictions of multiple models

typically by using subsampling to generate many different models [135]. In bagging, each model

receives an equal weight in voting, for classification problems, or in the average, for numeric prob-

lems. Another name for bagging and boosting is arcing, which stands for ”adaptive reweighting

and combining”, and ”refers to reusing or selecting data in order to improve classification [28].”

In classification problems, one advantage of meta-learners is that the classification by each learner

may be examined. This may be useful to distinguish between cases of confident prediction and

uncertainty. Similarly, for numeric point estimates, boosting allows for a range of estimates. How-

ever, most boosting algorithms will output some sort of weighted average, so usually this range

of estimates is only viewable when looking ”under the hood” of the algorithm. For learners that

already provide a range of estimates, the meta-learner may sort and combines all estimates into a

single range.

Despite working by simply resampling the original training data, ”it turns out that bagging pro-

duces a combined model that often performs significantly better than a single model built from the

original training data, and is never substantially worse [135].” Bagging can be very effective. For
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example, it greatly improves performance in outlier detection [74]. Bagging has been described

as, ”mainly a variance reduction (or stability) operation. [113]” In a study of machine learning

techniques for software effort estimation, Braga and Oliveira found bagging to improve the perfor-

mance of support vector regression, neural networks, and model trees [11]. They found the best

results for the NASA dataset they used, in terms of lowest MMRE, came from using bagging with

model trees [11].

2.8.3 Boosting

Boosting is, ”based on the observation that finding many rough rules of thumb can be a lot easier

than finding a single, highly accurate prediction rule [117].” Boosting is another meta-learner, but

unlike bagging it does this using an iterative approach and combines the estimates with a weighted

average [135]. Although bagging and boosting are very similar, Rosset claims, ”bagging is always

significantly inferior to boosting in terms of predictive performance [113].” Drucker found similar

results in the regression context [27]. Another possible benefit of boosting is that by building a

strong learner from a collection of weak learners, and assuming the weak learners are fast it is

possible to handle complex tasks such as facial recognition faster [133]. Boosting classification

learners has been shown to be a derivation of gradient descent algorithms [34, 85].

One popular boosting algorithm is the Adaboost, or Adaptive Boosting, algorithm [27, 28, 32,

33, 111, 114, 117, 124, 133, 135]. Adaboost works by creating a series of slightly adapted learners,

or hypotheses, from its host learner. The varying hypotheses are created by adjusting the weight

of each training instance’s impact in calibrating the learner. At each iteration, the hypothesis

generated adjusts its weights to focus on the records misclassified by the learner. In this way each

hypothesis is adapted from the previous generation. The final prediction of Adaboost is the result

of combining the, ”probabilistic predictions”, of these hypotheses [32]. In the case of a single

numeric estimate this is a weighted average.

The pseudocode in from Freund and Schapire shown in figure 2.8 outlines the steps of the Ad-

aboost algorithm [32]. There are many variations of the Adaboost algorithm. Freund and Schapire

originally developed Adaboost as a 2-class classifier [32], but quickly extended it to multi-class

classifiers with Adaboost.M1 and Adaboost.M2 [33]. Adaboost.M1 differs from Adaboost.M2 in
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Algorithm Adaboost

Inputs :

• sequence of N labeled examples < (x1,y1), . . . ,(xN ,yN)) >

• distribution D over the N examples

• weak learning algorithm WeakLearn

• integer T specifying number of iterations

Initialize the weight vector: w1
i = D(i) for 1, . . . ,N.

Do for t = 1,2, . . . ,T

• Set pt = wt

∑
N
1 wt

i

• Call WeakLearn, providing it with the distribution pt ; get back a hy-

pothesis ht : X → (0,1).

• Calculate the error of ht : εt = ∑
N
1 pt

i|ht(xi)− yi|.

• Set βt = εt
1−εt

• Set the new weights vector to be wt
i +1 = wt

iβ
1−|ht(xi)−yi)|
t

Output the hypothesis

h f (x) =

 1 if ∑
T
1 (log 1

βi
)hi(x) >= 1

2 ∑
T
1 log 1

βi

0 otherwise

Figure 2.8: The Original Adaboost Algorithm [32]
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that the M1 version outputs a single class, but the M2 version outputs a set of possible classes

with a degree of plausibility for each. They also gave suggestions on how the algorithm might be

tailored for regression problems. Drucker was the first to modify Adaboost for regression [27],

and later Ridgeway et al. created Adaboost.R [111] from Freund and Schapire’s vision which also

modified for regression problems. More variants of Adaboost for regression problems evolved

from Adaboost.R, including Adaboost.RA [7], and Adaboost.RT [124].

Although Adaboost appears to only work with algorithms that can handle weighted training

data, this is in fact a false constraint [33]. For algorithms that use unweighted examples for learn-

ing, Adaboost can be used by sampling at random with replacement from a weighted distribution.

As the size of this set approaches infinity, the effective unweighted training set is equivalent to the

weighted set.

2.9 Summary of Related Work

There are many methods for software effort estimation. Jorgensen [49, 52] found that although

the most popular estimation method in industry is expert-judgment, the research is dominated by

model-based methods. Of these model-based methods, 51% of the research from 2000 to 2004

concerned regression techniques.

A recent study [118] by Shepperd found one of the promising areas of new research in software

effort estimation to be the combination of prediction systems. Menzies et al. [93] have created one

such combination system, COSEEKMO, which compares different estimation models using cross-

validation and ”rejection rules”, and finally uses the model that performs the best.

Shepperd’s study particularly suggests new research in, ”the less formal combining of pre-

diction systems with expert judgement [118].” Similarly, Meli [86] has suggested an integrated

approach combining expert judgment with models:

”People and methods are tremendously important to gain a high quality in the esti-

mation results. Instead of conceiving them as alternative means we should consider

them as synergic resources. This may happen if we are supported by a conceptual

framework of integration and a set of operational rules to follow.” [86]
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Jorgensen [49] has documented twelve best practices for expert-based estimation, and Menzies

et al. [93] have extended this list to include other best practices useful for software effort estimation

in general.

Research has suggested feature and record selection techniques can be useful for software effort

estimation models. In addition, machine learning techniques such as bagging and boosting could

lead to stabler, more accurate estimates.

Unfortunately, software effort estimation is plagued by many problems including highly inac-

curate and uncertain estimates which are often overly optimistic, small amounts of historical data,

and research that is often separated from the industrial reality and offers inconsistent results. Fortu-

nately, our previous work [95] has discovered the inconsistent results come from the non-Gaussian

estimate error distributions, and show that nonparametric evaluation methods can provide more

consistent results. In addition, Kitchenham [68] has described the sources of estimate uncertainty.

The existing literature helped inspire the following research goals for this thesis:

1. provide methodology improvements that are both useful and used by industrial effort esti-

mators, and to report feedback concerning the method’s real-life use

2. represent estimation uncertainty by accounting for Kitchenham’s sources of estimation er-

ror [68]

3. reduce the uncertainty of the estimate

4. make progress towards the, ”conceptual framework of integration” of expert and model-

based methods suggested by Meli [86]

5. implement the expert-judgment ”best practices” proposed by Jorgensen [49] in a model

6. provide estimation methods useful at different software life-cycle stages

7. improve estimation accuracy

8. explore the use of feature selection for software effort estimation

9. explore the use of meta-learners such as bagging and boosting for software effort estimation

10. evaluate methods using the nonparametric evaluation discussed in our previous work [95]
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Chapter 3

Laboratory Studies

The majority of the early work of this thesis is presented in this chapter which explores some

effort estimation methods that had not been tried before. Unfortunately, the results were somewhat

disappointing because the supposedly more sophisticated and complex methods failed to make

improvements. Actually the very simple methods did as well as anything else, as can be found

later in this chapter. The results of these experiments helped guide the inclusion of methods in a

new estimation framework discussed in Chapters 4 and 5.

This chapter details some laboratory studies into the use of feature subset selection (section

3.2), bagging (section 3.3), and boosting (section 3.4) on the COCOMO software effort estimation

model. COCOMO was chosen over the other estimation methods described in Chapter 2 for several

reasons: First, COCOMO’s implementation is straightforward and openly described by Boehm [8,

10]. Second, software effort estimation data is hard to come by and COCOMO data was available.

Third, abundant research on COCOMO was available. In addition, the COCOMO II model, ”has

been validated using JPL data and provides reasonable flight and ground software estimates in the

JPL environment [78].” Finally, it was chosen because these experiments are part of a larger study

using COCOMO including our prior work [95] and the work of Jalali [46].

3.1 Experimental Design

All of the algorithms explored in this study are based upon either Boehm’s COCOMO model. The

experiments discussed in this chapter were based up the 1981 version of COCOMO [8] due to
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the available data. The case study experiment in the next chapter is based upon Boehm’s updated

COCOMO II model [10].

3.1.1 Data Used in This Study

In this study, effort estimators were built primarily using all or some part of data from the following

two sources:

COC81: 63 records in the COCOMO-I format. Source: [8, p496-497]. Download from http:

//unbox.org/wisp/trunk/cocomo/data/coc81modeTypeLangType.csv.

NASA93: 93 NASA records in the COCOMO-I format. Download from http://unbox.org/

wisp/trunk/cocomo/data/nasa93.csv.

Taken together, these two sets are the largest COCOMO-style data source in the public domain

(for reasons of corporate confidentiality, access to Boehm’s COCOMO-II data set is highly re-

stricted). Coc81 is the original COCOMO data used by Boehm to calibrate COCOMO 81. Funded

by the Space Station Freedom Program, NASA93 was originally collected to create a NASA-tuned

version of COCOMO. It contains data from the Jet Propulsion Laboratory and five other NASA

centers. Thus, it ”covers a wide range of software domains, development processes, languages,

and complexity as well as fundamental differences in culture and business practices between each

center [93].” The Nasa93 dataset ”has been in the public domain for several years but few have

been aware of it [93].” Although both of these datasets are dated, they are still useful for comparing

different estimation methods.

”When the nasa93 data was collected, it was required that there be multiple interview-

ers with one person leading the interview and one or two others recording and checking

documentation. Each data point was cross-checked with either official records or via

independent subjective inputs from other project personnel who fulfilled various roles

on the project. After the data was translated into the COCOMO 81 format, the data

was reviewed with those who originally provided the data. Once sufficient data existed

the data was analyzed to identify outliers and the data values were re-verified with the

development teams once again if deemed necessary. This typically required from two
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to four trips to each NASA center. All of the supporting information was placed in

binders.” [93]

Menzies et al. have observed wider error variances with the NASA93 dataset than in the COC81

dataset [93]. They suspect this is ”due to the wide variety of projects in that data set, and not poor

data collection”, and argue that, ”nasa93 was collected using methods equal to, or better, than

standard industrial practice” [93].

Different subsets and number of subsets used (in parenthesis) are:

All(2): selects all records from a particular source.

Category(2): NASA93 designation selecting the type of project; e.g. avionics.

Center(2): NASA93 designation selecting records relating to where the software was built.

Fg(1): NASA93 designation selecting either “ f ” (flight) or “g” (ground) software.

Kind(2): COC81 designation selecting records relating to the development platform; e.g. max is

mainframe.

Lang(2): COC81 designation selecting records about different development languages; e.g ftn

is FORTRAN.

Mode(4): designation selecting records relating to the COCOMO-I development mode: one of

semi-detached, embedded, and organic.

Project(2): NASA93 designation selecting records relating to the name of the project.

Year(2): is a NASA93 term that selects the development years, grouped into units of five; e.g.

1970, 1971, 1972, 1973, 1974 are labeled “1970”.

There are more than 19 subsets overall. Some have fewer than 20 projects and hence were not

used. The justification for using 20 projects or more is offered in [93].

One other dataset was used in this study besides NASA93 and COC81. This additional dataset,

NASA07, was used in an experiment for NASA’s Jet Propulsion Laboratory to evaluate the ef-

fectiveness of various effort estimation strategies. This dataset, although not public, was of key
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importance because it contained an updated training dataset and a distinctly separate test dataset

that represents the types of projects that NASA JPL frequently estimates. Thus, NASA07 was use-

ful to evaluate the methods for NASA JPL’s domain. More on this dataset and the experiment using

it can be found in section 5.3.

3.1.2 Method Evaluation

Cross-validation methods are discussed in section 2.5.3. In this study, leave-one-out cross-validation,

also known as n-fold cross-validation, was chosen for several reasons. First, the datasets in ques-

tion are small and thus the computationally expensive drawback of n-fold was minimized. Second,

this technique may provide the most accurate evaluations. Witten and Frank comment that, ”leave-

one-out seems to offer a chance of squeezing the maximum out of a small dataset and obtaining

as accurate an estimate as possible [135].” Third, since n-fold does not require randomization the

experiments are easily repeatable by other parties, and a random number generator seed does not

need to be stored. Finally, this method provides the training algorithms with the maximum amount

of data which may be important considering the small datasets.

The methods were evaluated using both the nonparametric techniques proposed in our previous

work [95], and standard parametric techniques. The nonparametric evaluation, a Mann Whitney

Wilcoxon rank-sum test at a 95% confidence level, is given priority due to the non-Gaussian error

distributions seen in software effort estimation models [95]. The parametric evaluations are in-

cluded for three reasons. First, in the case of ties using the nonparametric methods, the parametric

measures may give insight into which method may be best. Unfortunately, this is not statistically

sound or the method would’ve won the nonparametric evaluation. Nevertheless, it may be a useful

hint. Second, the parametric measures may be preferred by readers that are skeptics or new to the

nonparametric methods. Third, the parametric scores allow the algorithms to be compared to other

methods outside of the given experiment with the same or similar data whereas the nonparametric

evaluation has to be rerun again. More on method evaluation may be found in section 2.5.3.

The evaluation scripts used in this study are available online at http://unbox.org/wisp/

var/dan/eval/.

When considering the methods, emphasis is placed on the method with the minimum losses,
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maximum wins-losses, and secondarily having a low median MRE.

3.2 Feature Subset Selection

This section discusses some algorithms and experiments to investigate feature subset selection,

FSS, algorithms for software effort estimation, which happens to be one of the goals of this thesis.

For more on FSS in the literature, see section 2.6.

Each of the feature selectors described are sometimes used in the context of a pure feature

selector, and other times as a learner. In fact they may be both. They may be used to simply

prune the feature set and then hand this off to another algorithm. When used in the context of a

learner, the implied meaning is that the feature selection is used, and COCOMO calibrated with

local calibration is used with this restricted feature set.

3.2.1 Cocomost

FSS algorithms can be described by two characteristics: their evaluation method and their search

strategy. The evaluation method is how they determine whether a given subset of features is better

than another. The search strategy is how they approach the problem of evaluating the possible

subsets of features. For n features, there are 2n possible subsets to consider. Most FSS algorithms

won’t try all of these subsets but will instead use heuristics to search a subset of them. However,

with a small dataset with a relatively small amount of features and a quick evaluation step, an

exhaustive search may still be possible. The first algorithm investigated, Cocomost, evaluates the

complete set of possible feature subsets.

Cocomost is an FSS algorithm for the COCOMO 81 model that evaluates all of the possible

subsets of features. A variety of evaluation methods were tried, and each was evaluated by training

and testing on the training data. The evaluation methods considered included correlation, median

MRE, MMRE, standard deviation of MRE, various PRED measures, as well as some custom mea-

sures, MMRE-A-to-B. This custom measure MMRE-A-to-B will sort the errors, and return the

average MRE between the A and B percentiles of the sorted list. For example, if A is 10 and B

is 90 then this is essentially MMRE ignoring the lowest 10% and highest 10% of the data. The
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inspiration for this measure was to lessen the impact of outliers on the evaluation. The other listed

evaluation criteria are described in section 2.5.3.

The code used in this experiment is available online at http://unbox.org/wisp/var/dan/

cocomost/.

The Cocomost algorithm was run on the 19 datasets described in section 3.1.1 using n-fold

cross-validation. The results over all of the datasets are shown in table 3.1. Similarly, the results

on just the Coc81 data are in table 3.2, and for Nasa93 data in table 3.3.

Over all of the datasets, table 3.1 shows basic LC, which is COCOMO trained to the local

data using all of the features, never lost a nonparametric test. However, some of the Cocomost

methods did have a higher wins-losses score. There is no significant difference in median MRE.

The Cocomost variant that evaluated using standard deviation did the worst having the most losses

and worst median MRE of any method. However, it still had a lot of ties and the median MRE was

only about 5% higher so it didn’t do terrible.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

ExhaustiveFSS pred25 220 7 1 6 57.01 28.97 0.52 0.794

ExhaustiveFSS mmre 221 6 1 5 54.42 26.88 0.51 0.824

LC 225 3 0 3 55.38 26.82 0.53 0.848

ExhaustiveFSS mmre20to80 223 4 1 3 55.53 27.18 0.51 0.799

ExhaustiveFSS pred30 226 2 0 2 56.68 27.87 0.52 0.794

ExhaustiveFSS mmre25to75 226 2 0 2 56.36 27.96 0.51 0.790

ExhaustiveFSS median mre 227 1 0 1 58.19 28.22 0.50 0.786

ExhaustiveFSS mmre10to90 225 2 1 1 54.51 28.30 0.50 0.804

ExhaustiveFSS pred40 225 1 2 -1 54.71 28.56 0.52 0.807

ExhaustiveFSS mmre33to67 222 2 4 -2 56.08 26.92 0.52 0.802

ExhaustiveFSS corr 222 2 4 -2 55.87 29.63 0.50 0.832

ExhaustiveFSS pred50 221 1 6 -5 54.52 27.54 0.52 0.823

ExhaustiveFSS sd(mre) 213 1 14 -13 59.17 31.54 0.47 0.781

Table 3.1: Cocomost FSS Experiment Results from All Data

Using the Coc81 data, table 3.2 shows LC had a better median MRE than all other methods,

and it had minimum losses and maximum wins-losses. In this case, the feature selection methods

deteriorated performance.

The results were more promising using the Nasa93 data (see table 3.3). Although LC did

not lose, neither did some of the other methods. In addition, some of the other methods had
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Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC 83 1 0 1 41.16 27.46 0.49 0.915

ExhaustiveFSS corr 84 0 0 0 50.19 36.69 0.40 0.850

ExhaustiveFSS median mre 84 0 0 0 55.89 34.28 0.41 0.758

ExhaustiveFSS mmre 84 0 0 0 45.25 32.30 0.42 0.862

ExhaustiveFSS mmre10to90 84 0 0 0 46.72 33.40 0.40 0.812

ExhaustiveFSS mmre20to80 84 0 0 0 49.97 33.68 0.41 0.810

ExhaustiveFSS mmre25to75 84 0 0 0 52.72 36.66 0.41 0.791

ExhaustiveFSS mmre33to67 84 0 0 0 51.72 32.12 0.44 0.812

ExhaustiveFSS pred30 84 0 0 0 53.77 33.19 0.42 0.797

ExhaustiveFSS pred40 84 0 0 0 48.98 30.97 0.46 0.803

ExhaustiveFSS pred50 84 0 0 0 48.43 30.96 0.46 0.838

ExhaustiveFSS sd(mre) 84 0 0 0 47.84 33.74 0.42 0.874

ExhaustiveFSS pred25 83 0 1 -1 54.28 37.65 0.41 0.789

Table 3.2: Cocomost FSS Experiment Results from Coc81 Data

better wins-losses scores and lower median MRE’s. The median MRE improvements were slight

but noticeable, at about 4%. However, due to the large number of ties, no clear winner may be

declared.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

ExhaustiveFSS pred25 137 7 0 7 58.60 23.90 0.58 0.797

ExhaustiveFSS mmre 137 6 1 5 59.77 23.72 0.57 0.802

ExhaustiveFSS mmre20to80 139 4 1 3 58.78 23.38 0.57 0.792

ExhaustiveFSS pred30 142 2 0 2 58.37 24.76 0.58 0.793

LC 142 2 0 2 63.67 26.44 0.56 0.809

ExhaustiveFSS mmre25to75 142 2 0 2 58.48 22.88 0.58 0.789

ExhaustiveFSS median mre 143 1 0 1 59.54 24.69 0.55 0.803

ExhaustiveFSS mmre10to90 141 2 1 1 59.06 25.32 0.56 0.799

ExhaustiveFSS pred40 141 1 2 -1 58.06 27.16 0.55 0.810

ExhaustiveFSS mmre33to67 138 2 4 -2 58.62 23.89 0.56 0.796

ExhaustiveFSS corr 138 2 4 -2 59.18 25.51 0.57 0.822

ExhaustiveFSS pred50 137 1 6 -5 58.08 25.55 0.56 0.815

ExhaustiveFSS sd(mre) 129 1 14 -13 65.78 30.25 0.49 0.726

Table 3.3: Cocomost FSS Experiment Results from Nasa93 Data
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3.2.2 dBFS

The biggest drawback of an exhaustive search is that each additional feature in the initial feature

set doubles the number of subsets to consider. Clearly this approach does not scale well. While

Cocomost is fast enough for COCOMO 81, it does not scale well to COCOMO II which has more

cost drivers.

Thus, suboptimal searches of the attribute space that use heuristics to make an educated guess

as to where the optimal solution exists are employed. This section as well as section 3.2.3 describe

some experiments using suboptimal feature selectors. In this work, many roads were tried, few got

anywhere, and most were dead-ends. However, in the end, some paths using a suboptimal search

were found that performed as well as the exhaustive search.

Popular suboptimal subset searches include the forward selection and backward elimination

search. In a forward selection search, the algorithm starts with an empty feature set (except for

KLOC for COCOMO), and tries adding a feature one at a time. If it improves performance the

feature is kept. Conversely, a backward elimination search starts with all of the features and tries

throwing them away one at a time. The traditional way to use these algorithms is at each step to

evaluate the effect of each remaining feature to consider, and choose the one with the best impact.

For example, in a backward elimination search, each feature is considered for elimination and the

one that when absent improves the performance the most is chosen. Then this is done again with

the remaining features until a preset m number of features is obtained.

In this study the backward elimination search was chosen to use, but was built so that it did

not make an assumption as to the number of features the optimal subset should contain. Thus, the

approach is called a dynamic backward elimination search, or dBFS. The forward selection search

was not tried because early results from the next section showed backward elimination performed

better.

The number of subset evaluations to perform for the dBFS algorithm is ∑
n
i=1 i where n is the

number of features to consider.

The dBFS algorithm was tested using the same types of evaluation criteria as Cocomost. How-

ever, a new idea was tried as well. This new idea is denoted in the results tables by a number at the

end of the method name. This number is a threshold that the performance of the new subset being
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tested minus the old performance must beat for the feature to be thrown away. The inspiration for

this idea is that perhaps a feature should only be thrown away if it greatly decreases performance

to avoid throwing away features carelessly. Conversely, the threshold could be set to be negative

such that features are only kept if they are truly necessary.

The code used in this experiment is available online at http://unbox.org/wisp/var/dan/

dBFS/.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

dBFS mmre 0.000 2221 59 0 59 54.22 26.67 0.53 0.829

LC 2250 30 0 30 55.38 26.82 0.53 0.845

dBFS corr -0.005 2123 10 147 -137 56.19 30.23 0.49 0.841

Table 3.4: Selected dBFS Results from All Data

Table 3.4 shows some selected results from the dBFS experiment using all of the data. The rest

of the experiment’s results are freely available at http://unbox.org/wisp/var/dan/extras/

appendix.pdf. The results from the dBFS experiment were not much different from Cocomost:

LC held its own while some of the dBFS results were the same.

In addition, LC once again dominated in the Coc81 dataset (table 3.5), while the FSS methods

showed some promise with the Nasa93 dataset (table 3.6). The dBFS method evaluating with

MMRE and the default threshold of 0 had more wins than LC and a slightly better median MRE.

The MMRE is also better, but as we have shown [95], this is not a valid statistic for software effort

estimation models.

The threshold concept did not appear to have an effect. This is not a big surprise considering

the small datasets and that in many cases the threshold will not change the algorithm’s decision.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC 830 10 0 10 41.16 27.46 0.49 0.914

dBFS mmre 0.040 830 10 0 10 44.58 31.68 0.43 0.872

dBFS corr 0.000 819 0 21 -21 50.32 36.40 0.39 0.860

Table 3.5: Selected dBFS Results from Coc81 Data
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Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

dBFS mmre 0.000 1391 49 0 49 59.85 23.75 0.58 0.805

LC 1420 20 0 20 63.67 26.44 0.56 0.805

dBFS corr -0.005 1304 10 126 -116 59.62 26.63 0.55 0.829

Table 3.6: Selected dBFS Results from Nasa93 Data

3.2.3 Cocomin

Cocomin is a near linear-time pre-processor that selects the features on some heuristic criteria and

does not explore all subsets of the features. It runs in O(F ·log(F)) for the sort and O(F) time for

the exploration of selected features.

The concept behind Cocomin was to create a very fast feature selector. This was inspired by

some previous algorithms that were very slow. While the biggest gains in speed of all of the feature

selectors in this thesis came from using efficient C code, the theoretical interest for Cocomin is its

very small footprint on the attribute space.

Cocomin is defined by the following operators:

{sorter,order, learner,scorer}

The algorithm runs in linear time over a sorted set of features, F .

Cocomin pre-sorts the features on some heuristic ranking. Some of these criteria, such as

standard deviation or entropy, are gathered without evaluation of the target learner. Others are

gathered by evaluating the performance of the learner using only the feature in question plus any

required features, such as KLOC for COCOMO, to calibrate the model.

This search can be ordered in one of three ways:

• A “backward elimination” process starts with all features F and throws some away, one at a

time.

• A “forward selection” process starts with one feature and adds in the rest, one at a time.

• “Both” forward and backward searches are run separately and the best performing result is

chosen.
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Regardless of the search order, at some point the current set of features F ′ ⊆ F is passed to a

learner to generate a performance score by applying the model learned on the current features to

the Train set. Cocomin returns the features associated with the highest score.

After the features are ordered, each feature is considered for backward elimination, or forward

selection if chosen, in a single linear pass through the feature space, F . The decision to keep or

discard the feature is based on an evaluation measure generated by calibrating and evaluating the

model with the training data.

The variations of Cocomin tried the following ranking measures:

• MMRE (High and Low)

• Median MRE (High and Low)

• Correlation (High and Low)

• Pred30 (High and Low)

• Native (The order was the in the default order of the data)

• Random

• Entropy (High and Low)

• Variance of MRE (High and Low)

The first four ranking measures are created by running an experiment with the training data

using only the attribute in question plus KLOC and returning the relevant performance score. The

remaining four ranking techniques are calculated using only the data without running the target

learner. Thus they are filter methods and are faster than the first four which are wrapper techniques.

Entropy is a measure of information content in a signal. It can be calculated directly from the

data without invoking an internal evaluation of the target learner. For a set of n numbers Xi...Xn,

the entropy of this set of numbers is given by Entropy(X) = ∑
n
i=1 p(Xi) ∗ logp(Xi) [135]. The p

function is simply a normalization function that divides each element in the equation by the sum

of X. In this study the natural logarithm was used.
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The method name identifying each Cocomin variant in the results tables follows the following

schema: cocomin81 SEARCH RANK EVAL where SEARCH is either forward, backward, or

both, RANK is the method used to presort the features, and EVAL is the method used to determine

whether one feature subset is better than another.

The code used in this experiment is available online at http://unbox.org/wisp/var/dan/

experiment cocomin81/.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC 6572 610 0 610 55.38 26.82 0.53 0.845

cocomin81 both med mre hi corr 6572 610 0 610 55.38 26.82 0.53 0.847

cocomin81 both med mre hi mmre 6645 537 0 537 53.30 26.75 0.51 0.820

cocomin81 backward med mre hi mmre 6647 535 0 535 53.41 27.05 0.52 0.821

cocomin81 forward mmre lo mmre 6699 483 0 483 54.96 26.03 0.52 0.804

cocomin81 forward cor hi corr 5491 0 1691 -1691 80.64 44.93 0.38 0.576

Table 3.7: Selected Cocomin Results from All Data

The rest of the experiment’s results are freely available at http://unbox.org/wisp/var/

dan/extras/appendix.pdf. Over all of the data (illustrated by table 3.7), Cocomin was able

to did as well as basic LC. It is possible it adds slight improvement although this is hard to tell.

However, once again the feature selectors failed to offer improvement on the Coc81 data (see

table 3.8), but offered some improvement on the Nasa93 data (see table 3.9). The best performing

Cocomin variant on the Nasa93 data tried both a backward and forward search, pre-sorted on

lowest MMRE, and evaluated using MMRE. It had the same number of losses as LC, which was

0. It had 127 more wins out of 4536 total and a median MMRE that was 3.54% lower. Thus, for

this data, Cocomin offers as good as or slightly better accuracy than standard LC. It also provides

the other benefits of FSS including reducing uncertainty (stabler estimates) by reducing the effects

of human error. It also creates a simpler, faster model.

3.2.4 Comparing Each FSS Method

One startling result of this study was that an exhaustive search of the attribute space, i.e. Coco-

most, performed about the same as a very limited search of the feature space, i.e. Cocomin. This

is an exciting discovery because it provides a very simple and efficient feature selector without
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Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC 2245 401 0 401 41.16 27.46 0.49 0.913

cocomin81 backward cor hi corr 2245 401 0 401 41.16 27.46 0.49 0.913

cocomin81 both med mre hi corr 2245 401 0 401 41.16 27.46 0.49 0.913

cocomin81 both med mre hi mmre 2396 250 0 250 44.67 31.91 0.43 0.851

cocomin81 both mmre lo mmre 2418 228 0 228 45.69 32.39 0.41 0.864

cocomin81 forward cor lo pred30 1544 0 1102 -1102 80.95 53.53 0.27 0.622

Table 3.8: Selected Cocomin Results from Coc81 Data

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

cocomin81 both mmre lo mmre 4200 336 0 336 58.79 22.90 0.58 0.801

cocomin81 backward pred hi mmre 4208 328 0 328 58.91 23.19 0.57 0.792

cocomin81 forward mmre lo mmre 4220 316 0 316 58.39 23.61 0.57 0.786

LC 4327 209 0 209 63.67 26.44 0.56 0.806

cocomin81 both med mre hi corr 4327 209 0 209 63.67 26.44 0.56 0.808

cocomin81 forward mmre hi median mre 3651 0 885 -885 74.06 37.75 0.44 0.584

Table 3.9: Selected Cocomin Results from Nasa93 Data

sacrificing quality.

How can a very limited search be as good as an exhaustive search? There are a few explanations

for this phenomenon. The first is that the available data generalizes very poorly to predictions of

unseen data. This hypothesis would mean that the feature selector is essentially wandering in the

dark and its results are more or less random. The second explanation is that the small dataset results

in a fair amount of noise making a truly optimal solution impossible to find, and thus suboptimal

solutions are as good as it gets. The final explanation is that the Cocomin algorithm’s guided search

is very effective, and so an exhaustive search is truly unnecessary.

Whatever the cause of these results, the effect is that the current results show Cocomin might as

well be used because it is the fastest method and performs just as well as the other feature selectors.

To further verify this, an experiment was done including LC, Cocomost, dBFS, and Cocomin

so that the nonparametric evaluation could compare them to each other. The results shown in tables

3.10, 3.11, and 3.12 confirm that the methods perform about the same. It is interesting to note that

Cocomin has the lowest median MRE of all, however the other feature selectors have such similar

values that the difference is negligible.

The code used in this experiment is available online at http://unbox.org/wisp/var/dan/
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fss/.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

ExhaustiveFSS mmre 57 0 0 0 54.42 26.88 0.51 0.826

LC 57 0 0 0 55.38 26.82 0.53 0.848

cocomin81 both mmre lo mmre 57 0 0 0 53.96 26.40 0.52 0.824

dBFS mmre 0.000 57 0 0 0 54.22 26.67 0.53 0.829

Table 3.10: Experiment Comparing FSS Methods on All Data

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

ExhaustiveFSS mmre 21 0 0 0 45.25 32.30 0.42 0.868

LC 21 0 0 0 41.16 27.46 0.49 0.915

cocomin81 both mmre lo mmre 21 0 0 0 45.69 32.39 0.41 0.865

dBFS mmre 0.000 21 0 0 0 44.58 31.68 0.43 0.870

Table 3.11: Experiment Comparing FSS Methods on Coc81 Data

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

ExhaustiveFSS mmre 36 0 0 0 59.77 23.72 0.57 0.802

LC 36 0 0 0 63.67 26.44 0.56 0.809

cocomin81 both mmre lo mmre 36 0 0 0 58.79 22.90 0.58 0.799

dBFS mmre 0.000 36 0 0 0 59.85 23.75 0.58 0.804

Table 3.12: Experiment Comparing FSS Methods on Nasa93 Data

3.3 Bagging

The concept of bagging, described in section 2.8.2, may be of great benefit to software effort

estimation. Three experiments were run to investigate the use of bagging on the COCOMO model,

which is one of the goals of this thesis.

3.3.1 1st Bagging Experiment

The first bagging experiment was run to create a number of virtual experts, each with a slightly

different knowledge of the target concept. When making an estimate, each expert separately makes
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an estimate, and the results are combined. This is done using either an average or a weighted

average based on the expert’s performance. Both average vote and weighted average were tried in

this study. The weighting coefficient used was the inverse of the expert’s MMRE from its estimates

on the training data. In the results tables this is denoted by ”use weight:” followed by either a 0

for average vote or 1 for weighted vote.

The experts are created by calibrating using different subsets of the data. Several different

amounts of expert knowledge, or the percent of the data used for calibration, was tried in this

experiment. In the results tables this is denoted by ”exp know:” followed by a number ¡ 1 repre-

senting the percent of the data used. In addition, different numbers of experts were tried, and this

is denoted by ”exp num:” followed by the respective number of experts in the results tables.

Each expert was calibrated on its knowledge base using the Cocomin algorithm described

above. The primary inspiration for this choice was that the differences in calibration data among

experts could result in slightly different feature sets chosen by Cocomin, and this additional variety

among experts should be good for the algorithm. After all, if all of the experts are the same there

is no reason to have more than one.

This experiment used a version of Cocomin, which at the time was considered the best, that

used the native ordering of the features, and ran a backward-elimination search pruning features

using MMRE.

The code used in this experiment is available online at http://unbox.org/wisp/var/dan/

bagging/experiment1/.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

use weight:0 exp num:14 exp know:0.30 9398 7 0 7 56.42 27.82 0.52 0.819

use weight:1 exp num:10 exp know:0.50 9400 5 0 5 56.98 27.29 0.52 0.829

LC 9404 1 0 1 55.38 26.82 0.53 0.846

use weight:1 exp num:2 exp know:0.35 9394 0 11 -11 60.84 27.66 0.51 0.803

Table 3.13: Selected Results from 1st Bagging Experiment on All Data)

The results of this first bagging experiment are illustrated in tables 3.13, 3.14, and 3.15, and the

full results are freely available at http://unbox.org/wisp/var/dan/extras/appendix.pdf..

These results showed no significant difference over standard LC. Once again the results were worse

with the Coc81 data than the Nasa93 data, but this can likely be attributed to the use of Cocomin in
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the bagging collection. Any improvements from the first bagging algorithm tried is highly marginal

at best, and thus not worth the additional computational complexity.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC 3464 1 0 1 41.16 27.46 0.49 0.912

use weight:1 exp num:8 exp know:0.90 3464 1 0 1 43.78 31.40 0.46 0.879

use weight:1 exp num:2 exp know:0.35 3454 0 11 -11 52.14 34.21 0.39 0.824

Table 3.14: Selected Results from 1st Bagging Experiment on Coc81 Data)

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

use weight:0 exp num:14 exp know:0.30 5933 7 0 7 61.64 24.65 0.57 0.800

use weight:1 exp num:17 exp know:0.60 5940 0 0 0 59.60 22.49 0.59 0.807

LC 5940 0 0 0 63.67 26.44 0.56 0.808

use weight:0 exp num:2 exp know:0.30 5936 0 4 -4 64.92 28.26 0.52 0.753

Table 3.15: Selected Results from 1st Bagging Experiment on Nasa93 Data)

3.3.2 2nd Bagging Experiment

The second bagging experiment was the same as the first except it used a random pre-sorting

routine in its COCOMIN feature selector in order to increase the difference between each expert.

The results of this experiment are illustrated in tables 3.16, 3.17, and 3.18, and are fully shown

at http://unbox.org/wisp/var/dan/extras/appendix.pdf. These results were basically the

same as in the 1st bagging experiment with LC, and the bagging learners performed roughly equiv-

alently. The differences in terms of wins, losses, and median MRE are mostly negligible. For

example, on the Nasa93 dataset, a variation of bagging (see table 3.18) using 10 experts with 35%

knowledge and a weighted average combination scheme produced a 4.7% reduction in median

MRE. This may be a slight improvement, although the noise in the data makes it hard to be sure.

The most impressive result from this is that experts with only 35% knowledge of a small dataset

performed this well as a group.

The code used in this experiment is available online at http://unbox.org/wisp/var/dan/

bagging/experiment2/.
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Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

use weight:1 exp num:6 exp know:0.45 9399 6 0 6 55.37 27.21 0.53 0.825

use weight:0 exp num:8 exp know:0.55 9405 0 0 0 54.90 24.98 0.55 0.811

LC 9405 0 0 0 55.38 26.82 0.53 0.846

use weight:1 exp num:3 exp know:0.35 9404 0 1 -1 58.91 29.53 0.50 0.824

Table 3.16: Selected Results from 2nd Bagging Experiment on All Data)

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC 3465 0 0 0 41.16 27.46 0.49 0.912

use weight:1 exp num:2 exp know:0.40 3465 0 0 0 45.13 28.34 0.50 0.862

use weight:0 exp num:11 exp know:0.35 3465 0 0 0 47.89 36.65 0.39 0.825

Table 3.17: Selected Results from 2nd Bagging Experiment on Coc81 Data)

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

use weight:1 exp num:6 exp know:0.45 5934 6 0 6 60.75 24.41 0.57 0.810

use weight:1 exp num:10 exp know:0.35 5940 0 0 0 61.10 21.75 0.61 0.811

LC 5940 0 0 0 63.67 26.44 0.56 0.808

use weight:1 exp num:2 exp know:0.35 5938 0 2 -2 65.52 26.92 0.53 0.795

Table 3.18: Selected Results from 2nd Bagging Experiment on Nasa93 Data)
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3.3.3 3rd Bagging Experiment: Cocomonster

The 3rd bagging experiment tried involved the creation of an algorithm that creates a learner using

every permutation of the feature set. Each of these learners is evaluated by making estimates on

the training data. The final estimate produced is the weighted average of the estimate from each

expert, weighted by the inverse of their MMRE. This algorithm was named Cocomonster for its

ridiculous computational complexity.

The code used in this experiment is available online at http://unbox.org/wisp/var/dan/

bagging/cocomonsterV1/.

There is some kind of intrinsic appeal to overly complex algorithms. One may think, ”It must

be better; it’s just so...complicated.” This is much like the snob factor in economics which leads us

to believe that a diamond must be rare and valuable because it costs a lot of money. This simply

isn’t always true, and the results show it (see tables 3.19, 3.20, and 3.21).

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC 17 2 0 2 55.38 26.82 0.53 0.848

cocomonster 17 0 2 -2 63.39 33.88 0.44 0.750

Table 3.19: Cocomonster Bagging Results from All Data

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC 5 2 0 2 41.16 27.46 0.49 0.915

cocomonster 5 0 2 -2 62.10 41.20 0.33 0.765

Table 3.20: Cocomonster Bagging Results from Coc81 Data

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC 12 0 0 0 63.67 26.44 0.56 0.809

cocomonster 12 0 0 0 64.14 29.60 0.51 0.742

Table 3.21: Cocomonster Bagging Results from Nasa93 Data

Perhaps the reason the Cocomonster algorithm performed poorly is the inclusion of many sub-

optimal experts generated by the exhaustive combination of feature set permutations. A similar

algorithm that cut off combinations believed to only hinder performance may produce better re-

sults.
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3.4 Boosting

Boosting, described in section 2.8.3, has the potential to improve the accuracy of software ef-

fort estimation models. This section describes some algorithms developed using boosting with

the COCOMO algorithm, and includes results from experiments involving these algorithms. The

investigation of boosting for software effort estimation is one of the goals of this thesis.

There are several ways that boosting algorithms may manipulate their calibration dataset in or-

der to create successively different derivations of the base learner that are guided towards the most

difficult to predict instances. This may be done using subsampling, oversampling, or distributive

sampling. Each of these approaches was applied and the results are described in the following

subsections.

3.4.1 Boosting by Subsampling

The subsampling approach to boosting calibrates using proper subsets of the original data such that

the focus is placed upon the instances most difficult to classify.

The boosting by subsampling experiment tried boosting both Cocomin as well as standard LC.

These boosting algorithms may be described by their base learner, either Cocomin or LC, the

number of boosting iterations, and the subsample fraction used by each iteration. The Cocomin

variant used evaluated using MMRE, used a native ordering of the attributes, and used a backward-

elimination search.

This boosting algorithm’s final prediction is the result of using the hypothesis from each boost-

ing iteration to make a prediction, and then combining these estimates using a weighted average

where the weight coefficient is the inverse of the MMRE of an evaluation on the training data.

The code used in this experiment is available online at http://unbox.org/wisp/var/dan/

boosting/subsampling/.

The subsampling results show some promise (illustrated in tables 3.22, 3.23, and 3.24, and

are shown in full at http://unbox.org/wisp/var/dan/extras/appendix.pdf). Similar to the

other experiments, LC did not lose, but neither did many of the other methods. Over all of the

data, the boosted Cocomin showed about a 5% reduction in median MRE. Contrary to many other

experiment’s results, the performance did not slightly degrade on the Coc81 data, but rather slightly
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Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

Cocomin Boost:5 Subsample:0.40 5691 142 0 142 54.47 26.26 0.54 0.839

LC Boost:5 Subsample:0.95 5898 106 0 106 59.77 29.00 0.57 0.914

LC Boost:20 Subsample:0.90 5898 106 0 106 59.75 28.91 0.57 0.915

Cocomin Boost:10 Subsample:0.75 5343 109 4 105 48.35 23.78 0.48 0.742

LC 5898 106 0 106 59.91 28.96 0.57 0.914

Cocomin 5906 97 1 96 58.18 29.04 0.56 0.882

Table 3.22: Selected Boosting by Subsampling Results on All Data)

improved, although this difference is a small and arguable. On the Nasa93 data, one of the boosted

Cocomin variants reported a median MRE about 11% lower than standard LC (see 3.24), although

one other variant did have a better win-loss rating. Despite the noise in the data, this result appears

significant enough to show some improvement. The generalization of this to other domains is

always debatable, which is why standout results in these experiments are highly desired. The

variant that showed this improvement in median MRE used only 10 boosting iterations each using

a 75% subsample of the data.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC Boost:10 Subsample:0.20 2258 129 0 129 40.13 26.37 0.54 0.903

LC Boost:45 Subsample:0.30 2377 10 0 10 39.96 25.95 0.49 0.891

LC 2377 10 0 10 41.16 27.46 0.49 0.914

Cocomin Boost:5 Subsample:0.40 2377 10 0 10 43.31 29.19 0.47 0.867

Cocomin 2376 10 1 9 44.19 30.35 0.46 0.880

Table 3.23: Selected Boosting by Subsampling Results on Coc81 Data)

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

Cocomin Boost:5 Subsample:0.40 3314 132 0 132 61.83 24.32 0.59 0.821

Cocomin Boost:10 Subsample:0.75 2970 99 0 99 50.86 18.98 0.50 0.655

LC Boost:5 Subsample:0.95 3521 96 0 96 72.03 30.03 0.63 0.914

LC 3521 96 0 96 72.28 29.95 0.63 0.914

Cocomin 3530 87 0 87 67.42 28.17 0.62 0.884

LC Boost:40 Subsample:0.50 3540 77 0 77 71.39 29.86 0.61 0.912

Table 3.24: Selected Boosting by Subsampling Results on Nasa93 Data)
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3.4.2 Boosting by Oversampling

Another path to boosting is to oversample by including the most difficult instances in the calibration

data multiple times. The code used in each of the oversampling experiments is available online at

http://unbox.org/wisp/var/dan/boosting/oversample/.

1st Oversampling Experiment

The first boosting by oversampling algorithm that was tried worked by adding the two records that

were predicting the worst back into the training set for the next boosting iteration. This choice was

made to see if a small number of difficult instances were throwing the COCOMO algorithm off

balance. If so, these would quickly get enough focus to classify them correctly.

This first boosting by oversampling boosted standard local calibration, and did not include and

feature selectors.

This boosting algorithm’s final prediction is the result of using the hypothesis from each boost-

ing iteration to make a prediction, and then combining these estimates using a weighted average

where the weight coefficient is the inverse of the MMRE of an evaluation of the oversampled

dataset.

The results, shown in table 3.25, show that this boosting method’s performance was inferior

to standard LC. This could be because the presence of a small number of outliers became more

dominant.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC 49 8 0 8 55.38 26.82 0.53 0.847

BoostedLC It:5 Worst+2 54 2 1 1 54.72 29.40 0.50 0.841

BoostedLC It:10 Worst+2 54 0 3 -3 55.06 32.76 0.43 0.834

BoostedLC It:15 Worst+2 51 0 6 -6 55.76 36.20 0.39 0.831

Table 3.25: 1st Boosting by Oversampling Experiment Results on All Data

2nd Oversampling Experiment

The 2nd boosting by oversampling tried boosting locally calibrated COCOMO by adding a per-

centage of the original calibration set back into the virtual set at each boosting iteration. These
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boosting algorithms are described by the number of boosting iterations and the percentage in-

creased at each iteration.

This boosting algorithm’s final prediction is the result of using the hypothesis from each boost-

ing iteration to make a prediction, and then combining these estimates using a weighted average

where the weight coefficient is the inverse of the MMRE of an evaluation of the oversampled

dataset.

Table 3.26 illustrates one of the better performing boosting variations, which still did not do as

well as LC, although its results were similar. Thus, this boosting added no improvement. The rest

of the experiment’s results are freely available at http://unbox.org/wisp/var/dan/extras/

appendix.pdf.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC 273 107 0 107 55.38 26.82 0.53 0.847

LC Boost:5 Oversample:0.10 315 65 0 65 52.58 28.68 0.51 0.843

Table 3.26: Selected Boosting by Oversampling 2nd Results on All Data)

3rd Oversampling Experiment

The next boosting algorithm worked the same as the one from the 2nd experiment, except it in-

cluded the use of Cocomin and a boosted Cocomin.

Once again, the results, illustrated in table 3.27, made no improvement over simpler methods.

The rest of the experiment’s results are freely available at http://unbox.org/wisp/var/dan/

extras/appendix.pdf.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

Cocomin Boost:15 Oversample:0.30 1322 65 0 65 52.62 27.53 0.53 0.823

LC 1325 62 0 62 55.38 26.82 0.53 0.848

Cocomin 1337 50 0 50 54.51 26.73 0.52 0.820

LC Boost:5 Oversample:0.30 1342 45 0 45 53.93 27.41 0.53 0.846

Table 3.27: Selected Boosting by Oversampling 3rd Results on All Data)
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4th Oversampling Experiment

The final boosting by oversampling algorithm tried was the same as the one in the 3rd experiment,

except each boosting variant was evaluated on its estimation ability of the original dataset, instead

of the virtual (oversampled) dataset.

The results, illustrated in table 3.28, produced roughly equivalent results as simpler methods.

Thus, the addition of the boosting was superfluous. The rest of the experiment’s results are freely

available at http://unbox.org/wisp/var/dan/extras/appendix.pdf.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

Cocomin Boost:70 Oversample:0.35 6245 614 0 614 52.55 27.45 0.53 0.828

Cocomin Boost:25 Oversample:0.40 6278 581 0 581 53.31 26.76 0.52 0.830

LC 6331 528 0 528 55.38 26.82 0.53 0.847

Cocomin 6354 505 0 505 54.51 26.73 0.52 0.822

LC Boost:5 Oversample:0.45 6377 482 0 482 54.88 27.42 0.52 0.846

LC Boost:5 Oversample:0.45 6377 482 0 482 54.88 27.42 0.52 0.846

Table 3.28: Selected Boosting by Oversampling 4th Results on All Data)

3.4.3 Distributive Boosting with Adaboost

A final boosting technique is to distributively sample the instances, such as with the popular Ad-

aboost boosting algorithm. In this method, weights are assigned to each instance, and virtual

training sets are created by probabilistically sampling from this set. Adaboost is described in detail

in section 2.8.3 and illustrated in figure 2.8.

The code used in the Adaboost experiments is available online at http://unbox.org/wisp/

var/dan/boosting/adaboost/.

1st Adaboost Experiment

The first ”Adaboost” experiment used wasn’t technically Adaboost because a slight change was

made that was believed to lead to better performance than the original Adaboost algorithm. This

difference occurs in the weights assigned to each calibration instance that affect its choice in the

future distribution of calibration data for boosting iterations. The original Adaboost algorithm

was based on a classification system, and casting Adaboost to regression problems involved using
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a threshold. If the MMRE of a given instance exceeded the threshold then it was considered

misclassified, else it was successfully classified. This way updating the weights occurs the same

as with traditional Adaboost.

In this first experiment, the weights were instead changed to equal the MRE of the instance

during the last evaluation with the training data. This allows the ”misclassified” instances to be

selected proportionally to the error of their classification.

The boosting algorithms used in this experiment are described in the tables with the number

of boosting iterations performed. The estimates of each iteration were combined using a weighted

average with the inverse MMRE as the weighting coefficient.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC 702 77 0 77 55.38 26.82 0.53 0.844

Cocomin 733 46 0 46 54.51 26.73 0.52 0.820

Cocomin DistrBoost v1:It:15 759 20 0 20 52.47 30.38 0.48 0.814

LC DistrBoost v1:It:5 775 0 4 -4 54.71 31.67 0.48 0.831

Table 3.29: Selected Adaboost 1st Results on All Data)

The results from this experiment, illustrated in tables 3.29, 3.30, and 3.31, found that the boost-

ing did not create an improvement, and sometimes deteriorated performance. Simply put, the ex-

tra CPU clock cycles were a waste. The rest of the experiment’s results are freely available at

http://unbox.org/wisp/var/dan/extras/appendix.pdf.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC 287 0 0 0 41.16 27.46 0.49 0.915

Cocomin 287 0 0 0 44.19 30.35 0.46 0.880

Cocomin DistrBoost v1:It:85 287 0 0 0 41.87 28.72 0.50 0.865

LC DistrBoost v1:It:55 287 0 0 0 39.82 26.13 0.53 0.916

Table 3.30: Selected Adaboost 1st Results on Coc81 Data)

2nd Adaboost Experiment

The second Adaboost experiment used the proper version of Adaboost instead of the version in

the first experiment that was modified with hopes of greater performance. Unfortunately, this

version of Adaboost didn’t help any either, as can be seen in tables 3.32, 3.33, and 3.34. This was
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Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

LC 415 77 0 77 63.67 26.44 0.56 0.802

Cocomin 446 46 0 46 60.53 24.62 0.55 0.785

Cocomin DistrBoost v1:It:15 472 20 0 20 58.79 31.19 0.47 0.782

LC DistrBoost v1:It:5 488 0 4 -4 63.56 33.30 0.45 0.785

Table 3.31: Selected Adaboost 1st Results on Nasa93 Data)

surprising considering the impressive results of Adaboost in the literature. One possible cause is

that Adaboost is supposed to be used on a weak, or very simple, learner. The learners used in this

study may have been too complex. It would be interesting to see Adaboost’s performance using

only the relationship between KLOC and the effort, ignoring all the cost drivers.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

Cocomin 167 4 0 4 54.51 26.73 0.52 0.821

Cocomin DistrBoost Adaboost:It:10 167 4 0 4 58.43 29.73 0.48 0.818

Cocomin DistrBoost Adaboost:It:40 167 4 0 4 60.47 30.70 0.47 0.820

Cocomin DistrBoost Adaboost:It:20 169 2 0 2 59.78 31.10 0.47 0.816

Cocomin DistrBoost Adaboost:It:30 169 2 0 2 59.64 30.39 0.49 0.818

LC 171 0 0 0 55.38 26.82 0.53 0.848

LC DistrBoost Adaboost:It:10 168 0 3 -3 62.32 28.69 0.51 0.852

LC DistrBoost Adaboost:It:20 168 0 3 -3 64.55 29.31 0.49 0.852

LC DistrBoost Adaboost:It:30 166 0 5 -5 66.29 29.38 0.49 0.845

LC DistrBoost Adaboost:It:40 166 0 5 -5 66.45 29.00 0.49 0.847

Table 3.32: Results from 2nd Adaboost Experiment on All Data

3.5 Summary of Experimental Results

The most dramatic result from these experiments is that standard locally calibrated COCOMO

never lost one of its nonparametric Mann Whitney Wilcoxon rank-sum tests at a 95% confidence

level. Some of the new methods tried did just as well, and possibly better if secondary characteris-

tics such as median MRE are considered.

The experiments on feature subset selection algorithms found FSS to be useful on the NASA93

data and its subsets. An exhaustive search of the attribute space, COCOMOST, scored about the

same as both a more intermediate search strategy, dBFS, and a very simple near-linear time search,
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Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

Cocomin 59 4 0 4 44.19 30.35 0.46 0.881

Cocomin DistrBoost Adaboost:It:10 59 4 0 4 48.76 34.14 0.42 0.879

Cocomin DistrBoost Adaboost:It:40 59 4 0 4 52.50 36.07 0.40 0.864

Cocomin DistrBoost Adaboost:It:20 61 2 0 2 51.26 36.60 0.38 0.874

Cocomin DistrBoost Adaboost:It:30 61 2 0 2 51.85 35.66 0.42 0.874

LC 63 0 0 0 41.16 27.46 0.49 0.915

LC DistrBoost Adaboost:It:10 60 0 3 -3 47.00 33.16 0.44 0.920

LC DistrBoost Adaboost:It:20 60 0 3 -3 49.03 33.82 0.42 0.918

LC DistrBoost Adaboost:It:30 58 0 5 -5 50.15 33.72 0.43 0.909

LC DistrBoost Adaboost:It:40 58 0 5 -5 51.12 33.85 0.43 0.915

Table 3.33: Results from 2nd Adaboost Experiment on Coc81 Data

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

Cocomin 108 0 0 0 60.53 24.62 0.55 0.785

Cocomin DistrBoost Adaboost:It:10 108 0 0 0 64.07 27.16 0.52 0.782

Cocomin DistrBoost Adaboost:It:20 108 0 0 0 64.75 27.88 0.51 0.781

Cocomin DistrBoost Adaboost:It:30 108 0 0 0 64.18 27.32 0.53 0.786

Cocomin DistrBoost Adaboost:It:40 108 0 0 0 65.11 27.56 0.51 0.794

LC 108 0 0 0 63.67 26.44 0.56 0.809

LC DistrBoost Adaboost:It:10 108 0 0 0 71.26 26.09 0.55 0.812

LC DistrBoost Adaboost:It:20 108 0 0 0 73.60 26.67 0.54 0.814

LC DistrBoost Adaboost:It:30 108 0 0 0 75.70 26.84 0.52 0.807

LC DistrBoost Adaboost:It:40 108 0 0 0 75.39 26.17 0.53 0.806

Table 3.34: Results from 2nd Adaboost Experiment on Nasa93 Data
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COCOMIN. Therefore, due to the comparable performance, the fastest approach, COCOMIN, is

recommended.

The experiments into the use of bagging of the COCOMO based methods did not produce

noticeable gains.

Most of the experiments run on the use of boosting of COCOMO based methods did not pro-

duce noticeable gains. However, on the Nasa93 data, a boosting by subsampling variant which

used 10 boosting iterations of 75% subsamples of the COCOMIN learner reported a median MRE

about 11% lower than standard LC (see 3.24). This result suggests subsampling may be useful in

certain cases. Surprisingly, the use of Adaboost did not make an improvement.
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Chapter 4

The Methodology of 2CEE

4.1 Introduction

This section describes the theory motivating a new software effort estimation methodology called

2CEE, or 21st Century Effort Estimation Methodology. This methodology was implemented in an

industrial application for NASA’s Jet Propulsion Laboratory in Pasadena, California. All of the

details related to this implementation are in the chapter titled Practice.

2CEE is motivated by the current literature on software effort estimation, see Chapter 2, as

well as the results of the laboratory studies described in chapter 3. These studies show which

model-based methods have been found to be useful or not. Based on these results, the direction of

the thesis research transitioned into the industrial application of these methods. The collaborative

research with Tim Menzies and Omid Jalali of West Virginia University, and Jairus Hihn and

Karen Lum of the Jet Propulsion Laboratory greatly inspired the new methodology described in

this chapter.

4.2 Combining Aspects of Experts and Models

The proposed methodology makes progress in adding characteristics of expert-judgment to soft-

ware effort estimation models in two primary ways. First, the cost analyst, or expert, should be

more involved in the model’s estimate. The model’s operation shouldn’t be viewed as a ”black

box” from the expert, allowing them to be ignorant of the model’s decision making structure. It is
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important for the expert to understand both how the model works and can see and guide its opera-

tion to avoid errors of assumption and scope. In addition, this provides more business level insight,

and benefits from the ”sanity check” of the analyst if the model isn’t operating correctly. Sec-

ond, the proposed methodology attempts to implement as many of Jorgensen’s expert estimation

best-practices [49], shown in section 2.4, as possible. If these best practices can be achieved then

perhaps the distinction between expert and model systems is suspect for review. More information

on the best practices implemented can be found in section 5.1. Although not all of these practices

were implemented, future work could implement them.

4.3 Model Calibration Approach in 2CEE

The initial motivation for 2CEE was to produce an effort estimation toolkit with an intuitive user in-

terface for the Jet Propulsion Laboratory that contains many of the new estimation techniques being

developed at West Virginia University. Coincidentally this overlaps with the first way this research

attempts to combine model and expert judgment as described above. The proposed methodology

provides a framework that allows the cost analyst to try different estimation models, experiment

with calibration options, and visualize aspects of the historical data.

Due to the literature on feature selection, section 2.6, and record selection techniques, section

2.7, each of these data pruning techniques are standard options in the proposed methodology.

Manual options for both feature and record selection should be available to easily remove outliers

identified by the cost analyst. Options to facilitate the reduction of the historical data to a stratified

subset should be included. For example, the user may want to use only flight records from a

NASA dataset including both flight and ground projects. This should only take a few button clicks

provided a file with descriptors of each historical record exists.

In addition, automated methods for feature and record selection should be included. The results

of section 3.2 show that a simple, nearly linear time feature selector such as Cocomin should be

sufficient, at least for COCOMO data. The automated nearest neighbor row selection algorithm

LOCOMO, designed by Jalali [46] and introduced by our previous study [95], is a promising

preprocessor for regression estimators like COCOMO. LOCOMO is described in section 2.7.2.

Although the focus of this research has been applied to algorithms derived from COCOMO, the
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proposed methodology is meant to include multiple models and this is an ideal candidate for future

work. In addition, the suggested 2CEE approach is a framework that easily allows the addition of

more models over time.

Finally, designing model calibration to incorporate uncertainty is a key requirement to success-

fully managing it as described in the next subsection.

4.4 Managing Uncertainty

The problem of uncertainty in software effort estimation is detailed in section 2.5.4. The proposed

methodology, 2CEE, should represent the uncertainty of the estimate. Thus, the final estimate

should not be a point estimate but instead a probabilistic estimate or range of estimates. Sorting a

range of estimates into an estimate curve is an intuitive visualization of uncertainty. Unfortunately,

visualization isn’t the problem. Rather, the real question is, ”How much uncertainty is there in my

estimate?”

A natural way to determine the true uncertainty of an estimate is to represent all of its potential

sources. These are the same as the sources of error in an estimate. Kitchenham and Linkman have

described four sources of estimate uncertainty [68].

• Measurement error is error from accuracy limitations in the input variables of the model.

• Model error is error due to the model’s abstractions from reality.

• Assumption error is error from making incorrect assumptions about a model’s input param-

eters.

• Scope error is error from estimating outside the model’s domain.

4.4.1 Addressing Measurement and Assumption Error

Measurement and assumption error can be categorized together because they may be accommo-

dated in the same way: by representing the uncertainty in the input parameters. There are many

ways to represent the uncertainty of input parameters, as can be seen in section 2.5.4.
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In models such as COCOMO, there are two types of input parameters to consider in this way.

The first is the new project data. The second is the historical dataset; in COCOMO this results in

the coefficients, a and b, which define the relationship between size and effort.

A simple and intuitive representation for the new project parameters is to use triangular distri-

butions, i.e. a minimum, mode, and maximum value for each feature. This can be sampled using

a Monte Carlo simulation to generate a range of project instances to estimate in the model. By

representing the new project data in this way, estimates may be made very early in the life-cycle

despite large uncertainties about the project. As time passes, information on the new project be-

comes more clear and the estimate may be refined. In this way, 2CEE is useful throughout the life

cycle of software development.

Considering a COCOMO based model, at first one may consider a similar sampling approach

for the COCOMO coefficients instead of representing the uncertainty directly at the data used to

create the coefficients. This premise is flawed because a and b are inversely correlated. Instead,

sampling may be done from a,b pairs. However, the only correct way to create these pairs is to

represent the uncertainty of the historical data, and calibrate the model with instances sampled

from this uncertain historical dataset. Thus, sampling the coefficients properly does not simplify

the problem.

There are many ways (see section 2.5.4) to represent the uncertainty of a historical dataset if it is

collected to show it. Unfortunately, this research had access only to historical data collected using

point values. It is unlikely that the collected data is perfectly correct. For instance, Kemerer’s work

[59] found function point collection to be at least 12% inaccurate. What can be done to represent

to the uncertainty in a historical dataset collected without it? Two potential solutions include using

bootstrapping and injecting variance into the dataset.

Bootstrapping is a popular statistical operation used in many application that works by random

sampling with replacement lots of times. It is described in more detail in section 2.5.3. The benefit

of using bootstrapping to show the uncertainty from the historical data is that it does not make an

assumption about how much ambiguity exists. Rather, the data determines the uncertainty. The

drawback of using it in this case is that each bootstrap sample effectively uses a subset of the

available calibration data. If a lot of data exists this is not much of a problem. However, in a

domain like software effort estimation where very small datasets are the norm, this could result in
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using too little data which may lead to more inaccurate estimates.

Instead of bootstrapping, a method that injects variance into the dataset could use all of the

available records for every calibration. However, the drawback introduced is that the user must

make an assumption about the magnitude of uncertainty in the dataset. In this paper, particularly

in the results tables of Chapter 5, this method is known as the Fuzzy method.

Implementing this ”Fuzzy” variance injection technique includes the following steps:

1. Define the assumed level of uncertainty in the historical data.

2. Define the distribution to use, such as Gaussian or triangular.

3. Many times create a mutated dataset by sampling from the original with the given distribution

and variance.

4. Calibrate the model using this mutated dataset and make an estimate (or with COCOMO

save the coefficient pair).

4.4.2 Addressing Model Error

Kitchenham proposes to assess model error by a measure such as mean magnitude of relative

error [68]. Due to the non-Gaussian distribution of errors seen in effort estimation [95], this thesis

instead endorses using the median MRE from a cross validation experiment. This value can then

be used to stretch the sorted range of estimates. For example, given a 30% median MRE, the 0

percentile estimate will become 30% lower, the 100 percentile estimate will become 30% higher,

and the 50 percentile estimate will stay the same. The other estimates will be linearly affected

somewhere in between. If this technique is used don’t be surprised if the estimate curve looks

more like a line than an ’S’; this is a natural consequence of the transformation.

4.4.3 Addressing Scope Error

Scope error is the most difficult source of uncertainty to address because an estimation model

cannot perform confidently outside of its domain. Kitchenham warns, ”If your estimation models

or methods are completely out of scope, you cannot produce a meaningful effort estimate [68].”
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With a COCOMO based estimation methodology, scope error boils down to estimating a project

that is very dissimilar from the historical experience. In this case, the standard practice is to

use Boehm’s default calibration of COCOMO. In this case, the best solution available is to use

the default COCOMO’s error seen in similar areas of the industry as the basis for the level of

uncertainty.

For more similar projects in which local calibration is justified, the use of a row selection

algorithm such as LOCOMO will help mitigate the effect of scope error by calibrating on the

records most similar to the new project.

4.5 Evaluation Tools

A big benefit of using a model based approach is that the historical data available can be used to

evaluate the effectiveness of the model, typically using cross-validation (see section 2.5.3). The

estimation framework should have tools available to easily run this cross validation and analyze

the results. It is especially important for the cost analyst to be able to easily run this analysis in an

environment where they can tweak and customize the algorithms used in the model. This type of

analysis is important to understand the accuracy of a single learner.

Another useful evaluation tool for the proposed framework is one that allows a batch experi-

ment to be run involving the cross-validation results from multiple algorithms on multiple datasets.

Ideally analysis tools should also be provided. These tools will allow the cost analyst to better un-

derstand their organizational domain’s relationship to the existing algorithms, and to know which

ones tend to work best in their organization.
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Chapter 5

Industrial Studies

This chapter describes the implementation results of the 21st Century Effort Estimation Method-

ology described in the previous chapter. The resulting tool,2CEE, is currently available from the

Jet Propulsion Laboratory. To obtain a copy, send an email to softwarerelease@jpl.nasa.gov

with your name, citizenship, affiliation, and the name of the software that you are requesting,

2CEE.

5.1 Implemented Expert Estimation Best Practices

The following seven expert estimation best practices from the original list of Jorgensen’s 12 [49]

were implemented in 2CEE:

1. evaluate estimation accuracy, but avoid high evaluation pressure

2. ask the estimators to justify and criticize their estimates

3. avoid irrelevant and unreliable estimation information

4. use documented data from previous development tasks

5. assess the uncertainty of the estimate

6. provide feedback on estimation accuracy

7. find estimation experts with relevant domain background
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The first of these six practices was handled by using a cross validation experiment of the histor-

ical data with the model in question to generate a range of relative error values. This avoided high

evaluation pressure by taking the human out of the loop. The second practice was handled both

inherently by the use of a model calibrated on local data, the use of the well known and respected

COCOMO model, as well as the cross validation previously mentioned. The third practice was

accomplished by the use of feature selection algorithms, such as COCOMIN, and record selec-

tion algorithms, such as LOCOMO. These algorithms remove irrelevant and unreliable data from

use. The fourth practice was accomplished by use of the historical dataset used to calibrate the

model. The fifth practice was accomplished by representing the uncertainty in the project ranges

with triangular distributions, the uncertainty in the historical data either through bootstrapping or

variance injection, and the uncertainty from model error by stretching the estimate by the median

MRE from the cross validation, and finally providing a range of estimates to the analyst. The sixth

practice may be accomplished by making an estimate for a project in which you don’t know the

actual effort, and then having the actual effort revealed to you. This can be done much easier and

faster with the 2CEE models than with expert-judgment. The seventh practice, ”find estimation ex-

perts with relevant domain background”, is accomplished by calibrating good models with relevant

project data. In this way, the model is thought of as a digital expert.

Additional best practices may be implemented in future work as discussed in section 6.1.2.

5.2 An Industrial Implementation of the 2CEE Methodology

The 2CEE tool was built using a combination of Visual Basic and Visual C++. It has a graphical

user interface with several tabs relating to various stages of estimation. There is a tab for manag-

ing historical data, one for new project data, one for visualizing calibration results, one for cross

validation, two for estimation (one is simply meant for plug-ins), and a final tab for options. Logs

of estimates may be saved which include all of the relevant information used to make the estimate.

The 2CEE tool was built as described in chapter 4, although there are aspects weren’t able to be

implemented to their full potential due to time constraints. For example, 2CEE should have more

learners than variants of COCOMIN using either row or feature selection. In addition, the batch

experimenter mode that was built does not include does not include evaluation functions. Finally,
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more work can be done towards using 2CEE to combine expert and model practices. Nevertheless,

2CEE has a great deal of functionality.
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Figure 5.1: This figure shows the management of historical data in 2CEE. Each row is a software

project and each column is a feature of these projects. The gray rows and columns show that the

representative records and features have been disabled. The records may be sorted by the columns.
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Figure 5.2: This figure shows use of the stratification tool in 2CEE. Given a file of descriptors, the

tool can enable or disable records based on their descriptor values.
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Figure 5.3: This figure shows 2CEE describing a new project. Each cost driver is represented by a

triangular distribution. Using ranges instead of a point value has numerous benefits, one of which is

making estimation more useful both very early and throughout the development life-cycle. Grayed

out features are disabled.
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Figure 5.4: This figure shows the calibration panel. It shows the results of injecting a specified

amount of uncertainty into the historical data and calibrating the model throughout this range.

This produces a range of COCOMO coefficients which are visualized in this plot.
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Figure 5.5: This figure shows an example of leave-one-out cross validation in 2CEE. Clearly a

small number of examples account for most of the error. The results may be viewed as either

sorted relative error or sorted mean relative error.
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Figure 5.6: This figure shows an estimate in 2CEE. Instead of a single number, 2CEE provides a

range of estimates with the likelihood that a given budget will finish the project. This allows for

risk management.
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Figure 5.7: This figure shows some options available in the 2CEE tool.
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5.3 Industrial Evaluation of 2CEE Application

This section describes an experiment made to evaluate the performance of the 2CEE tool in the

NASA JPL environment. The experiment was run using 2CEE’s batch experiment mode. Scripts

were then used to take the results from the log files created by 2CEE, and run them through the

same evaluation scripts used in chapter 3. In particular, the nonparametric tests were done using

Mann Whitney Wilcoxon rank-sum tests at a 95% confidence level. These evaluation scripts are

available online at http://unbox.org/wisp/var/dan/eval/.

This experiment used a different dataset than the public COC81 or NASA93 datasets used earlier

in this report. Instead, a proprietary dataset from JPL, NASA07, of 139 records was used for

calibration and a specific set of 18 records were used for testing. Some of these test records were

in NASA07 and the appropriate records were disabled from calibration when being estimated. The

set of test records was carefully selected to represent the types of estimates JPL is commonly

required to make. All records were in the COCOMO II format.

Several stratifications of the calibration data were used in this experiment. Some of them used

only flight data or only ground data, and others both flight and ground. Some of the records in the

dataset were smaller projects that were actually all part of one bigger project. This caused some

of the stratifications to use the smaller pieces as records, and others instead used the rolled up

projects. Some used only records from 1990 or sooner, some only JPL records instead of including

records from other NASA centers, and some removed records considered to be outliers.

Many learners were included in this experiment, all of which were based on the COCOMO II

model. These included the Boehm’s default calibration, standard local calibration (section 2.3.2),

JPL’s SCAT model (section 2.3.2), and LOCOMO (section 2.7.2). It also included learners that ap-

plied some newer methods on top of either LC or LOCOMO. These additional methods included

feature selection via COCOMIN (section 3.2.3), as well as the use of either bootstrapping or vari-

ance injection to represent the uncertainty in the historical data. These last two methods were not

included with the expectation of improved accuracy. Rather, they were included to see if their use

deteriorated accuracy or if it stayed the same.

Due to all of the stratification options tried with each learner, the total number of methods

was quite large. Only selected results are shown here. The remaining results are freely available
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Figure 5.8: This figure shows 2CEE’s batch estimation mode. This can be used to create estimates

from multiple methods and datasets in order to evaluate their performance.
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at http://unbox.org/wisp/var/dan/extras/appendix.pdf. Note that in the results Fuzzy

refers to the variance injection method for representing uncertainty described in section 4.4.1, and

FSS refers to the COCOMIN feature selector described in section 3.2.3.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

NoPieces-Locomo-FSS 110 19 0 19 36.86 22.63 0.50 0.715

NoPieces-LC-FSS 121 8 0 8 53.26 33.43 0.39 0.603

NoPieces-Fuzzy 129 0 0 0 57.01 27.89 0.50 0.483

NoPieces-LC 129 0 0 0 56.93 28.78 0.50 0.489

NoPieces-Bootstrap 129 0 0 0 56.80 28.58 0.50 0.484

NoPieces-Locomo 129 0 0 0 56.24 28.86 0.50 0.494

SCAT 129 0 0 0 73.41 42.11 0.33 0.342

Boehm 128 0 1 -1 66.06 42.14 0.33 0.429

Table 5.1: Selected Results from JPL Experiment on All Data

Table 5.1 highlights some of the results. This table shows methods that calibrated with a

stratification sample that used all of the data and chose rollups over pieces. The only method to

have a nonparametric loss is Boehm’s default calibration. However, the parametric measures tell a

much different story. The use of LOCOMO and COCOMIN produced nearly half of the median

MRE of SCAT and the default COCOMO. Although MMRE is not a good evaluation measure

especially in this domain, it is worthy to note that the combination of LOCOMO and COCOMIN

produced a much lower MMRE than the other methods. On this stratification sample, LOCOMO

(without COCOMIN), COCOMIN (without LOCOMO), LC, and both uncertainty representation

methods scored about the same.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

NoPieces-LC-FSS 176 7 0 7 31.82 14.19 0.44 0.709

NoPieces-Locomo-FSS 177 6 0 6 31.16 5.43 0.44 0.717

NoPieces-Bootstrap-FSS 177 6 0 6 31.95 15.63 0.44 0.733

NoPieces-Fuzzy-FSS 177 6 0 6 32.18 15.64 0.44 0.704

NoPieces-LC 183 0 0 0 35.74 21.97 0.56 0.736

NoPieces-Locomo 183 0 0 0 34.96 22.14 0.56 0.735

Boehm 183 0 0 0 40.25 29.10 0.44 0.717

SCAT 183 0 0 0 40.44 29.29 0.44 0.731

f noRollups-LC-FSS 183 0 0 0 53.83 37.37 0.22 0.602

Table 5.2: Selected Results from JPL Experiment on Flight Data
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Table 5.2 highlights the performance of some of the methods estimating for records of flight

based projects. On the flight records, the best performing methods used COCOMIN. The use of

COCOMIN and LOCOMO produced a very low median MRE of 5.4%! Once again, row and

feature selection had superior parametric measures compared to default COCOMO and SCAT.

One of the better performing combinations that used a flight stratification was included in this

table showing that it had worse parametric scores of every kind.

Method Ties Wins Losses Win-Loss MMRE MedMRE Pred30 R

g NoPieces-Locomo 181 38 0 38 34.44 15.94 0.67 0.686

NoPiecesJPL-Locomo 192 27 0 27 31.05 20.08 0.67 0.813

g NoPieces1990s-Locomo-FSS 199 20 0 20 33.45 26.81 0.67 0.729

NoPieces-Locomo-FSS 203 16 0 16 42.56 22.57 0.56 0.744

g noRollups1990s-LC 216 3 0 3 44.35 28.87 0.44 0.738

SCAT 218 0 1 -1 106.38 42.11 0.22 0.645

Boehm 211 0 8 -8 91.87 42.14 0.22 0.653

Table 5.3: Selected Results from JPL Experiment on Ground Data

Table 5.3 highlights the performance of some of the methods estimating for records of ground

based projects. On the ground records, the best performing methods used LOCOMO. The best

scoring method used LOCOMO on ground records, and several other combinations using ground

stratification also did well. The use of both COCOMIN and LOCOMO did well but not the best.

Both default COCOMO and SCAT did poorly on the ground projects. They had losses in the

nonparametric test, very high MMRE’s, and significantly greater median MRE’s.

Neither bootstrapping or ”fuzzy” variance injection greatly decreased performance. However,

a keen observer will notice the very best performing methods did not use either technique. The

hypothesis that these methods decrease performance is likely true, although the effect is slight.

Both LOCOMO and COCOMIN did well in this experiment. LOCOMO seemed better for

ground estimates, and COCOMIN more suited for flight estimates. The use of both methods did

well when estimating either flight or ground estimates.

In terms of stratification, using ground records only did have value when estimating ground

projects, but the same was not true for flight data. The use of newer records (1990’s and up) was

sometimes useful for ground estimates. Overall, using all of the records and preferring rollups over

pieces was a good choice.
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Figure 5.9: 2CEE vs Standard Methods

In the end, some significant improvements over current methods were found. As can be seen in

figure 5.9, 2CEE can achieve improvements over an industrial state of the art, while simultaneously

providing other improvements. For example, 2CEE provides automated local calibrations and

uncertainty representation.

5.4 Unexpected Results

In the course of building and testing the 2CEE application, the use of its bootstrapping operation to

measure uncertainty in the historical data was used. This operation results in a range of COCOMO

a,b pairs which are the coefficients COCOMO uses to relate code size to effort. The literature [8,

10] reports a fairly confined variance seen in these variables. The results seen in 2CEE were much,

much different from this expected norm.

These unexpected results showing very high COCOMO coefficient variation are shown in fig-

ure 5.10. In addition to the much higher range, the a coefficient was observed to be much higher

than usual, and the b coefficient was much lower. This implies that the NASA domain has much

better economies of scale than usual, but also much higher startup costs. This suggests they will be
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NASA07 : COCOMO II Calibration Coefficients

Figure 5.10: COCOMO II coefficients from local calibration of 1,000 bootstrap samples of the

NASA07 dataset. Note that this is COCOMO II format so the b coefficient will be increased by

the scale factors. A set of nominal scale factors will raise b by 0.1897.

more efficient with large projects and less efficient with small ones than many other organizations.

After observing this unexpected result on the proprietary NASA dataset, the same operation

was tried on the public COCOMO datasets. Similar results were found: The range of coefficient

values was much greater than expected, and the NASA data had a higher a and lower b coefficient.

5.5 Feedback from Industry

Beyond significantly improving estimates especially for ground software (see figure 5.9), 2CEE

was found to be useful in an industrial setting for more practical reasons. For example, Karen

Lum, a cost analyst at the Jet Propulsion Laboratory, comments:

”It used to take me a week to perform local calibration. I had to figure out which data

points were outliers, which weren’t. I had to try different stratification scenarios, etc.

All this took a long time. Now, with 2CEE, I can perform local calibration for multiple
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Figure 5.11: COCOMO coefficients from local calibration of 1,000 bootstrap samples of the

NASA93 dataset. This dataset is in COCOMO 81 format so the b value will not be raised by

any scale factors.
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Figure 5.12: COCOMO coefficients from local calibration of 1,000 bootstrap samples of Boehm’s

COC81 dataset. This dataset is in COCOMO 81 format so the b value will not be raised by any
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scenarios in minutes. I can slice and dice the data in a number of different ways and

see my local calibration results right away. Using 2CEE saves me time so that I can

focus on other aspects of estimation, such as analyzing the technical characteristics of

the software project.”

Some of this analysis of technical characteristics of the data, such as the calibration analysis

shown previously in figure 5.10, is available directly in 2CEE. Unfortunately, this case study wasn’t

long enough to receive feedback regarding all of the tool’s features such as the benefit of a greater

representation of uncertainty.
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Chapter 6

Conclusion

Recall the research goals for this thesis:

1. make progress towards the, ”conceptual framework of integration” of expert and model-

based methods suggested by Meli [86]

2. implement the expert-judgment ”best practices” proposed by Jorgensen [49] in a model

3. provide methodology improvements that are both useful and used by industrial effort esti-

mators, and to report feedback concerning the method’s real-life use

4. represent estimation uncertainty by accounting for Kitchenham’s sources of estimation er-

ror [68]

5. reduce the uncertainty of the estimate

6. provide estimation methods useful at different software life-cycle stages

7. improve estimation accuracy

8. explore the use of feature selection for software effort estimation

9. explore the use of meta-learners such as bagging and boosting for software effort estimation

10. evaluate methods using the nonparametric evaluation discussed in our previous work [95]

Each of these goals was accomplished, although some only partially. The following subsections

summarize the accomplishments towards each goal.
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Progressed Towards a Conceptual Framework of Integration of Expert and Model-Based

Methods

Rather than starting from scratch with a expert and model hybrid system, this thesis added some

characteristics of expert-judgment methods to a model to make progress towards integrating the

two. Progress was made in two ways. First, a more open model-based framework that allows more

expert involvement was created. Second, many of Jorgensen’s expert judgment best practices were

included in the model framework. This progress towards a hybrid approach to expert and model

based effort estimation was implemented in a tool, 2CEE, and additional paths for integration are

described.

Implemented Many of Jorgensen’s Expert-Judgment Best Practices in a Model

The following seven expert estimation best practices from the original list of Jorgensen’s 12 [49]

were implemented in the 2CEE tool:

1. evaluate estimation accuracy, but avoid high evaluation pressure

2. ask the estimators to justify and criticize their estimates

3. avoid irrelevant and unreliable estimation information

4. use documented data from previous development tasks

5. assess the uncertainty of the estimate

6. provide feedback on estimation accuracy

7. find estimation experts with relevant domain background

The first of these seven practices was handled by using a cross validation experiment of the

historical data with the model in question to generate a range of relative error values. This avoided

high evaluation pressure by taking the human out of the loop. The second practice was handled

both inherently by the use of a model calibrated on local data, the use of the well known and re-

spected COCOMO model, as well as the cross validation previously mentioned. The third practice
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was accomplished by the use of feature selection algorithms, such as COCOMIN, and record selec-

tion algorithms, such as LOCOMO. These algorithms remove irrelevant and unreliable data from

use. The fourth practice was accomplished by use of the historical dataset used to calibrate the

model. The fifth practice was accomplished by representing the uncertainty in the project ranges

with triangular distributions, the uncertainty in the historical data either through bootstrapping or

variance injection, and the uncertainty from model error by stretching the estimate by the median

MRE from the cross validation, and finally providing a range of estimates to the analyst. The sixth

practice may be accomplished by making an estimate for a project in which you don’t know the

actual effort, and then having the actual effort revealed to you. This can be done much easier and

faster with the 2CEE models than with expert-judgment. The seventh practice, ”find estimation ex-

perts with relevant domain background”, is accomplished by calibrating good models with relevant

project data.

Provided Methodology Improvements to Industry and Reported Feedback

Recall that in a recent review of software effort estimation studies, Jorgensen and Shepperd dis-

covered a, ”lack of in-depth studies on the actual use of estimation methods and real-life evalu-

ations” [52]. This thesis responds to Jorgensen and Shepperd’s startling discovery by providing

method improvements in a new tool called 2CEE and describing its reception at its client, the

NASA Jet Propulsion Laboratory. Although this thesis is not a thorough review of the real-life use

of software effort estimation, it is a step in the right direction.

The 2CEE tool is currently being phased into use at the Jet Propulsion Laboratory. During this

process, it will be used alongside traditional methods until it has a proven track record. Afterwards,

the tool will be used to make estimates. 2CEE is currently available for free from the Jet Propulsion

Laboratory. To obtain a copy, send an email to softwarerelease@jpl.nasa.gov with your

name, citizenship, affiliation, and the name of the software that you are requesting, 2CEE.

Represented Estimation Uncertainty

The problem of uncertainty in software effort estimates is explained in section 2.5.4. In 2CEE, the

uncertainty of an estimate is represented by providing a sorted range of estimates. This range is

plotted to produce an estimate curve such as is seen in Figure 5.6 on page 90.
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To the best of our knowledge, this thesis describes the first implementation that can handle

the model error, measurement error, and assumption error sources of uncertainty described by

Kitchenham and Linkman [68]. Measurement error and assumption error are handled in 2CEE by

the use of project ranges, bootstrapping, and variance injection on the calibration data. Model error

is handled in 2CEE by performing leave-one-out cross validation, taking the median MRE score,

and stretching the estimate curve accordingly.

Kitchenham and Linkman’s last source of uncertainty, scope error, or the ”error from estimating

outside the model’s domain”, was not represented in 2CEE. This because of the inherent difficulty

in quantifying this error, as well as the different practices involved. That is, a cost analyst won’t

calibrate to local data when a drastically domain difference occurs, but rather they will use a

recommended industry-wide calibration such as Boehm’s default COCOMO calibration [10]. On

a related note, when using local data for calibration, automated nearest neighbor row selection

algorithms such as LOCOMO [46, 95] should mitigate scope error by selecting the records closest

to the novel domain.

Reduced Estimate Uncertainty

Properly using the methods suggested in this thesis will likely result in a greater degree of uncer-

tainty shown in the estimate than a practitioner is used to seeing. This is because the uncertainty

was being underrepresented because not all of its sources were considered. Despite this, 2CEE

has the potential to reduce the true uncertainty of an estimate through use of feature and record

selection techniques such as COCOMIN and LOCOMO.

Why do data pruning methods such as COCOMIN and LOCOMO reduce uncertainty? One

reason lies in the potential uncertainty introduced by each additional feature and record that may

have been collected incorrectly. By eliminating unnecessary information, the impact of human

error is reduced. Another reason is that methods with improved accuracy will have less model error,

and consequently less range in the estimate. Finally, automated nearest neighbor row selection

algorithms such as LOCOMO may mitigate scope error, resulting in less uncertainty.
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Provided Estimation Methods Useful Throughout the Software Development Life-cycle

Recall that Molokken-Ostvold et al. [101] found that the, ”estimate often changes over the course

of a project, depending on the stage at which the estimate is made.” Thus, it is important to provide

a tool useful for making estimates under different conditions and at different stages of development.

Because new projects are represented by ranges of values in 2CEE, estimates may be made

very early in the software life-cycle when little is known about the new project. Estimates at this

time will have a much greater uncertainty than normally, but they may be done. As time passes and

more information is gained about the new project, the ranges of the values describing the project

are restricted, creating a better estimate.

Improved Estimation Accuracy

The use of feature subset selection algorithms such as COCOMIN, and row selection techniques

such as LOCOMO, were routinely found to be as good as or sometimes far better than traditional

methods. For example, an experiment evaluating 2CEE in the JPL environment found that using

LOCOMO and COCOMIN when used to estimate flight projects produced a 5.4% median MRE,

whereas standard LC produced a 21.97% median MRE, and SCAT provided a 29.29% median

MRE (section 5.2). Using LOCOMO to estimate ground-based projects resulted in a 15.9% median

MRE, whereas standard LC and uncalibrated models such as SCAT produced 28.9% and 42.1%

median MRE’s, respectively (section 5.3). These median MRE improvements are illustrated in

figure 6.1.

As can be seen in figure 6.1, 2CEE can achieve improvements over an industrial state of the art

such as SCAT, while simultaneously providing the other improvements mentioned in this chapter.

For example, 2CEE provides automated local calibrations and more comprehensive uncertainty

representation than SCAT.

Based on the large differences in gains from feature subset selection on COC81 data vs NASA93

data (section 3.2), it appears the potential accuracy gain is dependent on the organization involved.

Validation of any novel method’s effectivity is suggested using within-company data.
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Figure 6.1: 2CEE vs Standard Methods

Explored Feature Subset Selection Methods for Software Effort Estimation

Research on feature subset selection, FSS, was a major portion of this thesis. Section 2.6 describes

FSS in the literature. Section 3.2 describes experiments performed using FSS for the COCOMO

model.

Feature selection was useful for the NASA93 dataset but not for the COC81 dataset. The

FSS experiments found a near-linear time search of the feature space, COCOMIN, was just as

effective as an exhaustive exploration of all feature combinations, COCOMOST. Many variations

of the FSS learners were tried with different evaluation criteria, and for COCOMIN, with different

search criteria. The most effective COCOMIN combination for the NASA93 dataset evaluated

subsets using MMRE, pre-sorted the features by the ones with lowest associated MMRE when

used to make estimates by themselves with KLOC, and tried both a forward and backward search,

choosing the best evaluated subset at the end.

Explored Bagging and Boosting Techniques for Software Effort Estimation

The meta-learner techniques of bagging, described in section 2.8.2, and boosting, described in

section 2.8.3, were studied with the use of the COCOMO model. Sometimes the use of the feature
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selection algorithm COCOMIN was included in these experiments. The details and results of these

studies may be found in section 3.3 and section 3.4 respectively.

The majority of the use of bagging and boosting did not show significant improvement in model

accuracy. In some of these cases, a very small improvement was observed. However, such a small

gain is not statistically significant given the noise in the data. Furthermore, even if such a gain is a

real effect, it comes at a much higher computational cost than basic COCOMO or COCOMIN. In

contrast with most of these results, boosting by subsampling showed more significant improvement

on the NASA93 data. A variant which used 10 boosting iterations of 75% subsamples of the

COCOMIN learner reported a median MRE about 11% lower than standard LC (see 3.24). This

result suggests subsampling may be useful in certain cases.

These results by no means rule out the potential benefit of bagging or more traditional boost-

ing techniques such as Adaboost on effort estimation models. Rather they show that, except for

boosting via subsamples, the configurations of boosting and bagging used did not show major

improvement of the COCOMO model on the data available.

Evaluated Software Effort Estimation Methods with Nonparametric Techniques

Our previous work reports that the effort estimation errors do not fit a Gaussian distribution, but

rather have a small number of very large outliers [95]. Having a Gaussian distribution is a critical

assumption of most parametric measures. We suggested using nonparametric evaluation meth-

ods, particularly the Mann Whitney Wilcoxon rank-sum test [83]. More details on nonparametric

evaluation is mentioned in section 2.5.3.

The experiments detailed in this thesis were evaluated using the Mann Whitney Wilcoxon rank-

sum test [83]. We suggested that, ”since we seek methods that can be rejected, the value of interest

to us is how often methods lose [46, 95].” The evaluations made frequently found several methods

without any losses. Thus, parametric measures such as median MRE were used as a secondary

criteria evaluation measure.

Unexpected Results

The research into uncertainty in the input data led to some interesting results. The literature [8,10]

reports a fairly confined variance seen in these variables of a linear coefficient between 2.5 and
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2.94, and a scalar coefficient between 0.91 and 1.01. However, results from the industry (see figure

5.10), find a linear coefficient between 4 and 11, and a scalar coefficient between 0.65 and 0.9

This implies that the NASA domain has much better economies of scale than usual, but also much

higher startup costs. This suggests they will be more efficient with large projects and less efficient

with small ones than many other organizations.

After observing this unexpected result on the proprietary NASA dataset, the same operation

was tried on the public COCOMO datasets. Similar results were found: The range of coefficient

values was much greater than expected, and the NASA data had a higher linear and lower scalar

coefficient.

These results are a warning. The models aren’t as stable as commonly believed. Small changes

in the calibration data can create large changes in the calibration coefficients. This is probably due

to the scarce data problem described in section 2.5.2. Assuming this to be the cause, three ways to

achieve more stable calibrations include:

1. gather more beneficial calibration records

2. reduce the number of features used in the model

3. improve the precision of metric collection

Thus, the COCOMIN feature selector described in section 3.2.3 may be used to increase the

stability of the calibration coefficients.

6.1 Future Work

Further work should be done to bridge the gap between expert and model based software effort

estimation techniques. In addition, the human side of using estimation models needs to be re-

searched.

6.1.1 Stacking Estimation Methods

Future work should be done in both researching combining different estimation methods, as well

as adding this ability to the 2CEE tool. Ideally each component method should be as different

108



as possible but also accurate. One way to combine methods, such as by the COSEEKMO tool

by Menzies et al. [46, 93], is to internally evaluate each method on the available data and use

the best performing one to make the estimate. Alternately, instead of combination schemes like

COSEEKMO, the estimates of each method can be combined.

Although average votes and weighted averages work to combine point estimates, combining a

range is a little more complicated. The simplest way to combine a range of estimates such as those

made by 2CEE is to first have each model produce their own ranges of estimates. Then make one

big list of all of the estimates from each model, sort it, and plot it.

Future work could also be done to combine direct expert judgment based estimates with model-

based estimates. This is achievable in much the same way as combining the estimates of separate

models. However, in a framework like 2CEE, the expert estimates would simply need to be con-

verted into a list of 1,000 or more estimates before being combined with the model estimates. If

the expert estimate is a point estimate, the expert must assess the uncertainty and then this list of

estimates can be made.

6.1.2 Implement More Best Practices in 2CEE

Although the following best practices were not implemented, it would be straightforward to im-

plement them in a tool like 2CEE.

• combine estimates from different experts and estimation strategies

• estimate top-down and bottom-up, independently of each other

• use estimation checklists

• provide estimation training opportunities

The first of these could be done by using a stacking approach of estimation models. The second

practice would require a lot of development to create the bottom-up assessment tools, but it could

be done. The third of these practices could be implemented easily by requiring steps be taken in

the application. This constraint was relaxed instead in favor of more flexibility. This leaves the

responsibility of following a checklist to the cost analyst. Finally, providing estimation training

opportunities could be built into a model as an interactive training guide.

109



The only expert estimation best practice which cannot translate into into direct inclusion in

a model, but must instead be handled by the experts using the model, is to, ”avoid conflicting

estimation goals.” The expert is ultimately responsible for maintaining their integrity when using

a model, and must avoid tweaking the model to get an estimate more fitting to any inappropriate

motives.

6.1.3 Include More Models in 2CEE

Future work should be done to include additional models in the 2CEE tool. Currently, the tool

only has COCOMO based models. It would be useful to include some non COCOMO models in

the tool to get another point of view. In addition, there are other COCOMO based algorithms that

might be added. For example, the COSEEKMO tool by Menzies et al. [46,93] is an ideal candidate

to add to 2CEE.

6.1.4 Interactive Feature Exploration

While implementing the feature selection methods in 2CEE, an idea for an interactive feature

selection and exploration tool was conceived but there was not enough time to create it. Such a

tool should offer data visualization and analysis of the features. For example, histograms of the

feature’s distribution, as well as statistics on entropy and deviation could be included.

The interactive feature selection portion of this tool would list the current feature set with a

bunch of related metrics from a cross validation experiment. It would also include the related

metrics from each feature subset that is one step away from the current set, i.e. either one feature

removed or one feature added from the current set. The metrics available could include standard

parametric measures such as median MRE, MMRE, Pred, correlation, etc. It could also include a

nonparametric test such as the Mann Whitney Wilcoxon rank-sum test: [83], comparing the current

set of features against the same model using each of the other sets of features that are one step away

from the current set.

To use the interactive feature selection, the analyst would consider all of the analysis measures,

and would guide a search through the feature space. This would be done by either choosing to

keep the current set of features, or selecting one of the subsets which is one feature different from
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the current set to become the new current set. Then the entire list of metrics is repopulated to show

the new current set and each of the subsets which is one step away.

The steps of this tool are very similar to the operation of a feature selection algorithm. The

benefit of including a human in the loop instead of automating the entire process is that a human

mind can consider all of the related metrics when making a decision. Conversely, in an algorithm

must choose an evaluation method and stick to it. This is most commonly done with a single

parametric measure. Although an automated algorithm could be written to simulate the decision

making of a human analyzing all of the related metrics, this would be a very complex task.

In addition, the list of subsets could be sortable by each metric allowing the analyst to observe

which set is more likely to minimize a given measure.

6.1.5 Tradeoff Analysis

Features for tradeoff analysis should be included in the 2CEE methodology and implemented in

the tool. An intuitive way this could be done is to allow multiple labeled graphs to be plotted on

the same chart.

111



Bibliography

[1] Certified parametric practitioner tutorial. In Proceedings of the 2006 International Confer-
ence of the International Society of Parametric Analysts, Seattle, WA, 2006.

[2] A. Aamodt and E. Plaza. Case-based reasoning; foundational issues, methodological vari-
ations, and system approaches. AI Communications, 7(1):39–59, March 1994. Available
from http://www.iiia.csic.es/People/enric/AICom ToC.html.

[3] L. Angelis, I. Stamelos, and M. Morisio. Building a software cost estimation model based
on categorical data. In METRICS ’01: Proceedings of the 7th International Symposium on
Software Metrics, page 4, Washington, DC, USA, 2001. IEEE Computer Society.

[4] S. Asch. Studies of independence and conformity: A minority of one against a unanimous
majority. Psychological Monographs: General and Applied, 70(9):1970, 1956.

[5] John Bailey. Using monte carlo and cocomo-2 to model a large it system development,
2002.

[6] David A. Bell and Hui Wang. A formalism for relevance and its application in feature subset
selection. Mach. Learn., 41(2):175–195, 2000.

[7] Alberto Bertoni, Paola Campadelli, and M. Parodi. A boosting algorithm for regression. In
ICANN ’97: Proceedings of the 7th International Conference on Artificial Neural Networks,
pages 343–348, London, UK, 1997. Springer-Verlag.

[8] B. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[9] B. Boehm. Safe and simple software cost analysis. IEEE Software, pages 14–17, Septem-
ber/October 2000. Available from http://www.computer.org/certification/beta/
Boehm Safe.pdf.

[10] Barry Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K. Clark, Bert Steece,
A. Winsor Brown, Sunita Chulani, and Chris Abts. Software Cost Estimation with Cocomo
II. Prentice Hall, 2000.

[11] Petronio L. Braga, Adriano L. I. Oliveira, and Silvio R. L. Meira. Software effort estima-
tion using machine learning techniques with robust confidence intervals. In HIS 2007: 7th
International Conference on Hybrid Intelligent Systems 2007, pages 352–357, 2007.

112



[12] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and regression
trees. Technical report, Wadsworth International, Monterey, CA, 1984.

[13] L. Briand, K. Eman, and F. Bomarius. Cobra: A hybrid method for software cost estimation,
benchmarking, and risk assessment, 1998.

[14] Lionel C. Briand, Victor R. Basili, and Christopher J. Hetmanski. Developing interpretable
models with optimized set reduction for identifying high-risk software components. IEEE
Trans. Softw. Eng., 19(11):1028–1044, 1993.

[15] Lionel C. Briand, Victor R. Basili, and William M. Thomas. A pattern recognition approach
for software engineering data analysis. IEEE Trans. Softw. Eng., 18(11):931–942, 1992.

[16] Lionel C. Briand, Khaled El Emam, Dagmar Surmann, Isabella Wieczorek, and Katrina D.
Maxwell. An assessment and comparison of common software cost estimation modeling
techniques. In ICSE ’99: Proceedings of the 21st international conference on Software
engineering, pages 313–322, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[17] Lionel C. Briand, Khaled El Emam, and Isabella Wieczorek. A case study in productivity
benchmarking: Methods and lessons learned.

[18] Rich Caruana and Dayne Freitag. Greedy attribute selection. In International Conference
on Machine Learning, pages 28–36, 1994.

[19] Zhihao Chen, Tim Menzies, Dan Port, and Barry Boehm. Finding the right data for software
cost modeling. IEEE Software, Nov 2005.

[20] Zhihoa Chen, Tim Menzies, and Dan Port. Feature subset selection can improve software
cost estimation. In Proceedings, PROMISE workshop, ICSE 2005, 2005. Available from
http://menzies.us/pdf/05/fsscocomo.pdf.

[21] S. Chulani, B. Boehm, and B. Steece. Bayesian analysis of empirical software engineering
cost models. IEEE Transaction on Software Engineerining, 25(4), July/August 1999.

[22] Alexander Yun chung Liu. The effect of oversampling and undersampling on classifying
imbalanced text datasets. Master’s thesis, 2004. Available from http://www.lans.ece.
utexas.edu/∼aliu/papers/aliu masters thesis.pdf.

[23] Iris Fabiana de Barcelos Tronto, Jose Demisio Simoes da Silva, and Sant’Anna Nilson.
Comparison of artificial neural network and regression models in software effort estimation.
In IJCNN 2007: International Joint Conference on Neural Networks 2007, pages 771–776,
2007.

[24] Sarah Jane Delany, Pdraig Cunningham, and Wolfgang Wilke. The limits of cbr in software
project estimation.

[25] J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Ma-
chine Learning Research, 7:1–30, 2006. Availiable from http://jmlr.csail.mit.edu/
papers/v7/demsar06a.html.

113



[26] Orsolya Doban and Andras Pataricza. Cost estimation driven software development process.

[27] Harris Drucker. Improving regressors using boosting techniques. In Proc. 14th International
Conference on Machine Learning, pages 107–115. Morgan Kaufmann, 1997.

[28] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd Edition).
Wiley-Interscience, November 2000.

[29] D. Ferens and D. Christensen. Calibrating software cost models to Department of Defense
Database: A review of ten studies. Journal of Parametrics, 18(1):55–74, November 1998.

[30] Gavin R. Finnie and Gerhard E. Wittig. Ai tools for software development effort estimation.
In SEEP ’96: Proceedings of the 1996 International Conference on Software Engineering:
Education and Practice (SE:EP ’96), page 346, Washington, DC, USA, 1996. IEEE Com-
puter Society.

[31] T. Fos, E. Stensrud, B. Kitchenham, and I. Myrtveit. A simulation study of the model
evaluation criterion mmre. IEEE Transactions on Software Engineering, 29(11):985 – 995,
November 2003.

[32] Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. JCSS: Journal of Computer and System Sciences, 55, 1997.

[33] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In
International Conference on Machine Learning, pages 148–156, 1996.

[34] J. Friedman. Greedy function approximation: a gradient boosting machine, 1999.

[35] Liu Fuyan. An attribute selection approach and its application. In ICNNB 2005 International
Conference on Neural Networks and Brain, pages 636–640, 2005.

[36] Stein Grimstad, Magne Jorgensen, and Kjetil Molokken-Ostvold. Software effort estimation
terminology: The tower of babel. Information and Software Technology, 48(4):302–310,
2006.

[37] Tanja Gruschke and Magne Jorgensen. Assessing uncertainty of software development ef-
fort estimates: The learning from outcome feedback. In METRICS ’05: Proceedings of the
11th IEEE International Software Metrics Symposium (METRICS’05), page 4, Washington,
DC, USA, 2005. IEEE Computer Society.

[38] M. A. Hall. Correlation-based feature selection for machine learning. PhD thesis, Depart-
ment of Computer Science, University of Waikato, Hamilton, New Zealand, 1998.

[39] M.A. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class
data mining. IEEE Transactions On Knowledge And Data Engineering, 15(6):1437– 1447,
2003. Available from http://www.cs.waikato.ac.nz/∼mhall/HallHolmesTKDE.pdf.

[40] Mark A. Hall. Selection of attributes for modeling bach chorales by a genetic algorithm.

114



[41] Mark A. Hall. Correlation-based feature selection for discrete and numeric class machine
learning. In Proc. 17th International Conf. on Machine Learning, pages 359–366. Morgan
Kaufmann, San Francisco, CA, 2000.

[42] F.J. Heemstra. Software cost estimation models. In Information Technology, 1990. ’Next
Decade in Information Technology’, Proceedings of the 5th Jerusalem Conference on (Cat.
No.90TH0326-9), pages 286–297, 1990.

[43] Jairus Hihn and Karen T. Lum. Improving software size estimates by using probabilistic
pairwise comparison matrices. In METRICS ’04: Proceedings of the Software Metrics, 10th
International Symposium on (METRICS’04), pages 140–150, Washington, DC, USA, 2004.
IEEE Computer Society.

[44] J.M. Hihn and H. Habib-agahi. Cost estimation of software intensive projects: A survey
of current practices. In Proceedings of the Thirteenth IEEE International Conference of
Software Engineering, May 1991.

[45] O. Jalali, T. Menzies, D. Baker, and J. Hihn. Column pruning beats stratification in effort es-
timation. In Proceedings, PROMISE workshop, Workshop on Predictor Models in Software
Engineering, 2007.

[46] Omid Jalali. Evaluation bias in effort estimation. Master’s thesis, Lane Department of
Computer Science and Electrical Engineering, West Virginia University, 2007.

[47] R. Jeffery, M. Ruhe, and I. Wieczorek. Using public domain metrics to estimate software
development effort. In Proceedings of the 7th International Software Metrics Symposium,
pages 16–27, 2001. Available from http://www.iese.fhg.de/pdf files/iese-058
00.pdf.

[48] T.C. Jones. Estimating Software Costs. McGraw-Hill, 1998.

[49] M. Jorgensen. A review of studies on expert estimation of software development effort.
Journal of Systems and Software, 70(1-2):37–60, 2004.

[50] M. Jorgensen. Practical guidelines for expert judgment based-software-effort estimation.
IEEE Software, 22(3), May/June 2005.

[51] M. Jorgensen and S. Grimstad. Over-optimism in software development projects: ?the
winner?s curse? In Proceedings of IEEE CONIELECOMP, Puebla, Mexico, February 28-
March 2, pages 280–285. IEEE Computer Society, 2005.

[52] M. Jorgensen and M. Shepperd. A systematic review of software development cost es-
timation studies, January 2007. Available from http://www.simula.no/departments/
engineering/publications/Jorgensen.2005.12.

[53] Magne Jorgensen. Experience with the accuracy of software maintenance task effort pre-
diction models. IEEE Trans. Softw. Eng., 21(8):674–681, 1995.

115



[54] Magne Jorgensen. Realism in assessment of effort estimation uncertainty: It matters how
you ask. IEEE Trans. Softw. Eng., 30(4):209–217, 2004.

[55] Magne Jorgensen and K. Molokken-Ostvold. Reasons for software effort estimation error:
Impact of respondent role, information collection approach, and data analysis method. IEEE
Transactions on Software Engineering, 30(12):993–1007, 2004.

[56] Magne Jorgensen and Dag I. K. Sjoberg. Impact of experience on maintenance skills. Jour-
nal of Software Maintenance, 14(2):123–146, 2002.

[57] G. Kadoda, M. Cartwright, L. Chen, and M. Shepperd. Experiences using case based rea-
soning to predict software project effort, 2000.

[58] C.F. Kemerer. An empirical validation of software cost estimation models. Communications
of the ACM, 30(5):416–429, May 1987.

[59] Chris F. Kemerer. Reliability of function points measurement: a field experiment. Commun.
ACM, 36(2):85–97, 1993.

[60] J. Kernaghan and R. Cooke. The contribution of the group process to successful project
planning in r&d settings. IEEE Transactions on Engineering Management, 33(3):134–140,
1986.

[61] Jacky Keung, Ross Jeffery, and Barbara Kitchenham. The challenge of introducing a new
software cost estimation technology into a small software organization. In ASWEC ’04: Pro-
ceedings of the 2004 Australian Software Engineering Conference (ASWEC’04), page 52,
Washington, DC, USA, 2004. IEEE Computer Society.

[62] Taghi M. Khoshgoftaar, Laurent Nguyen, Kehan Gao, and Jayanth Rajeevalochanam. Ap-
plication of an attribute selection method to cbr-based software quality classification. In
ICTAI ’03: Proceedings of the 15th IEEE International Conference on Tools with Artificial
Intelligence, page 47, Washington, DC, USA, 2003. IEEE Computer Society.

[63] C. Kirsopp and M. Shepperd. Case and feature subset selection in case-based software
project effort prediction. In Proc. of 22nd SGAI International Conference on Knowledge-
Based Systems and Applied Artificial Intelligence, Cambridge, UK, 2002.

[64] C. Kirsopp, M. Shepperd, and J. Hart. Search heuristics, case-based reasoning and software
project effort prediction, 2002.

[65] B. A. Kitchenham, E. Mendes, and G. H. Travassos. Cross- vs. within-company cost esti-
mation studies: A systematic review. IEEE Transactions on Software Engineering, pages
316–329, May 2007.

[66] B.A. Kitchenham, L.M. Pickard, S.G. MacDonell, and M.J. Shepperd. What accuracy statis-
tics really measure. Software, IEE Proceedings, 148(3):81–85, 2001.

[67] Barbara Kitchenham. A procedure for analyzing unbalanced datasets. IEEE Trans. Softw.
Eng., 24(4):278–301, 1998.

116



[68] Barbara Kitchenham and Stephen Linkman. Estimates, uncertainty, and risk. IEEE Softw.,
14(3):69–74, 1997.

[69] J.P.C. Kliijnen. Sensitivity analysis and related analyses: a survey of statistical techniques.
Journal Statistical Computation and Simulation, 57(1–4):111–142, 19987.

[70] Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial Intelli-
gence, 97(1-2):273–324, 1997.

[71] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann, 1993.

[72] Linda M. Laird. The limitations of estimation. IT Professional, 8(6):40–45, 2006.

[73] G.V. Lashkia and L. Anthony. Relevant, irredundant feature selection and noisy example
elimination. In 2004 IEEE International Conference on Man and Cybernetics Systems,
volume 34, pages 888–897, 2004.

[74] Aleksandar Lazarevic and Vipin Kumar. Feature bagging for outlier detection. In KDD ’05:
Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery
in data mining, pages 157–166, New York, NY, USA, 2005. ACM Press.

[75] Roger J. Lewis. An introduction to classification and regression tree cart analysis, 2004.
Available from http://www.saem.org/download/lewis1.pdf.

[76] Jingzhou Li and Guenther Ruhe. A comparative study of attribute weighting heuristics for
effort estimation by analogy. In ISESE ’06: Proceedings of the 2006 ACM/IEEE inter-
national symposium on International symposium on empirical software engineering, pages
66–74, New York, NY, USA, 2006. ACM Press.

[77] Harold A. Linstone and Murray Turoff (eds). The Delphi Method: Techniques and Applica-
tions. Addison-Wesley, 1975.

[78] K. Lum, J. Powell, and J. Hihn. Validation of spacecraft cost estimation models for flight
and ground systems. In ISPA Conference Proceedings, Software Modeling Track, May 2002.

[79] Karen Lum. Software cost analysis tool user document, 2005.

[80] Karen Lum, Michael Bramble, Jairus Hihn, John Hackney, Mori Khorrami, and Erik Mon-
son. Handbook for software cost estimation, 2003.

[81] Stephen G. MacDonell and Martin J. Shepperd. Comparing local and global software effort
estimation models – reflections on a systematic review. In ESEM 2007: First International
Symposium on Empirical Software Engineering and Measurement, 2007., pages 401–409.
IEEE Computer Society, 2007.

[82] Carolyn Mair and Martin J. Shepperd. The consistency of empirical comparisons of regres-
sion and analogy-based software project cost prediction. In ISESE, pages 509–518, 2005.

117



[83] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables
is stochastically larger than the other. Ann. Math. Statist., 18(1):50–60, 1947. Avail-
able on-line at http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=
Display&handle=euclid.aoms/1177730491.

[84] Cuauhtemoc Lopez Martin, Jerome Leboeuf Pasquier, Cornelio M. Yanez, and Agustin T.
Gutierrez. Software development effort estimation using fuzzy logic: A case study. In
ENC ’05: Proceedings of the Sixth Mexican International Conference on Computer Science,
pages 113–120, Washington, DC, USA, 2005. IEEE Computer Society.

[85] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent in
function space, 1999.

[86] Roberto Meli. Human factors and analytical models in software estimation: An integration
perspective. In Proceedings of the ESCOM-SCOPE 2000, pages 33–40, Munich, Germany,
2000. Shaker Publishing.

[87] T. Menzies, O. Elrawas, D. Baker, J. Hihn, and K. Lum. On the value of stochastic ab-
duction (if you fix everything, you lose fixes for everything else). In International Work-
shop on Living with Uncertainty (an ASE’07 co-located event), 2007. Available from
http://menzies.us/pdf/07fix.pdf.

[88] T. Menzies, O. Elwaras, J. Hihn, Feather M, B. Boehm, and R. Madachy. The business case
for automated software engineering. In IEEE ASE, 2007. Available from http://menzies.
us/pdf/07casease-v0.pdf.

[89] T. Menzies and J. Hihn. Evidence-based cost estimation for better quality software. IEEE
Software, July/August 2006. Available on-line at http://menzies.us/pdf/06costs.pdf.

[90] T. Menzies, K. Lum, and J. Hihn. The deviance problem in effort estimation. 2006. Avail-
able from http://menzies.us/06deviations.pdf.

[91] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes. Specialization and extrapolation of
induced domain models: Case studies in software effort estimation. 2005. IEEE ASE, 2005,
Available from http://menzies.us/pdf/05learncost.pdf.

[92] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes. Validation methods for calibrating
software effort models. In Proceedings, ICSE, 2005. Available from http://menzies.us/
pdf/04coconut.pdf.

[93] Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum. Selecting best practices for effort
estimation. IEEE Transactions on Software Engineering, November 2006. Available from
http://menzies.us/pdf/06coseekmo.pdf.

[94] Tim Menzies, Zhihao Chen, Dan Port, and Jairus Hihn. Simple software cost estimation:
Safe or unsafe? In Proceedings, PROMISE workshop, ICSE 2005, 2005. Available from
http://menzies.us/pdf/05safewhen.pdf.

118



[95] Tim Menzies, Omid Jalali, Jairus Hihn, Dan Baker, and Karen Lum. Software effort esti-
mation and conclusion stability, 2007.

[96] A. Miller. Subset Selection in Regression (second edition). Chapman & Hall, 2002.

[97] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[98] K. Molokken and M. Jorgensen. A review of surveys on software effort estimation. In
ISESE’03, 2003.

[99] Kjetil Molokken and Magne Jorgensen. Expert estimation of web-development projects:
Are software professionals in technical roles more optimistic than those in non-technical
roles? Empirical Softw. Eng., 10(1):7–30, 2005.

[100] Kjetil Molokken-Ostvold and Magne Jorgensen. Group processes in software effort estima-
tion. Empirical Softw. Eng., 9(4):315–334, 2004.

[101] Kjetil Molokken-Ostvold, Magne Jorgensen, Sinan S. Tanilkan, Hans Gallis, Anette C. Lien,
and Siw E. Hove. A survey on software estimation in the norwegian industry. In METRICS
’04: Proceedings of the Software Metrics, 10th International Symposium on (METRICS’04),
pages 208–219, Washington, DC, USA, 2004. IEEE Computer Society.

[102] T. Mukhopadhyay, S.S. Vicinanza, and M.J. Prietula. Examining the feasibility of a case-
based reasoning tool for software effort estimation. MIS Quarterly, pages 155–171, June
1992.

[103] Petr Musı́lek, Witold Pedrycz, Giancarlo Succi, and Marek Reformat. Software cost esti-
mation with fuzzy models. SIGAPP Appl. Comput. Rev., 8(2):24–29, 2000.

[104] Petr Musilek, Witold Pedrycz, Nan Sun, and Giancarlo Succi. On the sensitivity of cocomo
ii software cost estimation model. In METRICS ’02: Proceedings of the 8th International
Symposium on Software Metrics, page 13, Washington, DC, USA, 2002. IEEE Computer
Society.

[105] Ingunn Myrtveit and Erik Stensrud. A controlled experiment to assess the benefits of es-
timating with analogy and regression models. IEEE Trans. Softw. Eng., 25(4):510–525,
1999.

[106] Ingunn Myrtveit, Erik Stensrud, and Martin Shepperd. Reliability and validity in compar-
ative studies of software prediction models. IEEE Transactions on Software Engineering,
31(5):380–391, May 2005.

[107] Chee Un Ng and Graham R. Martin. Automatic selection of attributes by importance in
relevance feedback visualization. In IV ’04: Proceedings of the Information Visualization,
Eighth International Conference on (IV’04), pages 588–595, Washington, DC, USA, 2004.
IEEE Computer Society.

[108] Ursula Passing and Martin Shepperd. An experiment on software project size and effort
estimation. In ISESE ’03: Proceedings of the 2003 International Symposium on Empirical
Software Engineering, page 120, Washington, DC, USA, 2003. IEEE Computer Society.

119



[109] Parag C. Pendharkar, Girish H. Subramanian, and James A. Rodger. A probabilistic model
for predicting software development effort. IEEE Trans. Softw. Eng., 31(7):615–624, 2005.

[110] Alfred M. Pietrasanta. Current methodological research. In Proceedings of the 1968 23rd
ACM national conference, pages 341–346, New York, NY, USA, 1968. ACM.

[111] G. Ridgeway, D. Madigan, and T. Richardson. Boosting methodology for regression prob-
lems, 1999.

[112] G. C. Roper-Lowe and J. A. Sharp. The analytic hierarchy process and its application
to an information technology decision. The Journal of the Operational Research Society,
41(1):49–59, 1990.

[113] Saharon Rosset. Robust boosting and its relation to bagging. In KDD ’05: Proceeding of the
eleventh ACM SIGKDD international conference on Knowledge discovery in data mining,
pages 249–255, New York, NY, USA, 2005. ACM Press.

[114] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (2nd Edi-
tion). Prentice Hall, December 2002.

[115] B. Boehm S. Chulani, B. Clark and B. Steece. Calibration approach and results of the
cocomo ii post-architecture model. In Proceedings ISPA,98, 1998.

[116] T.L. Saaty. The Analytic Hierarchy Process, Planning, Piority Setting, Resource Allocation.
McGraw-Hill, New york, 1980.

[117] R. Schapire. The boosting approach to machine learning: An overview, 2001.

[118] M. Shepperd. Software project economics: A roadmap. In International Conference on
Software Engineering 2007: Future of Software Engineering, 2007.

[119] M. Shepperd and Gada F. Kadoda. Comparing software prediction techniques using simu-
lation. IEEE Trans. Software Eng, 27(11):1014–1022, 2001.

[120] M. Shepperd and C. Schofield. Estimating software project effort using analogies. IEEE
Transactions on Software Engineering, 23(12), November 1997. Available from http:
//www.utdallas.edu/∼rbanker/SE XII.pdf.

[121] Martin Shepperd and Michelle Cartwright. Predicting with sparse data. IEEE Trans. Softw.
Eng., 27(11):987–998, 2001.

[122] Martin Shepperd, Chris Schofield, and Barbara Kitchenham. Effort estimation using anal-
ogy. In ICSE ’96: Proceedings of the 18th international conference on Software engineer-
ing, pages 170–178, Washington, DC, USA, 1996. IEEE Computer Society.

[123] Surendra K. Singhi and Huan Liu. Feature subset selection bias for classification learning.
In ICML ’06: Proceedings of the 23rd international conference on Machine learning, pages
849–856, New York, NY, USA, 2006. ACM Press.

120



[124] D.P. Solomatine and D.L. Shrestha. Adaboost.rt: A boosting algorithm for regression prob-
lems. In 2004 IEEE International Joint Conference on Neural Networks, volume 2, pages
1163–1168. IEEE, 2004.

[125] K. Srinivasan and D. Fisher. Machine learning approaches to estimating software develop-
ment effort. IEEE Trans. Soft. Eng., pages 126–137, February 1995.

[126] Ioannis Stamelos, Lefteris Angelis, Maurizio Morisio, Evaggelos Sakellaris, and George L.
Bleris. Estimating the development cost of custom software. Inf. Manage., 40(8):729–741,
2003.

[127] The Standish Group Report: Chaos 2001, 2001. Available from http://standishgroup.
com/sample research/PDFpages/extreme chaos.pdf.

[128] E. Stensrud and I. Myrtveit. Human performance estimating with analogy and regression
models: An empirical validation. In METRICS ’98: Proceedings of the 5th International
Symposium on Software Metrics, page 205, Washington, DC, USA, 1998. IEEE Computer
Society.

[129] Kevin Strike, Khaled El Emam, and Nazim H. Madhavji. Software cost estimation with
incomplete data. Software Engineering, 27(10):890–908, 2001.

[130] R. Strutzke. Estimating Software-Intensive Systems: Products, Projects and Processes. Ad-
dison Wesley, 2005.

[131] Liang Tian and Afzel Noore. Multistage software estimation. Proceedings of the 35th
Southeastern Symposium on System Theory, pages 232–236, 2003.

[132] Adam Trendowicz, Bernhard Graser, and Ernst Haunschmid. Optimal project feature
weights in analogy-based cost estimation: Improvement and limitations. IEEE Trans. Softw.
Eng., 32(2):83–92, 2006. Member-Martin Auer and Member-Stefan Biffl.

[133] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features,
2001.

[134] Isabella Wieczorek and Melanie Ruhe. How valuable is company-specific data compared
to multi-company data for software cost estimation? In METRICS ’02: Proceedings of the
8th International Symposium on Software Metrics, page 237, Washington, DC, USA, 2002.
IEEE Computer Society.

[135] Ian H. Witten and Eibe Frank. Data mining. 2nd edition. Morgan Kaufmann, Los Altos,
US, 2005.

[136] Lei Yu and Huan Liu. Efficient feature selection via analysis of relevance and redundancy.
J. Mach. Learn. Res., 5:1205–1224, 2004.

121


		2007-12-06T12:33:57-0500
	John H. Hagen
	I am approving this document.




