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ABSTRACT
Evolutionary testing is an effective technique for automati-
cally generating good quality test data. However, for struc-
tural testing, the technique degenerates to random testing
in the presence of flag variables, which also present prob-
lems for other automated test data generation techniques.
Previous work on the flag problem does not address flags
assigned in loops.

This paper introduces a testability transformation that
transforms programs with loop–assigned flags so that exist-
ing genetic approaches can be successfully applied. It then
presents empirical data demonstrating the effectiveness of
the transformation. Untransformed, the genetic algorithm
flounders and is unable to find a solution. Two transforma-
tions are considered. The first allows the search to find a
solution. The second reduces the time taken by an order of
magnitude and, more importantly, reduces the slope of the
cost increase; thus, greatly increasing the complexity of the
problem to which the genetic algorithm can be applied. The
paper also presents a second empirical study showing that
loop–assigned flags are prevalent in real world code. They
account for just under 11% of all flags.

Categories and Subject Descriptors: D.2.5 [Test-
ing and Debugging]: Testing tools D.2.2 [Design Tools and
Techniques]: Evolutionary prototyping F.3.3 [Studies of Pro-
gram Constructs]: Control primitives

General Terms: Algorithms, Measurement, Performance,
Experimentation, Theory.
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Evolutionary Testing, Testability Transformation, Flags, Em-
pirical Evaluation
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1. INTRODUCTION
Evolutionary testing is a search–based software engineer-

ing technique [7, 18], based upon evolutionary algorithms
[19, 25]. Evolutionary search is typically used where the
search-space is large and the worth of a candidate solution
can be determined by a ‘fitness’ function, which gives higher
values to better solutions.

In the case of test data generation, the algorithm uses a
population of individuals that represent inputs to the pro-
gram. The population is updated over a sequence of gen-
erations. The selection of individuals who survive to the
next generation is governed by a fitness function. Between
each generation genetic operators are applied to the individ-
uals. These genetic operators mimic the effects of mating
and mutation in natural genetics. The overall effect of the
evolutionary algorithm is that the population becomes in-
creasingly dominated by fitter individuals over the evolution
of generations. This evolution continues until either a point
is reached where the population ceases to evolve any further
or an individual with a suitably good fitness score has been
found.

In the case of test data generation for branch coverage,
the fitness function is computed in terms of how close an
input comes to executing the target branch. It is a common
experience with branch coverage that many branches are
easily covered (even with randomly generated test data).
However, as the number of remaining uncovered branches
decreases, those that remain become ever harder to cover.
It is for these few hard to cover branches that evolutionary
techniques provide an attractive solution [24, 28, 40].

Evolutionary testing has repeatedly been shown an effec-
tive way to automatically generate test data for a variety
of test adequacy criteria (not just branch coverage) [20, 21,
24, 26, 28, 31, 37, 41, 43]. A recent survey of work on evo-
lutionary test data generation is provided by McMinn [23].
This paper concentrates on branch coverage, merely for ease
of exposition. The approach adopted herein can be applied
equally well to any structural (white box) test adequacy cri-
terion.

Although evolutionary testing works well in many situ-
ations, it is hampered by the presence of flag variables–
variables that hold one of two discrete values, for example,



true or false. Flags are also a problem for other test data
generation techniques, such as the chaining approach [15].

The flag problem is best understood in terms of the fitness
landscape. A fitness landscape is a metaphor for the ‘shape’
produced by the fitness function. In this landscape, the lo-
cation of a point is determined by the individual to which
the fitness function is applied and the height of a point is
determined by the computed fitness value. Using the fit-
ness landscape metaphor, it becomes possible to speak of
landscape characteristics such as plateaus and gradients.

As illustrated in the right of Figure 1, the use of flag
variables leads to a degenerate fitness landscape with a sin-
gle, often narrow, super-fit plateau and a single super-unfit
plateau. These correspond to the two possible values of the
flag variable. This landscape is well-known to be a problem
for many search–based techniques; the search essentially be-
comes a random search for the ‘needle in a haystack’.

Embedded systems, such as engine controllers, typically
make extensive use of flag variables to record state informa-
tion concerning devices. Such systems can therefore present
problems for automated test data generation. This is a se-
rious problem, since generating such test data by hand is
prohibitively expensive, yet it is required by many testing
standards [6, 33].

This paper presents an algorithm for transforming pro-
grams with flag variables into specially tailored versions of
the program that compute the fitness for a particular flag–
controlled branch. The approach uses testability transfor-
mation [17], a form of transformation in which functional
equivalence need not be preserved, but which guarantees to
preserve test set adequacy. The primary contributions of
this paper are

1. A testability transformation algorithm is introduced
which can handle flags assigned in loops.

2. Results of an empirical study are reported which show
that the approach reduces test effort and increases test
effectiveness. The results also indicate that the ap-
proach scales well, as the difficulty of the search prob-
lem increases.

3. Results from a second empirical study show that the
loop–assigned flag problem is prevalent in real pro-
grams.

The rest of the paper is organized as follows. Section 2
provides an overview of background information on evolu-
tionary testing, the flag problem and testability transfor-
mation. Section 3 introduces the flag replacement trans-
formation and Section 4 presents an empirical study which
demonstrates that the approach improves both test gener-
ation effort and coverage achieved and explores the perfor-
mance of the approach as the size of the search problem
increases. Section 5 presents the empirical study of loop–
assigned flags and examples of real world code that contains
loop–assigned flags. Section 6 presents related work and
Section 7 concludes.

2. BACKGROUND
This section briefly explains the evolutionary testing sys-

tem used in the empirical study, the flag problem and the
general characteristics of the testability transformation so-
lution proposed.

2.1 Evolutionary test Data Generation
The empirical results reported herein were generated us-

ing the DaimlerChrysler Evolutionary Testing system [40],
built on top of the Genetic and Evolutionary Algorithm
Toolbox [30], using a client–server model. The architecture
of the system is depicted in Figure 2 where the outer circle
provides an overview of a typical procedure for an evolution-
ary algorithm: First, an initial population is formed usually
with random guesses. Each individual within the popula-
tion is evaluated by calculating its fitness. This results in a
spread of solutions ranging in fitness.

Fitness evaluation
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Survival

Recombination

Selection

Individuals

Test data

Test
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Monitoring
data
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Test Results

Figure 2: Evolutionary Algorithm for Testing

In the first iteration all individuals survive. Pairs of in-
dividuals are selected from the population, according to a
pre-defined selection strategy, and combined to produce new
solutions. At this point mutation is applied. This models
the role of mutation in natural genetics, introducing new
information into the population. The evolutionary process
ensures that productive mutations have a greater chance of
survival than less productive ones.

The new individuals are evaluated for fitness. Survivors
into the next generation are chosen from parents and off-
spring with regard to their fitness. The algorithm is iter-
ated until the optimum is achieved, or some other stopping
condition is satisfied.

In order to automate software tests with the aid of evolu-
tionary algorithms, the test aim must be transformed into
an optimization task. This is the role of the inner circle of
the architecture depicted in Figure 2. Each generated in-
dividual represents a test datum for the system under test.
Depending on the test aim is pursued, different fitness func-
tions emerge for test data evaluation.

If, for example, the temporal behavior of an application
is being tested, the fitness evaluation of the individuals is
based on the execution times measured for the test data [32,
42]. For safety tests, the fitness values are derived from pre-
and post-conditions of modules [36], and for robustness tests
of fault-tolerance mechanisms, the number of controlled er-
rors forms the starting point for the fitness evaluation [34].

For structural criteria, such as those upon which this pa-
per focuses, a fitness function is typically defined in terms of
the program’s predicates [1, 4, 20, 24, 28, 40]. It determines
the fitness of candidate test data, which in turn, determines
the direction taken by the search. The fitness function es-
sentially measures how close a candidate test input drives
execution to traversing the desired (target) path or branch.



Best case Acceptable case Worst case

Smooth landscape with Rugged landscape with Dual plateau landscape with
ubiquitous guidance toward some guidance toward no guidance toward
global optimum. global optimum. global optimum.

Figure 1: The flag landscape: The needle in a haystack problem.

2.2 The Flag Problem
In this paper, a flag variable is any variable that takes

on one of two discrete values. Boolean variables are used in
the examples. Where the flag only has relatively few input
values (from some set S) which make it adopt one of its two
possible values, it will be hard to find such a value in S. This
problem typically occurs with internal flag variables, where
the input state space is reduced, with relatively few ‘special
values’ (those in S) being mapped to one of the two possible
outcomes and all others (those not in S) being mapped to
the other of the two possible flag values.

A predicate which tests a flag, produces a fitness function
that yields either maximal fitness for the ‘special values’ or
minimal fitness for any other value. The landscape induced
by the fitness function provides no guidance from lower fit-
ness to higher fitness. This is illustrated in the right of
Figure 1.

A similar problem is observed with any n–valued enumer-
ation type, whose fitness landscape is determined by n dis-
crete values. The flag type (where n=2) is the worst case. As
n becomes larger the program becomes progressively more
testable: provided there is an ordering on the set of n ele-
ments, the landscape becomes progressively smoother as the
value of n increases.

The problem of flag variables is particularly acute where
the flag is assigned a value in a loop, which is subsequently
tested (outside the loop). In this situation, the fitness func-
tion computed at the test outside the loop may depend upon
values of ‘partial fitness’ computed at each and every iter-
ation of the loop. Previous approaches to handling flags
breakdown in the presence of loop–assigned flags [1, 4, 17].

2.3 Testability Transformation
A testability transformation [17] is a source-to-source pro-

gram transformation that seeks to improve the performance
of a previously chosen test data generation technique. Testa-
bility transformations differ from traditional transformations
[10, 29, 39] in two ways:

1. The transformed program produced is merely a ‘means
to an end’, rather than an ‘end’ in itself. The trans-
formed program can be discarded once it has served
its role as a vehicle for generating adequate test data.
By contrast, in traditional transformation, the original
program is replaced by the transformed equivalent.

2. The transformation process need not preserve the tra-
ditional meaning of a program. For example, in order
to cover a chosen branch, it is only required that the
transformation preserve the set of test–adequate in-
puts. That is, the transformed program must be guar-

anteed to execute the desired branch under the same
initial conditions. By contrast, traditional transfor-
mation preserves functional equivalence, a much more
demanding requirement.

These two observations have important implications:

1. There is no psychological barrier to transformation. Tra-
ditional transformation requires the developer to re-
place familiar code with machine–generated, structurally
altered equivalents. It is part of the folklore of the pro-
gram transformation community that developers are
highly resistant to the replacement of the familiar by
the unfamiliar. There is no such psychological barrier
for testability transformation: The developer submits
a program to the system and receives test data. There
is no replacement requirement; the developer does not
even need to be aware that transformation has taken
place.

2. Considerably more flexibility is available in the choice
of transformations to apply. Guaranteeing functional
equivalence can be demanding, particularly in the pres-
ence of side effects, goto statements, pointer aliasing,
and other complex semantics. By contrast, merely en-
suring that a particular branch is executed for an iden-
tical set of inputs is comparatively less demanding.

3. Transformation algorithm correctness becomes a less
important concern. Traditional transformation replaces
the original program with the transformed version, so
correctness is paramount. The cost of ‘incorrectness’
for testability transformation is much lower; the test
data generator may fail to generate adequate test data.
This situation can be detected, trivially, using coverage
metrics. By contrast, functional equivalence is unde-
cidable.

3. THE FLAG REPLACEMENT
ALGORITHM

The aim of the flag replacement algorithm is to replace
the use of a flag variable with a condition that provides a
more gradual landscape. Prior work requires that flag as-
signments reaching a use not occur within a loop [1, 4, 17].
In contrast, the algorithm presented herein can handle flags
assigned inside a loop. It does this by introducing two new
variables, fitness and counter, and by replacing if(flag)

with if(fitness==counter). The addition of these vari-
ables is a kind of instrumentation. The variable counter

is an induction variable added to count the number of loop
iterations that take place (a suitable induction may already



exist in the code). The variable fitness is a real-valued
variable that collects a cumulative fitness score for the as-
signments that take place during loop execution. Thus, the
algorithm essentially transforms the original program into
a program tailor to compute a smooth fitness landscape.
This landscape has a global optima at the point where the
variable flag has the desired value.

After transformation, it is possible to simplify the trans-
formed program by taking the slice [3, 35, 45] with respect
to the the condition (fitness==counter). Slicing removes
unnecessary parts of the program and thus forms a program
specialized to the calculation of a smooth fitness function
targeting the branch.

The transformation algorithm is presented in Figure 3. It
assumes that flag is initially assigned true and might be
subsequently assigned false. Clearly there is a complemen-
tary version of the algorithm which can be applied when the
initial assignment to flag is false.

The rest of this section explains the algorithm’s steps in
detail. First, Step 1 ensures that all assignments to the vari-
able flag are of the form flag=true or flag=false. This
is done by replacing any assignment of the form flag = C

for some boolean expression C with if (C) then flag =

true else flag = false.
Steps 2 and 3 simply insert and initialize the fitness accu-

mulation variable, fitness, and the loop iteration counter,
counter. Step 3 also adds the increment for counter at the
end of the loop body.

Step 4 uses the bushing and blossom transformation used
as part of the testability transformation for non–loop as-
signed flags [17]. Bushing takes a program which may con-
tain if - then statements, and replaces these with if - then
- else statements. It also copies in the rest of the code
sequence from the block into the then and else branches
of the conditional. The net effect of this transformation is
that the abstract syntax tree becomes a binary tree. Thus,
all branches in branching control flow conflate to the same
point. Finally, blossoming pushes the assignment state-
ments within a bushed tree to the leaves of the tree. Bushing
and blossoming are meaning-preserving.

When combined, bushing and blossoming have the effect
of converting the Abstract Syntax Tree (AST) of the body
of the loop into a binary tree, in which the internal nodes
are predicates and the leaves are a sequence of assignments.
Note that blossoming can only be applied when a predicate
is side–effect free; thus, for predicates involving side effects,
a side–effect removal transformation is first applied [13].

The advantage of bushing and blossoming is that the trans-
formed AST contains one leaf for each path through the
body of the loop. Each leaf includes a single assignment to
flag that reflects the value assigned by a given iteration of
the loop body along the associated path. This considerably
simplifies the case–based analysis which follows.

Step 5 introduces the update of the fitness accumulation
variable, fitness. The value added to fitness depends
upon the value assigned to flag along the associated path.
If flag is assigned true then, in essence, assignments in
previous loop iterations are irrelevant. To account for this,
fitness is assigned the current value of counter. This as-
signment overwrites any previously accumulated fitness ac-
cumulated in the variable fitness.

If flag is unassigned along a path, then this current itera-
tion has avoided assigning the value false to flag. To cap-

ture this, the value of the variable fitness is incremented.
The motivation for this choice is that the loop is one step
closer to avoiding an assignment of false to flag.

Finally, the worst situation is when flag is assigned false.
Here, if no change to fitness is made, the resulting fitness
landscape is essentially the coarse-grained fitness landscape
shown in the middle of Figure 1. Step 5.4 implements a
more fine–grained approach, which produces a smoother fit-
ness landscape such as the one seen on the left of Figure 1.

The key observation behind Step 5.4 is that an assignment
of false to flag occurs because a ‘wrong decision’ was taken
earlier in the execution history of the program. The algo-
rithm therefore backtracks to this earlier point. That is, it
finds a point at which a different decision (the decision c

of Step 5.4.2) could avoid the assignment of false to flag.
The value calculated (in Step 5.4.3) for the fitness incre-
ment in this case is based upon the standard approach to
local fitness calculation in evolutionary testing [40].

Step 6 replaces the use of flag with fitness==counter.
Observe that the value of fitness can only equal the value
of counter in two cases: Either the last assignment to flag

in the loop was to the value true and there has been no
subsequent assignment to flag or the variable flag has not
been assigned in the loop (so its value remains true). In
either case, the original program would have executed the
true branch of the predicate outside the loop which uses
flag.

In all other cases, flag would have been false in the
original program. For these cases, the value of fitness will
be some value less than that of counter. How close it comes
to the value of counter is determined by how close the loop
comes to terminating with flag holding the value true.

Step 7 is an optional optimization step. It can be ignored,
without effecting the functional behavior of the transformed
program or the fitness landscape produced. The motivation
for Step 7 is to reduce the complexity of the program that is
executed to evaluate the fitness function. Since evolutionary
testing requires repeated execution of the program under
test (in order to evaluate fitness), any speed–up will improve
the efficiency of the overall approach.

The transformed program is not semantically equivalent
to the original. It is a new program constructed simply to
mimic the behavior of the original at the target branch. It
does so in a way that ensures a more attractive fitness land-
scape. The standard evolutionary algorithm (with no mod-
ification) can be applied to the transformed program with
the goal of finding test data to execute the branch controlled
by the newly inserted predicate fitness==counter.

Observe that should the initial value of flag be unknown
at the start of the loop, then, because there are only two
possible values flag can take, a conditional, C can be in-
serted to test the value of flag. The then part of C contains
a specialized version of the loop which behaves as if flag

were initially assigned true, while the else part contains a
specialized version of the loop which behaves as if flag were
initially assigned false.

Finally, if flag is assigned in several loops, nested one
within the other, then the algorithm can be applied to the
innermost loop first in order to obtain a fitness value for the
innermost loop. This value can be used as a partial result
for the fitness of a single iteration of the enclosing loop. In
this manner, the algorithm can be applied to each enclosing
loop, to accumulate a total fitness value.



Suppose that flag is assigned to true outside the loop and that this is to be maintained.
Step 1: Convert all flag assignments to assignments of constants

by replacing flag = C with if C then flag = true else flag = false

Step 2: Add a variable counter to the loop.
Step 3: Add an assignment fitness=0 as an initialization prior to the loop and an increment of the counter to the end

of the loop.
Step 4: Bush and Blossom the body of the loop.
Step 5: There are four cases for assignments to flag at the leaves of the AST:

Case 5.1: If all leaves of the AST contain the assignment flag = false (i.e., entering the loop means certain
falseness), then the entire loop is treated as “flag = !C” assuming the original loop is while (C)”.
Otherwise do one of the following on a per branch basis.

Case 5.2: flag is assigned true.
Add an assignment fitness=counter after the assignment to flag.

Case 5.3: flag is not assigned a value.
Add an assignment fitness++ after the assignment to flag.

Case 5.4: flag is assigned false

Step 5.4.1: Form the path condition, π, that leads to the assignment.
at which assignments of false to flag can be avoided.

Step 5.4.2: Backtrack to the first condition, c in π at which assignment of false to flag can be avoided
(Case 5.1 ensures that such a condition exists).

Step 5.4.3: Let f = local(c), where function local is the standard local fitness function.
Step 5.4.4: Normalize f to a value between 0 and 1, store result in f ′.
Step 5.4.5: Add the assignment fitness+=f ′ after the assignment to flag.

Step 6: Replace the use of flag with fitness==counter.
Step 7: Slice at the replacement predicate fitness==counter, introduced by Step 6.

Figure 3: The Transformation Algorithm

4. EMPIRICAL EVALUATION
This section presents an empirical evaluation of the trans-

formation algorithm. Three different transformations are
considered. The first leaves the program unchanged. The
second applies the transformation algorithm from Figure 3
without Case 5.4. The final transformation applies the full
transformation algorithm; thus exploiting the ‘local fitness
calculation’ embodied in Case 5.4. It is expected that these
three transformations will produce landscapes that corre-
spond to those shown in Figure 1.

The program template experimented with is depicted in
Figure 4. This program serves as a template because 20
different versions of the program were experimented with
for each transformation. In each successive version, the ar-
ray size is increased, from an initial size of 1, through to
a maximum size of 40. As the size of the array increases,
the difficultly of the search problem increases; the needle
is sought in an increasingly larger haystack. This program
is chosen for experimentation because it distills the worst
possible case. That is, test data generation needs to find a
single value (all array elements set to zero) in order to ex-
ecute the branch marked /* target */. This single value
must be found in a search space which is governed by the
size, ELEMCOUNT, of the array, a.

The left hand column of Figure 4 shows the untransformed
program. The middle column shows the program produced
by the coarse–grained transformation technique (when Case
5.4 is ignored), and the rightmost column shows the results
of the fine–grained transformation. In all three, the final op-
timization step (Step 7) is not applied to facilitate compar-
isons between the three versions of the program (if applied
it would have removed the assignments to flag). The func-
tion local computes the local fitness score for a predicate
(the value c in Step 5.4.2 of Figure 3).

For each transformed program, the evolutionary algorithm
was run ten times, to ensure robustness of the results and to

allow comparison of the variations between runs for each of
the three techniques. An upper limit was set on the number
of possible fitness evaluations allowed. This was necessary
as some runs failed to find any solution.

The DaimlerChrysler Evolutionary Testing system [2, 40]
was used to obtain these results. The system is capable of
generating test data for C programs with respect to a vari-
ety of white box criteria. It is a proprietary system, devel-
oped in-house and provided to DaimlerChrysler developers
through an internal company web portal. A full description
of the system is beyond the scope of this paper.

The data from selected runs of the two transformed ver-
sion of the program are presented in Figure 5. The ‘no
transformation’ approach is uninteresting as it fails to find
any test data to cover the branch in all but two situations.
The first of these is where the array has size one. In this
instance there is a 1 in 256 chance of randomly finding the
‘special value’ in each of the ten runs. At array size two, the
chances of hitting the right value at random have diminished
dramatically to 1 in 65536; only one of the ten runs manages
to find this needle. For all other runs, no solution is found.
In all cases, without transformation, the evolutionary search
degenerates to a random search. Such a random search has
a miniscule chance of finding the ‘needle in the haystack’.

The data from all runs of all three techniques are depicted
graphically in Figure 6. The top three figures use the same
y-axis scale to facilitate comparison. The bottom figures
zooms the y-axis by a factor of 10. Notice that there is a
spike at array size 10 in Run 2. This outlier was investigated
and can be explained as follows: The search has almost
found a solution with a similar number of fitness evaluations
as the other nine runs. That is, it solves the nine-element
array size problem, but the tenth array element does not re-
duce to zero for many additional generations. For instance,
in 40th generation it has the value 6, but in the 1000th gen-
eration this has only reduced to 2. There is a similar spike



void f(char a[ELEMCOUNT]) void f(char a[ELEMCOUNT]) void f(char a[ELEMCOUNT])
{ { {

int i; int i; int i;
int flag = 1; int flag = 1; int flag = 1;

int counter = 0; int counter = 0;
double fitness = 0.0; double fitness = 0.0;

for (i=0; i<ELEMCOUNT; i++) for (i=0; i<ELEMCOUNT; i++) for (i=0; i<ELEMCOUNT; i++)
{ { {

if (a[i] != 0) if (a[i] != 0) if (a[i] != 0)
{ { {

flag = 0; flag = 0; flag = 0;
fitness = fitness + local(a[i]!= 0);

} } }
else else

fitness += 1.0; fitness += 1.0;
counter++; counter++;

} } }

if (flag) if (counter == fitness) if (counter == fitness)
/* target */ /* target */ /* target */

} } }

No transformation Coarse–grained transformation Fine–grained transformation

Figure 4: The program template under test.

Arraysize Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

1 300 300 300 300 300 300 300 300 300 600

2 1,140 1,140 3,010 1,410 2,244 1,410 1,140 1,677 1,677 3,010

3 1,944 3,810 268,556 5,943 5,943 5,947 3,810 2,478 3,806 2,211

4 155,246 3,276 270,402 269,058 534,644 4,078 534,588 534,516 269,325 534,556

5 271,732 540,492 4,342 4,610 11,548 534,568 534,588 534,576 534,556 269,584

6 2,744 534,584 534,524 801,646 534,532 534,596 1,068,796 271,216 294,996 270,672

7 801,630 534,592 534,540 534,628 801,642 11,828 801,682 5,943 270,939 14,502

8 534,548 7,006 801,646 537,485 273,856 804,133 801,686 534,612 801,706 274,136

9 801,690 534,536 534,528 536,734 269,313 273,344 801,678 801,646 534,576 6,473

10 271,732 1,068,828 801,642 1,335,930 534,580 269,576 540,717 534,572 801,670 542,054

20 1,068,944 801,810 801,814 1,068,944 801,778 534,660 801,838 1,068,992 801,806 1,068,968

30 1,603,328 1,068,932 1,068,948 801,766 1,068,884 1,336,122 2,404,770 801,798 1,068,912 1,068,984

40 1,603,268 1,603,224 1,870,446 1,603,268 2,137,600 1,068,960 2,137,652 801,834 1,068,952 1,336,078

Results for coarse–grained transformation

Arraysize Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

1 300 300 600 300 600 600 600 600 300 300

2 1,140 1,944 1,410 870 1,410 1,677 1,410 2,211 1,410 2,211

3 4,078 3,276 1,677 2,478 3,276 2,744 1,410 2,211 4,610 2,743

4 5,947 4,881 4,076 6,208 3,010 2,744 3,276 7,814 4,078 5,943

5 5,943 5,678 5,415 5,943 4,877 4,610 5,947 4,343 5,414 4,614

6 7,278 8,350 6,742 5,411 5,411 6,473 6,212 5,415 5,947 11,283

7 7,007 6,742 8,077 15,294 7,278 6,208 7,006 12,354 11,283 8,611

8 8,077 8,344 20,638 6,742 8,081 7,278 6,208 17,697 6,210 44,967

9 8,085 11,018 9,416 8,344 17,960 9,950 16,103 11,282 11,278 26,784

10 6,742 273,619 21,442 16,902 18,498 11,550 16,898 16,634 7,814 11,550

20 20,906 34,000 27,330 26,266 39,081 32,674 27,588 25,456 36,945 25,982

30 225,041 135,253 48,697 72,480 72,474 81,295 121,410 98,920 52,164 77,832

40 51,638 101,578 126,398 389,588 173,960 75,421 75,931 101,870 71,674 68,186

Results for fine–grained transformation

Figure 5: Number of fitness evaluations required for each run of the two versions of the transformation algorithm

at array size 40 in Run 4. Upon investigation, a similar
behavior was observed. The search finds a solution for the
array size 39 problem, but the search progresses very slowly
with the final array element. In both cases this behavior ap-
pears to arise from the role chance plays in the underlying
evolutionary search algorithm, rather than any properties of
the flag problem per se.

Figures 7 and 8 shown the averages and standard devi-
ations respectively over all ten runs for each of the three
approaches. As can be seen in the graphs, the fine-grained
technique outperforms the coarse–grained technique. The

coarse–grained technique achieves some success, but its av-
erage time is clearly rising and more importantly there is an
increase in standard deviation. This increase in variability
is a tell-tale sign of increasing randomness in the nature of
search with the coarse–grained approach. That is, where the
landscape provides guidance, the evolutionary algorithm can
exploit it, but when it does not, the search becomes a locally
random search until a way of moving off a local plateau is
found. The average for the ‘no transformation’ technique is
almost uniformly worst-case, while its standard deviation is
zero, in all but the cases for array size 1 and 2 (where some



random chances led to successful search. The high standard
deviation for size 2 is evidence that the one solution was a
random occurrence.

The qualitative assessment that the fine–grained approach
is better than the coarse–grained approach, which in turn,
is better than the ‘no transformation’ approach was con-
firmed quantitatively using the Mann-Whitney test. This
test is a non-parametric test for statistical significance in
the differences between two data sets. Because the test is
non-parametric, the data is not required to be normally dis-
tributed for the test to be applicable. The test reports,
among other things, a p-value. Values lower than 0.01 are
considered to be highly statistically significant. The p value
for the test that compares the ‘no transformation’ results
with the ‘coarse–grained transformation’ results and that
which compares the ‘coarse–grained transformation’ results
with the ‘fine–grained transformation’ results before return
p-values less than 0.0001 indicating that the differences are
statistically significant.

5. FLAGS IN REAL CODE
This section first investigates the existence of loop–as-

signed flag variables “in the large” and then illustrates their
existence “in the small.” The goal of the “in the large” inves-
tigation is to determine if such flags occur in practice. The
investigation made use of the dependence graphs output by
Codesurfer, a deep structure analysis tool [16]. Traversing
dependence edges in a program’s dependence graph simpli-
fies the discovery of loop–assigned flag variables. In all, nine
programs, with a total of 292,030 lines of code, were ana-
lyzed. The programs studied range from the 500 line utility
replace to the 75,000 line mail handler sendmail.

Results for the nine programs are shown in Figure 9. Av-
eraged over all nine programs, 23.6% of the all predicates
reference a flag variable (some reference multiple flag vari-
ables). Of the 5629 flag variables references, 611 (just under
11%) are loop–assigned. Thus, the problem studied herein
is relevant as a significant proportion of the flag used were
found to be loop–assigned flags.

Flag use “in the small” is illustrated in Figure 10, which
shows four different source examples that contain loop–as-
signed flags. These examples illustrate the way in which the
loop-flag problem arise naturally in real world source code.
The examples come from two systems in current use (a car
navigation system and the DaimlerChrysler testing system
itself) and from standard algorithms–an ACM network man-
agement algorithm and a standard sorting algorithm.

In all four examples, an array is traversed within a loop
and the elements are tested against some condition of inter-
est. A flag is set to true if this condition arises. Further-
more, the loop is followed by a test of the flag. These are
precisely the kind of loop assigned flags considered in this
paper. Because the flags denote ‘special conditions’, it is
often hard to find test data to satisfy these conditions.

In such situations evolutionary testing is a natural choice,
since it is good at optimizing for ‘hard to find situations’.
However, the presence of the flag variable leads to a degen-
erate landscapes. Fortunately, these examples can all be
transformed using the algorithm from Figure 3. Each ex-
ample is briefly described below.

Example 1: update shps
This is a navigation system from a DaimlerChrysler car. The
code has been modified to protect non-disclosure of commer-

(a) No Transformation

(b) Coarse-Grained Transformation

(c) Fine-Grained Transformation

(d) Fine-Grained Transformation Closeup

Figure 6: Results over ten runs of the evolutionary search for
each of the three approaches.



Figure 7: Averages over ten runs of the evolutionary search
for each of the three approaches

Figure 8: Standard deviation over ten runs of the evolution-
ary search for each of the three approaches

cially sensitive information. However, these modifications
do not effect the properties of the code with respect to flag
variable use. The navigation system operates on a ‘Shape
Point Buffer’ which stores information from a digital street
map. Streets are defined by shape points. The buffer con-
tains map locations (points) near to the current location of
the car.

For testing, the input space is formed from the set of
shape point buffer data stored in a global array and the
position of the car supplied as parameters of the function.
The function uses a flag, update points, to identify a situa-
tion where an update is required. The flag is assigned inside
a loop traversing the shape point buffer. The flag becomes
true if any shape point from the buffer is outside a cer-
tain area. The branch marked /* target */ is hard to exe-
cute because input situations rarely lead to update points

being assigned false. The search space for the predicate
if (!update points) is precisely the worst case flag land-
scape described in Figure 1.

Example 2: handle new jobs
This example is an extract of code from a job scheduler re-
sponsible for management of a set of jobs stored in an array.
Each job has a status and priority as well as additional data
used during job execution. This code is the DaimlerChrysler
C++ testing system itself to facilitate parallel execution of
test processes. The input space is the job array (the ‘data’
entries are unimportant for coverage). The test problem is
to find the right input data for the flag check work, tested
in the last condition shown. In order to execute the true

branch of this conditional, the assignment check work=1; in
the for loop must be avoided on every iteration.

Predicates Flag Variables
Program Total with Flags Total Loop Flags
barcode 235 76 32% 89 13 14%
empire 5294 1441 27% 1731 125 7%
gcc.cpp 650 163 25% 177 32 18%
go 2982 463 15% 538 76 14%
ijpeg 1042 153 14% 160 10 6%
ntpd 1904 485 25% 560 48 8%
replace 54 13 24% 13 7 53%
sendmail 3198 719 22% 797 112 14%
snns 4858 1256 25% 1564 188 12%

Total 20217 4769 23.6% 5629 611 10.9%

Figure 9: Loop-assigned flags from 9 programs

Example 3: netflow
This function is part of an ACM algorithm for net flow opti-
mization. The function has many input parameters config-
uring the net to be optimized, for example connected nodes
and connection capacity. The two parameters are low and
high. The netflow function begins with some plausibility
checks on the input parameters. The flag variable violation
is typical of a test for ‘special conditions’ which cannot be
handled by the regular algorithm. In this case, it will be set
to true when low is set to a larger value than high. In this
case the ‘special condition’ is invalid input.

Example 4: moveBiggestInFront
The last example is part of a standard sorting algorithm.
A while loop processes the elements of an array, checking
whether the first element is the biggest. If no such value
exists, this constitutes a special case with the result that
the flag assignment is not executed in any iteration.

6. RELATED WORK
Test data must be generated to achieve a variety of cov-

erage criteria to assist with rigorous and systematic test-
ing. Various standards [5, 33] either require or recommend
branch adequate testing, and so testing to achieve this is a
mission critical activity for applications where these stan-
dards apply. Because generating test data by hand is te-
dious, expensive and error-prone, automated test data gen-
eration has, therefore, remained a topic of interest for the
past three decades. Several techniques for automated test
data generation have been proposed, including symbolic exe-
cution [8, 22], constraint solving [11, 27], the chaining method
[15] and evolutionary testing [34, 20, 24, 26, 28, 31, 37].

This paper is concerned with evolutionary testing of loop–
assigned flags. However, symbolic execution is also known
to be hard in the presence of loops [9], because loops force
conservative approximations about loop–assigned variables.
Back propagation of path information from predicates to
form constraints on input variables suffers from a similar
problem. Finally, the chaining method also suffers from the
flag problem.

The flag problem can be thought of as an example of the
high Domain to Range Ratio (DRR) problem which Voas
[38] identifies as one source of poor testability. That is, the
input space of variables is reduced by assigning to a flag,
because the range can take one of only two possible values.

Evolutionary testing in the presence of flags has been stud-
ied by three previous authors [1, 4, 17]. Bottaci [4] aims to



#include <math.h> typedef enum { NEW,
#define TRUE 1 INPROGRESS,
#define FALSE 0 FINISHED }
typedef int int32; Status;
typedef char boolean;
typedef unsigned short shp index;
struct record { struct {
int32 longitude; Status state;
int32 latitude; int priority;
}; char* messageData;

} Job;
#define MAX(sizeof(shp record)/sizeof(struct record))
struct record shp record[10]; #define ARRAYSIZE 10
const shp index next to remove = 0; Job joblist[ARRAYSIZE];
const shp index next to append = MAX-1;

void update shps(int32 longitude, int32 latitude) {
boolean update points = FALSE; /**
shp index index zaehler = next to remove; * Only one job per call is handled.

*/
while ((index zaehler != next to append)) {
if (labs(shp record[index zaehler].longitude-longitude)>50 || void handle new jobs()

labs(shp record[index zaehler].latitude-latitude)>50 ) { {
update points = TRUE; int idx=0;

} int check work=0;
else { for (idx=0;idx<ARRAYSIZE;idx++)

index zaehler = (index zaehler + 1) % MAX; {
} if (joblist[idx].state==NEW)

} check work=1;
}

/* update points and replace by closer ones */ if (!check work)
if (!update points) {
{ /* target
/* target */ ... code deleted
return; */

} }
} }

Example 1: update shps Example 2: handle new jobs

#define ARRAY SIZE 10
typedef int FlowData[ARRAY SIZE];
int netflow( #define ARRAY SIZE 10

int low[ARRAY SIZE],
int high[ARRAY SIZE], int moveBiggestInFront(int data[ARRAY SIZE])
int netconnections[ARRAY SIZE][ARRAY SIZE], {

int i =1, idx;
FlowData* in flows, int val =data[0];
FlowData* out flows) int foundBigger = 0;

{ while (i < ARRAY SIZE)
/* plausibility check if low and high values */ {
int i=0; if (data[i]>val)
int violation=0; { foundBigger=1; idx=i; val=data[i]; }
while (i<ARRAY SIZE) }
{ if (!foundBigger)

if (low[i]>high[i]) violation=1; {
} /* target */
if (violation) return;

return -1; /* target */ }
/* /* do some data exchange,

code of the netflow integer optimization not relevant for the test problem
*/ */

}
return 0;

}
Example 3: netflow Example 4: moveBiggestInFront

Figure 10: Four Examples of Flags in Loops in Real World Code

correct the instrumentation of the fitness function. by stor-
ing the fitness of the initial assignment to a flag variable so
that it can be used later on, when the flag variable is used.

Baresel and Sthamer [1] used a similar approach to Bottaci.
Whereas Bottaci’s approach is to store the values of fitness
as the flag is assigned, Baresel and Sthamer use static data

flow analysis to locate the assignments in the code, which
have an influence on the flag condition at the point of use.
Baresel and Sthamer report that the approach also works
for enumeration types and give results from real–world ex-
amples, which show that the approach reduces test effort
and increases test effectiveness.



Harman et al. [17] showed how testability transformation
could be used to address the flag problem. The approach
was to attempt to substitute the definition of the flag for its
use in the program under test. Prior transformation ensures
that the transformed program is flag–free, allowing standard
evolutionary testing techniques to be applied.

All three of these approaches share a similar theme: they
seek to connect the last assignment to the flag variable to
the use of the flag variable at the point where it controls the
branch of interest. In Bottaci’s approach the connection is
made through auxiliary instrumentation variables, in that of
Baresel and Sthamer it is made through data flow analysis
and, in the approach of Harman et al., a literal connection
is made by substitution in the source code.

The algorithm presented in Figure 3 could be thought of as
a combination of the approaches of Bottaci and Harman et
al. It shares the use of auxiliary ‘instrumentation variables’
with Bottaci’s approach, but it uses these in a transformed
version of the original program using transformations like
the approach of Harman et al.

The most important difference between previous work on
the flag problem and that reported here is that none of the
previous techniques can be applied when the flag variable
is assigned inside a loop, because all the assignments to the
flag inside the loop have a bearing upon the final fitness
value which must be assigned, rather than just the last as-
signment.

From a transformation standpoint, the algorithm intro-
duced here is interesting as it does not preserve functional
equivalence. This is a departure from most prior work on
program transformation, but it is not the first instance of
non–traditional–meaning preserving transformation in the
literature. Previous examples include Weiser’s’ slicing [44]
and the ‘evolution transforms’ of Dershowitz and Manna
[12] and Feather [14]. However, both slices and evolution
transforms do preserve some projection of traditional mean-
ing. The testability transformation introduce here does not;
rather, it preserves an entirely new form of meaning, derived
from the need to improve test data generation rather than
the need to improve the program itself.

7. CONCLUSION
This paper has presented a testability transformation for

handling flag problems for evolutionary testing. Unlike pre-
vious approaches, the transformation introduced here can
handle flags assigned in loops. Also, unlike previous trans-
formation approaches (either to the flag problem or to other
more traditional applications of transformation) the trans-
formations introduced are not meaning preserving in the
traditional sense; rather than preserving functional equiva-
lence, all that is required is to preserve the adequacy of the
test data.

The effectiveness of the algorithm is validated with an
empirical study that shows how two variations of the al-
gorithm perform for different levels of difficultly of search
problem. The results show that the approach scales well to
even very difficult search landscapes, for which test data are
notoriously hard to find. The worst case considered involves
finding a single adequate test input from a search space of
size 2320. Despite the difficulty of this search problem, the
evolutionary testing approach, augmented with the trans-
formation algorithm introduced here finds this value every
time.

The paper also presents evidence that the kinds of flag
problem considered here arise naturally in a variety of real
world systems. Examples from a car navigation system, a
test data generator, and network and sorting algorithms are
presented. In addition, the paper used results for a separate
empirical study to show that the types of flag problem con-
sidered here are prevalent among those uses of flags found
in a suite of real world programs.
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