
Barry Boehm and Hoh In Conflict Analysis and Negotiation Aids for Cost-Quality Requirements

- 1 -

Conflict Analysis and Negotiation Aids for Cost-Quality Requirements

Barry Boehm and Hoh In
(boehm, hohin)@sunset.usc.edu

Voice: (213) 740 – 8163; Fax: (213) 740 - 4927
Center for Software Engineering and Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781, U.S.A.

Abstract

The process of resolving conflicts among software
quality requirements is complex and difficult because of
incompatibilities among stakeholders’ interests and
priorities, complex cost-quality requirements
dependencies, and an exponentially increasing resolution
option space for larger systems. This paper describes an
exploratory knowledge-based tool, the Software Cost
Option Strategy Tool (S-COST), which assists stakeholders
to 1) surface appropriate resolution options for cost-
quality conflicts; 2) visualize the options; and 3) negotiate
a mutually satisfactory balance of quality requirements
and cost.

S-COST operates in the context of the USC-CSE
WinWin system (a groupware support system for
determining software and system requirements as
negotiated win conditions), QARCC (Quality Attribute and
Risk Conflict Consultant -- a support system for identifying
quality conflicts in software requirements), and COCOMO
(COnstructive COst estimation MOdel). Initial analyses of
its capabilities indicate that its semiautomated approach
provides users with improved capabilities for addressing
cost-quality requirements issues.

Keywords: Requirements engineering, software
quality attributes, risk, conflict resolution, negotiation,
software cost analysis

1. Introduction
1.1 Evolving Concepts of Software Quality

Much of the early institutional focus on software
quality was initiated by the U.S. Department of Defense
(DoD), which had numerous quality problems with its
large software systems. Consistent with its focus on
requirements-driven, contract-oriented waterfall-model
software development, its major 1974 standard, MIL-S-
52779, “Software Quality Assurance Program
Requirements,” [DoD, 1974], defined the objective of
software QA as, “to assure that the software delivered
under the contract meets the requirements of the contract.”

The major pitfall of this approach is that if your
contract specified poor quality software, your software QA

program would assure that you got poor quality software.
This happened to DoD and commercial organizations in
numerous ways: specifying poor user interfaces, specifying
requirements obtained from the wrong users, getting
unmaintainable software by neglecting to specify
maintenance and diagnostic requirements.

Based on the work of Deming, Juran, and others, the
1980’s saw a trend away from the 1970’s contract-oriented
specification compliance toward service-oriented customer
satisfaction as the primary quality objective. Approaches
such as Total Quality Management [Deming, 1989] and
Quality Function Deployment [Eureka-Ryan, 1988] based
quality on “the voice of the customer,” which was
generally interpreted to include the product’s users. Thus,
the 1990 definition of “quality” in the IEEE Standard
Glossary of Software Engineering Terminology [IEEE,
1990] added “… meets customer or user needs or
expectations” to its earlier definition of “…meets
specified requirements.”

The major difficulty with the customer-satisfaction
approach is that customers often have a poor grasp of the
tradeoffs and interactions among the qualities they are
interested in, and often neglect qualities such as
maintainability which affect them only indirectly. Very
often, customers have pushed overly ambitious
performance objectives which led to unaffordable and/or
unmaintainable software systems, or have pushed to adopt
a poorly-architected prototype with nice usability features
but poor scalability, dependability, and/or portability.

Initiatives to address these problems in the 1990’s have
focused on identifying the full set of key stakeholders in a
software system and pursuing the objective of negotiated
stakeholder win-win relationships among software quality
attributes. This expands the scope of “quality” to include
the voice of the buyer on cost or affordability, the voice of
the maintainer on modifiability, the voice of neighboring
stakeholders on interoperability, and others such as the
voice of the general public on safety or privacy. This has
led to new organizational approaches such as Integrated
Product Teams, expanded versions of QFD [Pardee, 1996],
and process approaches such as the WinWin Spiral Model
[Boehm et al., 1995a].

Barry Boehm and Hoh In Conflict Analysis and Negotiation Aids for Cost-Quality Requirements

- 2 -

1.2 Supporting Systems for Emerging Software
Quality Concepts

In order to support emerging 1990’s concepts of quality
as a stakeholder-negotiated win-win relationship among
quality attributes (including cost as “affordability” and
schedule as “timeliness”), one needs a support framework
for resolving conflicts among quality attributes.

The conflict resolution process for the right balance of
quality requirements is complex and difficult due to the
following obstacles:

� Difficulties in coordinating multiple stakeholders’
interests and priorities. Users feel that full
functionality, dependability, and ease of use are the
most important attributes. The primary concerns of
Customers are cost and schedule. Developers are
usually mostly concerned with low project risk and
reusing assets. Maintainers are strongly concerned with
good diagnostics and easy maintenance. Finding the
middle ground among these requirements commitments
is difficult.

� Complicated dependencies and tradeoff analyses
among quality attributes. Every decision to improve
some quality attributes may impact others, particularly
the cost and schedule. Some requirement decisions may
be not compatible with others.

� Exponentially increasing resolution option space. In
order to resolve a conflict involving a cost overrun,
several items should be considered. For example, which
modules should be reduced and by how much to get the
project back on track? Which modules can be degraded
in terms of their quality attributes? How much of which
qualities should be degraded?

Given the overall scarcity of software expertise and the
complexity of cost-quality conflict resolution, it is worth
trying to capture such expertise and make it more broadly
available via automated aids for cost-quality conflict
resolution.

At least three major capabilities are necessary to
resolve cost-quality conflicts among software
requirements:

� A general capability to surface and negotiate cost
conflicts and risks among requirements. The USC-CSE
WinWin system [Boehm et al., 1994; 1995a] provides
an example of such a capability.

� Capabilities to support the resolution of cost conflicts
with functional and quality requirements based on
early information. The following aids provide examples
of such capabilities.
- Aids for identifying cost conflicts with functional

requirements. The COCOMO (COnstructive COst

estimation MOdel) [Boehm, 1981; Boehm et al.,
1995b] provides an example of such a capability.

- Aids for identifying cost conflicts with quality
requirements based on early information. The
QARCC (Quality Attribute Risk and Conflict
Consultant) tool [Boehm-In, 1996a] provides an
example of such a capability.

� Capabilities to generate, visualize, and negotiate
potential resolution options for cost conflicts. The S-
COST system described in this paper operates on the
win conditions captured by the WinWin system and the
results of COCOMO and QARCC analyses to provide
such a capability.

This paper discusses S-COST as a model and support
system for analyzing and negotiating cost-quality conflicts
among software requirements. It will present the S-COST
context (section 2), concept of operation (section 3),
primary cost options and stakeholder relationships (section
4), S-COST visualization and negotiation aids (section 5),
related work (section 6), and conclusions (section 7).

2. Context
S-COST operates in the context of the USC-CSE

WinWin system (Section 2.1) and the QARCC tool
(Section 2.2) to extend their capabilities.

2.1 WinWin
WinWin is a groupware support system for determining

software requirements as negotiated win conditions. It is
based on the WinWin Spiral Model [Boehm et al., 1994;
1995a] which uses Theory W [Boehm-Ross, 1989] to
generate the stakeholder win-win situation incrementally
through the Spiral Model. WinWin assists the identified
stakeholders in identifying and negotiating issues (i.e.,
conflicts among their win conditions), since the goal of
Theory W, “Make everyone a winner,” involves
stakeholders identifying their win conditions (sector 2 in
figure 1), and reconciling conflicts among win conditions
(sector 3).

3a. Reconcile
win conditions

2. Identify Stakeholders’
win conditions

1. Identify next-level
Stakeholders

4. Evaluate product and
process alternatives.

Resolve Risks
5. Define next level of
product and process –
including partitions

6. Validate product
and process
definitions

7. Review, commitment

3b. Establish
next level objectives,

constraints, alternatives

WWWiiinnnWWWiiinnn EEExxxttteeennnsssiiiooonnn
tttooo ttthhheee SSSpppiiirrraaalll MMMooodddeeelll

OOOrrriiigggiiinnnaaalll SSSpppiiirrraaalll
MMMooodddeeelll

Figure 1. The WinWin Spiral Model

Barry Boehm and Hoh In Conflict Analysis and Negotiation Aids for Cost-Quality Requirements

- 3 -

Figure 2 shows the negotiation model used by WinWin,
in terms of its primary schemas and the relationships
between them. Stakeholders begin by entering their Win
Conditions, using a schema provided by the WinWin
system. If a conflict among stakeholders’ Win Conditions
is determined, an Issue schema is composed, summarizing
the conflict and the Win Conditions it involves.

Figure 2. WinWin Negotiation Model

For each Issue, stakeholders prepare candidate Option
schemas addressing the Issue. Stakeholders then evaluate
the Options, iterate some, agree to reject others, and
ultimately converge on a mutually satisfactory (i.e., win-
win) Option. The adoption of this Option is formally
proposed and ratified by an Agreement schema, including
a check to ensure that the stakeholders’ iterated Win
Conditions are indeed covered by the Agreement.

Our experience with WinWin usage indicates that, as
applications reach the size of several dozen Win
Conditions, it becomes hard for stakeholders to identify the
likely conflicts among them. Thus, we have been
experimenting with automated aids such as QARCC and
S-COST to help stakeholders identify Issues and formulate
Options for resolving them. Usage experience also
indicates that WinWin is not a panacea for all conflict
situations, but generally increases stakeholders’ levels of
cooperation and trust [Boehm et al., 1998]

2.2 QARCC
QARCC is an exploratory knowledge-based tool for

identifying potential conflicts and risks among quality
requirements early in the software life cycle.

QARCC uses the “Attributes” portion of WinWin’s
domain taxonomy to identify potential quality attributes
conflicts. As stakeholders enter Win Conditions, they
identify which domain taxonomy elements are relevant.

The top-level quality attributes in the WinWin domain
taxonomy are shown at the bottom of figure 3. Suppose a
stakeholder enters a Win Condition schema and puts
“Assurance” in the Taxonomy Elements slot. QARCC will
then draw on its knowledge base to analyze potential
conflicts between Assurance and other quality attributes. It
will then notify the affected stakeholders of the potential
conflicts.

To determine which stakeholders to notify of a
potential conflict between Assurance and (say)
Interoperability, QARCC uses the Stakeholder/Quality-
Attribute Relationships shown in figure 3. In this case,
QARCC would notify the Interoperator and User
stakeholders of the potential conflict, as they are the
stakeholders generally most concerned with
Interoperability.

QARCC is good for making top-level suggestions
about potential quality attribute conflicts, but it lacks
detail. S-COST is an effort to provide such detail in the
area of quality attribute conflicts involving cost.

Figure 3. Stakeholder / Quality-Attribute Relationship

3. S-COST Concept of Operation
S-COST extends WinWin and complements QARCC

by using an additional software cost knowledge base
related to another component of WinWin: the
COnstructive COst MOdel, or COCOMO. S-COST uses
the COCOMO cost drivers, cost estimates, and related
experience base to sharpen QARCC’s identification of
cost-conflict Issues. It also suggests in-depth cost-conflict
resolution Options, and provides Option visualization and
negotiation aids to help stakeholders resolve the cost-
conflict Issues.

The S-COST concept of operation is shown in figure 4.
Using the WinWin system, stakeholders enter their new
Win Conditions. These may involve functions, quality
goals or constraints. As shown in Screen 1 of figure 5, Win
Condition schemas have attributes such as Priority and
domain Taxonomy Elements. For Win Conditions with
quality attribute and cost/schedule Taxonomy Elements,
QARCC examines its architectural and process strategies
[Boehm-In, 1996a] to search for potential conflicts. For
example, Layering the architecture to meet the Portability
Win Condition in Screen 1 of figure 5 produces likely
conflicts with Cost/Schedule and Performance (Screen 2 of
figure 5; in the initial version of QARCC, Cost and
Schedule were combined into Development Affordability,
and Performance was called Efficiency). QARCC then
generates a draft Issue identifying this potential conflict for
stakeholders to consider (Screen 3 of figure 5).

Win Condition
 Schema

Agreement
 Schema

Option
 Schema

Issue
 Schema

covers

adopts

addresses

involves

General
 Public

Interoperator User Maintainer Developer Customer

Assurance
Interoperability

Usability
Performance

Evolvability
Cost

Reusability

directly-
concerns

 &Portability
&schedule

Barry Boehm and Hoh In Conflict Analysis and Negotiation Aids for Cost-Quality Requirements

- 4 -

Continuing with the scenario in figure 4, once
stakeholders are presented with a set of draft Issues from
QARCC involving cost, they can then use COCOMO to
analyze the potential cost conflicts identified. If the
resulting estimated cost exceeds the target cost, a
stakeholder enters this as a WinWin Issue whose solution
needs to be negotiated by the stakeholders.

As indicated in figure 4, S-COST operates on the Issue
and COCOMO estimate information to:

� Suggest options for resolving cost issues;

� Notify affected stakeholders of their availability and
implications;

� Provide visualization and negotiation aids for cost
issue/option resolution.

After the stakeholders converge on a mutually satisfactory
(win-win) combination of options, they draft an
Agreement schema, and follow WinWin’s procedures for
voting on and adopting the Agreement.

The next section discusses the portions of the S-COST
knowledge base supporting cost-resolution option
generation and stakeholder notification. Section 5 then
illustrates these and S-COST’s option analysis and
negotiation support capabilities via an example.

4. Primary cost options and
stakeholder relations

Figure 5. An Example of QARCC

Table 1 shows the top-level option strategies for
resolving software cost (and most schedule) issues. The
strategies are primarily based on analysis of COCOMO II
cost drivers [Boehm et al., 1995b] whose labels are shown
in column 2 of table 1. The new cost drivers in COCOMO
II are underlined in italics.

Each of the strategies in table 1 is characterized by its
effect on software cost via the relevant COCOMO II cost
drivers, and a set of pros and cons for using the strategy. A
good example to discuss is the second strategy:
Reduce/defer quality.

The COCOMO II cost drivers RELY and DOCU
indicate that a project may reduce its development costs by
doing less testing, standards-checking, documentation,
etc., but that these will lead to higher maintenance costs.
This strategy may be workable for a product with a very
short operational lifetime (prototype, special-purpose one-
shot analysis), but is not a workable life-cycle cost strategy
for longer-lived products.

The execution time constraint (TIME) and required
complexity (CPLX) cost drivers indicate that development
costs can often be reduced by reducing performance
requirements (e.g., 2 second response time vs. 1 second) or
by reducing the complexity involved in achieving high
levels of system security or survivability. If one needs
these high levels, the “Cons” part of the table indicates that
these strategies are counterproductive. But in some cases

Screen 2: Potential

 by QARCC

Screen 1: A new Win Condition entered by Stakeholder

 conflicts identified

Screen 3:A draft Issue suggested by QARCC

Figure 4. S-COST Concept of Operation

Stakeholders enter
Win Conditions,
including Priority and
Taxonomy Element attributes

QARCC

Stakeholders enter
Issues, including

cost conflicts.

Draft and Display Resolution Options

Target cost,

Quality Attribute
conflicts with
Cost/Schedule,

Estimated cost,

 cost drivers 3. S-COST constructs and displays the Option
 Visualization window, showing cost contributors

1. S-COST analyzes the COCOMO cost drivers
 to generate draft cost-resolution options and

1. Stakeholders adjust the nature and priority

2. Stakeholders negotiate their Options
 until the current cost meets the target cost.

 Draft a Cost-Resolution Agreement

COCOMO

cocomo
 input

estimated
cost

cocomo
 input

cocomo input

estimated cost

estimated
cost

: WinWin

: S-COST

: other tools

3. Stakeholders review negotiated Options for win-lose
 side-effects, and adjust Options as necessary.

Draft Issues

COCOMO-

4. Repeat 1 - 3 until all stakeholders reach a win-win

2. S-COST determines the priority of cost
 contributors from Win Condition schemas.

 provides them to appropriate stakeholders

 vs. priority

 of Cost-Resolution Options

 situation.

determined

Evaluate and Negotiate Resolution Options

Barry Boehm and Hoh In Conflict Analysis and Negotiation Aids for Cost-Quality Requirements

- 5 -

(downstream performance will improve via faster
hardware, or overdesigned components that create an
unbalanced architecture) they may be warranted.

Option
Strategies

COCOMO
Parameter Pros Cons

Reduce/defer
Functionality

KDSI,
DATA

- Reduce cost, IOC,
and schedule

- Smaller product to
maintain

- Capabilities
unavailable to
stakeholders

- Need to pay
later if deferred

Reduce/defer
Quality

RELY,
DOCU 1,
TIME,
CPLX

- Reduce
development cost
and schedule

- Stakeholders
lose quality
capabilities,
increase
maintenance
costs

Improve tools,
techniques or
platform

TIME,
STOR,
PVOL,
TOOL,
SITE

- Reduce s/w cost
and schedule

- Improve
maintainability and
other qualities

- Increase tool,
training,
platform costs

- Reducing tool,
platform
experience
would increase
software cost

Relax the
delivery
schedule
constraint

SCED - Reduce cost if
schedule was tight

- Defer
stakeholders’
use of product
capabilities

Improve
personnel
capabilities

ACAP,
PCAP,
PCON,
AEXP,
PEXP,
LTEX,
$K/PM

- Reduce cost and
schedule

- Improve quality
from personnel
capability and/or
application
experience

- Reduce personnel
turnover

- Projects losing
better people
will suffer

- Potential
staffing
difficulties and
delays

- Increased
cost/person-
month unless
low-cost
outsourcing

Reuse software
assets

ADSI,
DM, CM,
IM

- Reduce cost and
schedule

- May gain quality if
the used assets have
good quality

- Users may lose
quality
capabilities

- Risk of
overestimating
reuse

Improve
coordination
via
teambuilding

TEAM - Reduce cost and
schedule by
removing the inter-
personnel overhead

- Uncontrollable
for some
situations

Architecture
and risk
resolution

RESL - Reduce cost and
schedule by
avoiding rework

- Additional
overhead for
risk
management is
necessary.

1 The new cost drivers in COCOMO II are underlined in italics.

Improve
process
maturity level

PMAT - Reduce cost and
schedule by
removing the
efforts for fixing
errors

- Improve quality

- Additional
overhead for
applying CMM
is necessary

Improve
precedentedness
and development
flexibility

PREC,
FLEX

- Reduce cost and
schedule by
familiarity and
flexibility of
software
development

- Uncontrollable
for some
situations

Increase budget Revised
win
condition

- May enable product
to reach
competitive critical
mass

- May increase ROI

- Added funds
may not be
available

Table 1. The Attributes of Cost-Resolution Option Strategies

4.1 Formalism of Option Strategies
Table 1 shows the informal level of suggestions about

how to create the options for resolving cost conflicts.
However, in order to provide automated support for
resolving cost conflicts in a specific project situation, a
more detailed and formalized structure for S-COST
resolution option strategies is necessary. The formalized
structure also helps stakeholders communicate with each
other effectively for achieving agreements.

The formalized structure used by S-COST is based on
information of COCOMO cost drivers and function
elements:

Stakeholders can negotiate win-win agreements by
suggesting how much the COCOMO cost drivers for the
Option Strategies should be changed (e.g., COCOMO cost
driver, the value before and after the Strategies are
applied). Given the information taken from stakeholders,
S-COST produces the pros and cons of the Strategies using
the knowledge base for the Option Strategies and the
reduced cost and schedule using the COCOMO. The
knowledge base for suggesting the pros and cons of the
Strategies contains the default knowledge, but it can be
refined and changed from project to project.

4.2 Stakeholder/Option Strategy Relationships

Reducing reliability or performance may be acceptable
options for some stakeholders but not for others. S-COST
uses the cost option/stakeholder relationship (figure 6) to
notify the appropriate stakeholders of options which may
have first-order consequences for them. For some of the

Option-Strategy-Name (Module-Name,
COCOMO cost driver,
the value before the strategy is applied,
the value after the strategy is applied,
pros of the strategy,
cons of the strategy,
the reduced cost,
the reduced schedule)

Barry Boehm and Hoh In Conflict Analysis and Negotiation Aids for Cost-Quality Requirements

- 6 -

options in Table 1, figure 6 shows the stakeholders who
would generally be directly concerned with the exercise of
the option. Thus, for example, “Increase budget” can
potentially affect any of the stakeholders by providing
them more capability, but the directly-concerned
stakeholder is the Customer, who must find a way to
justify and obtain the budget increase.

Figure 6. Cost Option / Stakeholder Relationship

5. S-COST analysis and negotiation aids
This section describes an initial S-COST prototype

based on COCOMO 81 [Boehm, 1981] and reported in
[Boehm-In, 1996b]. It also discusses current improvements
we have been making to S-COST based on COCOMO II
and feedback on the prototype from the USC Center for
Software Engineering’s industry and government affiliates.

In a hypothetical, but representative project, called
“Strikeware”, the S-COST analysis and negotiation aids
will be illustrated with respect to a satellite data processing
scenario. In the scenario, the user, customer, and developer
of a system have negotiated a $5 million, 16-month
upgrade to add Satellite Surveillance data services to a
Mission Data Integration Facility (MDIF). The Strikeware
user has determined that it will be important to add
weather data services to the MDIF upgrade. A COCOMO
estimate of the resulting added software indicates a $6.66
M cost and 17.6 month schedule, but the customer is
strongly constrained to keep to the original $5M cost and
16 month schedule.

As seen in figure 7, the initial S-COST prototype has
several capabilities to help the user, customer, and
developer determine cost reduction options, visualize their
impact on the problem situation, and negotiate a new win-
win solution. For example, the Visualization window for
option generation in figure 7 shows the cost reduction
target of $5M as a mark. It uses data on the priorities of
the stakeholders’ functional module win conditions, and
the corresponding COCOMO estimates of the module’s
cost contribution, to produce a display of module cost
contributions by priority.

Using this display, the stakeholders could simply agree
to drop or defer the lowest-priority modules until the cost
target is reached. But there may be better options. For
example, the stakeholders split a module into higher and

lower priority modules via the Operations button; or adjust
other cost drivers such as personnel capability and
experience, improved tools, or software reuse via the
Resolution Strategies button. Or, if justified and feasible,
the customer could increase the budget, raising the target
cost in the Target Cost field (figure 7).

Figure 7. Visualization Window for Option Generation

5.1 Visualization window features for option
generation

The S-COST Visualization window in figure 7 has a
number of option strategies and display aids for
stakeholders. Some selected features are highlighted
below.

Function Elements (FEs) in the FE window (right top)
are sorted by the priority using “Sort-by-Priority”, one of
the Operations buttons, based on the user-determined FEs.
COCOMO-estimated cost and schedule appear in the left
window, Status Area, along with User’s Id, Role, Priority
of Option, target cost, and target schedule. The Operations
button is available to enable stakeholders to split, merge,
insert, delete, and sort FE(s), as well as select_all,
unselect_all, import, and export from/to COCOMO.

The Resolution Strategies button brings up a menu
containing the cost resolution strategies described in table
1. Each strategy has parameters which can be defined or
adjusted once the strategy has been selected. Figure 8
shows an example of applying a “Reduce/defer

Target
▼

Operation button Resolution-Strategy button

Negotiation Aid button

Status Area

Target Cost Field

Function Elements (FE) Priority Accumulated FEs’ costUser ID Role

Target cost vs. Estimated Total cost

General
 Public

Interoperator User MaintainerDeveloper Customer

directly-
concerns

Reduce/defer
functionality,

Improve Reuse
software
assets

Relax
schedule

Improve
personnel
capabilitiesquality constraints

tools,
platform

Stakeholder:

Cost-Reduction
Option Strategies:

Increase
budget

Barry Boehm and Hoh In Conflict Analysis and Negotiation Aids for Cost-Quality Requirements

- 7 -

Figure 9. The Option Strategy List Window

functionality” Strategy option. Option Strategies are
prepared to defer 6 KDSI of Query/Display (New)
functionality and 9KDSI of MDIF Priority Upgrades
functionality. The Pros & Cons area shows the potential
positive and negative aspects of the option. If the
stakeholder establishes this as an Option to be addressed in
the WinWin system, the Pros & Cons will be included in
the Option schema.

5.2 Visualization window features for option
negotiation

Another visualization aid (obtained via the Negotiation
Aid button in figure 7) provides the Option Strategy list
(figure 9), which summarizes the status of negotiating a
combination of Option Strategies suggested by the various
stakeholders. The Options can be displayed in order of
originating stakeholders, the Option Strategies’ priority, or
the type of the Option Strategy via the Options button.
Stakeholders can revise their options after considering
other stakeholders’ strategies and their priorities. This
helps stakeholders reach a win-win combination of Cost-
Resolution Strategies.

The stakeholders continue to interact with S-COST and
each other until they converge on a win-win cost reduction
strategy with no win-lose side effects.

When Strikeware was used as a multi-stakeholder
WinWin negotiation exercise, almost the only option
considered by the stakeholders was to defer functionality.
It is frequently the case that stakeholders are unaware of

attractive options to resolve cost/quality/functionality
conflicts. S-COST enables them to explore these additional
options.

The primary feedback we received on the original S-
COST prototype was to:

� Expand options to include those suggested by
COCOMO II and other cost models;

� Provide better interfaces among WinWin, S-COST,
and COCOMO II;

� Provide better visualization for the effects of changes;

� Change from small, scrolled, and tiled windows to
overlapped, expandable windows.

We have described the COCOMO II extensions above.
We have also developed a prototype Software Architecture
Attributes Analysis Aid (A4) to interface WinWin,
COCOMO II, and architecture-based analysis of
cost/schedule/performance/reliability tradeoffs. We are
currently reworking the design of the user interface for S-
COST II to accommodate the prototype-users’ suggestions.

The original S-COST prototype was supported by and
available only to USC-CSE Affiliates. The revised version
was also supported by DARPA and USAF, and will be
generally available under USC-CSE copyright. For further
status information, see “http://sunset.usc.edu/~hohin/
scost/”.

6. Related work
Early characterizations of software quality attribute

relationships based on hierarchical models were developed
in [Boehm et al., 1976] and [McCall et al., 1977]. The
hierarchical models of software quality attributes are based

Figure 8. Aids for Applying Cost-Resolution Strategy

Option Strategies’
 Priority

Originating
Stakeholders

Type of Option StrategyOption Strategy ID

Barry Boehm and Hoh In Conflict Analysis and Negotiation Aids for Cost-Quality Requirements

- 8 -

upon a set of quality criteria, each of which has a set of
measures or metrics associated with it. Rome Laboratory
sponsored a number of followons to the McCall study,
including [Bowen et al., 1985; Lasky-Donaghy, 1993; and
Murine, 1995].

More recent work focuses on quality analysis methods
in software architecture, one of the most important tools
for designing and understanding a software system. The
manual scenario-based Software Attribute Analysis
Method, SAAM [Kazman et al., 1994], provides a
technique for analyzing the architecture under
consideration with respect to how well or easily it satisfies
the constraints imposed by each scenario. The scenarios
were used to express the particular instances of each
quality attribute important to the customer of a system.
One of their difficulties is determining the proper set of the
scenarios.

Further CMU-SEI work on software quality attributes
[Kazman-Bass, 1994] explored the relationship between
software architecture of a system and software qualities to
be achieved by the system. The relationship is based on
design operations (called “unit operations”) such as
separation, abstraction, compression, composition,
resource sharing, and replication. Their work provides a
useful first-order conflict analysis of the interaction among
quality attributes, though their method of deriving
architectures from requirements is somewhat
oversimplified. Our research focus in QARCC [Boehm-In,
1996a] used this concept and extended it with semi-
formalized structure to provide a useful description
language for architecture tradeoff analysis.

Univ. of Toronto [Chung et al., 1995] developed an
automated assistance in dealing with interactions among
non-functional quality requirements based on Non-
Functional Requirements (NFRs). They focused on
traceability of quality requirements with more emphasis on
incorporating changes in NFRs (e.g., systematically
detecting defects and supporting the process of
corresponding changes in design and implementation).
However, there is no consideration of stakeholders who
have different quality-attribute priorities and concerns.

7. Conclusions
We have done a comparative analysis of the options

surfaced by stakeholders in the initial WinWin Strikeware
exercise and the options generated and analyzed by S-
COST. S-COST provides a more thorough set of candidate
cost-quality conflict resolution options and analysis of
their pros and cons. On the other hand, S-COST could not
generate situation-specific options, such as the User
deciding to break up the Query/Display module into higher
and lower priority submodules. Given these strengths and
limitations of automated approaches, we conclude that S-

COST’s resulting semi-automated approach is stronger
than a heavily manual approach or a heavily automated
approach.

Based on analysis of a number of additional WinWin-
based requirements negotiations, we have found that
stakeholders are frequently unaware of attractive options to
resolve cost/quality/functionality conflicts. The S-COST
prototype and its current extensions can enable
stakeholders to identify, analyze, and obtain experience-
based advice on better ways to resolve such conflicts.

Acknowledgments

This research is sponsored by the Advanced Research
Projects Agency (ARPA) through Rome Laboratory under
contract F30602-94-C-0195 and by the Affiliates of the USC
Center for Software Engineering: Allied Signal Corp.,, Bellcore,
Boeing, Electronic Data Systems Corporation, E-Systems, FAA,
GDE systems, Hughes Aircraft Company, Interactive
Development Environments, Institute for Defense Analysis, Jet
Propulsion Laboratory, Litton Data Systems, Lockheed Martin
Corporation, MCC, Motorola Inc., Northrop Grumman
Corporation, Rational Software Corporation, Raytheon, Science
Applications International Corporation, Software Engineering
Institute (CMU), Software Productivity Consortium, Sun
Microsystems, Inc., Texas Instruments, TRW, U.S. Air Force
Rome Laboratory, U.S. Army Research Laboratory, and Xerox
Corporation.

References

[Boehm et al., 1976] Boehm, B., Brown, J., and Lipow, M.,
“Quantitative Evaluation of Software Quality”, Proceedings,
ICSE2, October 1976, pp. 592-605.

[Boehm, 1981] Boehm, B., Software Engineering Economics,
Prentice-Hall, 1981.

[Boehm-Ross, 1989] Boehm, B. and Ross, R., “Theory W
Software Project Management: Principles and Examples,”,
IEEE TSE, July 1986, pp. 902-916.

[Boehm et al., 1994] Boehm, B., Bose, P., Horowitz, E., and Lee,
M., “Software Requirements As Negotiated Win
Conditions”, Proceedings of the First International
Conference on Requirements Engineering (ICRE94), IEEE
Computer Society Press, Colorado Springs Colorado, April
1994, pp. 74-83.

[Boehm et al., 1995a] Boehm, B., Bose, P., Horowitz, E., and
Lee, M., “Software Requirements Negotiation and
Renegotiation Aids: A Theory-W Based Spiral Approach”,
Proceedings of the 17th International Conference on
Software Engineering (ICSE-17), IEEE Computer Society
Press, Seattle, April 1995.

[Boehm et al., 1995b] Boehm, B., Clark, B., Horowitz, E.,
Westland, C., Madachy, R., and Selby, R., “Cost Models for
Future Life-Cycle Processes: COCOMO 2.0”, Annals of
Software Engineering, 1995, pp. 57-94.

[Boehm-In, 1996a] Boehm, B. and In, H., “Identifying Quality-
Requirement Conflicts”, IEEE Software, IEEE Computer
Society Press, March 1996, pp. 25-35.

[Boehm-In, 1996b] Boehm, B. and In, H., “Software Cost Option
Strategy Tool (S-COST)”, COMPSAC96 (The Twentieths

Barry Boehm and Hoh In Conflict Analysis and Negotiation Aids for Cost-Quality Requirements

- 9 -

Annual International Computer Software and Applications
Conference), IEEE Comp. Society Press, Seoul, Korea,
August 1996, pp. 15-20.

[Boehm et al., 1998] Boehm, B., Port, D., Kwan, J., Egyed, A.,
Shah, A., and Madachy, R., “Using the WinWin Spiral
Model: A Case Study”, Computer, July 1998.

[Bowen et al., 1985] Bowen, T., Wigle, G., and Tsai, J.,
“Specifications of Quality Attributes”, Technical Report
RADC-TR-85-37, Vol. I-III, Rome Air Development Center,
Griffiss Air Force Base, NY, 1985.

[Chung et al., 1995] Chung, L., Nixon, B., and Yu, E., “Using
Non-Functional Requirements to Systematically Support
Change”, Proceedings of the second ICRE (Int. Conf. of
Requirements Engineering), IEEE Computer Press, March
1995, pp. 132-139.

[Eureka-Ryan 1988] Eureka, W.E. and Ryan, N.E., The
customer-Driven Company: Managerial Perspectives on
QFD, Dearborn, Mich.: ASI Press, 1988.

[Deming 1989] Deming, E., Out of Crisis, MIT Center for
Advanced Engineering Study, Cambridge, MA, 1989.

[DoD, 1974] U.S. Department of Defense, “Software Quality
Assurance Program Requirements”, MIL-S-52779 (AD), 5,
April 1974.

[IEEE, 1990] “IEEE Standard Glossary of Software Engineering
Terminology”, IEEE Std 610.12-1990, September 28, 1990.

[Kazman-Bass, 1994] Kazman, R. and Bass, L., “Toward
Deriving Software Architectures From Quality Attributes”,
CMU/SEI-94-TR-10, Pittsburgh, SEI/CMU, August 1994.

[Kazman et al., 1994] Kazman, R., Bass, L., Abowd, G., and
Webb, M., “SAAM: A Method for Analyzing the Properties
of Software Architectures”, Proc. of the 16th ICSE-16 (Int.
Conf. of Soft. Eng.), IEEE Computer Society Press,
Sorrento, Italy, May 1994, pp. 81-90.

[Lasky-Donaghy 1993] Lasky, J. and Donaghy K., “Conflict
Resolution (CORE) for Software Quality Factors,”,
Technical Report RL-TR-93-80, Rome Lab., Griffis Air
Force Base, NY, 1993.

[McCall et al., 1977] McCall, J.A., Richards, P.K., and Walters,
G.F., “Factors in Software Quality”, Technical Report
RADC-TR-92-79, Rome Laboratory, Griffiss Air Force
Base, NY, 1977.

[Murine 1995] Murine, G. and Murine, B., “Implementing a
software quality metric program based on the Rome
Laboratory initiatives”, Annals of Software Engineering ,
vol. 1, Baltzer Science Publishers, 1995, pp.155-177.

[Pardee 1996] Pardee, W., To Satisfy & Delight Your Customer:
How to Manage for Customer Value, Dorset House
Publishing, NY, 1996.

