
Simulated Annealing for Improving Software Quality
Prediction

Salah Bouktif
Département de Génie

Informatique, École
Polytechnique de Montréal

C.P. 6079, succ. Centre-ville
Montréal (Québec) H3C 3A7

Canada

salah.bouktif@polymtl.ca

Houari Sahraoui
Department of Computer

Science
University of Montreal

C.P. 6128 succ. Centre-ville
Montréal (Québec) H3C 3J7

Canada

sahraouh@iro.umontreal.ca

Giuliano Antoniol
Département de Génie

Informatique, École
Polytechnique de Montréal

C.P. 6079, succ. Centre-ville
Montréal (Québec) H3C 3A7

Canada

antoniol@ieee.org

ABSTRACT
In this paper, we propose an approach for the combination and
adaptation of software quality predictive models. Quality models
are decomposed into sets of expertise. The approach can be seen as
a search for a valuable set of expertise that when combined form a
model with an optimal predictive accuracy. Since, in general, there
will be severalexpertsavailable and eachexpertwill provide his
expertise, the problem can be reformulated as an optimization and
search problem in a large space of solutions.

We present how the general problem of combining quality ex-
perts, modeled as Bayesian classifiers, can be tackled via a sim-
ulated annealing algorithm customization. The general approach
was applied to build an expert predicting object-oriented software
stability, a facet of software quality. Our findings demonstrate
that, on available data, composed expert predictive accuracy out-
performs the best available expert and it compares favorably with
the expert build via a customized genetic algorithm.

Categories and Subject Descriptors
D [Software]: Miscellaneous; D.2.7 [Software Engineering]: Met-
rics—Product Metrics, Management

General Terms
Measurement, Algorithms, Management

Keywords
Simulated annealing, Software quality, predictive models, Bayesian
Classifiers, Expertise reuse

1. INTRODUCTION
Assessing and improving software quality are becoming perma-

nent concerns during all the phases of the software life cycle. Soft-
ware quality is a multidimensional notion often defined and eval-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06,July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

uated according to a set of characteristics. Commonly used char-
acteristics are, among others, complexity, maintainability, stability,
understandability, portability, etc.

Unfortunately, the majority of these characteristics cannot be
quantified a priori to help decision-making in the early phases of
the development process. For instance, several years of operation
are typically needed to determine if a given software product is
maintainable. As a consequence, empirical investigations of mea-
surable internal attributes (size, coupling, cohesion, etc.) and their
relationship to quality characteristics are very promising solutions
for the assessment of a software product quality [16]. When ver-
ified, the relationships between software internal attributes and its
quality characteristics are often used as quality predictive models.

To build predictive models or to validate the relationships that
they implement, we need representative data samples for which the
values of the quality characteristic to predict are already known.
For many reasons, in the field of object-oriented (OO) software,
such sets of data are rare [12]. As a result, for an organization,
it is difficult to select a predictive model that is relevant to its con-
text. Moreover, the models are developed according to specific con-
texts with many hidden hypotheses. As a quality specialist, one of
the frequent and complex request you can face is “I want to evalu-
ate/estimate the characteristic X, what predictive/estimation model
is appropriate for this task?”

Our approach borrows its inspiration from the fact that the ex-
isting models are the results of a considerable effort. The majority
of them embody valuable knowledge and expertise that should be
reused. However, the reuse is not straightforward. The embodied
expertise must be adapted to the particular domain and context of
the target organization. Moreover, we don’t have any guarantee that
a single model can cover any specific context. In general, a combi-
nation of several existing models is likely to be needed to obtain a
satisfactory accuracy.

In this paper, we propose an approach to reuse and adapt qual-
ity predictive models of software. We view each model as a set of
expertise parts. Each part covers a subset of the potential input set
for a decision making problem. When we put all the expertise parts
of all the models together, the reuse and adaptation can be seen a
search for thebestsubset of expertise parts that combined, forms a
model with an optimal predictive accuracy. Therefore, the problem
of determining the optimal subset can be modeled as an optimiza-
tion problem requiring a search in a large space of solutions.

Metaheuristics are known to be efficient in finding a near-optimal
solutions in such cases. In our project, we experimented two tech-
niques: genetic algorithms (GA), a population-based technique and

1893

simulated annealing (SA), a neighborhood-based technique. In this
paper we present an application of our approach using a simulated
annealing algorithm. For lack of space, the genetic algorithm is not
presented. However, in the evaluation section we will compare the
results of the two algorithms.

Although the approach can be applied to different kinds of pre-
dictive models, for this project both algorithms were defined for
Bayesian classifiers (BC), i.e., probabilistic predictive models. In-
deed, BCs, as stated by Fenton in [13], are becoming more and
more popular as they provide a good support to decision making.
The quality characteristic we consider in this work is the stability
of object-oriented applications.

The main contribution and novelty of this paper are as follows:

• we propose a general approach to reuse quality prediction
expertise;

• we report our SA customization for BCs combination;

• we present an application of our approach on large OO soft-
ware stability prediction.

This paper is organized as follows. First, we present our prob-
lem statement and we describe our approach in section 2. Since in
our approach, a model is seen as a set of expertise parts/chunks, the
mapping of a BC model to a set of expertise chunks is described
in section 3. Deriving a predictive model for a particular organiza-
tion is done by selecting progressively the valuable combinations
of chunks subsets of the considered models that better fits the con-
text of this organization. Section 4 presents this model derivation
approach using simulated annealing (SA) algorithm. An evaluation
of our approach using software stability BC models is presented in
section 5. Finally, a conclusion is given in section 6.

2. PROBLEM STATEMENT AND
APPROACH

In this section we introduce definitions and formalism that will
be used throughout the paper. As explained in the introduction,
a predictive model of software quality is a relationship between
internal and external attributes of a software. It is built/validated
empirically using a data sampleDc = {(x1, y1), . . . , (xn, yn)}
containingn examples or data points, wherexi ∈ Rd, is an obser-
vation vector ofd attributes (software internal metrics) andyi ∈ C
is a label (quality characteristic) in a particular case of classification
models.xi = (xi,1, . . . , xi,d) is the result of measuringd software
internal attributes; whenever no confusion arises, to simplify nota-
tion, we will interchangexi,j with aj beingaj the generic value
assumed by thejth attribute, realization ofxi in any observation
process. The data setDc should be a representative sample of a
software context and properly “represent” a set of software com-
ponents, an application domain, a programming style, programmer
skills, good and bad practices, etc. We callDc aparticular context
of an organization andD the set of contexts of all possible organi-
zations.D can be seen as a virtual set of data that representatively
describes all the possible types of software.

To build a predictive model for a particular organization using
its contextDc, three alternatives can be considered: (1) apply a
statistic-based or machine learning algorithm onDc (2) select the
best existing model1 usingDc (3) reuse and eventually adapt as
many as possible existing models usingDc to guide the search
process. We believe that the third alternative is more valuable. In-
deed, an ideal predictive model is a mixture of two types of knowl-
edge: domain common knowledge and context specific knowledge.
1Model predicting the same quality factor

By reusing existing models, we reuse the common domain knowl-
edge represented by versatile contexts and by guiding the adapta-
tion via the context specific data, we consider the specific knowl-
edge represented byDc. By adapting and reusing multiple exper-
tise the goal is to compose an expert outperforming the best existing
model (best expert); this in turn will play the role of a benchmark
for evaluating our proposed solution.

In this paper we consider the problem of reusingN predefined
modelsf1, . . . , fN calledexpertsto product a new optimal model
on the available contextDc. The first and simplest way is to com-
bineN experts by using a voting based methods. The constructed
modelf is a normalized weighted sum of the outputs of the existing
models. Formally, a composed expert can be written as:

f(x) =

NX

j=1

wjfj(x),

wherewj , j = 1, . . . , N are weights that can be positive con-
stants. In more general and sophisticated voting based methods,
the weights are functions of the inputwj(x) e.g., in the technique
referred to asmixture of expert[14]. The weights can be natu-
rally interpreted as degrees of our confidence in thejth expert on
our data setDc. However, the disadvantage of this solution comes
from the “black-box” property of the derived models in the sense
that there is more than one expert responsible for the output value.
To avoid the drawback of this solution, we propose an approach
reusing the existing experts to derive new experts having a higher
predictive accuracy, without worsening the interpretability of the
original experts. Considering this objective our approach consists
of three steps summarized in Figure 1:

Step 1decomposes each expert into chunks of expertise. Each
chunk represents the behavior of the expert on a “partition” of the
entire input space (i.e., the whole virtual datasetD). In general,
a chunk of expertise can be defined as a component of the ex-
pert knowledge, which can be represented using a certain technique
such as linear regressions, decision trees, Bayesian classifiers, etc.
The “partitioning” of the input space depends on the structure of
the expert representation. For example, the decomposition of a de-
cision tree leads to expertise chunks in form of rules, thus a “parti-
tion” is a decision region in the input space. For linear regression
based expert, an expertise chunk is not other than the restriction of
the regression function on a predetermined sub-space of inputs, a
partition of the entire input space. However, in the case of Bayesian
classifier, an expertise chunk is a set of prior probabilities attached
to each range (interval) of attribute values (See detail in Section 4).

The first step gives more flexibility when manipulating the ex-
perts in the sense that an expert could have chunks of expertise
more or less accurate than others. Moreover, the derived model
which is a combinations of chunks of expertise will be more inter-
pretable since we know the chunks responsible for the decision.

Step 2reuses the chunks of expertise coming from different ex-
perts in a way to build progressively more accurate combinations
of these usingDc to guide the search.

Step 3modifies some chunks of expertise to obtain more adapted
expertise combinations to the contextDC .

This three step process of building an optimal expert can be
thought of as a searching problem where the goal is to determine
the best set of expertise givenDc. In general, several experts will
be available; each expert decomposes into a set of expertise and
thus we face a combinatorial problem searching the best combina-
tion of expertise in a large search space.

Moreover, expert opinions can be inconsistent i.e., chunks of ex-
pertise may conflict over an output, and thus there is a need to

1894

Derived Expert

Context DataInput Space
'' partitioning''

Existing Experts

Existing chunk of
expertise (reused)

New or adapted chunks
of expertise

Reuse
and

Adaptation

DC

Figure 1: Model derivation process.

further subdivide chunks of expertise increasing the search space
complexity. In other words, we are facing a NP-complete decision
problem, that naturally gives rise to an associated NP-hard opti-
mization problem seeking for an optimal combinations of expertise
in term of predictive accuracy i.e., there is no algorithm running in
polynomial time.

3. BAYESIAN CLASSIFIER DESCRIPTION
A Bayesian classifier is a simple classification method, that clas-

sifies a d-dimensional observationxi by determining its most prob-
able classc computed as:

c = arg max
ck

p(ck|a1, . . . , ad),

whereck ranges of the set of possible classesC = {c1, . . . , cq}
and the observationxi is written as generic attribute vector. By us-
ing the rule of Bayes, the probabilityp(ck|a1, . . . , ad) called prob-
ability a posteriori, is rewritten as:

p(a1, . . . , ad|ck)Pq
h=1 p(a1, . . . , ad|ch)p(ch)

p(ck).

The expert structure is drastically simplified under assumption
that, given a classck, all attributes are conditionally independent;
under this assumption the following common form ofa posteriori
probability is obtained:

p(ck|a1, . . . , ad) =

Qd
j=1 p(aj |ck)

Pq
h=1

Qd
j=1 p(aj |ch)p(ch)

p(ck). (1)

When the independence assumption is made the classifier is called
Naive Bayes.p(ck) called marginal probability [12] or base prob-
ability [10], is the probability that a member of a classck will be
observed.p(aj |ck) called prior conditional probability, is the prob-
ability that thejth attribute assumes a particular valueaj given the
classck. These two prior probabilities determine the structure of a
naive BC. They are learned, i.e., estimated, on a training set when
building the classifier. As discussed in [9], a naive BC is then a sim-
ple structure that has (1) the classification node as the root node, to
which is associated a distribution of marginal probabilities and (2)
the attribute nodes as leaves, to each of them are associatedq dis-
tribution of prior conditional probabilities, whereq is the number

of possible classes. Because of the strong independence assump-
tion, no connections are allowed between nodes in the naive BC.
A naive BC treats discrete and continuous attributes in different
ways [15]. For each discrete attribute,p(aj |ck) is a single real
that represents the probability that thejth attribute will assume a
particular valueaj when the class isck. Continuous attributes are
modeled by some continuous distribution over the range of that at-
tribute’s value. A common assumption is to consider that within
each class, the values of continuous attributes are distributed as a
normal (i.e., Gaussian) distribution. This distribution can be rep-
resented in term of its mean an its standard deviation. Then we
interpret an attribute valueaj as laying within some interval. The
attribute domain is divided into intervalsIjtj andp(Ijtj |ck) will
be the prior conditional probability of a value of thejth attribute to
be in the intervalIjtj when the class isck; tj ∈ N is the rank of
the interval in the attribute domain. To classify a new observation
xi (i.e., a1, . . . , ad), a naive BC with continuous attributes apply
Bayes theorem to determine thea posterioriprobability as:

p(ck|I1t1 , . . . , Idtd) =

Qd
j=1 p(Ijtj |ck)

Pq
h=1

Qd
j=1 p(Ijtj |ch)p(ch)

p(ck). (2)

with aj ∈ Ijtj .

4. ADAPTING SIMULATED ANNEALING
ALGORITHM

In order to tailor the SA algorithm for our approach, some el-
ements must be defined. First and foremost, we need to define
an adequate representation to encode possible solutions and assure
the BC decomposition into chunks of expertise (Section 4.1). Sec-
ondly, a generator of random changes in solutions is necessary to
perform moves in the neighborhood of the current solution and cre-
ate new intermediate solutions. This latter element is called neigh-
borhood function and assures the combination and the adaptation
(Section 4.2). Finally, to evaluate solutions and to guide search, an
objective function have to be defined (Section 4.3).

4.1 Representation of Bayesian Classifier
solution

The encoding of BC into chucks of expertise is central to our
approach. This operation facilitates the exploration of the search
space defined by all the combinations of original and modified
chunks of expertise. Consequently it makes easier and efficacious
the steps of reusing and adapting the existing BCs.

According to the description of Naive BCs using the continu-
ous attributes given in Section 3, two prior parameters of a BC
are candidate to represent a chunk of expertise. The first con-
sists in the marginal probabilities of different classesp(ck), where
k = 1, . . . , q. The second consists in the prior conditional proba-
bilities of the attributesp(Ijtj |ck). Since prior conditional proba-
bilities are more relevant to express a different structure for a BC,
they were chosen to define a chunk of expertise.

To each attribute, say thejth attribute, are associatedmj chunks
of expertise. Each chunk can be represented by the(q+1)−tuple
made up by an intervalIjtj and an array ofq conditional probabil-
ities (pjtjc1 , . . . , pjtjcq).

This form of expertise(Ijtj , pjtjc1 , . . . , pjtjcq), wherepjtjck

denotes the prior conditional probabilityp(Ijtj |ck), makes it possi-
ble to preserve the structure of a BC while the search is progressing.
Figure 2 shows a structure of a BC using three continuous attributes
(metrics COH, LCOMB and STRESS, see Table 3) to classify OO-
classes into stable and unstable ones. Each attribute domain is di-

1895

vided into set of intervals. To each interval are associated two prior
conditional probabilities. For example, the COH attribute domain
([LCOH , UCOH]=[0, 1]) is divided into four intervals. The prob-
ability of a COH-value to be in the second interval ([0.3, 0.65])of
the COH-domain is equal to0.37 given the classstable and equal
to 0.33 given the classunstable. Table 1 shows all the prior proba-
bilities associated to different intervals of the attribute COH. Note

COH Int. [0,0.3] [0.3,0.65] [0.65,0.9] [0.9,1]
COH stable 0.08 0.37 0.13 0.42

unstable 0.4 0.33 0.22 0.05

Table 1: Prior priorities Table of COH.

 Prior Prob. Given the class Stable
Prior Prob. Given the class Unstable

ULCOMB

UCOH =1

LLCOMB

LCOH = 0 0.3 0.65 0.9

LSTRESS USTRESS

COH
Attribute
LCOMB
Attribute
STRESS
Attribute

Prior Conditional Probabilities
of 2 nd COH interval

Figure 2: A graphical representation of Naive Bayesian Classi-
fier chunk of expertise.

that for each attribute the lower and upper boundaries can be dif-
ferent from one classifier to an other, however in order to simplify
and shorten our SA description, in this paper we assume that each
attribute remains defined in same domain for all the BCs.

4.2 Neighborhood function
The neighborhood function also called transition function, is the

element of SA algorithm which is responsible for the two principal
mechanisms of the our approach, namely, the reuse and the adapta-
tion of the expertise chunks. For any given BC withq classes, each
interval in any attribute domain has associatedq prior probabili-
ties. Intuitively, a transition is carried out by making changes in
the structure of the BC representing the current solution to obtain
a nearbyimprovedBC. Starting from a BC representation, as a set
of expertises (intervals plus probability distributions), a transition
consists in making areasonablemodification on some intervals and
thus changing either probabilities or interval boundaries. Clearly
there is a combinatorial number of possible ways to perform such
a modification. In addition, the mechanism of combination of our
approach is founded on the reuse of the expertise coming from the
different existing BC.

Indeed, to implement this mechanism in a technically sound and
easy way, we propose two new forms of transitions based on adding
or deleting expertise chunks from a BC.

Three properties of a BC must be ensured while adding and
deleting expertise chunks: consistency, completeness and distrib-
ution. In this paper, for consistency property, we mean that the
structure of the BC must be consistent and thus for a given class,
i.e., only one probability must be associated to any given interval.
By completeness we mean that the structure of the BC must be
complete and therefore given a class, any interval must have a prior
probability. For the distribution property, we mean that given a BC,
one of its attributes and a class the sum of prior probabilities over
the attribute domain have to sum up to one. In the following, to

summarize our approach to preserve essential BC property, we will
make no distinction between the interval and the expertise and in
general the term interval will be used to represent both the interval
and the associated prior probabilities.

ULCOMB

LLCOMB

UCOH LCOH

ULCOMB

 COH
Attribute

 BCN
LCOM B
Attribute

LLCOMB

UCOH LCOH
COH

LCOMB

Expertise chunks
(intervals) repository

COH intervals
 Sub-repository

LCOMB intervals
 Sub-repository

 COH
Attribute

 BC1
 LCOMB

Attribute

Figure 3: Expertise repository constitution. The interval repos-
itory is constituted of a set of sub-repositories. Each sub-
repository contains all the interval of a particular attribute.

4.2.1 Adding an expertise chunk
To guarantee the completeness of a BC being modified, we pro-

ceed to a graft, atransplantation, of a new interval (new expertise)
in the composition of the corresponding attribute domain. For ex-
ample, an interval of the attributeCOH in the repository is grafted
in the COH-attribute domain of the BC, as shown in Figure 4.
The grafted interval is randomly selected in a repository of inter-
vals. This action assumes the existence of a repository of expertise
chunks obtained by the dissociation of all the intervals composing
the attributes of the all existing classifiers. The operation of the ex-
pertise repository constitution is summarized in Figure 3. LetI ′jg

be an interval randomly select in the interval repository whereg
is its rank in the domain of the attributej in its original BC. Af-
ter the grafting action ofI ′jg in the domain of the attributej in
the current BC, we obtain a new interval composition of the do-
main of the current2 attributej denoted(Ij1, . . . , I

′
jg′ , . . . , Ijm),

wherem is the new number of intervals in the current attributej
andg′ is the new rank of the grafted interval in the current attribute
j. To ensure consistency, the probabilitiesa priori attached to the
grafted intervalp(I ′jg′ |ck), k = 1, . . . , q are preserved in order to
dominate the original ones in the domain part covered byI ′jg′ . An
adjustment of prior probabilities of the remaining original inter-
vals (Ij1, . . . , Ij(g′−1), Ij(g′+1), . . . , Ijm) is necessary to ensure
the distribution property. These intervals are those non completely
covered but possibly overlapped byI ′jg′ . Several choices are possi-
ble to adjust these prior probabilities. A simple way, is to distribute
the remainder of the probability (1− p(I ′jg′ |ck)) on the remaining
intervals(Ij1, . . . , Ij(g′−1), Ij(g′+1), . . . , Ijm).

A different way is: given a class, the prior probability associated
to any remaining interval could be proportional to its length. This
choice supposes an uniform distribution of the attribute values and
omits their original distribution expressed by the prior probabili-
ties. Another alternative consists in associating to each remaining
interval a new prior probability proportional to its original priori
probability. This alternative is more appealing because it does not

2Attribute j of the current BC being modified

1896

COH

LCOMB

COH Attribut e
before
transition LCOH UCOH

LCOH UCOH

LCOH U COH Graft

COH Attribut e
after transition
 LCOH UCOH

Attribute intervals
repository

Ig

Ig

Ig

Ig

Probabilities adjustment

Figure 4: Transition function : expertise grafting.

suppose any arbitrary distribution of the attribute values and takes
into account the original expertises attached to the remaining in-
tervals(Ij1, . . . , Ij(g′−1), Ij(g′+1), . . . , Ijm). New prior probabil-
itiesp′(Ijtj |ck) with tj = 1, . . . , g′ − 1, g′ + 1, . . . , m (tj 6= g′),
are updated according to the equation :

p′(Ijtj |ck) =
p(Ijtj |ck)Pm

t=1,t6=g′ p(Ijt|ck)
(1− p(I ′jg′ |ck)), (3)

wherek = 1, . . . , q. In this equation, given a classck we weight
the remainder1−p(I ′jg′ |ck) by the proportion of the original prior
probabilityp(Ijtj |ck). The operation of grafting an expertise chunk
in an attribute domain of a BC is illustrated in Figure 4

4.2.2 Deleting an expertise chunk
This way of performing a transition consists in removing an in-

terval Ijs chosen randomly in the domain of the attributej in the
BC structure(Ij1, . . . , Ijs, . . . , Ijm). In order to ensure the com-
pleteness, one or two of the neighbor intervals (Ij(s−1) andIj(s+1))
of Ijs are widened to fill the gap caused by the suppression ofIjs.
The distribution property is then ensured in the same way as when
grating an interval. Given a classck, the prior probability of each
remaining intervalp(Ijtj |ck) is weighted by the inverse of the dis-
tribution remainder(1 − p(Ijs|ck)). The new prior probabilities
take the form of :

p′(Ijtj |ck) = p(Ijtj |ck)
1

1− p(Ijs|ck)
, (4)

where,tj = 1, . . . , m − 1 is the rank of an interval in the new
attribute composition ands is the rank of the deleted interval in the
original attribute composition.

In the equation 4, the probabilities are increased proportionally
to their original values. In other words the existing chunks of ex-
pertise are reused to create new ones which justifies our way of
probability adjustment.

4.3 Objective function
The main goal of our approach is to derive an expert that has

the higher predictive accuracy. In other words the mission of our
SA algorithm is to maximize the predictive accuracy of the derived
BC f . Our approach can be seen as a learning process where the
datasetDc representing the context is divided the training set of an
organization. The same set can be seen as evaluation data set used
for computing the predictive accuracy of the classifier proposed by
the SA process.

This predictive accuracy (objective function) can be measured in
different ways (see [2]). An intuitive measure of it is thecorrect-
ness function

C(f) =

Pq
i=1 niiPq

i=1

Pq
j=1 nij

,

wherenij is the number of cases in the evaluation data set with
real labelci classified ascj (Table 2). Note that for a BC, the class
label ci of a given case is the label that has the highest posterior
probability (see equation 2).

Predicted label
c1 c2 . . . cq

c1 n11 n12 . . . n1q

real c2 n21 n22 . . . n2q

label
...

...
...

. . .
...

cq nq1 nq2 . . . nqq

Table 2: The confusion matrix of a decision functionf . nij is
the number of cases in the evaluation data set with real labelci

classified ascj .

Software quality prediction data is oftenunbalanced, that is,
software components tend to have one label with a much higher
probability than other labels. For example, in our experiments we
had many more stable than unstable classes. On an unbalanced data
set, low training error can be achieved by the constant classifier
functionfconst that assigns the majority label to every input vector.
By using the training error for measuring the objective function, we
found that the SA process tended to “neglect” unstable classes. To
give more weight to data points with minority labels, we decided to
use Youden’sJ-index[19] defined as

J(f) =
1

q

qX

i=1

niiPq
j=1 nij

.

Intuitively, J(f) is the average correctness per label. If we have the
same number of points for each label, thenJ(f) = C(f). How-
ever, if the data set is unbalanced,J(f) gives more relative weight
to data points with rare labels. In statistical terms,J(f) measures
the correctness assuming that the a priori probability of each label
is the same. Both a constant classifierfconst and a guessing clas-
sifier fguess (that assigns random, uniformly distributed labels to
input vectors) would have a J-index close to0.5, while a perfect
classifier would haveJ(f) = 1. For an unbalanced training set,
C(fguess) ' 0.5 butC(fconst) can be close to1.

5. EVALUATION
In order to evaluate our approach, two elements are provided as

inputs to the SA algorithm. The first element is a set of existing
experts predicting the same quality factor. The second is a repre-
sentative sample of data collected to describe a number of software
components and to reflect the specificities of the software develop-
ment activity in a particular organization (context data).

To this aim, we created a “semi-real” environment in which the
“assumed existing” experts were trained on independent data sets
collected from different software systems. Accuracy was evaluated
via the prediction of the stability of Sun Microsystems JAVA devel-
oper APIs.

BCs were constructed to classify software component intostable
andunstable(see Section 5.1 and the context data set was extracted
from a the standard JAVA APIs (see Section 5.2).

1897

5.1 OO Software stability predictive models
During its operation time, software undergoes various changes

triggered by error detection, new requirements or environment changes.
As an aftereffect, the behavior of the software gradually deterio-
rates as modifications increase. Consequently, there is a consensus
that the software that is intended to last must remain stable. In
other words, it should not need major and frequent changes in spite
the emergence of new requirements. To reach this goal, a predic-
tive model is required in two cases. To apply the model expertise
during the design phase, when building the internal properties into
the product. Later on, in the field, to decide after a certain number
of versions, whether a major refactoring is necessary to reduce the
implementation cost of future requirements.

In our study, we are interested in the stability of OO software at
the class level. The key assumption is that a class is stable whenever
its interface remains valid (usable) between versions. Letcl be a
class.I(cli) is the interface ofcl in versioni (public and protected,
local and inherited methods). The level of stability ofcl can be
measured by comparingI(cli) to I(cli+1) (following version). It
represents the percentage ofI(cli) that is included inI(cli+1)

3.
Formally

SL(cli −→ cli+1) =
#(I(cli+1) ∩ I(cli))

#I(cli)
. (5)

If SL(cli −→ cli+1) = 1 the classcli is stable otherwise is unsta-
ble.

With respect to the prediction, our hypothesis is that the stability
of a class interface depends on the design (structure) of the class
and the stress induced by changes like the implementation of new
requirements between the two versions.

The expert will take the form of a functionf that takes as input a
set of structural metrics(m1(cli), . . . , md(cli)) and an estimation
of the stressSt(cli −→ cli+1) and produces as output a binary es-
timation of the stabilitySL(cl) = SL(cli −→ cli+1). We assign
1 for stable and−1 for unstable. Formally

SL(cli −→ cli+1) = f(m1(cli), . . . , md(cli), St(ci −→ cli+1))

The stressSt(cli −→ cli+1) represents the estimated percentage
of added methods incl between the two versions. Formally,

St(cli −→ cli+1) =
#(I(cli+1)− I(cli))

#I(cli+1)
.

To build the experts (that simulate the existing models), we use
the stress plus18 structural metrics that belong to one of the four
categories of coupling, cohesion, inheritance, and complexity, sum-
marized in Table 3. The detailed definitions of these metrics and the
predictive models where they were used can be found in [7, 1, 6, 5,
17, 11, 20].

The metrics were extracted from11 OO systems listed in Ta-
ble 4. These systems were used to “create” experts to simulate
the existing probabilistic models in the following way: First, by
using all the combination of the metric categories (of one, two,
three and four), we formed15 subsets of input metrics, and cre-
ated15 × 11 = 165 data sets. One classifier is trained on each
data set by using the machine learning algorithm RoC (the Robust
Bayesian Classifier, Version 1.0 of the Bayesian Knowledge Dis-
covery project)[18]. Then, we obtained165 BCs, among which we
retained40 BCs by eliminating classifiers with training error more
than 15%.

3We consider a deprecated method as if it is removed.

Name Description

Cohesion metrics
LCOM lack of cohesion methods
COH cohesion
COM cohesion metric
COMI cohesion metric inverse

Coupling metrics
OCMAIC other class method attribute import coupling
OCMAEC other class method attribute export coupling
CUB number of classes used by a class

Inheritance metrics
NOC number of children
NOP number of parents
DIT depth of inheritance
MDS message domain size
CHM class hierarchy metric

Size complexity metrics
NOM number of methods
WMC weighted methods per class
WMCLOC LOC weighted methods per class
MCC McCabe’s complexity weighted meth. per cl.
NPPM number of public and protected meth. in a cl.
NPA number of public attributes

STRESS Stress estimation

Table 3: The 19 software metrics used as attributes in the ex-
periments.

System Number of Number of
(major) versions classes

Bean browser 6(4) 388–392
Ejbvoyager 8(3) 71–78
Free 9(6) 46–93
Javamapper 2(2) 18–19
Jchempaint 2(2) 84
Jedit 2(2) 464–468
Jetty 6(3) 229–285
Jigsaw 4(3) 846–958
Jlex 4(2) 20–23
Lmjs 2(2) 106
Voji 4(4) 16–39

Table 4: The software systems used to construct the “assumed
existing” experts(BCs).

5.2 Context data set
We evaluated our approach by predicting the stability of standard-

JAVA APIs classes4. We recall that this data set is needed to guide
the progression of the search process toward a near optimal so-
lution. It describes some2920 classes JAVA reflecting the “past
experience” of Sun Microsystems through four versions of JDK ;
JDK1.0(187 classes), JDK1.1(587 classes), JDK1.2(2163 classes)
and JDK1.3(2737 classes). For each class of the first three ver-
sions,18 metric-values, an estimate of the stress and an evalua-
tion of stability were calculated. The major evolutions of JAVA,
were thus pointed out by the three version-transitions JDK1.0 to
JDK1.1, JDK1.1 to JDK1.2 and JDK1.2 to JDK1.3. They were
particularly useful for calculating the stress estimation and stability
of each class as shown in the previous Section. In Table 5 a brief
description of the three JAVA transitions in given, indicating the
number of stable and unstable classes according to the equation 5.

4See http://java.sun.com.

1898

JDK Number of Number of
Transition Stable classes) Unstable classes

jdk1.0.2 to 1.1.6 147 42
jdk1.1.6 to 1.2.004 366 217
jdk1.2.004 to 1.3.0 1982 180

Table 5: Summary of the JAVA context of Sun Microsystems
.

5.3 Simulated annealing setting
The major difficulty of implementing the SA algorithm is related

to the definition of the search space, and the way in which the solu-
tion will be modified. In other words some influencing parameters
should be specified namely,Ts0; the initial temperature, the an-
nealing strategy,Nsa; the number of iterations before decreasing
the temperature (shortly, the number of loops) and the criterion of
move (transition) acceptance. Several tests are usually carried out
to tune parameter values of a metaheuristic algorithm. In our case,
these tests show that the behavior of the tailored SA as expected has
a dependence on the annealing strategy, on the criterion of move
acceptation, on the number of loops. However the SA algorithm
achieve higher accuracies of the derived BC above certain thresh-
olds of some parameters. In particular, the quality of the derived
BC does not seem to be affected by the initial temperature when
this later is sufficiently high. For this reason it was fixed at10∆J ,
where∆J is the maximum variation of the predictive accuracy of
the existing classifiers. Cooling, i.e.,annealing strategy, was done
via the geometric methodTsa(i) = αTsa(i − 1), 0 < α < 1
(i is a counter of iterations) withα = 0.97. The number of loops
in the experiment was fixed atNsa = 600. The probability of ac-
cepting worsening moves is computed via the Glauber’s acceptance
criterion [8] given by the following expression: acceptance is

p =
exp∆J(f)

Tsa

1 + ∆J(f)
Tsa

whereTsa is the current pseudo temperature. This Probability is
close to50% at the beginning of the algorithm and becomes close
to 0% at end of the algorithm.

5.4 Hypotheses
With the above detailed setting and the tuned parameter the re-

sulting tailored SA algorithm was run to verify four hypotheses.

1. To test if the derived BC has a higher predictive accuracy
than the best existing BC.

2. To verify whether the reuse and adaptation of BCs via SA
produce BCs with accuracy comparable to those given by
GAs.

3. To test if the predictive accuracy of the resulting expert (BC)
is proportional to the number of reused existing experts.

4. To verify if an expert with low predictive accuracy, in iso-
lation, can containgood (accurate and reusable) chunks of
expertise.

5.5 Results
The predictive accuracy was evaluated with the J-index of Youden

(See Section 4.3. The J-index of the resulting BCs was estimated
using 10-fold cross validation. In this technique, the data set is ran-
domly split into10 subsets of equal size (292 points in our case).
The progression of the SA algorithm, to derive a new BC, is guided

by the union of9 subsets. In other words, a new BC is trained on the
union of9 subsets, and tested on the remaining subset. The process
is repeated for all10 possible combinations. Mean and standard de-
viation values are computed for J-index on both the training and the
test samples. Table 6 summarizes results of BC derivation. We used
two benchmarks to evaluate our SA result. We compared our de-
rived classifier, to the best expertfBest simply selected among the
existing BCs, to the classifierfGA resulting from the implementa-
tion of our approach using Genetic Algorithm (GA). The table also
reports the average time required to produce a final BC.

J-indexJ(f) CPU Time

fbest 63.15(0.54) -
Training fGA 78.56(1.32) 12

fSA 77.62(1.14) 10

fbest 63.10(4.67) -
Test fGA 77.63(2.95) -

fSA 77.15(3.37) -

Table 6: Experimental results. The mean(standard deviation)
percentage values of the J-index and CPU time.

The obtained results show a considerable improvement in the
predictive accuracy. Compared to the best expert, the resulting BC
fSA has gained (11.43%) of a predictive accuracy, which is signif-
icantly bigger than two standard deviations respectively offBest

(4.67) and offSA (3.37). The null hypothesisH0, assuming that
no differences exist betweenfBest andfSA, is rejected by a statis-
tical test with very strong evidence (1%).

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%
J-index

fBes
t

fGA fSA Models

Training
 Test

Figure 5: Experimental results: Predictive accuracy improve-
ment with SA.

The analysis of the standard deviation (see Table 6) also shows
that the dispersion of the predictive accuracies (J-index) around
the average is relatively narrow for the SA algorithm. This result
proves that the models produced by SA are stable in spite of its
indeterministic-character and that the estimate of the value of the
predictive accuracy is more precise. In addition, the small differ-
ence between the training and test results indicates that there is not
visible overfitting of the deriver BC. SA results are very close to
those of GA (fGA, see Table 6). They are so similar that we have
no visible reason to prefer one on the other. The results of the pre-
dictive accuracy ofJ(fSA), J(fBest)andJ(fGA) are summarized
and easily seen in Figure 5.

1899

Finally, we note that the average computational time for the exe-
cution of our SA algorithm is indeed reasonable for such complex
problem (10 minutes for19 metrics and2920 data points as context
dataset size).

56,00%

61,00%

66,00%

71,00%

76,00%

81,00%

86,00%

3 6 9 12 15 18 21 28 38
Number of reused BCs

J-index

Training
Test

Figure 6: Predictive accuracy evolution and number of existing
experts(BCs).

In order to verify the third and the fourth hypotheses, we exe-
cute our SA algorithm with the reuse of different number of ex-
isting models. At each time, we increase the number of expert
by involving a new existing one. As shown in the Figure 5, the
resulting expert is increasingly accurate as the number of reused
models increases. Moreover, the Spearman’s correlation coefficient
confirms the direct proportionality between the number of existing
BCs taken as inputs and the predictive accuracy of the resulting BC
(Correlation. 0.86). In the same Figure 5, the classifier number
19 having50.72% as J-index, which is a low predictive accuracy
had participated in several runs in significant increase (by6%) of
the resulting BC accuracy. This phenomenon implies that a good
chunks of expertise can be hidden in inaccurate models.

6. CONCLUSION
The results show that the final resulting model is clearly more ac-

curate than the initial best model. Using SA derivation strategies,
good results are obtained for Bayesian classifier case. Both SA and
GA are suitable for our combinatorial problem. More precisely, the
resulting classifiers are accurate and stable. With regard to the CPU
time, the derivation process takes few minutes, announcing that SA
is slightly less time consuming than GA for our particular problem.
Our approach of reusing and adapting existing model performs well
with probabilistic models. Adding theses results to those of our pre-
vious work on GA and tabu search using decision trees [4, 3, 2], we
are about to say that our approach is at the same time combining-
method independent and adaptable for different types of predictive
models. This conclusion requires more investigation and experi-
ments. Although our approach yield good improvement over the
initial model on a particular context, we strongly believe that if we
use more numerous and real probabilistic models on cleaner and
less ambiguous data, the improvement will be more significant.

7. ACKNOWLEDGMENTS
This research was partially supported by the Natural Sciences

and Engineering Research Council of Canada (Research Chair in
Software Evolution #950-202658).

8. REFERENCES
[1] F. Abreu. Metrics for object-oriented environment. In

Proceedings of the Third International Conference on
Software Quality Lake Tahoe Nevada, pages 55–65, 1993.

[2] S. Bouktif. Improving software Quality prediction by
combining and adapting predictive models. PhD thesis,
Montreal University, 2005.

[3] S. Bouktif, D. Azar, S. Sahraoui, B. Kgl, and D. Precup.
Improving rule set based software quality prediction: A
genetic algorithm-based approach.Journal of Object
Technology, 3(4):227–241, 2004.

[4] S. Bouktif, B. Kégl, and S. Sahraoui. Combining software
quality predictive models: An evolutionary approach. In
Proceeding of the International Conference on Software
Maintenance, pages 385–392, 2002.

[5] L. Briand and J. Ẅust. Empirical studies of quality models in
object-oriented systems. In M. Zelkowitz, editor,Advances
in Computers. Academic Press, 2002.

[6] L. Briand, J. Ẅust, J. Daly, and V. Porter. Exploring the
relationships between design measures and software quality
in object oriented systems.Journal of Systems and Software,
51:245–273, 2000.

[7] S. Chidamber and C. Kemerer. A metrics suite for object
oriented design.IEEE Transactions of Software Engineering,
20(6):476–493, 1994.

[8] W. Dolan, P. Cummings, and M. Le-Van. Algorithmic
efficiency of simulated annealing for heat exchanger network
design. InProceedings of the computers in Chemical
Engineering conference, pages 1039–1050, 1990.

[9] R. Duda and P. Hart.Pattern classification and scene
analysis. John Wiley and Sons, 1973.

[10] C. Elkan. Naive bayesian learning. Technical report,
Department of Computer Science Harvard University, 1997.

[11] M. C. Feathers. Stability through change. InProceedings of
the Accomplishing Software Stability Workshop, OOPSLA 99
Denver, CO, 1999.

[12] N. Fenton and M. Neil. A critique of software defect
prediction models.IEEE Transactions on Software
Engineering, 25(5):675–689, 1999.

[13] N. Fenton and N. Ohlsson. Quantitative analysis of faults and
failures in a complex sofware system.IEEE Transactions on
Software Engineering, 26(8):797–814, 2000.

[14] R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton. Adaptive
mixtures of local experts.Neural Computation, 3(1):79–87,
1991.

[15] G. H. John and P. Langley. Estimating continuous
distributions in bayesian classifiers. InProceedings of the
Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 338–345, 1995.

[16] T. Khoshgoftaar and J. Munson. The lines of code metric as a
predictor of program faults: A critical analysis. In
Proceedings of Computer Software and Applications
Conference, pages 408–413, 1990.

[17] R. Martin. Stability.C++ Report, 9(2), 1997.
[18] R. Ramoni and P. Sebastiani. Robust bayesian classification.

Technical report, Knowledge Media Institute, the Open
University, 1999.

[19] W. J. Youden. How to evaluate accuracy.Materials Research
and Standards, ASTM, 1961.

[20] H. Zuse.A Framework of Software Measurement. Walter de
Gruyter, 1998.

1900

