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ABSTRACT 
Reactive real-time systems have to react to external events within 
time constraints: Triggered tasks must execute within deadlines. 
The goal of this article is to automate, based on the system task 
architecture, the derivation of test cases that maximize the 
chances of critical deadline misses within the system. We refer to 
that testing activity as stress testing. We have developed a method 
based on genetic algorithms and implemented it in a tool. Case 
studies were run and results show that the tool may actually help 
testers identify test cases that will likely stress the system to such 
an extent that some tasks may miss deadlines. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification – 
validation, reliability 

General Terms 
Algorithms, Performance, Design, Reliability, Experimentation, 
Theory, Verification. 

Keywords 
Schedulability theory, Genetic algorithms 

1. INTRODUCTION 
An increasing number of software applications are concurrent in 
nature. This often entails that activities/tasks occur/execute in 
parallel and the order of the incoming events triggering those 
activities/tasks is often not predictable [4]. This is particularly 
true for real-time and distributed systems. 

Specific methods have been proposed for the development of real-
time systems. They often suggest that during development, some 
performance analysis be performed to determine whether 
designed tasks will likely meet their deadlines [4]. At design time, 
such performance analysis requires that task execution times be 
estimated (e.g., based on the expected number of lines of code) 
since the whole software is likely not fully developed. Real-Time 
Scheduling Theory [4, 14] helps designers determine whether a 
group of tasks (periodic or aperiodic, possibly with 

synchronizations and priorities), whose individual execution times 
have been estimated, will meet their deadlines. However, when 
dealing with aperiodic tasks, the proposed techniques make an 
assumption: Aperiodic tasks are transformed, for the purpose of 
schedulability analysis, into periodic tasks whose periods are 
equal to the minimum inter-arrival times of the events that 
activate the aperiodic tasks [16]. 

Because of inaccuracies in execution time estimates and 
simplifying assumptions regarding aperiodic tasks, we cannot 
simply rely on schedulability theory alone. It is then important, 
once a set of tasks have been shown to be schedulable, to derive 
test cases to exercise the system and verify that tasks cannot miss 
their deadlines, even under the worst possible circumstances. Our 
objective is thus to exercise the system in such a way that some 
tasks are close to missing a deadline. We refer to this testing 
activity as stress testing since this is defined as “subjecting the 
system to harsh inputs […] with the intention of breaking it” [1]. 
Similarly, “a stress test pushes [the system] beyond its design 
limits. It is designed to cause a failure” [2], and the inability to 
meet a deadline is no less a fault than erroneous outputs. 

The stress testing strategy presented in this paper consists in 
finding combinations of inputs such that completion times of a 
specific task’s executions are as close as possible to their 
deadlines. Those combination of inputs, i.e., test cases, should 
account for both seeding times for aperiodic tasks and their 
possible input data since both impact task executions (e.g., 
varying input data may trigger different control flow and result in 
varying execution times). We, however, limit our study to seeding 
times for aperiodic tasks, since input data are usually accounted 
for in execution time estimates [7]. Finding such test cases is not 
an easy problem to solve as many periodic and aperiodic tasks, 
with different priorities, can be triggered. But, if a practical way 
to automate it is found, it would allow us to specify a scenario of 
event arrival times that makes it likely for tasks to miss their 
deadlines if their execution time estimates turn out, once the 
system is implemented, to be too inaccurate. 

The search for an optimal combination of inputs uses a Genetic 
Algorithm (GA), as the problem to be solved is an optimization 
(the execution end of a task must be as close as possible to the 
deadline) under constraints (e.g., priorities). The specification of 
test cases for stress testing does not require any (running) 
implementation to be available, and can thus be derived during 
design once a task architecture is defined (e.g., specifying 
estimated execution times, priorities). This can occur just after 
schedulability analysis, once tasks have a good chance of being 
schedulable. Stress testing can then be planned early and, once the 
implementation is available and after completion of functional 
testing, stress testing may begin right away. 
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The rest of the article is structured as follows. Section 2 provides 
some background on schedulability analysis as well as some 
related work. Section 3 describes why we chose GAs and how we 
tailored them to solve our problem. It also introduces a prototype 
tool implementing our strategy. Two case studies are then 
reported in Section 4 and we draw conclusions in Section 5. 

2. BACKGROUND AND RELATED 
WORK 

2.1 Task Scheduling Strategies and 
Schedulability Theory 

On a single processor, or CPU, concurrent tasks must be handled 
by the kernel of the operating system. The kernel maintains a list 
of tasks that are ready to execute based on different task 
scheduling algorithms, e.g., the round robin algorithm uses a 
FIFO list of tasks, while other algorithms use task priorities and 
preemption [4, 16]. The Portable Operating System Interface 
Standard (POSIX), to which most commercial real-time operating 
systems conform, assumes fixed pre-emptive priority scheduling. 

Real-time scheduling theory is commonly used to determine 
whether a group of tasks will meet their deadlines. Only the tasks 
that are part of the interface of the software system under test 
(triggered by events from users, other software systems or 
sensors) are involved in the analysis.  

A task is schedulable if it always completes its execution before 
its deadline elapses. A group of tasks is schedulable if each task 
always meets all its deadlines. In the case of independent (no task 
communication or synchronization) periodic tasks, theorems 
determine whether tasks scheduled with the rate monotonic 
algorithm will always meet their deadlines. In the case of 
aperiodic or dependent tasks, the rate monotonic algorithm has to 
be adapted: (1) Aperiodic tasks must be modeled appropriately, 
and (2) Task priorities have to be adapted to avoid the blocking of 
high priority tasks by lower priority tasks, referred to as rate 
monotonic priority inversion. The Generalized Completion Time 
Theorem (GCTT) assumes fixed preemptive priority scheduling, 
as specified in the POSIX, which we will use for our case studies. 
GCTT extends the basic rate monotonic theory and can be used to 
determine whether a task can complete execution by the end of its 
period, given preemption by higher priority tasks and blocking 
time by lower priority tasks. For schedulability analysis, an 
extension exists for the GCTT that models aperiodic tasks as 
periodic ones, that are ready to execute when the system starts 
executing and that are triggered at regular time intervals as 
determined by their minimum inter-arrival times [4, 14, 16]. We 
do not further discuss these techniques and refer the interested 
reader to [4, 14, 16]. 

During the software design phase, real-time scheduling theory 
requires that task CPU utilization times, referred to as execution 
times in this article, be estimated since the whole software is 
likely not fully implemented1. These execution time estimates for 
tasks that are part of the interface of the software system must 
account for tasks triggered by internal events (i.e., events 
triggered by external events and hidden to the outside of the 
software system). This is not an easy task as execution times 
depend, among other things, on the triggered control flow and on 
the underlying system (e.g., cache memory) [7]. At design time, 
                                                                 
1 Note that tasks periods also have to be estimated. 

analytic benchmarking and code profiling are the most common 
strategies employed to determine those estimates [6]. Analytic 
benchmarking consists in measuring the performance of a selected 
hardware when representative code samples (primitive code 
types) are executed. This information is then combined with code 
profiling—which decomposes a task into the same set of primitive 
code types—to determine the makeup of the task and estimate its 
execution time. (A similar strategy is suggested in [4].) As a 
result, for any given real-time system, the accuracy of estimates 
can vary widely, especially in the early design stages. Other 
strategies exist but require that tasks be implemented (e.g., 
statistical prediction [6]). Further discussions on strategies to 
estimate task execution times at design time are out of the scope 
of this article. 

2.2 Related Work 
A number of papers have used GAs to generate test data, mostly 
in the context of structural testing (e.g., [17]).  

To the best of our knowledge, only one work addresses a goal 
similar to ours: To analyze real-time task architectures and 
determine whether deadlines can be missed [11]. The approach 
attempts to verify worst-case and best-case execution times of 
tasks in real-time systems, which can then be used for 
performance analysis. The approach combines testing, i.e., system 
execution using input values, and evolutionary computation (in 
this case GAs) and approximates those extreme execution times in 
a step-wise manner by executing the system of interest with 
varying input values. At each step, i.e., for each set of input 
values, a measure of the execution of the system (using those 
input values) is used to evaluate whether the algorithm gets closer 
to the optimum execution time. It is thus a technique to 
empirically verify, one task at a time, the execution time 
hypotheses made at design time for schedulability analysis. The 
approach, however, is different from ours as (1) it requires an 
implementation of the system under study and (2) it considers 
tasks in isolation (i.e., separately from the other tasks) and only 
focuses on violated timing constraints due to input values (e.g., 
the two matrices of a function that multiplies matrices). In this 
paper, we analyze task architectures and consider seeding times of 
events triggering tasks and tasks’ synchronization. Both works are 
complementary as inputs will influence task execution times and 
task completion times will depend on triggering events’ seeding 
times and tasks’ synchronization. 

Another related work [19] describes a procedure for automating 
test case generation for multimedia systems. The flow and 
concurrency control between nodes on the network is modeled 
using Petri nets (PN) coupled with temporal constraints. Test 
cases are then marking sequences in the PN model. They are 
determined using linear programming to potentially lead to 
resource saturation. The aim is twofold: To detect load sensitive 
faults and to ensure that systems adhere to their performance 
requirements under heavy loads. Our context is different, as our 
target is reactive, concurrent, real-time systems with soft or hard 
deadlines, and our focus is on missing deadlines as opposed to 
resource saturation. 

3. Tailoring Genetic Algorithms 
In order to achieve our objectives, we need to derive a sequence 
of seeding times for aperiodic tasks so that the difference between 
the end of execution and the deadline of a target task (selected by 
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the test engineer2) is as close as possible to zero. This sequence of 
seeding times is to be chosen such that the delay between two 
consecutive seeding times of an aperiodic task are greater than its 
minimum inter-arrival time and smaller than its maximum inter-
arrival time (when it exists). When there are more than a few 
tasks, it then becomes clear that deriving such stress test cases is 
not trivial and needs to be automated. 

A variety of methods exist for solving optimization problems. 
Among them is linear programming, which can be used when 
linear functions constrain the problem. Since, as we will see in 
Section 3.4, the optimization problem at hand can not be 
completely expressed using linear functions, linear programming 
does not seem to be an adequate choice. Other possible techniques 
are Simulated Annealing (SA) and Genetic Algorithms (GA) [5]. 
Many researchers seem to agree that because GAs maintain a 
population of possible solutions, they have a better chance of 
locating the global optimum compared to SA, which proceeds one 
solution at a time [9]. Hence, we adopt GAs as our optimization 
solution methodology. 

The rest of the section first introduces our notation. Next, we 
describe how we tailor GAs for the problem at hand (Sections 3.2 
to 3.5): encoding for chromosomes, cross-over and mutation 
operators, objective function, and the way we set the GA’s 
parameters. Last, we describe how we implement our solution 
(Section 3.6). 

3.1 Notation 
All tasks, whether aperiodic (Ai) or periodic (Pi) have CPU 
execution estimates Ci. They also have priorities pi. Ai,j and Pi,j 
denote the jth execution of task i for aperiodic and periodic tasks, 
respectively, during the testing interval T. Each task execution j of 
task i has a deadline (di,j) at which it must complete its execution, 
an (external event) arrival time (ai,j) at which the task can start 
running, an execution start time (si,j) at which the task actually 
starts running, and an execution end time (ei,j) which determines 
the time unit at which it completes. The values of ai,j and si,j do 
not always coincide. In fact, they only coincide if the 
corresponding task is the highest priority available task ready to 
execute. 

Periodic tasks additionally have periods (ri), and di,j and ai,j are 
both multiples of those periods: ai,j = (j-1)ri and di,j = jri. 
Aperiodic tasks, on the other hand, have minimum inter-arrival 
times mini and possibly maximum inter-arrival times maxi 
indicating the minimum and maximum time intervals between 
two consecutive arrivals of the event triggering the task, 
respectively. Like periodic tasks, aperiodic tasks define deadlines 
di, and di,j = ai,j + di. 

In the testing time interval T, each task has a maximum number of 
executions ki that depends on the period (periodic task) or 
minimum inter-arrival time (aperiodic task). 

3.2 Chromosomes 
The encoding of solutions to the problem at hand into a 
chromosome is paramount when specifying a GA, as this drives 
                                                                 
2 This target task can be the most ‘critical’ task in the system, for 

instance. This analysis can be repeated for all 'critical’ tasks, 
leading to several test scenarios, each focusing on stress testing 
a specific task. 

the ease to define (and eventually implement) mutation and 
crossover operators. 

3.2.1 Coding 
In our problem, the values to be optimized (i.e., the genes) are the 
arrival times of all aperiodic tasks. A gene can be depicted as a 
pair of integer values (Ai, ai,j), that is an aperiodic task number 
and an arrival time. As the chromosome holds the arrival times of 
all aperiodic tasks, the chromosome’s size (i.e., the number of 
genes) is the total number of executions of all aperiodic tasks. 
Since the maximum number of executions for aperiodic task i 
over a period T is the ceiling of T/mini (ki = T/mini), the length 
of the chromosome is: 

∑
=









=

n

i i

Tl
1 min , where n is the number of aperiodic tasks. 

Because constant chromosome sizes during the execution of a GA 
are considered good design (this facilitates the definition of 
operators), and because we may not need all ki arrival times for 
task i, we use a special value for arrival times to depict a non-
existent arrival time: –1. 

The genes of the chromosome are subject to constraints as two 
consecutive arrival times for a particular event must have a 
difference of at least the minimum inter-arrival time, and at most 
the maximum inter-arrival time (if it exists). If no maximum inter-
arrival time is defined for an aperiodic task, it is set to T. Also, in 
order to facilitate chromosome manipulations, all genes 
corresponding to the same task are grouped together and ordered 
in increasing order according to ai,j. For example, given a set of 
two aperiodic tasks t1 (mint1=10) and t2 (mint2=11), the following 
is a valid chromosome in a time interval T=30: (t1,-1) (t1,19) 
(t1,29) (t2,-1) (t2,-1) (t2,10). However, chromosome (t1,0) (t1,5) 
(t1,50) (t2,-1) (t2,-1) (t2,10) is not valid since the minimum inter-
arrival time constraint for the first task is not satisfied by the two 
first genes, and the last arrival time for the first task is above the 
testing time interval T. 

3.2.2 Initialization 
The initial population of chromosomes is randomly created, 
following the constraints above, provided that a value for T is 
given. The length of the chromosome and the number of arrival 
times for each task are computed from T (see formula above). 

The value of ai,j is randomly selected from a range determined by 
the arrival time of ai,j-1 as well as mini and maxi (if maxi is not 
specified, its value is set to T). If there is no previous gene (i.e., 
j=1), or the previous gene depicts a non-existent arrival time (i.e., 
ai,j-1=-1), the range is [0, maxi]. If the number selected from the 
range is greater than T, ai,j is considered non-existent and is set to 
–1, and the gene is moved before the first gene for the task (genes 
are ordered). 

For example, consider the initialization for an aperiodic task t1 
(mint1 = 10) with T=30: kt1=3. Three empty genes are created 
(1,…) (1,…) (1,…). Because there is no previous gene, the value 
of a1,1 is randomly chosen from the range [0, maxt1] (because 
maxt1 is not specified, the range is [0, T=30]). Assume this yields: 
(1,15) (1,…) (1,…). Similarly, for the second gene, the value of 
a1,2 is randomly chosen from the range [25, 45] ([a1,1 + mint1, a1,1 
+ maxt1]). Further assume the genes are now: (1,15) (1,27) (1,…). 
Initialization proceeds similarly for the third gene with the value 
of a1,3 chosen from [37, 57]. Any value in this range is greater 
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than the value of T (30). The value of the third gene is thus set to 
–1 and the gene is moved to the beginning of the chromosome 
yielding (1,-1) (1,15) (1,27). 

3.3 Operators 
Cross-over and mutation operators are the ways GAs explore a 
solution space [5]. Hence, they must be formulated in such a way 
that they efficiently and exhaustively explore the solution space. 
If the application of an operator yields no change or an invalid 
chromosome, backtracking is performed to first invalidate the 
operation, then to reapply the operator. Backtracking, however, is 
deemed expensive and can seriously slow down executions of the 
GA. Moreover, some GA tools incorporate backtracking while 
others do not. To allow for generality, we assume no backtracking 
methodology is available. Hence, in our implementation of the 
operators, we formulate our own backtracking methodology. 
More precisely, if the application of the operator does not alter the 
chromosome, we do not commit the changes and search for a 
different chromosome or gene within the chromosome – 
depending on the operator – and reapply the operator. 

3.3.1 Cross-over operator 
To avoid mixing tasks executions and violating constraints too 
often, our cross-over operator is an n-point cross-over [12] where 
n is the number of aperiodic tasks being scheduled. The actual 
division points of the parents depend on ki for each task i: The 
first point of division occurs after kt1; the second point of division 
after kt1 + kt2 from the first gene; the n-1 point of division after kt1 
+ kt2 + … + ktn-1 from the first gene. 

Once the division points are identified in the parents, two new 
children are created by inheriting fragments from parents with a 
50% probability. In other words, for each pair of fragments f1 and 
f2 of the same task belonging respectively to parents 1 and 2, 
child 1 inherits f1 with a 50% probability, and if it does inherit f1, 
child 2 inherits f2, and conversely. 

Let us consider an example with three aperiodic tasks t1 (mint1 = 
100), t2 (mint2 = 150) and t3 (mint3 = 200). The operator is a two-
point crossover as there are three tasks. Table 1 shows two parent 
chromosomes and the generated offspring by the two-point 
crossover. The shaded areas indicate which genes in child 1 come 
from which parent. Child 1 inherits the first and third fragments 
from parent 1, and the second fragment from parent 2. 

Table 1. Crossover operator – an example 
 Task t1 Task t2 Task t3 
Parent 1 (t1, 25) (t1, 150) (t2, -1) (t2, 150) (t3, 0) 
Parent 2 (t1, 5) (t1, 200) (t2, 50) (t2, 200) (t3, 55) 
Child 1 (t1, 25) (t1, 150) (t2, 50) (t2, 200) (t3, 0) 
Child 2 (t1, 5) (t1, 200) (t2, -1) (t2, 150) (t3, 55) 

3.3.2 Mutation Operator 
We define a mutation operator that mutates genes in a 
chromosome by altering their arrival times. The idea behind this 
operator is to move task executions within the time interval [0, T], 
i.e., closer to the next or previous task execution so as to increase 
the likelihood of missed deadlines. Like the cross-over operator, 
this is done in such a way that the constraints on the chromosomes 
are met (see Section 3.2). 

Effectively, gene j modeling an execution of a task i is randomly 
selected from a chromosome. A new arrival time a’i,j is chosen for 
it from the range [ai,j-1 + mini , a i,j-1 + maxi] (or [0, maxi] if the 

gene is the first in the segment or if the previous gene has arrival 
time -1). New values are also generated using a’i,j in a way similar 
to the initialization of the population for subsequent executions of 
the same task that no longer uphold the inter-arrival time 
constraints. Furthermore, if after mutation, the difference between 
the last arrival time of j and T is greater than maxi, then there is 
room for an additional arrival time and a gene with seeding time –
1 is modified to fill the gap. This last check ensures that the last 
execution of a task is a valid ending execution and that no other 
executions should occur after it. 

In case the gene chosen for mutation within a chromosome has 
arrival time equal to –1, that gene is eliminated and is replaced by 
a new gene. The overall effect is the addition of a task execution. 
When inserting a new task execution, every two consecutive task 
executions are examined (starting from the first gene with arrival 
time different from -1) to determine whether an insertion between 
them will not violate either minimum or maximum inter-arrival 
times. If this is the case, the new gene is inserted in that location. 
Otherwise, the remaining consecutive task executions are 
examined. When examining the first execution of the task 
sequence, that is the first gene with arrival time different from –1, 
insertion can only occur before this gene, say gene x, if the value 
of the arrival time is greater than or equal to the minimum inter-
arrival time of the task. This indicates that values lying in the 
range [0, ai,x - mini] may be inserted before j while still upholding 
minimum and maximum inter-arrival time constraints. Similarly, 
for consecutive genes x and x+1, a new gene can be inserted in-
between if and only if ai,x+1 - ai,x ≥ 2 * mini. Values lying in the 
range [ai,x + mini, ai,x+1 - mini] may be inserted between x and x+1 
while still upholding the time constraints. When examining the 
last gene of the fragment, a new gene with values lying in the 
range [ai,x + mini, ai,x + maxi] can be inserted after it. Insertions 
thus occur from left to right along the executions of a task. If no 
suitable insertion location is found, this inherently means that no 
task execution can be added among the already existing task 
executions: A different gene is randomly chosen for mutation. 

Let us consider an example with three aperiodic tasks t1 (mint1 = 
200), t2 (mint2 = 150, maxt2 = 200) and t3 (mint3 = 400), and T = 
400. A sample chromosome composed of six genes (numbered 1 
to 6) is: (t1,-1) (t1,200) (t2,50) (t2,200) (t2,375) (t3,0). Assuming 
that gene 4 is randomly chosen for mutation, a new value is 
chosen from the range [200, 250] ([50 + 150, 50 + 200]), e.g., 
220. This value is less than the value of T = 400; hence it is 
acceptable. The chromosome is now: (t1,-1) (t1,200) (t2,50) 
(t2,220) (t2,375) (t3,0). Because gene 4’s value was altered, all 
subsequent genes may have to be modified if inter-arrival time 
constraints are not satisfied. Here, gene 4 and 5 arrival times 
satisfy the constraints, i.e., gene 5’s arrival time (375) is greater 
than the sum of gene 4’s arrival time (220) and the minimum 
inter-arrival time for the task (150). The mutation operation stops. 
A randomly selected value of 230 for gene 4’s new arrival time 
would have required that gene 5’s arrival time be changed. 

Reusing the same example, assume gene 1 is randomly selected 
for mutation. Because the arrival time of gene 1 is –1, we 
eliminate this gene and insert a new execution into the sequence 
of task executions. We examine the next gene, gene 2, with an 
arrival time value of 200. Its value is equal to mint1. Thus, we can 
insert the new execution before it. The range of choice is [0, 0] 
([0, 200 – 200]). The mutated chromosome thus becomes: (t1, 0) 
(t1, 200) (t2, 50) (t2, 200) (t2, 375) (t3, 0). 
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It is important to note that because this mutation operator allows 
task executions to move along the specified time interval T, in 
both directions, it effectively explores the solution space. 
Furthermore, backtracking is eliminated by not committing any 
changes unless the changes lead to a valid chromosome. 

3.4 Objective Function 
Recall from Section 1 that our optimization problem is defined as 
follows: What sequence of arrival times for aperiodic tasks will 
cause the greatest delays in the executions of the target task (e.g., 
a selected periodic or aperiodic critical task)? In defining the 
delay in the target task’s executions, we consider the difference 
between the deadline of an execution and the execution’s actual 
completion, i.e., dt,j - et,j for target task t. We are thus interested in 
rewarding smaller values of the difference and penalizing larger 
values. Assuming scheduled tasks may miss deadlines, we also 
have to reward negative values over positive values. Note that, in 
order to have execution’s actual completion times (i.e., values for 
ei,j), we need to implement a scheduler that schedules the tasks at 
hand given the arrival times described in a chromosome, and the 
task architecture (in particular, CPU time estimates). 

Given these requirements, we considered a number of solutions 
[3]. The objective function we found that best suits our criteria is 
an exponential function: 

∑
=

−=
t

jtjt
k

j

deChf
1

,,2)( , where Ch is the chromosome and t is the 

target task. 

Note that in most cases, task executions meet deadlines thus 
resulting in negative values for et,j-dt,j; that is small values for 
f(Ch). Also, the greater the difference between deadline and end 
of execution, the smaller the value of f(Ch). Moreover, missed 
deadlines result in positive values for et,j-dt,j. In other words, 
larger values of f(Ch) are indicative of fitter individuals. This 
fitness function thus has to be maximized by the GA. The 
objective function is expressed in exponential form to prevent the 
overshadowing of one bad execution with a large deadline miss 
by many good executions that meet their deadlines. 

3.5 Setting GA Parameters 
In addition to deciding on an encoding, mutation and cross-over 
operators and a fitness function, a number of parameters must be 
set for the GA to produce nearly optimal solutions to the problem. 

First, the replacement strategy we use is steady state replacement 
[5], with which the population size does not change and a fixed 
number of chromosomes are changed each time the population 
evolves. The replacement percentage we apply is 50%, which 
complies with the findings reported in [5]. The selection strategy 
for choosing an individual for mutation and crossover is the 
roulette wheel selection method, in which fitter chromosomes are 
more likely to be selected to produce offspring [5]. 

Throughout the GA literature, various mutation rates, crossover 
rates, and population sizes have been used [5]. Of the common 
mutation rates, those that take the length of the chromosome and 
population size into consideration perform significantly better 
than those that do not [15]. We thus apply the mutation rate 

suggested in [5], i.e., lλ
75.1

, where λ denotes the population size 

and l is the length of the chromosome [13]. Similarly, consistent 
with the observations reported in [5], we apply a crossover rate of 
70%, and the population size is 80. 

Two kinds of termination criteria have traditionally been used for 
GAs and all require the setting of parameters [10]: (1) A 
maximum number (to be determined) of generations or 
evaluations of the fitness function is reached; (2) The chance for a 
significant improvement is relatively small, e.g., a plateau seems 
to be reached, or there is low population diversity. The former is 
simpler to implement but the latter is adaptive as it monitors 
population characteristics (e.g., the variety of genes in the 
population) across generations. Since our work is at the proof of 
concept stage, we decided to use a number of generations as a 
termination criterion. Alternative, adaptive criteria will be 
considered in future work. Once 500 generations have been 
generated, the GA halts yielding the best score found. This 
number is based on experimentation: We ran a number of tests on 
the application with various values for the stopping criterion and 
found the best value to be 500. 

It is important to note that the technique we describe is readily 
applicable. A variety of software tools and frameworks exist that 
manage GAs, allowing users to perform optimization in a variety 
of programming languages using different representation and 
genetic operators. One can easily use them and apply our 
approach. 

3.6 Prototype Tool 
Following the principles described in the previous sections we 
have built a prototype tool, called Real-Time Test Tool (RTTT). 
Three inputs must be provided by the user: (1) for each task, the 
task information, comprised of a task number, priority, estimated 
execution time, dependencies to other tasks (if any), a period in 
case of a periodic task or minimum and (possibly) maximum 
inter-arrival times and deadline in case of an aperiodic task; (2) 
test environment information comprised of the time interval 
during which the test is to be performed and the target task; and 
(3) whether the tool should output a timing diagram 
corresponding to the result. 

It is worth noting that the tool can be used whether or not the 
group of tasks under test, both periodic and aperiodic, are 
schedulable under the Generalized Completion Time Theorem 
and its extension. If they are deemed schedulable, RTTT will 
attempt to confirm whether this is really the case. If, on the other 
hand, they cannot be deemed schedulable by the GCTT and its 
extension, i.e., we do not know whether the tasks are schedulable, 
we use RTTT to investigate whether we can find a sequence of 
arrival times where deadline misses occur. If we cannot find such 
a sequence, this does not guarantee that none exist. However, one 
can still feel more confident that such a case is unlikely. 

The tool reports two or three different results, depending on the 
third input. The first result is the sequence of arrival times for all 
aperiodic tasks (i.e., the chromosome) with the best fitness 
function value obtained by the GA. The second result is a 
measure of safe estimate percentage for the target task, as 
obtained by using the algorithm in Figure 1. This indicates the 
maximum inaccuracy percentage that can be made during the 
estimation of all tasks’ execution time without deadline misses 
occurring for the target task. RTTT assumes inaccuracies to be the 
same for all tasks. Though this is not likely to be the case in 
practice, this is a necessary simplifying assumption. The third 
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result is timing diagrams of both the outputted GA solution as 
well as the safe estimate percentage. 

Once RTTT has identified a set of seeding times 
S for aperiodic tasks using target task t: 
1. Increase each (a)periodic task execution by 

0.1% 
2. Schedule the tasks using S and new 

(increased) execution times 
3. Repeat steps 1 and 2 until target task t 

misses a deadline 
4. Report the total increased percentage 
Figure 1. Algorithm to determine the maximum inaccuracy 

percentage for the target task 

The RTTT prototype executes on those inputs using two modules. 
The first one is a GA. Its implementation is an instance of GAlib, 
a framework written is C++ for the creation of GAs [18]. The 
second module is a POSIX [4] compliant scheduler emulating 
single processor execution. This is required, as the fitness 
function used in the GA requires end times of task executions. In 
other words, each time the fitness function is evaluated for a 
chromosome, the aperiodic tasks in the chromosome as well as 
the periodic tasks described in the inputs are scheduled by the 
scheduler. The scheduler is a fixed pre-emptive priority scheduler 
assuming single processor execution. Task dependencies in our 
application are in the form of shared resource dependencies [4]. 
Hence, two tasks are dependent if they share a common resource. 
If a dependency occurs between tasks, the first ready task of the 
dependency must fully complete its execution before the 
dependent task can run, regardless of its priority. Equal priority 
tasks are executed in a first-come-first-served fashion. It is worth 
noting that the tool can easily be adapted to other scheduling 
strategies, as only this second module is then to be changed. The 
reader interested in more technical details in referred to [3]. 

4. Case Studies 
This section presents two case studies. The first one (Section 4.1) 
is representative of the many scenarios we have used to test our 
tool and illustrates how RTTT can be used to generate seeding 
times that bring the target completion times closer to their 
respective deadlines. We further show that a small error in the 
estimated execution times of the system tasks can then lead, at 
testing time, to missing deadlines. This suggests that RTTT can be 
used to generate test cases that will stress the system more than 
the scenarios entailed by schedulability theory (e.g., GCTT). In 
the second example (Section 4.2) we show the usefulness and 
feasibility of the approach on an actual real-time system whose 
task architecture is public domain [8]. 

As GAs are a heuristic optimization technique, variance occurs in 
the results produced by different GA executions. To assess the 
extent of such variability, each case study was run 10 times and 
we studied the variance in both objective function and difference 
between execution end and deadline. Average execution times are 
also reported for each case study, running on an 800MHz AMD 
Duron processor with 192KB on-chip cache memory and 64MB 
DRAM memory. GAs can be computationally expensive and their 
efficiency needs to be reported to demonstrate their practicality 
for a given problem. 

4.1 Execution Time Estimates Must be 
Accurate 

Let us consider the three tasks t1 (periodic), t2 (aperiodic) and t3 
(periodic) whose characteristics are shown in Table 2: Task t1 has 
a higher priority than t2 and t3. Tasks t1 and t3 are 
interdependent: Hence, one cannot begin execution before the 
other has fully completed its execution, as they share a common 
resource. 

Using GCTT and its extension we can prove that these three tasks 
are schedulable (details are not provided here). This can be 
illustrated with a timing diagram, i.e., a diagram that shows the 
time-ordered execution sequence of a group of tasks (see .a). The 
timing diagram notation we use is an adaptation of the one 
proposed in [4]: Time appears on the left of the diagram, from top 
to bottom, events triggering tasks are shown on the right (with 
arrows), shaded rectangles indicate when tasks execute, and task 
preemption is shown with dotted lines. Note that, in , due to size 
constraints, we only show the relevant parts of the time scale. As 
specified by the GCTT and its extensions, .a assumes the 
aperiodic task is transformed into a periodic task (with period 
equivalent to the minimum inter-arrival time, 8) and the 
corresponding triggering event first arrives at the same time as the 
two other (periodic) tasks (i.e., time 0). In that case, assuming the 
target task is t3, the differences between the execution end and the 
deadline are 10 and 20 time units, for each of the two executions 
respectively: dt3,1-et3,1=(250*1)-240, dt3,2-et3,2=(250*2)-480. 

Table 2. Task characteristics, an example 
 Task t1 Task t2 Task t3 
period (periodic), or minimum 
inter-arrival time (aperiodic) 255 240 250 

priority 32 31 30 
execution time 200 20 20 

If we use RTTT to generate the seeding times based on the data in 
Table 2, we obtain the timing diagram in .b. Notice that the 
second execution of the target task is now 10 time units closer to 
its deadline than with the GCTT assumptions. (t3 starts executing 
at time unit 250, executes for five time units before it is 
preempted by t1, then resumes execution at time unit 475 and 
executes for 15 time units. Its deadline is 500.) The difference 
dt3,1-et3,1 is unchanged. This illustrates that RTTT can be used to 
generate test cases that will stress the system more than the 
scenarios entailed by schedulability theory in situations where 
there are aperiodic tasks. 

RTTT also reports that with only a 4.5% execution time estimate 
increase for each task (which would correspond to a very small 
error), a deadline miss appears in the target task, as illustrated in 
.c (seeding times are the same as in .b, i.e., the output from RTTT, 
but the execution times are increased by 4.5%): The first 
executions of the three tasks end at time units 210, 231 and 252 
respectively, thus resulting in a missed deadline for t3 (2 time 
units). This indicates that any inaccuracy greater than 4.5% in 
execution time estimates will result in missed deadlines during 
test execution. 

When running multiple (i.e., 10) GA executions on this case study 
no variance was observed in the output. This is probably due to 
the relative simplicity of the task architecture. In all 10 
executions, with a 500 time unit testing interval (T), the value of 
the objective function and the largest difference between 
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completion and deadline times were the same. The average 
execution time of each execution of RTTT was one minute. 

4.2 An Industrial Case Study 
In an effort to demonstrate the feasibility of using predictable 
real-time scheduling technology and Ada in embedded systems, 
the Software Engineering Institute (SEI), the Naval Weapons 
Center and IBM’s Federal Sector Division worked together to 
generate a hard real-time, realistic avionics application model. 
The joint effort proceeded by first defining the detailed 
performance and complexity requirements of a Generic Avionics 
Platform (GAP) similar to existing U.S. Navy and Marine 
aircrafts. The GAP task set is comprised of 18 tasks, the highest 
eight priorities of which are deemed schedulable according to 
schedulability analysis [8]. The three main tasks (highest 
priorities) in GAP are Weapon Release, Weapon Aiming and 
Radar Tracking. The weapon system is activated through an 
aperiodic event emulating a pilot button press requesting weapon 
release. The button press triggers the Weapon Aiming periodic 
task and waits for another button press to handle a possible abort 
request. Meanwhile, Weapon Aiming periodically computes the 
release time of the weapon (once every 50 ms). Throughout this 
time, the task constantly checks whether an abort request has been 
issued. Once one second remains to release, any abort request is 
denied and Weapon Aiming triggers the periodic Weapon 
Release task: This task has a 200 ms period and must complete 
its execution within five ms, i.e., 195 ms before the end of the 
current period.. Once the release time is reached, Weapon 
Release proceeds to release one weapon every second for a total 
of five seconds. The interested reader is referred to [8] and [3]. 

With the Weapon Release task as our target, RTTT indicates 
that execution time estimates will not produce deadline misses if 
they are accurate within 22%. Executing RTTT with Weapon 
Aiming as a target task produces the same result. Considering that 
task execution estimation is based on so many “guesses” and 
subject to so many factors (recall the discussion in Section 2.1), 
this value does not seem high enough to ensure that inaccuracies 

will not result at runtime into deadline misses. To be on the safe 
side, testers should then execute the test cases produced by RTTT 
for those two tasks during stress testing in order to ensure that 
execution time inaccuracies do not lead to missing deadlines. On 
the other hand, for Radar Tracking, with a required error 
estimate of 1155%, a deadline miss at run-time is very unlikely.  

For the eight (schedulable) tasks of this case study, assuming T 
=15s, when selecting Weapon Release as a target task, the value 
of the objective function and the largest difference between 
completion and deadline times were the same. However, for 
Radar Tracking some significant variance is observed and 
results suggest that RTTT should be run a minimum of 10 times 
to obtain better stress test cases [3]. From a general perspective, it 
is not possible to decide beforehand how many GA runs are 
necessary to ensure that near-optimal results are obtained. In 
practice, the user can only decide the number of runs based on 
available time and observed execution performance. The average 
execution time of each GA execution was 46.5 minutes. It is 
important to note that a longer T would lead to longer execution 
times, and that this execution time can be drastically decreased by 
using a newer, faster computer and by parallelizing the search [9]. 

5. Conclusion 
Reactive real-time systems have to react to external events within 
time constraints: Triggered tasks must execute within deadlines. 
The goal of this article is to automate, based on the system task 
architecture, the derivation of test cases that maximize the 
chances of critical deadline misses. 

Our automation tailors Genetic Algorithms to address the 
automated generation of seeding times for aperiodic tasks based 
on task information such as estimated execution times and 
priorities. In other words, regardless of the tasks at hand, times are 
identified for external events to which the system is supposed to 
react in order to maximize the chances of exhibiting missed 
deadlines. Users are free to focus on tasks they deem critical for 
the application. 

We have performed a number of case studies using our tool, 
RTTT, varying the number of tasks and priority patterns, and we 
came across a number of cases that suggest that RTTT can 
identify seeding times that stress the system to such an extent that 
small errors in the execution time estimates can lead to missed 
deadlines during stress testing. Because of underlying 
assumptions regarding aperiodic tasks, such results are obtained 
even when the set of tasks at hand have been proven schedulable 
by theoretical means (e.g., the Generalized Completion Time 
Theorem – GCTT), thus suggesting that both techniques 
(schedulability theory and GA-based stress testing) be applied 
early during the design of real-time systems. GCTT should be 
used as a first schedulability check and then, in the presence of 
aperiodic tasks, if all tasks are deemed schedulable, RTTT should 
be used to further check the most critical tasks. 

To conclude, this paper provides a practical solution that can help 
automate the stress testing of real-time, reactive systems. This 
automation is likely to help testers identify response time 
problems, either during design or testing. Another result, 
suggested by our studies [3] but not reported here, as we focused 
on stress testing, is that RTTT sometimes identifies seeding times 
that will lead to missed deadlines, even when tasks have been 
determined to be schedulable and the execution time estimates are 
accurate. This is due to the assumptions of theorems such as 
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Figure 2. Execution times must be accurate, an example. 
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GCTT, and this may be very helpful in identifying performance 
problems in the early design stages. 

In future work, we will first improve our Genetic Algorithm and 
use an adaptive termination criterion [10] instead of a fixed 
number of generations. We will also try to improve the execution 
time of our algorithms. Another important improvement will be to 
account for events’ parameters in our chromosome, although the 
impact of parameters is usually accounted for when estimating 
task executions. Last, our approach needs more extensive 
validation on additional (industrial) case studies. 
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