
Stress Testing Real-Time Systems with Genetic Algorithms
 Lionel C. Briand Yvan Labiche Marwa Shousha

Software Quality Engineering Laboratory
Department of Systems and Computer Engineering

Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S5B6, Canada
(613) 520 2600 ext. 2471

briand@sce.carleton.ca
(613) 520 2600 ext. 5583

labiche@sce.carleton.ca

mshousha@yahoo.com

ABSTRACT
Reactive real-time systems have to react to external events within
time constraints: Triggered tasks must execute within deadlines.
The goal of this article is to automate, based on the system task
architecture, the derivation of test cases that maximize the
chances of critical deadline misses within the system. We refer to
that testing activity as stress testing. We have developed a method
based on genetic algorithms and implemented it in a tool. Case
studies were run and results show that the tool may actually help
testers identify test cases that will likely stress the system to such
an extent that some tasks may miss deadlines.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
validation, reliability

General Terms
Algorithms, Performance, Design, Reliability, Experimentation,
Theory, Verification.

Keywords
Schedulability theory, Genetic algorithms

1. INTRODUCTION
An increasing number of software applications are concurrent in
nature. This often entails that activities/tasks occur/execute in
parallel and the order of the incoming events triggering those
activities/tasks is often not predictable [4]. This is particularly
true for real-time and distributed systems.

Specific methods have been proposed for the development of real-
time systems. They often suggest that during development, some
performance analysis be performed to determine whether
designed tasks will likely meet their deadlines [4]. At design time,
such performance analysis requires that task execution times be
estimated (e.g., based on the expected number of lines of code)
since the whole software is likely not fully developed. Real-Time
Scheduling Theory [4, 14] helps designers determine whether a
group of tasks (periodic or aperiodic, possibly with

synchronizations and priorities), whose individual execution times
have been estimated, will meet their deadlines. However, when
dealing with aperiodic tasks, the proposed techniques make an
assumption: Aperiodic tasks are transformed, for the purpose of
schedulability analysis, into periodic tasks whose periods are
equal to the minimum inter-arrival times of the events that
activate the aperiodic tasks [16].

Because of inaccuracies in execution time estimates and
simplifying assumptions regarding aperiodic tasks, we cannot
simply rely on schedulability theory alone. It is then important,
once a set of tasks have been shown to be schedulable, to derive
test cases to exercise the system and verify that tasks cannot miss
their deadlines, even under the worst possible circumstances. Our
objective is thus to exercise the system in such a way that some
tasks are close to missing a deadline. We refer to this testing
activity as stress testing since this is defined as “subjecting the
system to harsh inputs […] with the intention of breaking it” [1].
Similarly, “a stress test pushes [the system] beyond its design
limits. It is designed to cause a failure” [2], and the inability to
meet a deadline is no less a fault than erroneous outputs.

The stress testing strategy presented in this paper consists in
finding combinations of inputs such that completion times of a
specific task’s executions are as close as possible to their
deadlines. Those combination of inputs, i.e., test cases, should
account for both seeding times for aperiodic tasks and their
possible input data since both impact task executions (e.g.,
varying input data may trigger different control flow and result in
varying execution times). We, however, limit our study to seeding
times for aperiodic tasks, since input data are usually accounted
for in execution time estimates [7]. Finding such test cases is not
an easy problem to solve as many periodic and aperiodic tasks,
with different priorities, can be triggered. But, if a practical way
to automate it is found, it would allow us to specify a scenario of
event arrival times that makes it likely for tasks to miss their
deadlines if their execution time estimates turn out, once the
system is implemented, to be too inaccurate.

The search for an optimal combination of inputs uses a Genetic
Algorithm (GA), as the problem to be solved is an optimization
(the execution end of a task must be as close as possible to the
deadline) under constraints (e.g., priorities). The specification of
test cases for stress testing does not require any (running)
implementation to be available, and can thus be derived during
design once a task architecture is defined (e.g., specifying
estimated execution times, priorities). This can occur just after
schedulability analysis, once tasks have a good chance of being
schedulable. Stress testing can then be planned early and, once the
implementation is available and after completion of functional
testing, stress testing may begin right away.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1021

The rest of the article is structured as follows. Section 2 provides
some background on schedulability analysis as well as some
related work. Section 3 describes why we chose GAs and how we
tailored them to solve our problem. It also introduces a prototype
tool implementing our strategy. Two case studies are then
reported in Section 4 and we draw conclusions in Section 5.

2. BACKGROUND AND RELATED
WORK

2.1 Task Scheduling Strategies and
Schedulability Theory

On a single processor, or CPU, concurrent tasks must be handled
by the kernel of the operating system. The kernel maintains a list
of tasks that are ready to execute based on different task
scheduling algorithms, e.g., the round robin algorithm uses a
FIFO list of tasks, while other algorithms use task priorities and
preemption [4, 16]. The Portable Operating System Interface
Standard (POSIX), to which most commercial real-time operating
systems conform, assumes fixed pre-emptive priority scheduling.

Real-time scheduling theory is commonly used to determine
whether a group of tasks will meet their deadlines. Only the tasks
that are part of the interface of the software system under test
(triggered by events from users, other software systems or
sensors) are involved in the analysis.

A task is schedulable if it always completes its execution before
its deadline elapses. A group of tasks is schedulable if each task
always meets all its deadlines. In the case of independent (no task
communication or synchronization) periodic tasks, theorems
determine whether tasks scheduled with the rate monotonic
algorithm will always meet their deadlines. In the case of
aperiodic or dependent tasks, the rate monotonic algorithm has to
be adapted: (1) Aperiodic tasks must be modeled appropriately,
and (2) Task priorities have to be adapted to avoid the blocking of
high priority tasks by lower priority tasks, referred to as rate
monotonic priority inversion. The Generalized Completion Time
Theorem (GCTT) assumes fixed preemptive priority scheduling,
as specified in the POSIX, which we will use for our case studies.
GCTT extends the basic rate monotonic theory and can be used to
determine whether a task can complete execution by the end of its
period, given preemption by higher priority tasks and blocking
time by lower priority tasks. For schedulability analysis, an
extension exists for the GCTT that models aperiodic tasks as
periodic ones, that are ready to execute when the system starts
executing and that are triggered at regular time intervals as
determined by their minimum inter-arrival times [4, 14, 16]. We
do not further discuss these techniques and refer the interested
reader to [4, 14, 16].

During the software design phase, real-time scheduling theory
requires that task CPU utilization times, referred to as execution
times in this article, be estimated since the whole software is
likely not fully implemented1. These execution time estimates for
tasks that are part of the interface of the software system must
account for tasks triggered by internal events (i.e., events
triggered by external events and hidden to the outside of the
software system). This is not an easy task as execution times
depend, among other things, on the triggered control flow and on
the underlying system (e.g., cache memory) [7]. At design time,

1 Note that tasks periods also have to be estimated.

analytic benchmarking and code profiling are the most common
strategies employed to determine those estimates [6]. Analytic
benchmarking consists in measuring the performance of a selected
hardware when representative code samples (primitive code
types) are executed. This information is then combined with code
profiling—which decomposes a task into the same set of primitive
code types—to determine the makeup of the task and estimate its
execution time. (A similar strategy is suggested in [4].) As a
result, for any given real-time system, the accuracy of estimates
can vary widely, especially in the early design stages. Other
strategies exist but require that tasks be implemented (e.g.,
statistical prediction [6]). Further discussions on strategies to
estimate task execution times at design time are out of the scope
of this article.

2.2 Related Work
A number of papers have used GAs to generate test data, mostly
in the context of structural testing (e.g., [17]).

To the best of our knowledge, only one work addresses a goal
similar to ours: To analyze real-time task architectures and
determine whether deadlines can be missed [11]. The approach
attempts to verify worst-case and best-case execution times of
tasks in real-time systems, which can then be used for
performance analysis. The approach combines testing, i.e., system
execution using input values, and evolutionary computation (in
this case GAs) and approximates those extreme execution times in
a step-wise manner by executing the system of interest with
varying input values. At each step, i.e., for each set of input
values, a measure of the execution of the system (using those
input values) is used to evaluate whether the algorithm gets closer
to the optimum execution time. It is thus a technique to
empirically verify, one task at a time, the execution time
hypotheses made at design time for schedulability analysis. The
approach, however, is different from ours as (1) it requires an
implementation of the system under study and (2) it considers
tasks in isolation (i.e., separately from the other tasks) and only
focuses on violated timing constraints due to input values (e.g.,
the two matrices of a function that multiplies matrices). In this
paper, we analyze task architectures and consider seeding times of
events triggering tasks and tasks’ synchronization. Both works are
complementary as inputs will influence task execution times and
task completion times will depend on triggering events’ seeding
times and tasks’ synchronization.

Another related work [19] describes a procedure for automating
test case generation for multimedia systems. The flow and
concurrency control between nodes on the network is modeled
using Petri nets (PN) coupled with temporal constraints. Test
cases are then marking sequences in the PN model. They are
determined using linear programming to potentially lead to
resource saturation. The aim is twofold: To detect load sensitive
faults and to ensure that systems adhere to their performance
requirements under heavy loads. Our context is different, as our
target is reactive, concurrent, real-time systems with soft or hard
deadlines, and our focus is on missing deadlines as opposed to
resource saturation.

3. Tailoring Genetic Algorithms
In order to achieve our objectives, we need to derive a sequence
of seeding times for aperiodic tasks so that the difference between
the end of execution and the deadline of a target task (selected by

1022

the test engineer2) is as close as possible to zero. This sequence of
seeding times is to be chosen such that the delay between two
consecutive seeding times of an aperiodic task are greater than its
minimum inter-arrival time and smaller than its maximum inter-
arrival time (when it exists). When there are more than a few
tasks, it then becomes clear that deriving such stress test cases is
not trivial and needs to be automated.

A variety of methods exist for solving optimization problems.
Among them is linear programming, which can be used when
linear functions constrain the problem. Since, as we will see in
Section 3.4, the optimization problem at hand can not be
completely expressed using linear functions, linear programming
does not seem to be an adequate choice. Other possible techniques
are Simulated Annealing (SA) and Genetic Algorithms (GA) [5].
Many researchers seem to agree that because GAs maintain a
population of possible solutions, they have a better chance of
locating the global optimum compared to SA, which proceeds one
solution at a time [9]. Hence, we adopt GAs as our optimization
solution methodology.

The rest of the section first introduces our notation. Next, we
describe how we tailor GAs for the problem at hand (Sections 3.2
to 3.5): encoding for chromosomes, cross-over and mutation
operators, objective function, and the way we set the GA’s
parameters. Last, we describe how we implement our solution
(Section 3.6).

3.1 Notation
All tasks, whether aperiodic (Ai) or periodic (Pi) have CPU
execution estimates Ci. They also have priorities pi. Ai,j and Pi,j
denote the jth execution of task i for aperiodic and periodic tasks,
respectively, during the testing interval T. Each task execution j of
task i has a deadline (di,j) at which it must complete its execution,
an (external event) arrival time (ai,j) at which the task can start
running, an execution start time (si,j) at which the task actually
starts running, and an execution end time (ei,j) which determines
the time unit at which it completes. The values of ai,j and si,j do
not always coincide. In fact, they only coincide if the
corresponding task is the highest priority available task ready to
execute.

Periodic tasks additionally have periods (ri), and di,j and ai,j are
both multiples of those periods: ai,j = (j-1)ri and di,j = jri.
Aperiodic tasks, on the other hand, have minimum inter-arrival
times mini and possibly maximum inter-arrival times maxi
indicating the minimum and maximum time intervals between
two consecutive arrivals of the event triggering the task,
respectively. Like periodic tasks, aperiodic tasks define deadlines
di, and di,j = ai,j + di.

In the testing time interval T, each task has a maximum number of
executions ki that depends on the period (periodic task) or
minimum inter-arrival time (aperiodic task).

3.2 Chromosomes
The encoding of solutions to the problem at hand into a
chromosome is paramount when specifying a GA, as this drives

2 This target task can be the most ‘critical’ task in the system, for

instance. This analysis can be repeated for all 'critical’ tasks,
leading to several test scenarios, each focusing on stress testing
a specific task.

the ease to define (and eventually implement) mutation and
crossover operators.

3.2.1 Coding
In our problem, the values to be optimized (i.e., the genes) are the
arrival times of all aperiodic tasks. A gene can be depicted as a
pair of integer values (Ai, ai,j), that is an aperiodic task number
and an arrival time. As the chromosome holds the arrival times of
all aperiodic tasks, the chromosome’s size (i.e., the number of
genes) is the total number of executions of all aperiodic tasks.
Since the maximum number of executions for aperiodic task i
over a period T is the ceiling of T/mini (ki = T/mini), the length
of the chromosome is:

∑
=









=

n

i i

Tl
1 min , where n is the number of aperiodic tasks.

Because constant chromosome sizes during the execution of a GA
are considered good design (this facilitates the definition of
operators), and because we may not need all ki arrival times for
task i, we use a special value for arrival times to depict a non-
existent arrival time: –1.

The genes of the chromosome are subject to constraints as two
consecutive arrival times for a particular event must have a
difference of at least the minimum inter-arrival time, and at most
the maximum inter-arrival time (if it exists). If no maximum inter-
arrival time is defined for an aperiodic task, it is set to T. Also, in
order to facilitate chromosome manipulations, all genes
corresponding to the same task are grouped together and ordered
in increasing order according to ai,j. For example, given a set of
two aperiodic tasks t1 (mint1=10) and t2 (mint2=11), the following
is a valid chromosome in a time interval T=30: (t1,-1) (t1,19)
(t1,29) (t2,-1) (t2,-1) (t2,10). However, chromosome (t1,0) (t1,5)
(t1,50) (t2,-1) (t2,-1) (t2,10) is not valid since the minimum inter-
arrival time constraint for the first task is not satisfied by the two
first genes, and the last arrival time for the first task is above the
testing time interval T.

3.2.2 Initialization
The initial population of chromosomes is randomly created,
following the constraints above, provided that a value for T is
given. The length of the chromosome and the number of arrival
times for each task are computed from T (see formula above).

The value of ai,j is randomly selected from a range determined by
the arrival time of ai,j-1 as well as mini and maxi (if maxi is not
specified, its value is set to T). If there is no previous gene (i.e.,
j=1), or the previous gene depicts a non-existent arrival time (i.e.,
ai,j-1=-1), the range is [0, maxi]. If the number selected from the
range is greater than T, ai,j is considered non-existent and is set to
–1, and the gene is moved before the first gene for the task (genes
are ordered).

For example, consider the initialization for an aperiodic task t1
(mint1 = 10) with T=30: kt1=3. Three empty genes are created
(1,…) (1,…) (1,…). Because there is no previous gene, the value
of a1,1 is randomly chosen from the range [0, maxt1] (because
maxt1 is not specified, the range is [0, T=30]). Assume this yields:
(1,15) (1,…) (1,…). Similarly, for the second gene, the value of
a1,2 is randomly chosen from the range [25, 45] ([a1,1 + mint1, a1,1
+ maxt1]). Further assume the genes are now: (1,15) (1,27) (1,…).
Initialization proceeds similarly for the third gene with the value
of a1,3 chosen from [37, 57]. Any value in this range is greater

1023

than the value of T (30). The value of the third gene is thus set to
–1 and the gene is moved to the beginning of the chromosome
yielding (1,-1) (1,15) (1,27).

3.3 Operators
Cross-over and mutation operators are the ways GAs explore a
solution space [5]. Hence, they must be formulated in such a way
that they efficiently and exhaustively explore the solution space.
If the application of an operator yields no change or an invalid
chromosome, backtracking is performed to first invalidate the
operation, then to reapply the operator. Backtracking, however, is
deemed expensive and can seriously slow down executions of the
GA. Moreover, some GA tools incorporate backtracking while
others do not. To allow for generality, we assume no backtracking
methodology is available. Hence, in our implementation of the
operators, we formulate our own backtracking methodology.
More precisely, if the application of the operator does not alter the
chromosome, we do not commit the changes and search for a
different chromosome or gene within the chromosome –
depending on the operator – and reapply the operator.

3.3.1 Cross-over operator
To avoid mixing tasks executions and violating constraints too
often, our cross-over operator is an n-point cross-over [12] where
n is the number of aperiodic tasks being scheduled. The actual
division points of the parents depend on ki for each task i: The
first point of division occurs after kt1; the second point of division
after kt1 + kt2 from the first gene; the n-1 point of division after kt1
+ kt2 + … + ktn-1 from the first gene.

Once the division points are identified in the parents, two new
children are created by inheriting fragments from parents with a
50% probability. In other words, for each pair of fragments f1 and
f2 of the same task belonging respectively to parents 1 and 2,
child 1 inherits f1 with a 50% probability, and if it does inherit f1,
child 2 inherits f2, and conversely.

Let us consider an example with three aperiodic tasks t1 (mint1 =
100), t2 (mint2 = 150) and t3 (mint3 = 200). The operator is a two-
point crossover as there are three tasks. Table 1 shows two parent
chromosomes and the generated offspring by the two-point
crossover. The shaded areas indicate which genes in child 1 come
from which parent. Child 1 inherits the first and third fragments
from parent 1, and the second fragment from parent 2.

Table 1. Crossover operator – an example
 Task t1 Task t2 Task t3
Parent 1 (t1, 25) (t1, 150) (t2, -1) (t2, 150) (t3, 0)
Parent 2 (t1, 5) (t1, 200) (t2, 50) (t2, 200) (t3, 55)
Child 1 (t1, 25) (t1, 150) (t2, 50) (t2, 200) (t3, 0)
Child 2 (t1, 5) (t1, 200) (t2, -1) (t2, 150) (t3, 55)

3.3.2 Mutation Operator
We define a mutation operator that mutates genes in a
chromosome by altering their arrival times. The idea behind this
operator is to move task executions within the time interval [0, T],
i.e., closer to the next or previous task execution so as to increase
the likelihood of missed deadlines. Like the cross-over operator,
this is done in such a way that the constraints on the chromosomes
are met (see Section 3.2).

Effectively, gene j modeling an execution of a task i is randomly
selected from a chromosome. A new arrival time a’i,j is chosen for
it from the range [ai,j-1 + mini , a i,j-1 + maxi] (or [0, maxi] if the

gene is the first in the segment or if the previous gene has arrival
time -1). New values are also generated using a’i,j in a way similar
to the initialization of the population for subsequent executions of
the same task that no longer uphold the inter-arrival time
constraints. Furthermore, if after mutation, the difference between
the last arrival time of j and T is greater than maxi, then there is
room for an additional arrival time and a gene with seeding time –
1 is modified to fill the gap. This last check ensures that the last
execution of a task is a valid ending execution and that no other
executions should occur after it.

In case the gene chosen for mutation within a chromosome has
arrival time equal to –1, that gene is eliminated and is replaced by
a new gene. The overall effect is the addition of a task execution.
When inserting a new task execution, every two consecutive task
executions are examined (starting from the first gene with arrival
time different from -1) to determine whether an insertion between
them will not violate either minimum or maximum inter-arrival
times. If this is the case, the new gene is inserted in that location.
Otherwise, the remaining consecutive task executions are
examined. When examining the first execution of the task
sequence, that is the first gene with arrival time different from –1,
insertion can only occur before this gene, say gene x, if the value
of the arrival time is greater than or equal to the minimum inter-
arrival time of the task. This indicates that values lying in the
range [0, ai,x - mini] may be inserted before j while still upholding
minimum and maximum inter-arrival time constraints. Similarly,
for consecutive genes x and x+1, a new gene can be inserted in-
between if and only if ai,x+1 - ai,x ≥ 2 * mini. Values lying in the
range [ai,x + mini, ai,x+1 - mini] may be inserted between x and x+1
while still upholding the time constraints. When examining the
last gene of the fragment, a new gene with values lying in the
range [ai,x + mini, ai,x + maxi] can be inserted after it. Insertions
thus occur from left to right along the executions of a task. If no
suitable insertion location is found, this inherently means that no
task execution can be added among the already existing task
executions: A different gene is randomly chosen for mutation.

Let us consider an example with three aperiodic tasks t1 (mint1 =
200), t2 (mint2 = 150, maxt2 = 200) and t3 (mint3 = 400), and T =
400. A sample chromosome composed of six genes (numbered 1
to 6) is: (t1,-1) (t1,200) (t2,50) (t2,200) (t2,375) (t3,0). Assuming
that gene 4 is randomly chosen for mutation, a new value is
chosen from the range [200, 250] ([50 + 150, 50 + 200]), e.g.,
220. This value is less than the value of T = 400; hence it is
acceptable. The chromosome is now: (t1,-1) (t1,200) (t2,50)
(t2,220) (t2,375) (t3,0). Because gene 4’s value was altered, all
subsequent genes may have to be modified if inter-arrival time
constraints are not satisfied. Here, gene 4 and 5 arrival times
satisfy the constraints, i.e., gene 5’s arrival time (375) is greater
than the sum of gene 4’s arrival time (220) and the minimum
inter-arrival time for the task (150). The mutation operation stops.
A randomly selected value of 230 for gene 4’s new arrival time
would have required that gene 5’s arrival time be changed.

Reusing the same example, assume gene 1 is randomly selected
for mutation. Because the arrival time of gene 1 is –1, we
eliminate this gene and insert a new execution into the sequence
of task executions. We examine the next gene, gene 2, with an
arrival time value of 200. Its value is equal to mint1. Thus, we can
insert the new execution before it. The range of choice is [0, 0]
([0, 200 – 200]). The mutated chromosome thus becomes: (t1, 0)
(t1, 200) (t2, 50) (t2, 200) (t2, 375) (t3, 0).

1024

It is important to note that because this mutation operator allows
task executions to move along the specified time interval T, in
both directions, it effectively explores the solution space.
Furthermore, backtracking is eliminated by not committing any
changes unless the changes lead to a valid chromosome.

3.4 Objective Function
Recall from Section 1 that our optimization problem is defined as
follows: What sequence of arrival times for aperiodic tasks will
cause the greatest delays in the executions of the target task (e.g.,
a selected periodic or aperiodic critical task)? In defining the
delay in the target task’s executions, we consider the difference
between the deadline of an execution and the execution’s actual
completion, i.e., dt,j - et,j for target task t. We are thus interested in
rewarding smaller values of the difference and penalizing larger
values. Assuming scheduled tasks may miss deadlines, we also
have to reward negative values over positive values. Note that, in
order to have execution’s actual completion times (i.e., values for
ei,j), we need to implement a scheduler that schedules the tasks at
hand given the arrival times described in a chromosome, and the
task architecture (in particular, CPU time estimates).

Given these requirements, we considered a number of solutions
[3]. The objective function we found that best suits our criteria is
an exponential function:

∑
=

−=
t

jtjt
k

j

deChf
1

,,2)(, where Ch is the chromosome and t is the

target task.

Note that in most cases, task executions meet deadlines thus
resulting in negative values for et,j-dt,j; that is small values for
f(Ch). Also, the greater the difference between deadline and end
of execution, the smaller the value of f(Ch). Moreover, missed
deadlines result in positive values for et,j-dt,j. In other words,
larger values of f(Ch) are indicative of fitter individuals. This
fitness function thus has to be maximized by the GA. The
objective function is expressed in exponential form to prevent the
overshadowing of one bad execution with a large deadline miss
by many good executions that meet their deadlines.

3.5 Setting GA Parameters
In addition to deciding on an encoding, mutation and cross-over
operators and a fitness function, a number of parameters must be
set for the GA to produce nearly optimal solutions to the problem.

First, the replacement strategy we use is steady state replacement
[5], with which the population size does not change and a fixed
number of chromosomes are changed each time the population
evolves. The replacement percentage we apply is 50%, which
complies with the findings reported in [5]. The selection strategy
for choosing an individual for mutation and crossover is the
roulette wheel selection method, in which fitter chromosomes are
more likely to be selected to produce offspring [5].

Throughout the GA literature, various mutation rates, crossover
rates, and population sizes have been used [5]. Of the common
mutation rates, those that take the length of the chromosome and
population size into consideration perform significantly better
than those that do not [15]. We thus apply the mutation rate

suggested in [5], i.e., lλ
75.1

, where λ denotes the population size

and l is the length of the chromosome [13]. Similarly, consistent
with the observations reported in [5], we apply a crossover rate of
70%, and the population size is 80.

Two kinds of termination criteria have traditionally been used for
GAs and all require the setting of parameters [10]: (1) A
maximum number (to be determined) of generations or
evaluations of the fitness function is reached; (2) The chance for a
significant improvement is relatively small, e.g., a plateau seems
to be reached, or there is low population diversity. The former is
simpler to implement but the latter is adaptive as it monitors
population characteristics (e.g., the variety of genes in the
population) across generations. Since our work is at the proof of
concept stage, we decided to use a number of generations as a
termination criterion. Alternative, adaptive criteria will be
considered in future work. Once 500 generations have been
generated, the GA halts yielding the best score found. This
number is based on experimentation: We ran a number of tests on
the application with various values for the stopping criterion and
found the best value to be 500.

It is important to note that the technique we describe is readily
applicable. A variety of software tools and frameworks exist that
manage GAs, allowing users to perform optimization in a variety
of programming languages using different representation and
genetic operators. One can easily use them and apply our
approach.

3.6 Prototype Tool
Following the principles described in the previous sections we
have built a prototype tool, called Real-Time Test Tool (RTTT).
Three inputs must be provided by the user: (1) for each task, the
task information, comprised of a task number, priority, estimated
execution time, dependencies to other tasks (if any), a period in
case of a periodic task or minimum and (possibly) maximum
inter-arrival times and deadline in case of an aperiodic task; (2)
test environment information comprised of the time interval
during which the test is to be performed and the target task; and
(3) whether the tool should output a timing diagram
corresponding to the result.

It is worth noting that the tool can be used whether or not the
group of tasks under test, both periodic and aperiodic, are
schedulable under the Generalized Completion Time Theorem
and its extension. If they are deemed schedulable, RTTT will
attempt to confirm whether this is really the case. If, on the other
hand, they cannot be deemed schedulable by the GCTT and its
extension, i.e., we do not know whether the tasks are schedulable,
we use RTTT to investigate whether we can find a sequence of
arrival times where deadline misses occur. If we cannot find such
a sequence, this does not guarantee that none exist. However, one
can still feel more confident that such a case is unlikely.

The tool reports two or three different results, depending on the
third input. The first result is the sequence of arrival times for all
aperiodic tasks (i.e., the chromosome) with the best fitness
function value obtained by the GA. The second result is a
measure of safe estimate percentage for the target task, as
obtained by using the algorithm in Figure 1. This indicates the
maximum inaccuracy percentage that can be made during the
estimation of all tasks’ execution time without deadline misses
occurring for the target task. RTTT assumes inaccuracies to be the
same for all tasks. Though this is not likely to be the case in
practice, this is a necessary simplifying assumption. The third

1025

result is timing diagrams of both the outputted GA solution as
well as the safe estimate percentage.

Once RTTT has identified a set of seeding times
S for aperiodic tasks using target task t:
1. Increase each (a)periodic task execution by

0.1%
2. Schedule the tasks using S and new

(increased) execution times
3. Repeat steps 1 and 2 until target task t

misses a deadline
4. Report the total increased percentage
Figure 1. Algorithm to determine the maximum inaccuracy

percentage for the target task

The RTTT prototype executes on those inputs using two modules.
The first one is a GA. Its implementation is an instance of GAlib,
a framework written is C++ for the creation of GAs [18]. The
second module is a POSIX [4] compliant scheduler emulating
single processor execution. This is required, as the fitness
function used in the GA requires end times of task executions. In
other words, each time the fitness function is evaluated for a
chromosome, the aperiodic tasks in the chromosome as well as
the periodic tasks described in the inputs are scheduled by the
scheduler. The scheduler is a fixed pre-emptive priority scheduler
assuming single processor execution. Task dependencies in our
application are in the form of shared resource dependencies [4].
Hence, two tasks are dependent if they share a common resource.
If a dependency occurs between tasks, the first ready task of the
dependency must fully complete its execution before the
dependent task can run, regardless of its priority. Equal priority
tasks are executed in a first-come-first-served fashion. It is worth
noting that the tool can easily be adapted to other scheduling
strategies, as only this second module is then to be changed. The
reader interested in more technical details in referred to [3].

4. Case Studies
This section presents two case studies. The first one (Section 4.1)
is representative of the many scenarios we have used to test our
tool and illustrates how RTTT can be used to generate seeding
times that bring the target completion times closer to their
respective deadlines. We further show that a small error in the
estimated execution times of the system tasks can then lead, at
testing time, to missing deadlines. This suggests that RTTT can be
used to generate test cases that will stress the system more than
the scenarios entailed by schedulability theory (e.g., GCTT). In
the second example (Section 4.2) we show the usefulness and
feasibility of the approach on an actual real-time system whose
task architecture is public domain [8].

As GAs are a heuristic optimization technique, variance occurs in
the results produced by different GA executions. To assess the
extent of such variability, each case study was run 10 times and
we studied the variance in both objective function and difference
between execution end and deadline. Average execution times are
also reported for each case study, running on an 800MHz AMD
Duron processor with 192KB on-chip cache memory and 64MB
DRAM memory. GAs can be computationally expensive and their
efficiency needs to be reported to demonstrate their practicality
for a given problem.

4.1 Execution Time Estimates Must be
Accurate

Let us consider the three tasks t1 (periodic), t2 (aperiodic) and t3
(periodic) whose characteristics are shown in Table 2: Task t1 has
a higher priority than t2 and t3. Tasks t1 and t3 are
interdependent: Hence, one cannot begin execution before the
other has fully completed its execution, as they share a common
resource.

Using GCTT and its extension we can prove that these three tasks
are schedulable (details are not provided here). This can be
illustrated with a timing diagram, i.e., a diagram that shows the
time-ordered execution sequence of a group of tasks (see .a). The
timing diagram notation we use is an adaptation of the one
proposed in [4]: Time appears on the left of the diagram, from top
to bottom, events triggering tasks are shown on the right (with
arrows), shaded rectangles indicate when tasks execute, and task
preemption is shown with dotted lines. Note that, in , due to size
constraints, we only show the relevant parts of the time scale. As
specified by the GCTT and its extensions, .a assumes the
aperiodic task is transformed into a periodic task (with period
equivalent to the minimum inter-arrival time, 8) and the
corresponding triggering event first arrives at the same time as the
two other (periodic) tasks (i.e., time 0). In that case, assuming the
target task is t3, the differences between the execution end and the
deadline are 10 and 20 time units, for each of the two executions
respectively: dt3,1-et3,1=(250*1)-240, dt3,2-et3,2=(250*2)-480.

Table 2. Task characteristics, an example
 Task t1 Task t2 Task t3
period (periodic), or minimum
inter-arrival time (aperiodic) 255 240 250

priority 32 31 30
execution time 200 20 20

If we use RTTT to generate the seeding times based on the data in
Table 2, we obtain the timing diagram in .b. Notice that the
second execution of the target task is now 10 time units closer to
its deadline than with the GCTT assumptions. (t3 starts executing
at time unit 250, executes for five time units before it is
preempted by t1, then resumes execution at time unit 475 and
executes for 15 time units. Its deadline is 500.) The difference
dt3,1-et3,1 is unchanged. This illustrates that RTTT can be used to
generate test cases that will stress the system more than the
scenarios entailed by schedulability theory in situations where
there are aperiodic tasks.

RTTT also reports that with only a 4.5% execution time estimate
increase for each task (which would correspond to a very small
error), a deadline miss appears in the target task, as illustrated in
.c (seeding times are the same as in .b, i.e., the output from RTTT,
but the execution times are increased by 4.5%): The first
executions of the three tasks end at time units 210, 231 and 252
respectively, thus resulting in a missed deadline for t3 (2 time
units). This indicates that any inaccuracy greater than 4.5% in
execution time estimates will result in missed deadlines during
test execution.

When running multiple (i.e., 10) GA executions on this case study
no variance was observed in the output. This is probably due to
the relative simplicity of the task architecture. In all 10
executions, with a 500 time unit testing interval (T), the value of
the objective function and the largest difference between

1026

completion and deadline times were the same. The average
execution time of each execution of RTTT was one minute.

4.2 An Industrial Case Study
In an effort to demonstrate the feasibility of using predictable
real-time scheduling technology and Ada in embedded systems,
the Software Engineering Institute (SEI), the Naval Weapons
Center and IBM’s Federal Sector Division worked together to
generate a hard real-time, realistic avionics application model.
The joint effort proceeded by first defining the detailed
performance and complexity requirements of a Generic Avionics
Platform (GAP) similar to existing U.S. Navy and Marine
aircrafts. The GAP task set is comprised of 18 tasks, the highest
eight priorities of which are deemed schedulable according to
schedulability analysis [8]. The three main tasks (highest
priorities) in GAP are Weapon Release, Weapon Aiming and
Radar Tracking. The weapon system is activated through an
aperiodic event emulating a pilot button press requesting weapon
release. The button press triggers the Weapon Aiming periodic
task and waits for another button press to handle a possible abort
request. Meanwhile, Weapon Aiming periodically computes the
release time of the weapon (once every 50 ms). Throughout this
time, the task constantly checks whether an abort request has been
issued. Once one second remains to release, any abort request is
denied and Weapon Aiming triggers the periodic Weapon
Release task: This task has a 200 ms period and must complete
its execution within five ms, i.e., 195 ms before the end of the
current period.. Once the release time is reached, Weapon
Release proceeds to release one weapon every second for a total
of five seconds. The interested reader is referred to [8] and [3].

With the Weapon Release task as our target, RTTT indicates
that execution time estimates will not produce deadline misses if
they are accurate within 22%. Executing RTTT with Weapon
Aiming as a target task produces the same result. Considering that
task execution estimation is based on so many “guesses” and
subject to so many factors (recall the discussion in Section 2.1),
this value does not seem high enough to ensure that inaccuracies

will not result at runtime into deadline misses. To be on the safe
side, testers should then execute the test cases produced by RTTT
for those two tasks during stress testing in order to ensure that
execution time inaccuracies do not lead to missing deadlines. On
the other hand, for Radar Tracking, with a required error
estimate of 1155%, a deadline miss at run-time is very unlikely.

For the eight (schedulable) tasks of this case study, assuming T
=15s, when selecting Weapon Release as a target task, the value
of the objective function and the largest difference between
completion and deadline times were the same. However, for
Radar Tracking some significant variance is observed and
results suggest that RTTT should be run a minimum of 10 times
to obtain better stress test cases [3]. From a general perspective, it
is not possible to decide beforehand how many GA runs are
necessary to ensure that near-optimal results are obtained. In
practice, the user can only decide the number of runs based on
available time and observed execution performance. The average
execution time of each GA execution was 46.5 minutes. It is
important to note that a longer T would lead to longer execution
times, and that this execution time can be drastically decreased by
using a newer, faster computer and by parallelizing the search [9].

5. Conclusion
Reactive real-time systems have to react to external events within
time constraints: Triggered tasks must execute within deadlines.
The goal of this article is to automate, based on the system task
architecture, the derivation of test cases that maximize the
chances of critical deadline misses.

Our automation tailors Genetic Algorithms to address the
automated generation of seeding times for aperiodic tasks based
on task information such as estimated execution times and
priorities. In other words, regardless of the tasks at hand, times are
identified for external events to which the system is supposed to
react in order to maximize the chances of exhibiting missed
deadlines. Users are free to focus on tasks they deem critical for
the application.

We have performed a number of case studies using our tool,
RTTT, varying the number of tasks and priority patterns, and we
came across a number of cases that suggest that RTTT can
identify seeding times that stress the system to such an extent that
small errors in the execution time estimates can lead to missed
deadlines during stress testing. Because of underlying
assumptions regarding aperiodic tasks, such results are obtained
even when the set of tasks at hand have been proven schedulable
by theoretical means (e.g., the Generalized Completion Time
Theorem – GCTT), thus suggesting that both techniques
(schedulability theory and GA-based stress testing) be applied
early during the design of real-time systems. GCTT should be
used as a first schedulability check and then, in the presence of
aperiodic tasks, if all tasks are deemed schedulable, RTTT should
be used to further check the most critical tasks.

To conclude, this paper provides a practical solution that can help
automate the stress testing of real-time, reactive systems. This
automation is likely to help testers identify response time
problems, either during design or testing. Another result,
suggested by our studies [3] but not reported here, as we focused
on stress testing, is that RTTT sometimes identifies seeding times
that will lead to missed deadlines, even when tasks have been
determined to be schedulable and the execution time estimates are
accurate. This is due to the assumptions of theorems such as

0
t1 t2 t3

20

40

t1 t2
t3

200

220

240

260

420

440

460

480

T=500

t2

t1
t3

t2

0
t1 t2 t3

20

40

t1 t3

t2 (51)

200

220

240

260

420

440

460

480

t1
t3

t2
(431)

T=500

0
t1 t2 t3

20

40

t1 t3

t2 (51)

200

220

240

260

420

440

460

480

t1
t3

t2
(431)

210

231

465

486

t3
deadline
miss

T=500

...... ...

...... ...

(a) (b) (c)

Figure 2. Execution times must be accurate, an example.

1027

GCTT, and this may be very helpful in identifying performance
problems in the early design stages.

In future work, we will first improve our Genetic Algorithm and
use an adaptive termination criterion [10] instead of a fixed
number of generations. We will also try to improve the execution
time of our algorithms. Another important improvement will be to
account for events’ parameters in our chromosome, although the
impact of parameters is usually accounted for when estimating
task executions. Last, our approach needs more extensive
validation on additional (industrial) case studies.

6. ACKNOWLEDGEMENTS
This work was partly supported by a Canada Research Chair
(CRC) grant. Lionel Briand and Yvan Labiche were further
supported by NSERC operational grants. This work is part of a
larger project on testing object-oriented systems with the UML
(www.sce.carleton.ca/Squall).

7. REFERENCES
[1] B. Beizer, Software Testing Techniques, Van Nostrand

Reinhold, 2nd Edition, 1990.
[2] R. V. Binder, Testing Object-Oriented Systems - Models,

Patterns, and Tools, Addison-Wesley, 1999.
[3] L. C. Briand, Y. Labiche and M. Shousha, “Stress Testing

for Real-Time Systems Using Genetic Algorithms,” Carleton
University, Technical Report SCE-03-23,
http://www.sce.carleton.ca/Squall/, September, 2003.

[4] H. Gomaa, Designing Concurrent, Distributed, and Real-
Time Applications with UML, Addison Wesley, 2000.

[5] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms,
Wiley, 1998.

[6] M. A. Iverson, F. Ozguner and L. C. Potter, “Statistical
Prediction of Task Execution Times through Analytic
Benchmarking for Scheduling in a Heterogeneous
Environment,” IEEE Transactions on Computers, vol. 48
(12), pp. 1374-1379, 1999.

[7] J. W. S. Liu, Real-Time Systems, Prentice Hall, 2000.
[8] C. D. Locke, D. R. Vogel and T. J. Mesler, “Building a

predictable avionics platform in ada: A case study,” Proc.
IEEE Real Time Systems Symposium, pp. 181-189, 1991.

[9] S. W. Mahfoud and D. E. Goldberg, “Parallel Recombinative
Simulated Annealing: A Genetic Algorithm,” Parallel
Computing, vol. 21 (1), pp. 1-28, 1995.

[10] Z. Michalewicz, Genetic Algorithms + Data Structures =
Evolution Programs, Springer, 1996.

[11] F. Mueller and J. Wegener, “A Comparison of Static
Analysis and Evolutionary Testing for the Verification of
Timing Constraints,” Proc. IEEE Real Time Technology and
Applications Symposium, pp. 179-188, 1998.

[12] M. A. Pawlowsky, “Crossover Operators,” in L. Chambers,
Ed., Practical Handbook of Genetic Algorithms
Applications, vol. 1, CRC Press, pp. 101-114, 1995.

[13] J. D. Schaffer, R. A. Caruna, L. J. Eshelman and R. Das, “A
study of control parameters affecting online performance of
genetic algorithms for function optimization,” Proc.
International Conference on Genetic Algorithms and Their
Applications, pp. 51-60, 1989.

[14] L. Sha and J. B. Goodenough, “Real-time Scheduling Theory
and Ada,” Software Engineering Institute, Technical Report
CMU/SEI-89-TR-014, 1989.

[15] J. E. Smith and T. C. Fogarty, “Adaptively Parameterized
Evolutionary Systems: Self Adaptive Recombination and
Mutation in a Genetic Algorithm,” in Voigt, Ebeling,
Rechenberg, and Schwefel, Eds., Parallel Problem Solving
From Nature 4, pp. 441-450, 1996.

[16] B. Sprunt, L. Sha and J. Lehoczky, “Aperiodic Task
Scheduling for Hard Real-Time Systems,” Real-Time
Systems, vol. 1 (1), pp. 27-60, 1989.

[17] N. Tracey, J. A. Clark, K. C. Mander and J. A. McDermid,
“An Automated Framework for Structural Test-Data
Generation,” Proc. IEEE Conference on Automated Software
Engineering, pp. 285-288, 1998.

[18] M. Wall, “GAlib: A C++ Library of Genetic Algorithm
Components,” Massachusetts Institute of Technology,
http://lancet.mit.edu/ga/dist/galibdoc.pdf, August, 1996.

[19] J. Zhang and S. C. Cheung, “Automated Test Case
Generation for the Stress Testing of Multimedia Systems,”
Software - Practice and Experience, vol. 32 (15), pp. 1411-
1435, 2002.

1028

