

SOFTWARE QUALITY ANALYSIS: A VALUE-BASED APPROACH

by

LiGuo Huang

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the

Requirements for the Degree
DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCE)

December 2006

Copyright 2006 LiGuo Huang

 ii

Dedication

To my dad Rongxin Huang, my mom Ming Qian

To my husband Rong Huang

 iii

Acknowledgements

This dissertation research would not have been possible if there were not the

contributions of many hearts and minds over years. Foremost, I thank my advisor, Dr.

Barry Boehm, for his invaluable guidance, support and enthusiastic encouragement.

During my Ph.D. studying in Center for Software Engineering at the University of

Southern California, Dr. Boehm has always been an excellent and dependable

mentor in helping me achieving my research and professional goals. Both his

diligence and insightfulness in academic research and his personality will always be

an exemplary role model in my life. I also want to express my thanks to other

members in my qualifying and defense committees, Dr. Ahmed Helmy, Dr. Ming-

deh Huang, Dr. Kai Hwang and Dr. Nenad Medvidovic, for their valuable comments

and words of encouragements. Many thanks to my USC-CSE officemates, labmates

and classmates for sharing with me the joys and sorrows of the Ph.D. student life.

A special thank is given to my VBSQA-OPN research collaborators Hao Hu,

Jidong Ge, Jian Lü and students (Weijie Zhu, Qiang Lin, Chao You and Fei Xiong)

in Institute of Computer Software at Nanjing University for their efforts in tool

prototyping. Special thanks are also extended to DIMS project team in Neusoft Co.,

Ltd. for data supply and valuable feedback.

Finally, from my heart, I would like to thank my parents for their love and

encouragement. They have been inspired me to always strive for excellence and

furnished me the curiosity of learning. I also want to thank my husband, Rong for his

unconditional support during these challenging years.

 iv

Table of Contents

Dedication ... ii

Acknoledgements... iii

List of Tables .. vii

List of Figures .. ix

Abstract ... xii

Chapter 1 Introduction...1

1.1 Evolving Views of Software Quality ...1
1.2 Future Trends and Software Quality Challenges ...3
1.3 Problem Statement ...8
1.4 Dissertation Approach and Hypotheses ...9
1.5 Dissertation Outline ...12

Chapter 2 Related Work ..13

2.1 Software Quality Attributes and Relationships..13
2.1.1 Definitions of Software Quality and Quality Attributes 13
2.1.2 Relationships among Software Quality Attributes............................. 17

2.2 Software Quality Metrics, Assessment Frameworks and Models18
2.2.1 Software Quality Metrics ... 18
2.2.2 Software Quality Assessment Frameworks and Models.................... 19

2.3 Process Strategies for Software Quality Achievement23
2.4 Value-Based Software Engineering (VBSE) Research and Its Addressal

of Software Quality Challenges ...28

Chapter 3 Value-Based Software Quality Analysis Framework32

3.1 Software Quality As Stakeholder Value ..33
3.1.1 Stakeholders’ Views of Software Quality.. 33
3.1.2 VBSQ Attribute Definitions... 35
3.1.3 Value-Based Software Quality Metrics ... 46

3.2 Value-Based Software Quality Model (VBSQM)47
3.2.1 Components of VBSQM.. 49
3.2.2 Integrating Framework: Value-Based Software Quality Model

(VBSQM)... 65
3.3 Value-Based Software Quality Achievement (VBSQA) Process................69

3.3.1 Purpose of the VBSQA Process... 69
3.3.2 Top-level Steps of the VBSQA Process Framework 70
3.3.3 Mapping VBSDA Process into “4+1” VBSE Theory........................ 88

 v

Chapter 4 VBSQM Application and Results ..91
4.1 VBSQM ROI Analyses for Different Types of Software Systems..............92

4.1.1 A Dependable Order Processing System ... 92
4.1.2 A Mission Critical NASA Planetary Rover 97
4.1.3 Comparing the VBSQM Availability ROI Analysis Results of

Order Processing System and NASA Planetary Rover...................... 99
4.2 VBSQM ROI Analyses for Different Scenarios in One Software

System..101
4.3 VBSQM Combined Risk Analyses to Determine How Much Software

Quality Investment is Enough..101
4.4 Value-based Testing vs. Value-neutral Testing ...105

4.4.1 Value Estimating Relationships (VERs) and ROI Analysis 106
4.4.2 VBSQM Combined Risk Analyses.. 108

4.5 Conclusions ..109

Chapter 5 VBSQA Process Application and Results111

5.1 Apply VBSDA Process in NASA/USC Inspector SCRover (ISCR)
Project ..112
5.1.1 NASA/USC ISCR Project Overview... 112
5.1.2 ISCR Application of VBSDA Process... 113

5.2 Avoid Q-attribute Mismatches in Fulltext Title Database Project.............128
5.2.1 Fulltext Title Database (FTD) Project Overview............................. 129
5.2.2 Stakeholder Identification and Feature Prioritization 129
5.2.3 Engineer Software Quality Requirements and Tradeoff Analysis... 130
5.2.4 Project Results and Discussion .. 142
5.2.5 Extension to Cost, Quality, and Schedule/Cost/Quality Goals 144

5.3 Apply VBSDA Process in Real-world ERP Software Development.........144
5.3.1 Introduction.. 144
5.3.2 VBSQA Process Experience On A Real-World ERP Software

Project Case Study ... 146
5.3.3 Modeling VBSQA Process Using Object Petri Nets (OPN)............ 151
5.3.4 Application of VBSQA Process Generator Built on VBSQA-OPN

Model ... 158
5.3.5 VBSQA-OPN Modeling Costs and Benefits 176
5.3.6 Tailor VBSQA Process to Project Business Cases 177
5.3.7 Conclusions and Discussion... 183

Chapter 6 Contributions and Future Research Challenges............................186

6.1 Summary of Key Contributions ...186
6.2 Future Research Challenges...189

6.2.1 Future Research on the VBSQM ... 189
6.2.2 Future Research on the VBSQA Process ... 189
6.2.3 Future Research on the VBSQA-OPN Model 190

Bibliography...191

 vi

Appendices...201
Appendix A: Behavior Analysis of COCOMO II RELY Ratings201
Appendix B: COQUALMO Defect Removal Profiles.....................................203
Appendix C: Empirical Analysis on Stakeholder/Value Dependency on

Quality Attributes in Information Systems ..204

 vii

List of Tables

Table 2.1. Software Quality Achievement Process Strategies Based on Opportunity
Tree... 25

Table 3.1. A Definition Framework for Safety, Security, and Privacy 36

Table 3.2. Value-Based Metrics for Software Quality Attribute ... 47

Table 3.3. COQUALMO Defect Removal Investment Rating Scales................................... 56

Table 3.4. The Top-level Steps of VBSQA Process Framework .. 70

Table 3.5. A Sample Stakeholder/Goal Matrix.. 73

Table 3.6. A Sample Matrix Tracking the Improvement of a Q-attribute Based on

Scenario Distribution .. 80

Table 4.1. Order Processing System: Expected Benefits and Business Case 94

Table 4.2. VBSQM Availability ROI Analysis Results of Sierra Mountainbikes

Order Processing System and NASA Planetary Rover: Increasing MTBF.............. 100

Table 4.3. Comparative Business Cases: ATG and Pareto Testing....................................... 107

Table 5.1. Inspector SCRover (ISCR) Stakeholder/Goal Matrix (Priorities: High,

Medium, Low) .. 116

Table 5.2. Inspector SCRover (ISCR) Stakeholder/Goal Matrix I: ISCR Project

Goals and Priorities (Priorities: High, Medium, Low) ... 116

Table 5.3. Inspector SCRover (ISCR) Stakeholder/Goal Matrix II: ISCR System

Dependents/Operators Goals and Priorities (High, Medium, Low) 116

Table 5.4. Size, Cost, and Risk Impact of Three Classes of SCRover Scenarios 118

Table 5.5. VBSQM ROI Analysis of ISCR Increment 3 Availability Goals for Three

Scenario Classes ... 119

Table 5.6. ISCR Increment 3 Operational Profile Scenarios ... 121

Table 5.7. Target Sensing Scenario: Stakeholder/Value Dependencies on software

Q-attributes ... 121

 viii

Table 5.8. Target Sensing and Target Rendezvous Scenarios: Top-level Risks of Not
Achieving 99.98% Availability and Risk Mitigation of
Architecture/technology Strategies... 125

Table 5.9. Target Sensing Scenario: Top-level Risks of Not Achieving 99%

Accuracy and Risk Mitigation of Architecture/technology Strategies 125

Table 5.10. Prioritized Fulltext Title Database System Features... 130

Table 5.11. Mapping the ERP software development activities into VBSQA process

framework steps/milestones.. 160

Table 5.12. DIMS Upgrade Project: Q-attributes and Their Risks to the Project

Value (Ri).. 168

Table 5.13. DIMS Upgrade Project: the Effectiveness of Developer Internal

Activities vs. Stakeholder Interaction Activities on Q-attribute Risk
Mitigation (Eij).. 170

Table 5.14. DIMS Upgrade Project: Potential Rework Cost Cr at Different Phases of

VBSQA Software Development Process.. 172

Table 5.15. Comparing the ROI of Various Combinations of Synchronous

Stakeholder Interaction Activities and Developer Internal Activities 174

Table 5.16. Characteristics of Three Example Business Cases in ERP Software

Development... 178

Table 5.17. Prioritized Requirements in DIMS Upgrade from 6.0 to 7.0.............................. 181

Table A.1. Product Activity Differences Due to Required Software Reliability

(RELY) ... 202

Table B.2. Rationales of COQUALMO defect removal profile ratings 203

Table C.3. Information System Top-Level Stakeholder/Value Dependencies on

Quality (Q-) Attributes ... 209

Table C.4. Mapping of Stakeholder Classes in Table C.3 and Figure 2.2............................ 211

Table C.5. Mapping of Quality Attributes in Figure 2.2 into Quality Attributes in

Table C.3 .. 211

 ix

List of Figures

Figure 1.1. Built-in Stakeholder Value Conflicts. The Red or Gray Lines Show
Conflicts from the MasterNet System. ... 5

Figure 1.2. Maslow Human Need Hierarchy (A. H. Maslow, Motivation and

Personality, 1954) .. 6

Figure 1.3. Research Methodology.. 11

Figure 2.1. The Dependability Tree... 16

Figure 2.2. Empirically First-Order Mapping of Stakeholders Primary Concerns onto

Quality Attribute... 17

Figure 2.3. Software Quality Achievement Opportunity Tree .. 24

Figure 3.1. The Overall Structure of Value-Based Software Quality Model (VBSQM)

.. 49

Figure 3.2. Software Development Cost vs. Required Reliability (RELY) Trade-off 51

Figure 3.3. The Overall Structure of COQUALMO Model .. 53

Figure 3.4. COQUALMO Reduced Delivered Defects Estimates at Nominal Defect

Introduction Rates... 56

Figure 3.5. Typical Value Estimating Relationships (VERs) of Availability........................ 60

Figure 3.6. Value of Information Timeliness for Information Brokers, Mission-

Critical Users, and Mission Controllers.. 61

Figure 3.7. V(T) for Real-Time Mission Controllers .. 62

Figure 3.8. V(T) for Non-Critical Information Users .. 62

Figure 3.9. V(T) for Some Administrators .. 63

Figure 3.10. Marketplace Competition (Internet Services, Wireless Infrastructure):

Value Loss vs. System Delivery Time ... 64

Figure 3.11. Fixed-schedule Event Support: Value of On-time System Delivery................. 65

Figure 3.12. Off-line Data Processing: Value Loss vs. System Delivery Time 65

Figure 3.13. Risk-based Process Decision-making Approach... 75

 x

Figure 3.14. A Scenario-Based Approach to Engineer Software Q-attribute
Requirements and Risk Mitigation Plans ... 77

Figure 3.15. A Value-Realization Feedback Process to Monitor and Control the

Achievement of Software Q-attribute Requirements.. 87

Figure 3.16. The “4+1” Theory of VBSE: Overall Structure [Aurum et. al. 2005]............... 89

Figure 3.17. Mapping of VBSQA Process into “4+1” VBSE Theory................................... 90

Figure 4.1. Comparing the VBSQM Availability ROI Analysis Results of Sierra

Mountainbikes Order Processing System and NASA Planetary Rover.................... 100

Figure 4.2. Combined Risk Exposures: Early Startup, Commercial and High Finance 103

Figure 4.3. (a) Value Estimating Relationships (VERs) for Value-Neutral Testing vs.

Value-Based Testing; (b) Return On Investment (ROI): Value-Neutral ATG
Testing vs. Value-Based Pareto Testing ... 107

Figure 4.4. High Finance Combined Risk Exposures: Comparing Value-Based

Testing vs. Value-Neutral Testing.. 109

Figure 5.1. Software Quality-Elaborated Results Chain for ISCR Increment 3 115

Figure 5.2. Summary of VBSQM ROI Analysis of ISCR Increment 3 Availability

Goals... 120

Figure 5.3. Change Effort E vs. Fraction of Features Modified α 137

Figure 5.4. Change Effort E When 5/12 Planned Features Modified.................................... 142

Figure 5.5. The Overall Structure of VBSQA Process Generator ... 152

Figure 5.6. VBSQA-OPN System Net (SN): the LCO Phase of VBSQA Process

Framework.. 162

Figure 5.7. VBSQA-OPN Developer Object Net (ON): the LCO Phase of the

Developer Process Instance Generated from the SN .. 163

Figure 5.8. VBSQA-OPN System Acquirer Object Net (ON): the LCO Phase of the

System Acquirer Process Instance Generated from the SN...................................... 164

Figure 5.9. VBSQA Process Creator: VBSQA Process Framework (System Net) and

the Generated Developer Process Instance (Object Net).. 165

Figure 5.10. VBSQA Process Simulator: Computing the ROI of a Combination of

Stakeholder Interaction Activities and Developer Internal Activities in an
ERP VBSQA Process ... 174

 xi

Figure 5.11. VBSQA-OPN Modeling Costs and Benefits in Neusoft DIMS Upgrade
Project... 176

Figure 5.12. An Example of Schedule-driven Process Strategy for DIMS Project 180

Figure 5.13. An Example of Product-driven Process Strategy for DIMS Version

Upgrade .. 185

Figure 5.14. An Example of Market Trend-driven Process Strategy for Changing

from Client/Server-based DIMS to Web-based DIMS... 185

Figure C.1. Major Information System Stakeholder Classes... 204

 xii

Abstract

Quality is a major challenge for all complex software systems. Some

important attributes of software quality include reliability, availability, safety,

security, survivability, performance, accuracy, etc. These have long been

requirements of aerospace and defense systems. Now, equally challenging

requirements are being placed on “everyday systems” that increasingly provide the

infrastructure for our daily lives such as commercial, e-business and embedded

systems. They are subject to modest, usually tacit, often stakeholder-specific quality

requirements. And it is important that we can define and meet a software system’s

quality requirements to be fit for its purpose.

However, there are many views of software quality. And there also exist

many ways to suboptimize its achievement and/or misallocate limited project

resources using incomplete views. In addition, complex missions or projects usually

involve a large and heterogeneous group of stakeholders with various (often time-

varying) quality priorities and different (often conflicting) needs. This makes both

one-size-fits-all quality metrics and software development processes driven by such

metrics risky to use. This also points to the need for better frameworks to define,

reason about and achieve quality attributes.

Based on these observations, the primary goal of this dissertation is to

develop a Value-Based Software Quality Analysis framework that integrates the

stakeholder/value approach into quality attribute definitions, metrics, models and

development processes aiming at achieving the appropriate quality levels for

 xiii

software systems. This framework pays explicit attention to business values that a

software system generates for its success-critical stakeholders. It helps us to

understand the nature of quality and to achieve the stakeholder mutually satisfactory

quality requirements. It addresses the above problems in four aspects: 1) value-based

definitions of software quality attributes; 2) value-based quality metrics; 3) Value-

Based Software Quality Model (VBSQM) to reason about the Return On Investment

(ROI) of quality and to perform combined risk analyses; and 4) Value-Based

Software Quality Achievement (VBSQA) process.

Finally, the VBSQM and VBSQA process have been applied and found to be

effective on three diverse software systems with different value profiles: a USC-CSE

e-service project, the NASA/USC Inspector SCRover project, and a real-world ERP

software development project in industry.

 1

Chapter 1

Introduction

1.1 Evolving Views of Software Quality

The early institutional focus on software quality was primarily initiated by

the U.S. Department of Defense (DoD), where software quality is one of the most

critical concerns of mission-critical defense systems. Based on the requirements-

driven, contract-oriented waterfall-model software development, its major 1974

standard, MIL-S-52779, “Software Quality Assurance Program Requirements” [DoD

1974], defined the objective of software quality assurance (QA) as, “to assure that

the software delivered under the contract meets the requirements of the contract.”

The major pitfall of this approach is that QA is purely based on the initial

contract. If the contract specifies poor or incomplete quality requirements, you will

get poor quality software. This happened to DoD and commercial organizations in

numerous ways such as specifying poor user interfaces, specifying requirements

obtained from the wrong users, getting unmaintainable software by missing

maintenance and diagnostic requirements.

In the 1980’s, there began a trend away from the 1970’s contract-oriented

specification compliance toward service-oriented customer satisfaction as the

primary quality objective. Software quality assurance approaches such as Total

Quality Management (TQM) [Deming 1989] and Quality Function Deployment

(QFD) [Eureka-Ryan 1988] based quality on expectations of customers, who were

 2

generally interpreted to include users of software products. Thus, the 1990 definition

of “quality” in the IEEE Standard Glossary of Software Engineering Terminology

[IEEE 1990] added “… meets customer or user needs or expectations” to its earlier

definition of “…meets specified requirements.”

The major difficulty with the customer-satisfaction approach is that

customers often lack a complete view of tradeoffs and interactions among their

concerned software quality attributes. And they often neglect other quality attributes

such as maintainability which they are indirectly dependent on. For instance,

customers have pushed overly ambitious performance objectives which led to

unaffordable and/or unmaintainable software systems, or have pushed to adopt a

poorly-architected prototype with nice usability features but poor scalability,

availability, and/or interoperability.

Initiatives to address these problems in the 1990’s have focused on

identifying a full set of success-critical stakeholders in a software system and

pursuing the objective of negotiated stakeholder win-win relationships among

software quality attributes. This expands the scope of “quality” to include the

proposition of system acquirers on cost or affordability, the proposition of the

software maintainer on maintainability and scalability, the proposition of

stakeholders of interoperating systems on interoperability, and others such as the

proposition of the general public on safety or privacy. This has led to new

organizational approaches such as Integrated Product Teams, expanded versions of

QFD [Pardee 1996], and process approaches such as the WinWin Spiral Model

[Boehm et. al. 1995a].

 3

1.2 Future Trends and Software Quality Challenges

The future trends of software system development include:

 An increased emphasis on stakeholders and end value

With the increasing emphasis on success-critical stakeholder value in

software system development and the need for rapidly evolving systems, software

quality definitions, assessment models and achievement processes need to address

the different value propositions of various stakeholder classes.

 Increasingly rapid change

When added to the trend toward emergent systems requirements, the pace of

change places a high priority on systems and software engineering process agility

and investments in continuous learning for both people and organizations [Boehm

2005].

The major challenges on software quality assessment and achievement

implied by the future trends of software development are as follows:

1. The universal one-size-fits-all software quality metrics are unachievable

in most project situations.

Value dependencies vary significantly by stakeholders and situations, making

statements such as “Your system has a software reliability rating of 0.613” usually

meaningless. Occasionally, a very stable organization can develop and manage to an

organization-specific software reliability metric whose change from 0.604 to 0.613

or from 0.621 to 0.613 will be highly meaningful. But in most situations, stakeholder

and situation differences make such single software quality metrics infeasible.

 4

2. Stakeholder value dependencies on software quality attributes are often

in conflict and require negotiated solutions.

Figure 1.1 illustrates this situation with respect to four of the primary

stakeholder classes in information system acquisition and development: users,

acquirers, developers and maintainers. It summarizes the results of our analysis [Al-

Said 2003, Boehm et al. 2000b, Boehm 1999] of a number of failed projects in

[Flowers 1996, Glass 1998]. It shows that the value dependencies of the four most

common stakeholder classes in software development (users, acquirers, developers,

maintainers) are often in conflict, and demonstrates that the need to reconcile

different stakeholders’ value dependencies is built into the nature of software

development projects.

The red or gray lines in Figure 1.1 show the specific conflicts for one of the

failed projects: the Bank of America Master Net trust management project. The

users’ value propositions included many features (3.5 million lines of code when the

project was cancelled) and high levels of performance, reliability, and availability.

The acquirers’ value propositions included a limited development budget and

schedule ($20M and 9 months to an initial operational capability). The selected

developers’ bid was based on the value proposition of reusing software from

successful small trust management systems they had developed on Prime computers.

The resulting solution turned out to have major value conflicts with the users’

number of features and need for early capabilities and the acquirers’ limited budget

and schedule: the project was cancelled when no adequate capability was in sight

after the expenditure of $88M and 48 months. It also had value conflicts with users

 5

on high levels of service or quality attributes (slow response time, frequent crashes)

and with the users and maintainers on applications compatibility and ease of

transition and maintenance (Bank of America was an IBM mainframe shop).

A number of other value dependency conflicts or success model clashes are

also evident from Figure 1.1. The main points are that these are built into software

project environment from the beginning, and that they represent a set of value-based

issues that need to be considered by the project’s quality assurance approach.

Figure 1.1. Built-in Stakeholder Value Conflicts. The Red or Gray Lines Show
Conflicts from the MasterNet System.

3. Stakeholders have often-emergent, time-varying priorities for software

quality attributes.

Even for the same person in the same organization, stakeholders’ value

dependencies are likely to change with time to reflect their Maslow need hierarchy

(see Figure 1.2), in which unsatisfied lower-level needs dominate higher-level needs,

 6

but in which satisfied lower-level needs are no longer motivators [Maslow 1954].

Thus, for example, the corporate survival of a startup company (the equivalent of

food and drink for its leaders) will often depend initially on novelty and usability to

attract early adopters, but if the company is successful and builds an increasing

installed base of more mainstream customers, it may next find that its top priority

becomes performance and scalability rather than more novelty and usability. As

customers increasingly depend on the system’s operation, system reliability and

availability will dominate further improvements in performance; and eventually

further investments in reliability and availability may be dominated by investments

in security, as threats and vulnerabilities from information system attackers become

more significant.

Figure 1.2. Maslow Human Need Hierarchy (A. H. Maslow, Motivation and
Personality, 1954)

4. Static, “snapshot” optimizations among stakeholder value dependencies

may have short solution lifetimes.

Many multi-criterion decision solutions involve applying stakeholder-

determined weights to software quality attributes and choosing the solution that

Self-Actualization

Esteem and Autonomy

Belongingness and Love

Safety and Security

Physiological (Food and Drink)

 7

maximizes a weighted combination of alternative solutions’ current quality attribute

values [Gilb 1969, CODASYL 1976, Saaty 1989]. If the stakeholders are in time-

varying priority situations, the optimality of the initial solution needs to be monitored

and adjusted as priority and value dependencies change.

5. Multi-criterion decision solutions are complicated by tradeoff relations

among software quality attributes.

Many software quality attributes reinforce each other. An unreliable system

will not be very secure; a poorly-performing system will not be very usable. On the

other hand, many conflicts arise in trying to satisfy multiple quality criteria.

Complex security defenses slow down performance and hamper usability. Fault

tolerance solutions spread information around and complicate security defenses,

along with adding performance overhead. Tightly-coupled performance

optimizations complicate the achievement of evolvability and reusability, as well as

aspects of security and fault tolerance. All of the above add to project costs and

schedules. These tradeoff relations complicate the ability to find solutions that satisfy

a combination of quality attribute levels.

6. Stakeholder/value-oriented metrics help avoid measurement

dysfunction, and help steer a project toward stable win-win stakeholder

incentive structures.

Oversimplified project management metrics tend to lead project performers

into measurement dysfunction (gaming the metrics) and unsatisfactory project

outcomes [Austin 1996]. Examples in the quality area include the conflicting

liveness and performance requirements from different stakeholders in NASA Earth

 8

Observation System Distributed Information System (EOSDIS) example discussed

in the section 3.1.2.2; committing projects to overambitious performance goals

[Boehm 2000] or cost and schedule goals [Standish 1995, 2001]; and failed projects

such as the Master Net project discussed in item 2 above. Mixed quantitative and

qualitative management metrics approaches that capture a more complete set of

stakeholder values such as the Balanced Scorecard technique [Kaplan-Norton 1996]

are more likely to succeed.

7. There is a need for better value estimating relationships for software

quality attributes.

For example, the information broker e-trade.com valued an hour of downtime

as a cost of $8000 in revenues. Ideally, one would like to know at least the shape of

such value/utility functions for various stakeholder/value dependencies.

1.3 Problem Statement

This dissertation will address the problem of software quality modeling and

achievement process using the value-based approach. It will also examine the value-

based definitions of software quality attributes and applications of the model and

process in real-world projects. A concise statement of the problem is:

What are the effective models and processes to determine the appropriate

levels of software quality investments and to help achieve stakeholder

WinWin-balanced software quality outcome?

 9

In support of addressing the central problem of constructing the value-based

software quality model and achievement process, there are several sub-problems that

need to be answered as following:

 How to define the software quality attributes from stakeholder/value

perspectives?

 How to measure the achievement of software quality attributes?

 How to determine how much software quality investment is enough?

 How to use the value-based software quality definition, metrics and model to

drive the software development processes and to help project success-critical

stakeholders define, negotiate, develop, monitor and control the achievement

of the mission-specific combinations of quality attributes?

1.4 Dissertation Approach and Hypotheses

This dissertation defines a framework for Value-Based Software Quality

Analysis to solve the above problems in four aspects:

 Value-based definitions of software quality attributes

 Value-based software quality metrics

 Value-Based Software Quality Model (VBSQM)

 Value-Based Software Quality Achievement (VBSQA) process

Three hypotheses based on the framework are proposed and validated in this

dissertation:

 10

 Hypothesis 1: Value-Based Software Quality Model (VBSQM) can be used

to determine how much software quality investment is enough in different

value situations.

 Hypothesis 2: Assuming non-linear value functions (e.g., Pareto distribution)

are used, value-based software quality achievement techniques improve

project return on quality investments and reduce the overall project risks.

 Hypothesis 3: The Value-Based Software Quality Achievement (VBSQA)

process can be applied by rational decision-makers to

 3a. determine whether a software system with stakeholder mutually

satisfactory software quality (Q-) attribute requirements is achievable.

 3b. help stakeholders and projects avoid software Q-attribute mismatches

and achieve successful software quality outcomes.

Figure 1.3 illustrates our research methodology in answering the thesis

questions. We started with reviewing the existing literature that addresses software

quality related research including definitions, metrics, models and process strategies.

Then we identified the problems and challenges in software quality modeling and

achievement processes. To address those problems and challenges, a software quality

analysis framework was proposed using value-based approach. Two major

components in this framework are Value-Based Software Quality Model (VBSQM)

and Value-Based Software Quality Achievement (VBSQA) process. To validate the

ROI analysis capability of VBSQM, we first applied it to two different types of

software applications and then to different mission scenarios in one software project.

To validate the combined risk analysis capability of VBSQM, we applied it to three

 11

representative project business cases in industry. To evaluate the VBSQA process,

we first experimented it using two USC-CSE project case studies including one

collaborative testbed project with NASA/JPL for High Dependability Computing

Program (HDCP). Then we applied it to a real-world Enterprise Resource Planning

(ERP) software development project in China. Based on the real-world experience,

we refined and formalized the process to improve its future applications.

Figure 1.3. Research Methodology

 12

1.5 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 summarizes

the related work on software quality definitions, metrics, models, assessment

frameworks, process strategies, and value-based software engineering research with

its addressal on software quality challenges. Chapter 3 presents the Value-Based

Software Quality Analysis Framework including value-based definitions on quality

attributes, value-based quality metrics, VBSQM, and VBSQA process. Chapter 4

shows the applications of VBSQM to validate the Hypothesis 1 and 2. Chapter 5

describes the applications of VBSQA process on two USC-CSE projects and on the

real-world ERP software development in China. Hypothesis 3 a and b are validated

by the project results and application feedback. Chapter 6 discusses the key

contributions of this dissertation research and future research challenges in this area.

 13

Chapter 2

Related Work

The major challenges of the research include the lack of a well-formalized

and tangible definition of software quality and stakeholder/value-relevant software

quality metrics and models for project decision-makers. Furthermore, how to use the

metrics and models to drive the development processes on software quality

achievement has not been sufficiently explored either. Based on these research

challenges, this dissertation research expands over software quality definitions,

metrics and model, and process strategies, which are then integrated into a software

quality analysis framework. We have studied a variety of related research in each

field. Section 2.1 through 2.3 summarizes the related work in each field. Section 2.4

summarizes the related work in the arena of value-based software engineering and its

addressal of software quality challenges.

2.1 Software Quality Attributes and Relationships

2.1.1 Definitions of Software Quality and Quality Attributes

Many definitions of software quality have been proposed in the literature.

They can be categorized into two classes. One class includes the traditional

definitions of each attribute of software quality as an independent sub-discipline of

 14

software quality. In this dissertation, we only summarize the definitions of a few of

the attributes (Reliability, Safety) as the example.

The definitions of Reliability can be found in the literatures such as IEEE

Standard Glossary of Software Engineering Technology [IEEE 1990], IEEE

Standard Dictionary of Measures to Reliable Software (IEEE Std 982.1-1988) [IEEE

1988a, 1988b], Handbook of Software Reliability Engineering [Lyu 1996], IEEE

Standard for a Software Quality Metrics Methodology [IEEE 1992], etc. An example

of such definition of Reliability is the ability of a system or component to perform its

required functions under stated conditions for a specified period of time [IEEE 1990].

More definitions of Reliability and its factors are covered in [Rus et. al. 2003].

In [Leveson 1995], Safety is defined as “freedom from accidents or losses”.

Software system safety implies that the software will execute within a system

context without contributing to hazards. A hazard is defined as a state or set of

conditions of a system (or an object) that, together with other conditions in the

environment of the system (or object) will lead inevitably to an accident (loss event).

Safety-critical software is any software that can directly or indirectly contribute to

the occurrence of a hazardous system state. Safety-critical functions are those system

functions whose operation (correct, incorrect, or lack of operation) could contribute

to a system hazard. Other definitions of Safety can be found in the IEEE 1228-1994

(Software Safety Plans) [IEEE 1994], IEEE 1219-998 (Software Maintenance)

[IEEE 1998].

Another class is the integrative definition of software quality as dependability,

which our research is based on. Avizienis, Lapire and the IFIP (International

 15

Federation for Information Processing) working group 10.4 on dependability

computing and fault tolerance proposed what is probably the most well known

collection of dependability concepts and definitions [IFIP WG10.4, Avizienis et. al.

2002, Lapire 1992]. The IFIP WG 10.4 defines dependability as the property of a

computer system such that reliance can justifiably be placed on the service it delivers

[IFIP WG10.4]. This definition first relates dependability to reliance on user services.

[Avizienis et. al. 2002] further defines dependability as a composite concept

consisting of several attributes and they present their definition of dependability

using a dependability tree shown in Figure 2.1. Depending on the application(s)

intended for the system, different emphasis may be put on different facets of

dependability which are viewed as the attributes of dependability (i.e., availability,

reliability, safety, confidentiality, integrity and maintainability). There are three

implications from this definition. First, the attributes of dependability enable the

properties which are expected from the system to be expressed. Second, the

impairments to dependability include faults, errors and failures. Certain impairments

occur when the delivered service deviate from fulfilling the expected system

functions. Third, to ensure the dependability of a software system requires the

combined utilization of certain engineering means which include fault prevention,

fault tolerance, fault removal and fault forecasting. The major strength of the

dependability concept is its integrative nature, which enables to put into perspective

the more classical notions of reliability, availability, safety, security, maintainability,

etc., which are now seen as attributes of dependability [Laprie 1998].

 16

Figure 2.1. The Dependability Tree

Other related work on software quality attributes includes the TRW

Characteristics of Software Quality study performed for the National Bureau of

Standards [Boehm et. al. 1978] which provides a general framework for reasoning

about software quality attributes; Gilb’s work on quality attribute specification and

management [Gilb 1976, Gilb 1988]; and the Fraunhofer-Maryland series of

dependability attribute reports [Rus et. al. 2003].

Firstly, the definitions we summarized above are mostly general and

qualitative. They are difficult to be applied and operated on realistic projects. To be

operational, a definition needs to be strictly related to the specific context it refers to

(the project scenarios and stakeholders). Secondly, they are mostly value-neutral and

stakeholder irrelevant. An example was provided at one point of the operation of the

NASA Earth Observation System Distributed Information System (EOSDIS). The

system operators were incentivized to optimize the system for liveness, which often

left the users with 2-week response times to queries. An example lose-lose user

response is to flood the system with whatever queries one might need results for at

 17

some point. In this case, managing to two different Reliability numbers, one for

liveness probability and another for (say) 10-minute response time probability,

would be better. And the alternative is to have a single value of Reliability that is

irrelevant or misleading to most of the stakeholders.

2.1.2 Relationships among Software Quality Attributes

[In 1998] maps common stakeholders’ primary concerns onto quality

attributes as shown in Figure 2.2. It also proposes an approach to identify and resolve

the conflicts among quality attributes based on product and process strategies. This

dissertation research extends the mapping by including a more comprehensive set of

stakeholder classes and quality attributes. It also proposes a value-based quality

model to perform tradeoff analysis among conflicting quality attributes and a value-

based process to achieve stakeholder mutually satisfying software quality

requirements.

Figure 2.2. Empirically First-Order Mapping of Stakeholders Primary
Concerns onto Quality Attribute

General
Public

Avoid adverse

Interoperator User Maintainer Developer Customer

Assurance

Interoperability

Usability

Performance Evolvability,
Portability

Cost,
Schedule

Reusability

Avoid current and
future interface
problems

Execute

effective

missions

Avoid low utility
due to

Cost-effective
product support
after development

Avoid non verifiable,
expendable, flexible,
reusable product;
Avoid the delay of
product delivery

Avoid overrun
budget and
schedule; Avoid
low utilization of
the system

and cost overrun

obsolescence;
cost-

operational

system
side-effects:
safety,
security/privacy

directly-

concerns

: Low rating probably situation-specific*

: New added relation after the data analysis * The data is based on win conditions
of 14 student digital library projects

General
Public

Avoid adverse

Interoperator User Maintainer Developer Customer

Assurance

Interoperability

Usability

Performance Evolvability,
Portability

Cost,
Schedule

Reusability

Avoid current and
future interface
problems

Execute

effective

missions

Avoid low utility
due to

Cost-effective
product support
after development

Avoid non verifiable,
expendable, flexible,
reusable product;
Avoid the delay of
product delivery

Avoid overrun
budget and
schedule; Avoid
low utilization of
the system

and cost overrun

obsolescence;
cost-

operational

system
side-effects:
safety,
security/privacy

directly-

concerns

: Low rating probably situation-specific*

: New added relation after the data analysis * The data is based on win conditions
of 14 student digital library projects

: Low rating probably situation-specific*

: New added relation after the data analysis * The data is based on win conditions
of 14 student digital library projects

 18

2.2 Software Quality Metrics, Assessment Frameworks and

Models

2.2.1 Software Quality Metrics

Reliability is an attribute of software quality. Traditional ways to measure

Reliability falls into two classes: 1) Time-based definitions; 2) Domain-based

definitions that are also dependent on the applications. The examples of the first

class are:

 Failures per time unit (failure intensity or failure rate)

 Mean Time To Failure (MTTF)

 Mean Time Between Failures (MTBF)

 The probability that the software will run for a given period of time without

failure.

The examples of the second class are:

 failures/1000 pages printed (Hewlett Packard for printers)

 failures/1000 transactions (for sales, bank and ATM systems)

 failures/1000 calls for telecommunication systems (for telephone companies)

Other metrics that support reliability assessment are: CPU time, elapsed

execution time, number of test runs, number of transactions, and number of failures

of different classes. Similarly, one of the typical ways to measure Performance is

system response time. An example is the system should response within 3 minutes.

 19

There are some limitations with such metrics for software quality attributes:

 Not all failures have the same impact; some of them can cause just a minor

inconvenience, while others could be mission critical or life critical; the

impact of a failure depends on the failure frequency and failure severity.

 They are value-neutral and scenario-independent so that they tend to be one-

size-fits-all metrics for a software system. In practice, such one-size-fits-all

metrics are not achievable as discussed in section 1.2.

2.2.2 Software Quality Assessment Frameworks and Models

The classical reliability models summarized in [Lyu 1996] include the

follows:

 Exponential Failure Time Class of Models

 Jelinski-Moranda De-eutrophication Model

 Nonhomogeneous Poisson Process (NHPP) Model

 Schneidewind’s Model

 Musa’s Basic Execution Time Model

 Hyperexponential Model

 Weibull and Gamma Failure Time Class of Models

 Weibull Model

 S-Shaped Reliability Growth Model

 Infinite Failure Category Models

 Duane’s Model

 Geometric Model

 20

 Bayesian Models

 Musa-Okumoto Logarithmic Poisson

 Littlewood-Verrall Reliability Growth Model

The above reliability models assume that each failure and defect is equally important.

Based on the integrative definition of software quality as dependability,

Koopman and Maderia describe the problem of dependability benchmarking and

prediction as a grand challenge in [Koopman 1999]. One of the two challenges they

propose is to be able to predict the dependability of a system before it is deployed.

And the dependability benchmark suites should include specifications, measures,

workload, fault load, instrumentation, procedures and rules.

Madeira and Koopman in [Madeira 2001] try to develop a benchmarking

framework for dependability evaluation based on the IFIP WG 10.4 dependability

exploration. They intend to develop a framework integrating the measurement

techniques and the collection of key components of dependability evaluation, which

allows the quantification of dependability attributes or the characterization of the

systems in well-defined dependability classes. Their dependability benchmarking

dimensions include factors such as product vs. process, life cycle phases, user

perspective, workload, upsetload, etc. They aim to provide a uniform, repeatable and

comparable way of evaluating the behavior of components and computer systems in

the presence of faults.

Wilson et. al. in [Wilson 2002] seek to enable comparison of different

computer systems in the dimensions of availability, data integrity, disaster recovery

and security. They develop a dependability comparison framework using different

 21

criteria for different applications. Their application types include transaction

processing, message handling, process control, analytical types, and search and

retrieval. Furthermore, they define classes for each application type whose

boundaries are based on the natural breakpoints in the spectrum of user-perceived

requirements. The highest class is always perfect behavior, whether or not it’s

achievable with current technology.

Arlat in [Arlat 2001] describes a benchmarking framework specification for

the availability attribute of software quality. The specification distinguishes five

system classes: transparent to user, retryable workload, delayable workload, reduced

impact of failure, and nothing special. They apply a collection of availability factors

with various criteria within each system class. The proposed criteria (minimum

standards, required disclosures and comparative measurements) should meant not

only to characterize a target system (belonging to a given class) with respect to

specific availability factors; but also to be testable. And each criteria has its own

evaluation method.

Rus et. al. in [Rus et. al. 2002] propose a series of steps to evaluate software

quality achievement technologies aiming at assessing and improving software quality.

Other related work on software quality metrics and assessment frameworks

includes the GE Software Quality Metrics study for the Air Force [McCall et. al.

1977] which incorporates 11 criteria encompassing product operation, product

revision, and product transition; the European COQUAMO project [Kitchenham

1989]; IBM’s CUPRIMDSO approach [Radice 1985]; Hewlett Packard’s FURPS

 22

approach [Grady 1992a, 1992b]; the CMU Software Engineering Institute’s

Architecture Attribute Analysis program [Bass 1998].

All the above assessment frameworks and processes are only targeting at

evaluating or comparing the quality of software systems. Part of our goal is similar,

but we expand the scope beyond software quality measurement by using the software

quality metrics to drive the development process. Our framework aims to find the

optimal level of software quality investments based on the stakeholders’ value

propositions; and to achieve/monitor and control a software system’s quality through

the cost-benefit analysis of quality attributes. Thus our software quality analysis

framework covers the following four aspects: quality attribute definitions, metrics,

cost-benefit analysis model and process strategies.

The following two are the most compatible and complementary with our

research objectives in that both of them argue about the importance of stakeholder

involvement into the dependability assessment.

Huynh et al. in [Huynh 2003] propose a Center of Mass (COM) model to

represent their view of software quality/dependability as a multi-attribute and multi-

stakeholder concept. They use utility to represent the values of quality attributes,

weights to represent the importance of an attribute to a stakeholder through

stakeholder survey. And they add “confidence” to the stakeholders’ answers. Then

they can draw the COM model for each stakeholder’s quality needs and evaluate

whether the current system quality satisfies all the stakeholders’ expectations.

However, it doesn’t provide a solution to avoid the one-size-fits-all metrics for

stakeholders to define their software quality requirements.

 23

The Unified Dependability Model (UMD) proposed in [Basili 2004] aims to

establish a common language for discussing a variety of software

quality/dependability attributes and to make them measurable. Stakeholders specify

their needs by identifying, for the system or a specific service (scope), potential

failures and hazards (issue), their tolerable manifestations (measure), the possible

external causes (adverse conditions, attacks, etc.) that can create an unreliable system,

and the expected system reaction to mitigate the issues impact over the stakeholders.

However, it does not discuss how to reconcile the stakeholders’ value propositions

on software quality/dependability attributes, how to avoid the one-size-fits-all

metrics in defining quality attribute requirements, or how to define the appropriate

levels of quality attribute requirements. It only provides stakeholders a template to

present their quality requirements.

Furthermore, neither COM model nor UMD discusses how to use the metrics

and model to drive the software quality achievement process. Nevertheless, both the

COM model and the UMD can be complementary and integrated with our software

analysis framework to form a set of “combined” frameworks for modeling software

quality.

2.3 Process Strategies for Software Quality Achievement

The current software quality achievement process strategies can be

categorized into two classes: fault avoidance and fault tolerance [Sommerville 2004].

Fault avoidance means that the system is developed in such a way that human error

 24

is avoided and thus system faults are minimized. Thus the development process is

organized so that faults in the system are detected and repaired before delivery to the

customer. For instance, verification and validation (V&V) techniques are used to

discover and remove faults in a system before it is deployed. Fault tolerance means

that the system is designed so that faults in the delivered software do not result in

system failure.

Another categorization of software quality achievement process strategies is

based on opportunity tree [Boehm 2001, Madachy-Lee 2003] as shown in Figure 2.3.

It is compatible with the previous categorization. The software system quality is

improved by reducing the defect risk exposure. The quality achievement process

strategies can be categorized into two classes: 1) strategies to decrease defects (i.e.,

the probability of failure); 2) strategies to decrease defect impact (i.e., the size of loss

due to a system failure). The first class can be further categorized into defect

prevention strategies and defect detection and removal strategies. The second class

can be further categorized to value/risk-based defect reduction strategies and

graceful degradation strategies. Table 2.1 summarizes the software quality

achievement process strategies based on the opportunity tree categorization.

Figure 2.3. Software Quality Achievement Opportunity Tree

Decrease
Defect
Risk
Exposure

Continuous
Improvement

Decrease
Defect
Impact,
Size (Loss)

Decrease
Defect
Prob (Loss)

Defect Prevention

Defect Detection
and Removal

Value/Risk - Based
Defect Reduction

Graceful Degradation

CI Methods and Metrics

Process, Product, People

Technology

Decrease
Defect
Risk
Exposure

Continuous
Improvement

Decrease
Defect
Impact,
Size (Loss)

Decrease
Defect
Prob (Loss)

Defect Prevention

Defect Detection
and Removal

Value/Risk - Based
Defect Reduction

Graceful Degradation

CI Methods and Metrics

Process, Product, People

Technology

 25

Categories Sub-
categories Process Strategies

Defect Prevention

Failure Modes & Effects Analysis [Leveson 1995],
Fault Tree Analysis [Leveson 1995],
Prototyping,
User & Customer Involvement,
Process automation,
Reuse-oriented processes,
Process maturity,
Cleanroom process [Prowell 1999, Linger 1996]

Automated
Analysis

Completeness checking,
Consistency Checking (views, interfaces, behavior,
pre/post conditions),
Traceability checking,
Compliance checking (models, assertions,
standards)
Soft Goal approach [Chung 1999]

Reviewing
Peer reviews, inspections
Project Reviews
Pair programming Defect Detection

and Removal

Testing

Requirements/design V&V,
Inspections,
Formal specification & verification
Structural testing,
Unit/Functional test
Operational profile tests
Usage (alpha, beta) tests
Regression tests
Test automation

Value/Risk-Based
Defect Reduction

Value-based review [Lee 2005]
Value/Risk-based testing [Gerrard 2002, Ramler
et. al. 2006]

Graceful
Degradation Fault tolerance

Table 2.1. Software Quality Achievement Process Strategies Based on
Opportunity Tree

Among those process strategies to improve software quality, the cleanroom

software engineering process [Prowell 1999, Linger 1996], which emphasizes the

defect prevention and avoidance, is relevant to part of our research objectives. It

embodies a set of software engineering process principles as following:

 26

 Incremental development under statistical quality control

 The cleanroom process employs the incremental development in which each

increment is an iteration of the development process. It allows for continuous

process improvement using the measurements (e.g., consecutive error-free

random test cases, MTTF) taken during the incremental releases of the

software which indicate whether the development process is in control or not.

The process diagnosis and correction are necessary for the next iteration

when the process is out of control.

 Statistics-based software testing

The cleanroom process intends to validate the software requirements

(including the system quality and reliability requirements) by constructing the

system usage model which defines all possible uses of software functions and

their probability distributions. And the testing environment is also

statistically representative of the real operational environment. The testing

and certification team can define the system usage in terms of Markov

models which enables the automatic test case generation.

 Mathematics-based software engineering for correct software designs

The cleanroom process treats the software program as a special case of a

mathematical function. Since each function maps inputs onto outputs. The set

of all possible inputs is treated as the function domain and the set of all

correct outputs is the function range.

The University of Toronto’s Soft Goal approach [Chung 1999] presents a

framework for representing and analyzing non-functional requirements (NFRs) using

 27

the software goal approach. It proposes a tool based on Non-Functional

Requirements (NFRs) to achieve conflicting goals by decomposing the goals,

analyzing design tradeoffs, rationalizing design decisions, and evaluating goal

achievement. It also illustrates how the NFR framework helps the developer to deal

with non-functional requirements and to drive the software development process

rationally. Since it focuses on requirements traceability with more emphasis on

incorporating changes in NFRs, it helps detect defects systematically and supports

the process of corresponding changes in design and implementation rather than

resolving conflicts among different stakeholders. Therefore, it does not consider

stakeholders with different concerns and dependencies on quality attributes.

However, we believe that the sensible way of approaching software quality is

to define its achievement from the perspectives of different stakeholders. Neither the

cleanroom process nor the Software Goal approach considers the stakeholders’ roles

and their value propositions so that their metrics for the quality attributes of the

software system tends to be one-size-fits-all.

Value-based review [Lee 2005] , risk-based testing [Gerrard 2002], and

value-based testing [Ramler et. al. 2006] are process strategies that are the most

compatible with our research objective. [Lee 2005] proposes a value-based review

procedure and shows the payoff of value-based review checklist and procedure

compared with the value-neutral ones. [Gerrard 2002] introduces the risk-based

testing process strategy and its applications in E-business for achieving various

quality objectives. [Ramler et. al. 2006] describes the practices supporting the

management of value-based testing and outlines a framework for value-based test

 28

management. They focus on a specific stage of software development rather than the

entire development life cycle.

2.4 Value-Based Software Engineering (VBSE) Research

and Its Addressal of Software Quality Challenges

Determining whether software is sufficiently correct requires understanding

both the level of software quality required for a particular application and the level of

quality provided by the software. Further, the level of quality is multidimensional:

for example, some applications depend on low latency but can tolerate low precision;

in other applications precision is critical but latency is not. It follows that software

that is acceptable in one situation may be deficient in another [Shaw 2002]. This

view of software quality is rooted in the value proposition of engineering.

Engineering seeks timely, cost-effective solutions to practical problems,

preferentially solutions based on results that are well grounded in mathematics and

science. This entails reconciling conflicting constraints and making design decisions

with limited time, knowledge, and resources. This sets the objective of software

engineering as creation of overall value, not simply the creation of functional and

extra-functional capability. For instance, the user-centered design must consider the

needs and preferences of users. This blurs the line between correctness and quality,

because different users have different needs, their needs change over time, and they

may be inarticulate about the differences between preferences that reflect

dissatisfaction and preferences that reflect actual failure.

 29

As different stakeholders depend on different system capabilities in different

situations, software quality is necessarily a multi-attribute construct whose attribute

values are situation-dependent. Based on the above observations, researchers have

developed, with encouraging results, general frameworks for reasoning about various

aspects of software quality. At the Economics-Driven Software Engineering

Research Workshop [Sullivan et. al. 1999-2005] and elsewhere [Reifer 2002,

Nejmeh 2002], researchers have developed general frameworks for making software

engineering decisions about enhance the value of delivered software systems. In

addition to our work, other EDSER contributions that explicitly address quality

aspects include:

 Carnegie Mellon University’s work on value-based security investment

analysis [Butler 2002], warranty models for software [Li 2002], and value-

based software fault detection [Raz 2001].

 The University of Virginia’s application of real-options theory to the value

of modularity [Sullivan 1999] and application of utility theory and

stochastic control approaches to reliable delivery of computational service

[Cai 2002].

For example, [Butler 2002] develops a technique for selecting an appropriate

suite of security technologies for a particular computer installation. Different

installations must protect different resources; they have different budgets and

different concerns about security threats. Selection of security technology for an

installation should begin with a quantitative analysis of that installation's risks, but

the staff is usually not able to quantify either the frequency of possible attacks or the

 30

consequences of a successful attack. Butler adapts the techniques of multi-attribute

decision theory to create a risk analysis technique that elicits subjective comparisons

that the installation staff is able to make and convert these comparisons to

quantitative figures of merit that can be used for subsequent analysis. Given this

analysis, Butler considers the countermeasures available in the marketplace.

Combining threat analysis with countermeasure information, she identifies candidate

technologies, performs sensitivity analysis, and iterates the analysis with the security

staff of the installation. The process leads both to recommendations for security

technology acquisition and to deeper understanding of security issues on the part of

the installation security staff.

However, none of the above provides a complete value-based framework to

bridge the gap between stakeholder needs and the quality achievement for a software

project.

In [Aurum et. al. 2005], Boehm presents an overview and agenda for Value-

Based Software Engineering (VBSE) in Chapter 1. He discusses the seven key

elements that provide candidate foundations for value-based software engineering

with a case study in Chapter 6. In Chapter 2, he proposes an initial “4+1” theory of

Value-Based Software Engineering (VBSE). The engine of the “4+1” theory is the

stakeholder win-win Theory W, which addresses the questions of “which values are

important?” and “how is success assured?” for a given software engineering

enterprise. The four additional theories that it draws upon are utility theory (how

important are the values?), decision theory (how do stakeholders’ values determine

decisions?), dependency theory (how do dependencies affect value realization?), and

 31

control theory (how to adapt to change and control value realization?). After

discussing the motivation and context for developing a VBSE theory and the criteria

for a good theory, the chapter discusses a seven-step process-oriented expansion of

the “4+1” VBSE theory framework for defining, developing, and evolving software-

intensive systems. It also illustrates the application of the theory to a supply chain

system example.

The Value-Based Software Quality Achievement (VBSQA) process proposed

in the dissertation research is highly compatible with the general “4+1” VBSE theory,

but focuses on reasoning about the software quality attributes and achieving quality

goals using the stakeholder/value-based approach.

 Other value-based view of software quality includes [Emam 2003], which

investigates the Return On Investments (ROI) of software quality. It emphasizes the

pre-release and post-release cost savings due to defect reduction in calculating the

profit and ROI. However, it does not take into account the business value that a

software system generates for its stakeholders at a certain quality level. And it does

not discuss various stakeholders’ dependencies on different quality attributes based

on their value propositions in a software project. In addition, defect corrective cost

only accounts for 21% of post-release software maintenance costs. Besides, 79%

costs are due to requirement changes including 25% adaptive, 50% perfective, and

4% perfective changes [Lientz-Swanson 1978].

 32

Chapter 3

Value-Based Software Quality Analysis Framework

The survey of the related literature in the area of software quality reveals that

despite the development of various software quality attribute modeling techniques

and their related analyses, the proper definitions and modeling of software quality

attributes from the perspectives of stakeholders’ value propositions appear to be

lacking. However, it’s critical to understand both the level of software quality

required for a particular application by its success-critical stakeholders and that level

provided by the software system. At the same time, a software quality achievement

process driven by stakeholders’ value propositions is also expected to achieve

software quality in a cost-effective way. Based on these observations, we propose the

stakeholder/value-based approach to leverage the software quality modeling and

analysis. These also enable us to use the value-based software quality attribute

definitions and models to drive a software development process to achieve

stakeholder mutually satisfactory software quality requirements.

In this chapter, the research foundation of Value-Based Software Quality

(VBSQ), a Value-Based Software Quality Analysis Framework, is described. The

framework is composed of VBSQ attribute definitions, a Value-Based Software

Quality Model (VBSQM), and a Value-Based Software Quality Achievement

(VBSQA) process. Section 3.1 presents the definitions and metrics of VBSQ

attributes. Section 3.2 describes the integrative VBSQM with its three components

 33

and the two usage scenarios of the VBSQM. Section 3.3 proposes the VBSQA

process.

3.1 Software Quality As Stakeholder Value

3.1.1 Stakeholders’ Views of Software Quality

In real world software development, there are many views of software quality

so that there also exist many ways to suboptimize its achievement on the incomplete

views. For instances, the freedom of personal health information in the health care

system will compromise the privacy of patients because the exposure of such

information may be abused by some agencies to check the patients’ medical or credit

history. However, overemphasis on privacy may also produce an unusable system.

An example is the SAL conference room scheduling system built by a CS577 project

team. The end users finally felt that the system is not so convenient to use by

imposing overwhelming privacy protection on each reservation since sometimes they

may want to know their neighboring reservations and discuss with each other to

adjust the reservation schedule in person. The automated test case generator

discussed in the Chapter 1 in [Aurum et. al. 2005] shows that overemphasis on

completeness in testing wastes resources since the value of the test cases usually

follows the Pareto 80-20 distribution.

Therefore we should reconsider the issue of software quality from a

promising perspective that has been developed over the past five years: the value-

based perspective. This perspective recognizes that technical decisions can often be

 34

made best when they are informed by explicit models of costs, risks, opportunities,

and benefits. These models allow one to determine how an engineering decision will

affect the ultimate value of a system, and thereby provide a rational approach to

making tradeoffs.

In the meantime, complex missions or projects involve a large and

heterogeneous group of stakeholders with various quality perspectives and different

(sometimes even conflicting) needs. Ideally, one would like to have a single quality

metric by which the development process could be driven, and by which the

contributions of each technology could be ranked. However, in practice, such a one-

size-fits-all metric is unachievable. Different systems have different success-critical

stakeholders, and these stakeholders depend on the system in different ways. For

example, the mean time between failures for a user depending on acceptable

response time will be different from the MTBF for an operator just depending on

system liveness (a real stakeholder value conflict on the Earth Observation System

Distributed Information System (EOSDIS)). Therefore, “quality” might have

different meanings for different software application domains, different software

systems. And even for the same system, different stakeholders might have different

views and definitions of its “quality”.

Thus, a critical first step in understanding the nature of software quality is to

identify the success-critical stakeholder classes for a software system, and to

characterize the relative strengths of their dependencies on various attributes of a

given information system. This involves answering three main questions:

 35

1. What are the primary quality attributes of a software system that success-

critical stakeholders depend on?

2. What classes of stakeholders exhibit different patterns of dependency on

these attributes?

3. For each class of stakeholder, what is the relative strength of their

dependency on each attribute?

Based on the understanding of the stakeholders’ dependency on quality

attributes, again ideally, one would like to derive a set of attribute weights that could

be combined into a single metric that could be used as the criterion for evaluating

this (kind of) system’s quality achievement. However, the strengths of such

dependency may vary by operational context or mission scenarios so that the

traditional value-neutral quality metrics and models become unsuitable.

Finally, the increasing pace of software system change requires more

lightweight and adaptive processes, while the increasing mission-criticality of

software systems requires more process predictability and control, as well as more

explicit attention to business or mission values. Thus we aim to propose a software

development process as a guide to help project stakeholders achieve their

expected/desired levels of quality attributes using the value-based quality metrics,

models and methods.

3.1.2 VBSQ Attribute Definitions

VBSQ attribute definitions differ from traditional value-neutral definitions in

that they explicitly reflect the relevant success-critical stakeholders’ value

propositions. Traditional definitions such as Mean Time Between Failures (MTBF)

 36

for Reliability are referenced to the properties that stakeholders are relying on, such

as liveness, accuracy, or performance. Our definitions go beyond traditional one-

size-fits-all definitions of these attributes in reflecting their variability not only due

to changes in operational profiles but also due to differences in stakeholder value

dependencies. The definitions also try to bring some order to the definitions of such

terms as safety, survivability, security, and privacy.

3.1.2.1 Protection Attributes: Safety, Security, Privacy

There are many different definitions of “safety”, “security”, and “privacy”.

We have tried to propose definitions that are value-based, minimally ambiguous,

compatible with major current standards, and reasonably orthogonal. The resulting

orthogonal definition framework is shown in Table 3.1.

Causes of Risks
Nature of Risks Authorized Operations,

Nature Causes
Unauthorized Operations

Physical Risks Safety Safety, Security
Information Risks Privacy Privacy, Security

Table 3.1. A Definition Framework for Safety, Security, and Privacy

Current Definitions of Safety, Security, Privacy

In terms of the nature of the risks being protected, we use the IEEE-1228

[IEEE 1994] standard on Software Safety Plans as a baseline. It defines “software

safety” as “freedom from software hazards;” “hazard” as “a software condition that

is a prerequisite to an accident;” and “accident” as “an unplanned event or series of

events that results in death, injury, illness, environment damage, or damage to or loss

of equipment or property.”

 37

Thus, the definition of “safety” focuses on the protection of physical entities

(death, injury, illness, damage to equipment, property, or the environment). In

contrast, the definition of “Information Security” in NIST Special Publication 800-37

[Ross-Swanson 2003] focuses on protection of information assets. Its definition is

“The protection of information and information systems from unauthorized access,

use, disclosure, disruption, modification, or destruction in order to provide

confidentiality, integrity, and availability.” Protection of “confidentiality” includes

personal privacy and proprietary information. “Integrity” protects against improper

information modification and destruction, and includes non-repudiation and

authenticity. “Availability” protects timely and reliable access to information.

All of these protections are focused on the information-entity domain.

However, the information security practices in NIST 800-37 also include the value-

based activity of risk assessment. The standard metric for the criticality of an

information security threat or vulnerability is its risk exposure RE, defined as RE =

P(Loss) * M(Loss), where P(Loss) is the probability of lost value and M(Loss) is “the

magnitude of harm that a loss of confidentiality, integrity, or availability will have on

an agency’s operations, assets, or individuals should the exploitation occur.” Thus,

the scope of information security practice extends to the domain of physical entities

as well.

The counterpart hazard analysis metric for software safety is RE = P(hazard)

* M(hazard) [Leveson 1995]; it is the core metric for software risk management

[Boehm 1989] and is also applied to privacy losses.

 38

The risks involved in Privacy are generally limited to information-domain

financial or personal reputation losses rather than losses in the physical domain.

However, privacy protection for individuals also extends to constraints on violating

privacy by authorized operations as well as unauthorized operations, as shown in

Table 3.1.

Special Cases

There are some special cases discussed above that blur the orthogonality

presented in Table 3.1, and some additional ones as well. These are summarized

below.

 Information assets include both pure-information assets (data, programs) and

physical assets (storage devices, processors).

 Financial assets are property, but are now almost exclusively electronic

records in the information domain.

 The value of property loss may be measured financially within private

institutions, but in public institutions must consider fairness to the least-

advantaged stakeholders. Thus, a fire-dispatching algorithm to minimize the

financial value of property loss that saves a few rich people’s houses while

letting many poor people’s houses burn is not an acceptable solution for a

public institution.

 The financial value of a human life is too controversial a concept to be

merged with the financial value of property, and is generally considered

separately in practice. Some partial exceptions are voluntary contracts such

as insurance policies.

 39

 Providing security protection from unauthorized operations must also

consider protection from vulnerabilities caused by authorized operations or

natural causes, such as accidents that provide open access to secure

information.

Value-Based Definitions of Safety, Security and Privacy

In this context, our value-based definitions of safety, security, and privacy

are as follows:

A system provides Safety to the extent that it minimizes stakeholders’

expected loss of value due to death, injury, illness, or damage to equipment, property,

or the environment.

A system provides Security to the extent that it minimizes stakeholders’

expected loss of value from unauthorized access, use, disclosure, disruption,

modification, or destruction of information assets, including financial losses and loss

of value due to death, injury, illness, or damage to equipment, property, or the

environment.

A system provides Privacy to the extent that it minimizes stakeholders’

expected loss of value from authorized or unauthorized access, use, disclose, or

modification of stakeholders’ personal information, including financial losses and

loss of reputation.

3.1.2.2 Robustness Attributes: Reliability, Availability, Survivability

Reliability:

A system provides Reliability to the extent that it maximizes the probability

that the system will provide stakeholder-desired levels of service (liveness, accuracy,

 40

performance, others) with respect to a system’s operational profile (probability

distributions of transaction frequencies, task complexities, workload volumes, others)

over a given period of time.

Discussion. This definition implies that the Reliability probability number

will be different for the same system and operational profile (e.g., the percentage

distribution of the adverse natural conditions, adversarial actions and normal

conditions), if there are different stakeholders relying on the system for different

desired levels of service. This may seem untidy for those wishing to have a single,

value-neutral, one-size-fits-all Reliability number (e.g., with the definition of what is

counted as failure referenced to a one-size-fits-all severity scale). But the different

numerical outcomes add value by indicating to stakeholders that the system may be

sufficiently reliable for some stakeholders but not for others. This equates to a

stakeholder win-lose situation, which most often will turn into a lose-lose situation if

the losing stakeholders lose cooperative motivation or try to manipulate the situation

into a win for them and a losing situation for others. An example was provided at

one point of the operation of the NASA Earth Observation System Distributed

Information System (EOSDIS). The system operators were incentivized to optimize

the system for liveness, which often left the users with 2-week response times to

queries. An example lose-lose user response is to flood the system with whatever

queries one might need results for at some point. In this case, managing to two

different Reliability numbers, one for liveness probability and another for (say) 10-

minute response time probability, would be better. And the alternative is to have a

single value of Reliability that is irrelevant or misleading to most of the stakeholders.

 41

The major practical implication of this situation is that any Reliability

numbers furnished to stakeholders need an accompanying definition of the

assumptions about operational profiles and stakeholder values used in deriving the

numbers.

Availability:

A system provides Availability to the extent that it maximizes the fraction of

time that the system will provide stakeholder-desired levels of service with respect to

a system’s operational profile.

Discussion. As with Reliability, a system’s Availability number will vary

across stakeholders with different desired levels of service (it also varies across

different operational profiles). Where MTBF and Mean Time to Repair (MTTR) are

relevant, Availability can be expressed as MTBF/(MTBF + MTTR).

The definition of Reliability and Availability assume a fixed value associated

with the term “desired level of service” (such as full-service liveness or 1-second

response time). From a value standpoint, their maximizing of the probability or

fraction of time that the system provides this level of service is equivalent to

minimizing the risk exposure RE due to losses in providing the desired level of

service. The Availability version of RE is generally preferred, since it is sensitive to

MTTR while the Reliability version is not. Since the values of Reliability and

Availability are scenario-dependent (as may be the magnitude of loss), the overall

RE is generally a probability-weighted sum of the scenarios’ risk exposures:

RE = SS
S

S LossMLossPP)()(⋅⋅∑

(S – Scenario)

 42

Survivability:

However, frequently the stakeholders will prefer a reduced level of service

(such as core-capability liveness or 3-second response time) to having no service at

all. An alternative way to maximize the system’s expected value or minimize its risk

exposure is to provide reduced-loss fallback capabilities when the full desired level

of service is unachievable. This situation provides a definition of Survivability:

A system provides Survivability to the extent that it maximizes the total

expected value obtained from achieving stakeholder-desired levels of service and

from reduced levels of service when the desired levels of service are unachievable.

The risk exposure RE associated with Survivability is defined in terms of the

probabilities and magnitudes of reduced levels of service for each scenario, SRP / and

RSM :

RE =))()((/∑∑ ⋅⋅
RS

RSSR
S

S LossMLossPP

(S – Scenario, RS – Reduced Levels of Service)

3.1.2.3 Quality of Service Attributes: Performance, Accuracy, Usability

Performance:

A system provides Performance to the extent that it maximizes the value of

processed information achievable within the available resources (i.e., processors,

storage devices, communication bandwidth, etc.) being used to process the system’s

workload (the volume and distribution of requested services/functions over a given

time period). For information utilities in which value cannot be determined (e.g.,

Google), an alternate definition is that a system provides Performance to the extent

 43

that it provides stakeholders with their desired information with minimum utilization

of limited resources and response time.

Discussion. Different stakeholders will have different values for different

aspects of the system performance (e.g., response time, degree of accuracy) since

they depend on the system in different ways. Furthermore, even the values desired by

the same stakeholder can vary with the operational context or mission scenarios.

Thus a one-size-fits-all metric for system performance is inadequate. In some cases

in which different performance levels are differently priced, total system revenue can

serve as a proxy for value of processed information.

Accuracy:

As with response time, accuracy is a value-neutral metric used as an

acceptability level in such value-based attributes as Reliability and Performance. A

system provides Accuracy to the extent that it minimizes the difference between

delivered computational results and the real world quantities that they represent.

Discussion. There are several accuracy metrics, including RMS (Root Mean

Square), absolute value, median or mode. Consistency is a sub-attribute of accuracy;

a system’s results can be useful for comparative analysis (tradeoffs, make vs. buy) by

being consistent within some uniform bias, even if not being exactly accurate.

Usability:

A system provides Usability to the extent that it maximizes the value of a

user community’s ability to benefit from a system’s capabilities with respect to the

system’s operational profile (probability distributions of transaction frequencies, task

complexities, workload volumes, others). User community here refers to the

 44

information brokers, information consumers and system controllers in Table C.3 (see

Appendix C).

Discussion. The measurement of Usability will be based on multiple factors:

avoidance of misuse, accessibility, controllability, understandability, ease of learning,

etc. A software system can be accessed in different ways by various stakeholders.

For instance, the system administrator may access an interface different than what

information consumers access. Therefore the measurement of Usability should vary

across stakeholders based on their usage of the system. Additionally it should also be

scenario-driven.

3.1.2.4 Other Attributes

Evolvability:

A system provides Evolvability to the extent that it maximizes the added

value achievable in modifying the system or component in desired/valued directions

within a given time period.

Discussion. Evolvability has several sub-attributes: structure,

understandability and verifiability. Various stakeholders will have different criteria

in assessing the evolvability of the software system since they depend on the system

in different ways. Furthermore the measurement of evolvability is scenario-driven. In

some scenarios, it becomes a special case such as portability.

Interoperability:

A system provides Interoperability to the extent that it maximizes the value

of exchanging information or coordinating control across co-dependent systems.

 45

Discussion. Interoperability has several sub-attributes: openness,

understandability and verifiability. Openness means to be compliant with open

interface standards. Similar to evolvability, interoperability is scenario-driven.

Correctness:

A system provides Correctness to the extent that its implementation precisely

satisfies its requirements and/or design specifications.

Discussion. Correctness is another value-neutral attribute used as an

acceptability level in such value-based attributes as Safety and Security. Various

stakeholders have different concerns about correctness. It is a direct concern for

developers or acquirers. However, acquirers will be more concerned about the

correctness of mission-critical requirements. Users may prefer a slightly incorrect

implementation of the requirements if it is easier to use.

Timeliness (Schedule):

A system provides Timeliness to the extent that it maximizes the value added

by developing new capabilities within a given delivery time. On the other hand, if

the set of desired capabilities is fixed, an alternate definition is that a system provides

Timeliness to the extent that it minimizes the calendar time required to deliver the set

of capabilities.

Discussion. This definition of Timeliness applies to both software/system

development and maintenance. For maintenance, Timeliness is highly correlated

with Evolvability. One approach to achieving Timeliness is the Schedule As

Independent Variable (SAIV) process. It involves stakeholders in prioritizing their

 46

desired features, architecting for ease of adding or dropping borderline features, and

incremental development of highest-priority features [Boehm, et. al. 2002].

Affordability (Cost):

A system provides Affordability to the extent that it maximizes the value

added by developing new capabilities within a given budget.

Discussion. This definition of Affordability applies to both software/system

development and maintenance. For maintenance, Affordability is also highly

correlated with Evolvability. One approach to achieving Affordability is the Cost As

Independent Variable (CAIV) process. It involves stakeholders in prioritizing their

desired features, architecting for ease of adding or dropping borderline features, and

incremental development of highest-priority features [Boehm et. al. 2002]. On the

other hand, if the set of desired capabilities is fixed, an alternate definition is that a

system provides Affordability to the extent that it minimizes the cost required to

deliver the set of capabilities.

Reusability:

A system provides Reusability to the extent that it maximizes the Return On

Investment (ROI) of reusing system capabilities in other products.

Discussion. Reusability is correlated with interoperability in that it depends

on several sub-properties such as openness and simplicity of interfaces. It frequently

works best within a domain-engineered product line architecture.

3.1.3 Value-Based Software Quality Metrics

Since different software systems have different stakeholders and there exist

various scenarios in a software system, the traditional one-size-fits-all software

 47

quality metric is not applicable. Based on the value-based definitions of software

quality attributes described in the previous section, the value-based metrics are

proposed to measure software quality achievement. The key elements of value-based

software quality metrics are summarized as follows:

1. Reflecting the success-critical stakeholders Si related to the project

2. Reflecting the software quality attributes Qj that success-critical stakeholders

are depending on

3. Related operational scenarios to each quality attribute Qj

4. A matrix as shown in Table 3.2 to track the stakeholder acceptable level ALj,

desired level DLj, stakeholder dependency Pij of quality attribute Qij and the

actual progress Aj in realizing the level of quality attribute Qj

Stakeholders
Dependencies Quality

Attributes
Related

Scenarios
Acceptable

Levels
Desired
Levels S1 S2 … Si … Sn

Actual
Levels

Q1 AL1 DL1 P11 P21 … Pi1 … Pn1 A1

Q2 AL2 DL2 P12 P22 … Pi2 … Pn2 A2

.

.

.

 .
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Qj ALi DLi P1i P2i … Pii … Pni Aj

.

.

.

 .
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Qn ALn DLn P1n P2n … Pin … Pnn An

Table 3.2. Value-Based Metrics for Software Quality Attribute

3.2 Value-Based Software Quality Model (VBSQM)

Different stakeholders depend on different software quality attributes (e.g.,

availability, safety, security or performance) in different ways under different

 48

situations. Thus the business case for software quality must deal with multiple

situation-dependent attribute values. However, in most organizations, proposed

investments in software quality compete for limited resources with proposed

investments in software and system functionality, speed of development, and other

system capabilities. The lack of good return-on-investment (ROI) models for

software quality causes difficulties for decision-makers in determining the overall

business case for software quality investments, in determining which software

quality investments are most cost-effective, and in determining how much software

quality investment is enough. As a result, investments in software quality and the

resulting system quality are frequently inadequate. Thus, software quality models

will need to support stakeholders in determining their acceptable and/or desired

levels for each quality attribute and estimating the cost, value, ROI and risk

exposures for achieving those. On the other hand, competitions among software

quality attributes also exist. Therefore, determining how much software quality

investment is enough will also need to support tradeoff analyses among different

software quality attributes. Along these lines, we develop a integrated Value-Based

Software Quality Model (VBSQM) for reasoning about software quality’s ROI and

performing combined risk analyses using the COCOMO II [Boehm et. al. 2000a],

COQUALMO [Steece et. al. 2002] models, and value-based approach. Section 3.2.1

introduces three components of the VBSQM. Section 3.2.2 proposes the two usage

scenarios of the integrated VBSQM.

 49

3.2.1 Components of VBSQM

The VBSQM integrates the cost estimating relationships (CER’s) from the

Constructive Cost Model COCOMO II; the software quality attribute estimating

relationships (QER’s) from the Constructive Quality Model COQUALMO; and the

value estimating relationships (VER’s) supplied by the system’s stakeholders. The

overall structure of the VBSQM is shown in Figure 3.1.

Figure 3.1. The Overall Structure of Value-Based Software Quality Model
(VBSQM)

In this section, we first summarize the empirical results on the relative cost of

achieving increasing levels of some attributes of software quality. Section 3.2.1.1

presents results from the calibration of the Constructive Cost Model (COCOMO) II

[Boehm et. al. 2000a] to 161 representative project data points. Section 3.2.1.2

shows related results from a COCOMO II extension called COQUALMO. It is based

on fewer project data points, but is calibrated to data on software defect introduction

Cost-Estimating Relationships (CERs)

Cost = f

Quality-Attribute-Estimating
Relationships (QERs)

Di = gi

⎥
⎦

⎤
⎢
⎣

⎡
attributesproject

(size), escapabilitiIP

⎥
⎦

⎤
⎢
⎣

⎡
attributesproject

s,investmentQuality

Time-phased

• IP capability investments

• Quality attribute levels Di

• Value components Vj

• Return On Investment
(ROI)

• Combined Risk Analyses

Time-phased
information
processing
capabilities

Value-Estimating Relationships
(VERs)

Vj = hj ⎥
⎦

⎤
⎢
⎣

⎡

iQ levels investmentquality
escapabiliti IP

Project
attributes

Time-phased
quality
investments

 50

and removal, showing the effects of investments in software defect detection via

automated analysis, peer review, and execution testing on delivered defect density.

Section 3.2.1.3 elaborates the relations between COCOMO II and COQUALMO

which we use as a bridge to construct the VBSQM. Section 3.2.1.4 then presents

example forms of value/utility functions relating value to achieved levels of software

quality attributes for various classes of stakeholders.

3.2.1.1 Software Cost Model: COCOMO II

An initial set of cost estimating relationships (CER’s) is provided by the

COCOMO II model. The COCOMO II CER’s enable users to express time-phased

information processing capabilities in terms of equivalent software size, and to

estimate time-phased software life cycle investment costs in terms of software size

and the project’s product, platform, people, and project attributes. Additional future

CER’s would include CER’s for COTS-related software costs, inventory-based

CER’s for hardware components and COTS licenses, and activity–based CER’s for

associated investments in training and business process re-engineering.

The core of the Constructive Cost Model (COCOMO) II is a mathematical

relationship involving 24 variables used to estimate the amount of effort in person-

months required to develop a software product defined by the variables. By

multiplying the project effort by its cost per person-month, one can also estimate the

project’s cost.

COCOMO II’s parameters include the product’s equivalent size in thousands

of lines of code (KSLOC) or a function-point equivalent; personnel characteristics

such as capability, experience, and continuity; project characteristics such as

 51

execution-time and storage constraints; and product characteristics such as

complexity, reusability, and required reliability.

The effect of each variable on project effort has been determined by a

Bayesian combination of expert judgement and multiple regression analysis of the

data from 161 completed projects representing a wide range of sizes and applications.

The regression analysis determined the size and significance of each parameter’s

effect on project effort. The effect of the “Required Software Reliability” (RELY)

variable on project effort is shown in Figure 3.2.

Figure 3.2. Software Development Cost vs. Required Reliability (RELY) Trade-
off

The RELY rating scale is also shown at the left of Figure 3.2, in terms of the defect

risk or impact of a defect on the product’s operational behavior and outcome. The

added effort for a Very High RELY project is the net result of rework savings due to

early error elimination and extra effort in very thorough off-nominal, model-based,

stress, and regression testing at the end of the project. Since the extra effort occurs

0.8 0.9 1.0 1.1 1.2 1.3

Slight
inconvenience

(1 hour)

Low, easily
recoverable

loss

Moderate
recoverable

loss

High
Financial

Loss

Loss of
Human Life

300 hours

10 hours

10K hours

300K hours

Defect Impact Rough MTBF (Mean Time Between Failures)

Commercial
quality leader1.10

In-house support software
1.0

Commercial
cost leader

0.92

0.82

Safety-critical
1.26

Relative Cost/Source Instruction

High

RELY
Rating

Very
High

Nominal

Low

Very
Low

0 12 22 34 54 Added Testing Time (%)

Early beta-test

0.8 0.9 1.0 1.1 1.2 1.3

Slight
inconvenience

(1 hour)

Low, easily
recoverable

loss

Moderate
recoverable

loss

High
Financial

Loss

Loss of
Human Life

300 hours

10 hours

10K hours

300K hours

Defect Impact Rough MTBF (Mean Time Between Failures)

Commercial
quality leader1.10

In-house support software
1.0

Commercial
cost leader

0.92

0.82

Safety-critical
1.26

Relative Cost/Source Instruction

High

RELY
Rating

Very
High

Nominal

Low

Very
Low

0 12 22 34 54 Added Testing Time (%)

0.8 0.9 1.0 1.1 1.2 1.3

Slight
inconvenience

(1 hour)

Low, easily
recoverable

loss

Moderate
recoverable

loss

High
Financial

Loss

Loss of
Human Life

300 hours

10 hours

10K hours

300K hours

Defect Impact Rough MTBF (Mean Time Between Failures)

Commercial
quality leader1.10

In-house support software
1.0

Commercial
cost leader

0.92

0.82

Safety-critical
1.26

Relative Cost/Source Instruction

High

RELY
Rating

Very
High

Nominal

Low

Very
Low

0.8 0.9 1.0 1.1 1.2 1.3

Slight
inconvenience

(1 hour)

Low, easily
recoverable

loss

Moderate
recoverable

loss

High
Financial

Loss

Loss of
Human Life

300 hours

10 hours

10K hours

300K hours

Defect Impact Rough MTBF (Mean Time Between Failures)

Commercial
quality leader1.10

In-house support software
1.0

Commercial
cost leader

0.92

0.82

Safety-critical
1.26

Relative Cost/Source Instruction

High

RELY
Rating

Very
High

Nominal

Low

Very
Low

0 12 22 34 54 Added Testing Time (%)00 1212 2222 3434 5454 Added Testing Time (%)

Early beta-test

 52

near the end, when the project is about at its average staffing level, it roughly

translates into an extra 54% of calendar time in thorough testing before fielding the

product. The regression analysis of the 161 projects produced a relative effort range

of 1.54 between projects reporting their required reliability (RELY) as Very Low

(the impact of a product failure was a slight inconvenience) and projects reporting a

Very High RELY rating (the impact of a product failure was a risk of loss of human

life in a safety-critical system). The t-value produced by the regression analysis for

the RELY variable was 2.602, well above the statistical significance level of 1.96 for

this sample size and number of variables [Boehm et. al. 2000a; page 169].

The corresponding effort multiplier relative to a Nominal value of 1.0 shows

the relative cost per source for each rating level, assuming that the rating levels of

the other variables stay constant. Thus, for example, the relative cost of a safety-

critical product will be 26% higher than a nominal in-house software product. This

value represents the net effect of the added effort to prevent, detect, and fix more

software defects versus the reduced rework effort resulting from earlier defect

detection.

The above results are summarized in Figure 3.2. Based on data from a subset

of the projects, we have also added a rough scale of product Mean Time Between

Failures (MTBF) corresponding to the relative impact of product failures, going from

1 hour MTBF for Very Low RELY to 300K hours MTBF for Very High RELY,

which are also shown in Figure 3.2. For instance, the low, easily recoverable losses

associated with a Low RELY rating correspond to an MTBF of 10 hours, or roughly

 53

one serious failure per day; while a high RELY rating corresponds to an MTBF of 10,

000 hours, or about 1.14 years.

3.2.1.2 Software Quality Model: COQUALMO

An initial set of software quality attribute estimating relationships (QER’s) is

provided by the COQUALMO model. As an extension of the COCOMO model,

COQUALMO enables users to specify time-phased levels of investment in

improving dependability attributes, and to estimate the resulting time-phased

dependability attribute levels. The current version of COQUALMO estimates

delivered defect density in terms of a defect introduction model estimating the rates

at which software requirements, design, and code defects are introduced, and a

subsequent defect removal model. The overall structure of the COQUALMO model

is shown in Figure 3.3.

Figure 3.3. The Overall Structure of COQUALMO Model

Defect removal profile levels
Automated Analysis,
Peer Reviews,
Execution Testing and Tools

COCOMO II
COQUALMO

Defect
Introduction

Model

Defect
Removal

Model

Software Size estimate

Software platform,
project, product and
personnel attributes

Software development effort,
cost and schedule estimate

Number of residual defects,
Defect density per unit of size

Defect removal profile levels
Automated Analysis,
Peer Reviews,
Execution Testing and Tools

COCOMO II
COQUALMO

Defect
Introduction

Model

Defect
Removal

Model

Software Size estimate

Software platform,
project, product and
personnel attributes

Software development effort,
cost and schedule estimate

Number of residual defects,
Defect density per unit of size

Defect removal profile levels
Automated Analysis,
Peer Reviews,
Execution Testing and Tools

COCOMO II
COQUALMO

Defect
Introduction

Model

Defect
Removal

Model

Software Size estimate

Software platform,
project, product and
personnel attributes

Software development effort,
cost and schedule estimate

Number of residual defects,
Defect density per unit of size

 54

The defect introduction rates are determined as a function of calibrated

baseline rates modified by multipliers determined from the project’s COCOMO II

product, platform, people, and project attribute ratings. For example, a Very Low

rating for Applications Experience will lead to a significant increase in requirements

defects introduced, and a smaller increase in code defects introduced. The defect

removal model estimates the rates of defect removal as a function of the project’s

levels of investment in automated analysis tools, peer reviews, and execution testing

and tools. Its rating scales are shown in Table 3.3 ranging from Very Low to Extra

High.

The calibrated baseline (i.e., nominal) defect introduction rates for

COQUALMO are 9 requirement defects/KSLOC, 19 design defects/KSLOC, and 33

code defects/KSLOC. For simplicity and to avoid unwarranted precision, we have

rounded these to 10, 20 and 30, for a total of 60 defects/KSLOC introduced [Boehm

et. al. 2000a]. Starting from this baseline, the COQUALMO estimation of reduced

delivered defect density as a function of the composite defect removal rating is

shown in Figure 3.4. The defect removal model estimates the rates of defect removal

as a function of the project’s levels of investment in automated analysis tools, peer

reviews, and execution testing and tools. Its rating scales are shown in Table 3.3.

Initial CER’s are available to estimate the costs of these investments. The Very Low

composite defect removal rating leaves delivered defect density to 60 Delivered

Defects/KSLOC (DDK), while an Extra High rating can reduce the delivered defect

density at only 1.6 DDK [Boehm et. al. 2000a; page 266]. The RELY Cost-

Estimating Relationship (CER) in COCOMO II discussed in section 3.2.1.1 is

 55

available to estimate the costs of these investments, as its Very Low to Very High

rating levels correspond to the horizontal rows of defect reduction investments in

Table 3.3. Note that the composite defect removal rating is an integration of the

ratings for automated analysis tools, peer reviews, and execution testing and tools.

Note also that it assumes nominal rates of defect introduction: a strong defect

prevention program can reduce delivered defect densities by another factor of 60 to

100. The RELY Cost-Estimating Relationship (CER) in COCOMO II discussed in

section 3.2.1.1 is available to estimate the cost of these investments, as its Very Low

to Very High rating levels correspond to the horizontal rows of defect reduction

investments in Table 3.3. For mixed levels of investment in analysis, reviews, and

testing, COQUALMO DDK estimates and an equivalent RELY rating can also be

determined.

The current COQUALMO defect introduction model is calibrated to the total

number of defects introduced, including bad fixes. This is a reasonable first

approximation, but is insensitive to the defect removal rate. An example extension

will be a more precise treatment of “bad fixes”, which average about 7% of all defect

fixes and over 10% of defect fixing effort.

Further COQUALMO extensions will refine its current QER’s, and will

provide further QER’s for estimation of additional dependability attributes such as

performance and security [Reifer 2003].

 56

Figure 3.4. COQUALMO Reduced Delivered Defects Estimates at Nominal
Defect Introduction Rates

Table 3.3. COQUALMO Defect Removal Investment Rating Scales

3.2.1.3 Relations Between COCOMO II and COQUALMO

For reliability, the COCOMO II Required Reliability (RELY) CER provides

an initial bridge to software quality estimation, expressed in terms of the operational

impact of software defects (see Figure 3.2). Participants at a USC industry

Rating Automated Analysis Peer Reviews Execution Testing
and Tools

Very Low Simple compiler syntax checking. No peer review. No testing.

Low Basic compiler capabilities Ad-hoc informal walkthroughs Ad-hoc testing and debugging.

Nominal
Compiler extension
Basic requirements and design
consistency

Well-defined sequence of
preparation, review, minimal
follow-up.

Basic test, test data management,
problem tracking support.
Test criteria based on checklists.

High
Intermediate-level module and
inter-module;
Simple requirements/design

Formal review roles with well-
trained participants and using
basic checklists, follow up.

Well-defined test sequence tailored to
organization.
Basic test coverage tools, test support
system.
Basic test process management.

Very High

More elaborate
requirements/design
Basic distributed-processing and
temporal analysis, model
checking, symbolic execution.

Basic review checklists, root
cause analysis.
Formal follow-up using historical
data on inspection rate,
preparation rate, fault density.

More advanced test tools, test data
preparation, basic test oracle support,
distributed monitoring and analysis,
assertion checking.
Metrics-based test process
management.

Extra High
Formalized specification and
verification.
Advanced distributed processing

Formal review roles and
procedures.
Extensive review checklists, root
cause analysis.
Continuous review process
 improvement..
Statistical Process Control.

Highly advanced tools for test oracles,
distributed monitoring and analysis,
assertion checking
Integration of automated analysis and
test tools.
Model-based test process
management.

60

28.5

14.3
7.5

3.5 1.60

10

20

30

40

50

60

70

VL Low Nom High VH XH

Delivered Defects
/ KSLOC

Composite Defect Removal Rating

60

28.5

14.3
7.5

3.5 1.60

10

20

30

40

50

60

70

VL Low Nom High VH XH

Delivered Defects
/ KSLOC

Composite Defect Removal Rating

 57

government Affiliates’ Workshop translated this bridge into a rough experience-

based QER for software reliability in terms of Mean Time Between Failure (MTBF)

in hours (see Figure 3.2). Figure 3.2 also shows the corresponding effort multipliers

(relative levels of effort or cost) to achieve the associated reliability levels, as

calibrated from experience data on 161 diverse software projects. For example,

developing software for users with low, easily recoverable losses (such as PC users)

results in an MTBF of 10 hours (roughly a daily crash) and a relative cost of 0.92.

Developing software for financial organizations, where crashes can cause high

financial losses, results in an MTBF of 10K hours (417 days or somewhat over a

year between crashes) and a relative cost of 1.10.

The relationship between COCOMO II and COQUALMO is based on the

fact that the COQUALMO rating scales for levels of investment in defect removal

via automated analysis, peer reviews, and execution testing and tools have been

aligned with the COCOMO II RELY rating levels shown in Figure 3.2. The

correspondence between COCOMO II RELY ratings and COQUALMO defect

removal profile ratings is based upon a mapping between the activity analysis

behind the COCOMO RELY effort multiplier (see Appendix A) and the

COQUALMO defect removal activity ratings (see Appendix B). One can thus

compare the levels of investment for the Low and High COCOMO II rating levels

with the tools and activities assumed to be used at these levels in the COQUALMO

rating scales. To cover the COQUALMO Extra High rating level in Table 3.3, we

have provisionally extended the reliability rating scale in Figure 3.2 to Extra High,

with a corresponding MTBF of 1M hrs and a relative cost of 1.56. This is based on

 58

some experiences with thorough independent verification and validation efforts,

which added about 30 percent to software costs. For ratings between Very Low and

Extra High, VBSQM provides two ways to apply this relationship between

COCOMO II and COQUALMO. One is to specify a COCOMO II RELY rating and

assume the same investment levels in automated analysis, peer reviews, and

execution testing will be applied, in which case the corresponding relative effort and

MTBF will be used. Or, we can specify our own investment levels for automated

analysis, peer reviews, and execution testing and tools. Based on the specified effort

distribution among the three categories of defect removal techniques, we can

calculate a COQUALMO-based weighted average of these levels as the equivalent

COCOMO II RELY rating. We could also use other cost models such as Knowledge

Plan, PRICE S, SEER, and SLIM in place of COCOMO II, to the extent that they

have a similarly defined RELY CER. The relationship between COCOMO II and

COQUALMO also produces a way to relate investments in software reliability to

resulting values of the delivered system’s Mean Time Between Failures (MTBF), as

shown in Figure 3.2.

3.2.1.4 Software Stakeholder Value Models

This section presents some example forms of utility functions relating the

value of achieving levels of software quality attributes for various classes of

stakeholders. Section 3.2.1.4.1 provides two functional forms relating software

system availability (an attribute of Robustness) to stakeholder value. Section

3.2.1.4.2 elaborates and extends on the work in [Snir 2003] showing functional

forms relating achieved information response time (an attribute of Performance) to

 59

stakeholder value. In the e-service domain, the major Value Estimating Relationships

(VERs) involve losses in market share due to insufficient software quality and/or

delayed product delivery. Section 3.2.1.4.3 presents value/untility functions supplied

by project critical stakeholders to relate software quality levels or product delivery

time to resulting benefit flows and value earned.

3.2.1.4.1 Value Estimating Relationships (VERs): Availability

The VBSQM needs initial software quality VERs supplied by the system’s

stakeholders, to relate estimated cost investments and software quality levels to

resulting benefit flows and ROI estimates. VBSQM VERs assume that stakeholders

have performed a baseline business-case analysis for various components of value

(profit, customer satisfaction, on-time performance) as a function of the time-phased

information-processing capabilities at baseline software quality attribute levels.

VBSQM aggregates these value components into an overall time-phased value

stream, comprising the time-phased costs (the cost of IP capabilities plus software

quality investments) and normalized using present-value formulas to produce a time-

phased ROI profile.

A typical value-versus-availability relationship can appear as a production

function as shown in Figure 3.5. Below a certain level of investment, as with the

gains in availability don’t avoid bankruptcy. Beyond this level, there is a high-

returns segment, but at some point, incremental gains in availability don’t affect

users’ frustration levels, resulting in a diminishing-returns segment. The initial

VBSQM VERs involve simple relationships such as the operational cost savings per

delivered defect avoided, or the loss in sales per percent of the system downtime,

 60

shown as the linear approximation of a particular segment of production function in

Figure 3.5. Many organizations providing e-services also use such relationships to

measure loss of revenue due to system downtime. For example, on the higher side,

Intel estimates its loss of revenue as $275K ($US) for every hour of order-

processing-system downtime; other companies estimate $167K (Cisco), $83K (Dell),

$27K (Amazon), $8K (E*Trade), and $3K (Ebay).

Figure 3.5. Typical Value Estimating Relationships (VERs) of Availability

3.2.1.4.2 Value Estimating Relationships (VERs): Operational Response Time

Stakeholder utility functions relating the value of receiving processed

information to operational response time usually reflect the stakeholder value added

by being able to make time-critical commitments based on better knowledge of the

state of nature. A classic example was the use by the Rothschild family in London to

obtain rapid information about the outcome of the Battle of Waterloo in 1815. When

they were the first to learn of England’s victory, they made a double killing by

Va
lu

e
($

)

High-Returns

Production Function Shape

Linear
Approximation

Investment Diminishing Returns 1.0

Full Value

Revenue loss per hour system downtime:
[Demillo 2001]
Intel: $275K
Cisco: $167K
Dell: $83K
Amazon.com: $27K
E*Trade: $8K
ebay: $3KAshton-Tate DBase-4

Va
lu

e
($

)

High-Returns

Production Function Shape

Linear
Approximation

Investment Diminishing Returns 1.0

Full Value

Revenue loss per hour system downtime:
[Demillo 2001]
Intel: $275K
Cisco: $167K
Dell: $83K
Amazon.com: $27K
E*Trade: $8K
ebay: $3K

Va
lu

e
($

)

High-Returns

Production Function Shape

Linear
Approximation

Investment Diminishing Returns 1.0

Full Value

Revenue loss per hour system downtime:
[Demillo 2001]
Intel: $275K
Cisco: $167K
Dell: $83K
Amazon.com: $27K
E*Trade: $8K
ebay: $3KAshton-Tate DBase-4

 61

initially selling their shareholdings and causing shareholdings to plunge in value as

others interpreted their action to reflect knowledge of an English loss. They then had

time to quietly buy up the lower-price shares before the news generally arrived of

England’s victory.

The general shape of their utility function is shown in Figure 3.6. This shape

of utility function is generally characteristic of information brokers, mission-critical

users, and mission controllers in Table C.3. Having early and exclusive information

about the state of nature enables them act in advance to achieve gains or avoid losses.

Other examples are automobile drivers, military commanders, or urban fire-

equipment dispatchers. Early information enables them to make decisions and deploy

resources to maximum effect. As the window of opportunity closes, there is less time

to exploit the information and the value goes down, becoming relatively zero when

the window of opportunity to exploit the information closes.

Figure 3.6. Value of Information Timeliness for Information Brokers, Mission-
Critical Users, and Mission Controllers

Value of
Receiving
Information
V(T)

Time of Receiving Information T

 62

The shape of the curve in Figure 3.6 will vary by stakeholder and by situation.

For example, a farmer or storekeeper would not be able to benefit much from

advance information about the Battle of Waterloo and would have a flatter utility

function, while a newspaper publisher would realize different benefits than the

Rothschilds from near-term sale of newspapers and longer-term gains in reputation.

For some real-time mission controllers such as in spacecraft operations or

financial closing deadlines, the utility function V(T) becomes a step function as in

Figure 3.7. Here, having the information anytime before the deadline is equally

valuable, but having it after the deadline has no value.

Figure 3.7. V(T) for Real-Time Mission Controllers

For some non-critical information users, the value of information vs. time

may be relatively flat. For example, astronomical information or historical archives

will retain their value fairly uniformly as a function of time, as in Figure 3.8.

Figure 3.8. V(T) for Non-Critical Information Users

Value of
Receiving
Information
V(T)

Time of Receiving Information T

Value of
Receiving
Information
V(T)

Time of Receiving Information T

 63

Some information system administrators use step-function value structures to

enable users to buy prioritized information processing or information access. Thus,

for example, users wishing near-instant information access will pay a higher rate,

while users satisfied with one-hour, four-hour, or overnight response will pay lower

rates, as in Figure 3.9.

Figure 3.9. V(T) for Some Administrators

3.2.1.4.3 Value Estimating Relationships (VERs): Value Loss vs. System Delivery

Time

Since schedule is one of the software quality attributes, it is also a project

critical success factor to determine how much software quality investment is enough.

Thus project stakeholders have to be involved in determining the value estimating

relationships (VERs) for the system delivery time in different project business cases.

The initial VERs for system delivery time show different types of stakeholder

value/utility functions for relating the mission/market value loss vs. time of delivery.

They usually reflect the “cost of delay” in missed opportunities to make time-critical

commitments due to the delayed delivery of a software system. In this section, we

describe three types of value/utility functions for system delivery time. In this section,

Value of
Receiving
Information
V(T)

Time of Receiving Information T

 64

we describe three types of value/utility functions for system delivery time based on

different project business cases.

The usual shape of the value/utility function for the case of marketplace

competition is the classic S-shaped economic production function shown in Figure

3.10. This shape of utility function is generally characteristic of software projects

such as e-services and wireless networking infrastructure. Early delivery of the

system enables them to rapidly capture market share ahead of their competitors. As

the time of delivery passes a specific point, the market share diminishes and the

system value loss goes up rapidly until reaching a diminishing-returns point, when

there is very little market share left to lose.

Figure 3.10. Marketplace Competition (Internet Services, Wireless
Infrastructure): Value Loss vs. System Delivery Time

The shape of the value/utility function for the case of fixed-schedule event

support is shown in Figure 3.11. For software systems to support some fixed-

schedule events such as the Olympic games, a trade show or a Mars Rover launch

window, the value function VL(Td) becomes a step function. Here, system delivered

before the deadline loses no value, but missing the deadline loses all the value.

Market
Share
Loss
VL(Td)

System Delivery Time Td

Critical
Region

 65

Figure 3.11. Fixed-schedule Event Support: Value of On-time System Delivery

For off-line data processing systems, the user value loss vs. system delivery

time may be relatively flat. For example, scientific applications for astronomical

information or historical archives will retain their value fairly uniformly as a

function of delivery time, as shown in Figure 3.12.

Figure 3.12. Off-line Data Processing: Value Loss vs. System Delivery Time

3.2.2 Integrating Framework: Value-Based Software Quality Model

(VBSQM)

The VBSQM integrating the COCOMO II, COQUALMO and VERs

provides two usage scenarios to support software quality analysis from the

stakeholder/value perspectives. It helps to answer such questions as how much

Mission
Value
Loss
VL(Td)

System Delivery Time Tevent Td

User
Value
Loss
VL(Td)

System Delivery Time Td

 66

software quality investment is enough in terms of both ROI and combined risk

exposures. Section 3.2.2.1 presents the procedure of VBSQM software quality ROI

analysis. Section 3.2.2.2 describes the procedure of VBSQM combined risk analyses

of both software quality and market share erosion.

3.2.2.1 VBSQM Usage Scenario 1: Software Quality ROI Analysis

The integrated VBSQM framework can help project stakeholders and/or

decision-makers to quantitatively determine an appropriate software quality level for

a particular software project, project scenario class or software class. Such software

quality ROI analysis is based on the cost and generated value of software quality

investments. The ROI is computed as ROI = (Value – Cost)/Cost. The usage scenario

of the VBSQM ROI analysis is as following:

1. Use a checklist of software quality attributes to involve stakeholders in

prioritizing attributes of highest concern and usage scenarios.

2. Estimate software size in terms of value-adding capabilities.

3. Enter the size and baseline cost drivers into COCOMO II to obtain baseline

cost estimates.

4. Enter baseline and alternative software quality drivers into COCOMO II and

COQUALMO and obtain alternative cost and quality estimates.

5. Involve stakeholders in determining the appropriate form and parameters for

value estimation relationships.

6. Apply VBSQM to assess the costs, benefits, and ROI’s for the alternatives.

7. Iterate previous steps as appropriate.

 67

3.2.2.2 VBSQM Usage Scenario 2: Combined Risk Analyses

A classical problem facing many software projects is how to determine when

to stop testing and release the product for use. We have found that risk analysis helps

to address such “how much is enough?” questions, by balancing the risk exposure

(probability of loss times size of loss) of doing too little with the risk exposure of

doing too much. However, people often find it difficult to quantify the relative

probabilities and sizes of loss in order to provide practical approaches for

determining a risk-balanced “sweet spot” operating point.

Under the assumptions discussed in sections 3.2.1.1 through 3.2.1.3, the

framework of VBSQM, which integrates the empirically-calibrated COCOMO II and

COQUALMO results and quantified stakeholder-supplied VERs such as those

discussed in section 3.2.1.4 , also provides the basis for us to perform combined risk

analyses in order to solve the problem of how much software assurance is enough

[Huang-Boehm 2005a].

The usage scenario of VBSQM for combined risk analyses on both software

quality assurance and market share erosion is as following:

1. Estimate software size in terms of value-adding capabilities.

2. Enter the project size and cost drivers into VBSQM to obtain project

delivered defect density (= (defects introduced – defects removed)/KSLOC)

for the range of “Required Reliability” driver (RELY) ratings from Very Low

to Very High.

3. Involve stakeholders in determining the sizes of loss Sq(L) based on the value

estimating relationships for software quality attributes.

 68

4. Involve stakeholders in determining the risk exposures of market erosion

mRE based on the delivery time of the product.

5. Apply the VBSQM to assess the probability of losses for the range of

“Required Reliability” cost driver (RELY) ratings from Very Low to Very

High based on the relative delivered defect density.

6. Apply the VBSQM to combine the software quality risk exposure and market

erosion risk exposure to find the sweet spot.

We have extended the initial VBSQM discussed in [Boehm-Huang 2004a] to

support such combined risk analyses. It provides the default values of size of loss

due to unacceptable software quality Sq(L) and risk exposure of market

erosion mRE for each RELY rating under three business cases (i.e., early start-up,

normal commercial and high finance). Users can also provide their own values for

Sq(L) and mRE based on their project business case. After the user inputs the project

size in SLOC and rates each COCOMO II cost driver except RELY according to

their own project situation, VBSQM will automatically generate the curve for

combined risk exposure and help to locate the sweet spot for their software quality

investment level.

 69

3.3 Value-Based Software Quality Achievement (VBSQA)

Process

3.3.1 Purpose of the VBSQA Process

Another key objective of this research is to use the value-based software

quality definitions, metrics and models to drive the software development process in

order to achieve the stakeholder mutually satisfactory software quality outcome.

Ideally, one would like to have a single software quality metric by which the

development process could be driven, and by which the contributions of each

technology could be ranked. However, in practice, different systems have different

success-critical stakeholders, and these stakeholders depend on the system in

different ways. Furthermore, stakeholders often have emerging, time-varying

software quality requirements. Therefore, using traditional one-size-fits-all software

quality metrics and models to drive the system and software development process is

likely to lead to delivered systems that are unsatisfactory to some stakeholders.

Along these lines, we propose a Value-Based Software Quality Achievement

(VBSQA) Process generated from the WinWin Spiral Model’s risk-driven approach.

It is coupled with a set of value-based software quality analysis methods and models

for reasoning about software and system quality. It helps project success-critical

stakeholders to define, negotiate and develop mission-specific combinations of

software quality attributes for the development of a system with the stakeholder

WinWin-balanced software quality outcome.

 70

3.3.2 Top-level Steps of the VBSQA Process Framework

This section presents the major steps, activities and decision points of the

Value-Based Software Quality Achievement (VBSQA) process framework [Huang

2005] and identifies the techniques that can be applied in each step. Table 3.4

summarizes the major steps of VBSQA process. Each process step is to be

elaborated in the following subsections as needed.

1. Identify top-level mission objectives and stages

– including quality (Q-) objectives

2.

Perform project cost/benefit analysis
– Estimate project budget
– Develop results chain to identify success-critical stakeholders and their top-

level value propositions

3. Stakeholders negotiate mutually satisfactory (Win-Win) quality (and other) goals
and relevant mission scenarios.

4. Risk-based process strategy decision making

5. Concurrently engineer top-level Q-attribute and other requirements and solution
tradeoff spaces.

6. Identify top-level Q-risks, execute risk-mitigation spirals.

7. Develop system top-level design and initial Feasibility Rationale Description
(FRD).

8. Hold Life Cycle Objective (LCO) Review
– Pass: go to 9. Fail: go to 5.

9. Concurrently engineer detailed Q-attribute and other requirements and solutions;
resolve risks.

10. Develop system detailed design and detailed Feasibility Rationale Description
(FRD).

11. Hold Life Cycle Architecture (LCA) Review
– Pass: go to 12. Fail: go to 9.

12.

Construct, test, and deploy system
– Use the mission scenarios and Q-attribute requirement levels as progress

metrics and test cases
– Core Capability Demo (CCD)
– Monitor progress and change requests; perform corrective actions

13. Initial Operational Capability (IOC) Readiness Review

Table 3.4. The Top-level Steps of VBSQA Process Framework

 71

3.3.2.1 Identify Top-level Mission Objectives and Stages

This is the entry to the VBSDA process. Top-level software quality

objectives are identified with top-level mission objectives.

3.3.2.2 Perform Project Cost/Benefit Analysis

Besides the project budget estimation, we have to perform stakeholder/value

dependency analysis [Boehm-Huang 2004b] in order to understand the nature of the

software quality. That is, we need to identify the major classes of success-critical

project stakeholders, and to characterize the relative strengths of their dependencies

on various attributes in each operational scenario of the software system. The

generalized top-level stakeholder/value dependencies for information-intensive

software systems as shown in Table C.3 (See Appendix C) can be a start point to

identify the project success-critical stakeholders. At this step, a software quality-

elaborated Results Chain shall be constructed to help identify the success critical

quality-oriented initiatives and stakeholders. The Results Chain technique, developed

by the DMR Consulting Group [Thorp 1998] is a way to identify missing initiatives

and success-critical stakeholders in a system development project. It involves

initially defining the project’s Initiatives (rectangles), Contributions (arrows),

Outcomes (circles, ovals), and Assumptions (hexagons) for its nominal-case

operation. It then involves identifying risks and vulnerabilities that may go wrong

with the nominal case, and establishing additional Initiatives, Contributions, and

Outcomes to avoid or resolve them.

 72

3.3.2.3 Stakeholders Negotiate Software Quality Goals and Relevant Mission

Scenarios

Project success-critical stakeholders are involved in the WinWin negotiation

in order to converge on the mutually satisfactory software quality (and other) goals.

At this step, a stakeholder/goal matrix should be constructed based on the identified

mission objectives/goals in step 1. This is also the starting/ending point of each spiral

in the WinWin Spiral Model. Table 3.5 shows a sample matrix of the primary

success-critical stakeholders in an information-intensive software system as rows and

their prioritized goals with respect to the software system development, operation,

and evolution as columns. The specific columns represent the primary categories of

system goals/requirements to be negotiated by the stakeholders. Project goals and

requirements include desired constraints on the system and project such as choices of

programming language, infrastructure packages, and computing platforms;

development and operational standards; and constraints on budgets, schedules, and

other scarce resources. Capability goals include the functions that the software

system should perform. Interface goals include message formatting and content, and

interaction protocols with other interoperating systems. Level of Service goals

include the dependability attributes, except for cost and schedule (covered under

Project goals) and interoperability (covered under Interface goals). Evolution goals

include downstream goals that the initial system architecture should support, such as

deferred capabilities or scalability to accommodate workload growth. At the same

time, each stakeholder class shall prioritize the goals as High, Medium and Low.

 73

 Goals
Stakeholders Project Capability Interface Level of Service Evolution

Information Suppliers
System Dependents
Information Brokers
Information Consumers
System Controllers
Developers
Maintainers
System Administrators
System Acquirers

Table 3.5. A Sample Stakeholder/Goal Matrix

Instead of using one number to define each software quality goal, the value-

based quantitative software quality models/tools such as VBSQM can be used to

determine an appropriate level for some particular attributes (e.g., Reliability,

Availability, etc.) based on the Return On Investment (ROI) profile and/or the

tradeoffs between quality attributes and delivery time of the project. For instance, the

VBSQM can help stakeholders determine how much availability is enough for

different types of projects, different operational scenarios or different software

classes in a certain project. The principles and the usage scenarios of the VBSQM

are elaborated in section 3.2.

3.3.2.4 Risk-Based Process Strategy Decision Making

VBSQA process framework covers all the phases and milestones in the entire

software development life cycle of the WinWin Spiral model [Boehm-Hansenzz,

2001]. It also includes various software development activities to incorporate the

value-based consideration. In real-world software projects, different software quality

assessment criteria are set based on different business cases [Reifer 2002] so that

different process strategies should be selected to meet them. Therefore, a flexible

 74

process generation platform is required to enable the trim or addition of the

steps/milestones/activities in the VBSQA process framework.

Along these lines, the risk-based process decision-making approach [Huang

et. al. 2006a], summarized in Figure 3.13, uses the project business case and risk

analysis to tailor the VBSQA process into an overall software development strategy

[Boehm-Turner 2004]. This approach relies heavily on project key stakeholder

identification, project business case analysis and the collaboration of the core

development team and the project stakeholders. Thus this process decision making

approach is embedded into the current VBSQA process framework following Step 3

(stakeholders negotiate software quality and other goals) shown in Table 3.4. Three

process strategies (schedule-driven, product-driven and market-trend driven) can be

selectively applied in the software development based on different project business

cases. In general, schedule-driven processes are lightweight processes that employ

short iterative cycles while product-driven processes employ longer iterative cycles.

 75

Figure 3.13. Risk-based Process Decision-making Approach

Project business case analysis is used to elicit success-critical stakeholders’

value propositions. Risk analysis is used to define and address risks particularly

associated with project schedule and software quality achievement. It is also used to

answer such question as “How much software quality investment is enough?” by

balancing the risk of investing too little on software quality with the risk of investing

too much. Examples of such questions related to software quality achievement are

“How much prototyping is enough?”, “How much review is enough?”, and “How

much testing is enough?”. As another aspect of quality achievement, we extend the

approach to also consider the question “How much architecting and planning is

enough?”. Risk analysis is closely related to business case analysis in that project

risks are prioritized based on the business case analysis by emphasizing the high-

priority stakeholder value.

 76

If schedule risks dominate quality risks, risk-based schedule-driven process is

applied. If quality-risks dominate schedule risks, risk-based product-driven process is

applied. If neither dominates, then architect the application to encapsulate the

schedule-driven parts which applies the risk-based schedule-driven process and go

risk-based product-driven process elsewhere. Based on this approach, we can tailor

the VBSQA process framework and establish an overall project strategy by

integrating individual risk mitigation plans [Boehm-Turner 2004].

Since no decision is perfect for all time, as indicated in Step 5 in Figure 3.13

the project management team needs to continuously monitoring and controlling the

performance of the selected process in order to adapt to changes in the business case.

In this way, we can always monitor and control the opportunity for realizing

stakeholders’ value.

3.3.2.5 Concurrently Engineer Top-level Q-attribute and Other Requirements

and Solution Tradeoff Spaces; Identify Top-level Q-risks, Execute Risk-

mitigation Spirals

Step 5 and 6 are often coupled with each other during the software

development process. The stakeholder/value dependency analysis and concurrency

are two important factors in the VBSQA process. Simple deterministic processes are

inadequate to address the emergent, time-varying priorities for dependability

attributes. The VBSQA process generated from the WinWin Spiral Model provides a

workable framework for dealing with risk-driven concurrency. On the other hand, it

is effective in avoiding one-size-fits-all metrics and resolving the value conflicts and

in software quality achievement.

 77

In this section, a scenario-based approach is proposed to identify

stakeholders’ value propositions on software quality (Q-) attributes and help

stakeholders define the detailed Q-attribute requirements for different scenarios. This

approach also helps identify and resolve value conflicts on Q-attributes and to

perform tradeoff analysis on Q-attributes in order to engineer stakeholder WinWin-

balanced software Q-attribute requirements. Figure 3.14 shows the process elements

for stakeholders to engineer top-level software Q-attribute requirements, identify

software Q-risks and select the most cost-effective architecture/technology

combination to mitigate risks for different scenarios. The entry criteria of the Q-

attribute requirement engineering and risk mitigation are shown in the box in the top-

left corner of Figure 3.14. Each process element is elaborated as needed.

Figure 3.14. A Scenario-Based Approach to Engineer Software Q-attribute
Requirements and Risk Mitigation Plans

 78

E1. Identify software quality (Q-) attributes

This is the entry of the software Q-attribute requirement engineering and risk

mitigation process activities, where the top-level Q-attributes for the entire software

project are established. The results obtained from Step 1 and 3 in the VBSQA

process are usually used as the inputs of this step.

E2. Establish system operational profile scenarios and prioritize scenarios

The scenario can be defined as mission sequences, environmental inputs or

Q-objective threats and their frequencies. A scenario is used to describe a proposed

use case of the system and/or an interaction of one of the stakeholders with the

system [Clements 2002]. Scenarios provide a vehicle for converting vague Q-

attribute requirements into concrete use cases of a system and make Q-attribute

requirements measurable and testable. The top-level scenarios of a software system

can be established from its use case description (e.g., MBASE Operational Concept

[MBASE 2003] use case description). A complex scenario can be decomposed into

several component scenarios if it’s necessary for testing purposes. On the other hand,

several component scenarios can be composed into a high-level scenario for analysis

or testing purposes. We provide a framework with three factors to be associated with

each scenario Si, which will be directly leveraged in our scenario-based approach:

 Value (v). The value loss (can be measured either in dollars or in utility) if a

scenario execution fails. It indicates the impact of a scenario on the total

mission value.

 Probability of occurrence (p). The probability that a scenario occurs in a

specific mission mode. When several scenarios have the comparable value

 79

impact on the entire mission, a scenario that is more frequently executed

affects the software system quality more extensively, than if it were less. In a

given mission mode, ∑ = 1ip . The operational profile of a mission mode

can then be established based on the scenario probability distribution.

 Software Q-attribute metrics (m). All scenarios are mapped into Q-attributes

based on their relevance. For instance, if we intend to measure the reliability

of a scenario, we may use MTBF as a metric. Scenarios can then be

prioritized based on their value (v) and probability of occurrence (p).

In addition, we can use a matrix as shown in Table 3.6 to track the effect on

improving a Q-attribute (e.g., Reliability, Availability) on the project based on the

scenario distribution if the Q-attribute covers several scenarios or the entire project.

Using Reliability (measured by MTBF) as an example, in Table 3.6, pi represents the

probability of the occurrence of scenario i, vi represents the associated value of

scenario i, MTBFi represents the MTBF of scenario i, and Σ represents the

Combined MTBF of all the scenarios for a mission mode based on the scenario

distribution defined by pi.

 80

Scenario i 1 2 … i … n Σ
pi -
vi -

Before applying an architecture/technology strategy
MTBFi -

Failures/max(MTBFi) -
Exp. Fail’s/max(MTBFi)
After applying an architecture/technology strategy

MTBFi -
Failures/max(MTBFi) -

Exp. Fail’s/max(MTBFi)

Table 3.6. A Sample Matrix Tracking the Improvement of a Q-attribute Based
on Scenario Distribution

 In general, we can compute the Combined MTBF before and after applying

an architecture/technology strategy using the following formula:

i

i
i

i

MTBF
MTBF

p

MTBF
MTBFCombined

)max(
)max(

∑
=

 Availability can be obtained if the MTTRi is also known.

E3. Map Q-attributes into scenarios and determine metrics, stakeholder/value

dependencies and value estimating relationships (VERs) for Q-attributes of

each scenario

Software Q-attributes are mapped into each scenario based on their relevance.

The metric for a Q-attribute may be different in different scenarios. For instance,

Performance can be measured in response time (s) or in storage space (MBytes) in

different scenarios.

 81

The stakeholder/value dependency analysis can be performed for each

scenario based on the stakeholders’ top-level value propositions obtained in Step 2

(see Table 3.4). That is, we need to identify the major classes of success-critical

project stakeholders, and to characterize the relative strengths of their dependencies

on various attributes of each scenario of the software system.

If needed, the value estimating relationships (VERs) of each Q-attribute can

be also established based on the impact of the Q-attribute on a particular scenario.

Note that the VERs for a Q-attribute may also be different in different scenarios

since the same Q-attribute’s impact on different scenarios may be different.

E4. For each scenario, stakeholders define their acceptable and desired values

for concerned Q-attributes

The results of the VBSQM ROI analysis to determine the appropriate levels

of certain Q-attributes (e.g. Availability, Reliability) for different scenario classes

discussed in section 3.3.2.3 can be used as guidance for stakeholders to define their

expected and desired levels for these Q-attributes.

Similarly, stakeholders can define their expected and desired levels for other

Q-attributes based on the priority of a particular scenario and their value

dependencies on the scenario-related Q-attributes.

 82

E5. For each scenario, identify the risks of not achieving the acceptable values

of Q-attributes

E6. For each scenario, identify software architectures/technologies to mitigate

the Q-risks

E7. Architecture/technology evaluation

The top-level risks associated with each operational scenario should also be

identified at this stage. Scenario-based Fault Tree Analysis (FTA) [Leveson 1995],

Failure Modes and Effects Analysis [Leveson 1995] and Dependability Cases

[Weinstock 2004] are three useful techniques to trace scenario failures to the

potential risks causing them. Note that FTA is primary a means for analyzing causes

of failures, not identifying failures. The top event in the tree must have been

predicted and identified by other technique such as scenario-based approach

discussed in this section. Such FTA or Dependability Case can be started from

analyzing the sequence diagrams of each scenario. The root of the Fault Tree is a

particular system usage scenario. The leaves of the Fault Tree are potential risks of

not achieving the expected values of Q-attributes pertain to the scenario.

Risks are quantitatively linked to the Q-attributes of each scenario. For each

pair of risk and Q-attribute in each scenario, stakeholders provide an estimate (expert

judgement) of the potential impact of the risk in the scenario. We define the “impact”

as the proportion of the scenario value that would be lost were that risk occur. The

probability of occurrence of each risk is also estimated.

As the start of executing risk-mitigation spirals, at least one

architecture/technology strategy should be identified to address each risk item. For

 83

instance, we may use the attribute/strategy tables in MBASE Feasibility Rationale

Description (FRD) [MBASE 2003] to find the existing strategies. As for the new

architecture/technology, the architecture/technology developers should formulate

their hypotheses in terms of the defect classes that can be avoided/detected by their

architecture/technology and estimate the cost of applying the architecture/technology

in order to prepare for the architecture/technology evaluation.

Architecture/technology strategies are quantitatively linked to Q-risks. For each pair

of Q-risk and architecture/technology strategy in each scenario, we provide an

estimate (expert judgement) of the mitigation of the risk in the scenario. We define

the “mitigation” as the proportion by which the risk would be reduced were that

architecture/technology strategy to be applied. At the same time, the cost/effort of

applying a particular architecture/technology strategy should also be recorded.

Tools such as the JPL risk-centric Defect Detection and Prevention (DDP)

model [Feather 2002] can be used for such analysis.

E8. Identify conflicting Q-attributes and perform tradeoff analysis

E9. Stakeholders negotiate WinWin balanced Q-attribute requirements and

adjust the acceptable and desired values for conflicting Q-attributes

If the existing architecture/technology strategies can’t satisfy the acceptable

values of all the Q-attributes, or if the estimated cost/schedule to satisfy all the Q-

attribute requirements is too high, then the tradeoff function between the conflicting

Q-attributes will need to be constructed and the tradeoff analysis will be performed

in conjunction with additional stakeholder negotiation. An initial Q-attribute tradeoff

model based on the calibrated COCOMO II model can help us perform

 84

Cost/Schedule/RELY tradeoff analyses [Boehm-Huang 2004b, Huang-Boehm

2005b].

Multi-attribute preference analyses [Keeney 1993] and stakeholder win-win

negotiation support tools [WinWin 2006] are useful techniques to help stakeholders

perform such negotiations based on their value propositions. Based on the Q-

attribute tradeoff analysis results, we can selectively relax the lower priority D-

attribute requirements for the low risk scenarios using SCQAIV

(Schedule/Cost/Quality As Independent Variable) process principles [Boehm et. al.

2002].

Note that such conflicting Q-attribute tradeoff analysis can be performed

concurrently with the architecture/technology evaluation.

3.3.2.6 Develop System Top-level Design and Initial Feasibility Rationale

Description (FRD)

Top-level design of at least one architecture option should be provided by

developers. And the initial Feasibility Rationale Description (FRD) [MBASE 2003]

furnishes the rationale for the product being able to satisfy the stakeholders’ system

requirements and specifications including the Q-attribute requirements. The initial

FRD in LCO stage also includes an initial business case analysis (i.e., cost, benefits

and ROI analysis) based on the Results Chain.

The initial risk analysis should identify all the major risks and propose an

initial risk mitigation plan. Risks without mitigation in the LCO stage have to be

resolved in the Life Cycle Architecture (LCA) stage.

 85

3.3.2.7 Hold Life Cycle Objective (LCO) Review

An LCO Review is to be held with the participation of all the project key

stakeholders. This indicates a milestone of the LCO phase in the WinWin Spiral

Model. The exit criteria of LCO ARB are to provide at least one feasible architecture

to satisfy the requirements, and to provide proofs of requirement satisfaction

including the Q-attribute requirements. The result of the LCO review is either Pass

or Fail:

 If Pass: go to step 9 (see Table 3.4) . Key stakeholders commit to support the

project to proceed to its Life Cycle Architecture (LCA) phase.

 If Fail: go to step 5 (see Table 3.4)

3.3.2.8 Concurrently Engineer Detailed Q-attribute and Other Requirements

and Solutions; Resolve risks

It follows the similar process discussed in section 3.3.2.5 but in a more

detailed level.

3.3.2.9 Develop System Detailed Design and Detailed Feasibility Rationale

Description (FRD)

System detailed design needs to be developed for only one feasible

architecture. And the LCA Feasibility Rationale Description (FRD) [MBASE 2003]

has to provide the detailed rationale of all requirement satisfaction including the Q-

attribute requirements. The LCA FRD risk analysis should propose a detailed risk

mitigation plan to resolve all known risks.

 86

3.3.2.10 Hold Life Cycle Architecture (LCA) Review

An LCA Review is to be held with the participation of all the project key

stakeholders. This indicates a milestone of the LCA phase in the WinWin Spiral

Model. The LCA Feasibility Rationale Description (FRD) [MBASE 2003] has to

provide the detailed rationale of all requirement satisfaction including the Q-attribute

requirements. LCA FRD risk analysis should propose a detailed risk mitigation plan

to resolve all known risks. The exit criteria of Life Cycle Architecture (LCA)

Review is to commit one architecture to satisfy all the requirements of the system.

The result of the LCO review is either Pass or Fail:

 If Pass: go to step 12 (see Table 3.4). Key stakeholders commit to support

the full life cycle of the project and the project can proceed to the

construction phase.

 If Fail: go to step 9 (see Table 3.4).

3.3.2.11 Construct, Test, and Deploy System

During the construction phase, we still need to monitor the progress of the

software Q-attribute achievement and perform corrective actions when needed. We

can use the mission operational scenarios and Q-attribute requirement levels defined

by project key stakeholders as progress metrics and test cases.

The framework of the value-realization feedback process [Boehm-Huang

2003] shown in Figure 3.15 can be applied to monitor the progress of the software

quality achievement and change requests. The software quality-elaborated results

chain, business case, and risk mitigation plans set the baseline in terms of expected

time-phased software quality investments, benefit flows, return on investment (ROI),

 87

project risk exposures, and underlying assumptions. As the project performs to plans,

the actual or projected achievement of software quality investments, benefit flows

and the assumptions’ realism may become invalid, at which point the project team

will need to determine and apply corrective actions by changing plans or initiatives,

making associated changes in expected cost and benefit flows.

Figure 3.15. A Value-Realization Feedback Process to Monitor and Control the
Achievement of Software Q-attribute Requirements

A matrix with the capability to track the value-based expected versus actual

outcomes (e.g., software quality investments, reduced value loss, ROI) [Boehm-

Huang 2003] is a useful technique to support the monitoring and control of the actual

progress of the software quality achievement. Such matrix and the expected benefits

and business case analyses work together to provide a means of tracking actual

progress in realizing the benefits and applying corrective action wherever

 the expected benefits are not being realized,

 the expected cost and/or schedule are overrun,

 the assumptions in the results chain are becoming invalid, or

 88

 new opportunities may surface with a higher payoff than the program being

executed

Core Capability Demo (CCD) can be added as an intermediate milestone to

improve the stakeholders’ confidence in the software system delivery. Project

success-critical stakeholders are invited to participate in the CCD to provide

feedback on the developed system core capabilities.

3.3.2.12 Initial Operational Capability (IOC) Readiness Review

This is the final milestone of the software development life cycle. The

Release Readiness Review (RRR) is held with the participation of all the success-

critical stakeholders. Developers are required to deliver the final product with all the

documents. If the RRR is passed, developers will perform the “cold turkey”

transition of the software system to other stakeholders. If it fails, developers may be

required to adjust or fix the product based on RRR feedback. Otherwise, the project

will be announced as a failure.

3.3.3 Mapping VBSDA Process into “4+1” VBSE Theory

To show the compatibility of VBSQA Process with the “4+1” Value-Based

Software Engineering (VBSE) Theory presented in Chapter 2 of [Aurum et. al. 2005],

we here map the activities of VBSQA Process into the “4+1” VBSE Theory. The

purpose of this work is to show a sound theoretical support of the VBSDA Process.

Figure 3.16 summarizes the overall structure of the “4+1” Theory of VBSE

[Aurum et. al. 2005]. The engine in the center is the success-critical stakeholder

(SCS) win-win Theory W. The core of Theory W is the Enterprise Success Theorem,

that is, your enterprise will succeed if and only if it makes winners of your success-

 89

critical stakeholders. However, the Enterprise Success Theorem does not tell us how

to achieve and maintain a win-win state which requires the involvement of the four

supporting theorems to address the following four aspects:

1. Identifying all of the success-critical stakeholders (SCSs). (Dependency

Theory)

2. Understanding how the SCSs want to win. (Utility Theory)

3. Having the SCSs negotiate a win-win set of product and process plans.

(Decision Theory)

4. Controlling progress toward SCS win-win realization, including adaptation to

change. (Control Theory).

Theory W:
SCS Win-Win

Control Theory
Decision Theory

Dependency TheoryUtility Theory

What values are important?
How is success assured?

How improtant are
the values?

How do values determine
decision choices?

How do dependencies
affect value realization?

How to adapt to change and
control value realization?

Figure 3.16. The “4+1” Theory of VBSE: Overall Structure [Aurum et. al. 2005]

 90

Figure 3.17. Mapping of VBSQA Process into “4+1” VBSE Theory

Figure 3.17 presents the mapping of top-level VBSQA process steps to the

“4+1” Theory of VBSE. The ovals represent the quality-oriented theories. Each

process step serves as either input or output of a particular theory.

 91

Chapter 4

VBSQM Application and Results

This chapter presents the application of the VBSQM in different value

situations. Section 4.1 compares the initial VBSQM ROI analyses on two different

types of software projects. Section 4.2 shows the VBSQM ROI analysis on different

operational scenarios/software classes in NASA/USC Inspector SCRover project.

Section 4.3 presents the VBSQM combined risk analyses in three representative

project business cases. Section 4.4 compares the ROI of value-based testing

techniques with value-neutral testing techniques and shows the overall risk reduction

of value-based testing based on VBSQM combined risk analyses. The application

results validate the following two research hypotheses:

 Hypothesis 1: VBSQM can be used to determine how much software quality

investment is enough in different value situations.

 Hypothesis 2: Assuming non-linear value functions (e.g., Pareto distribution)

are used, value-based software quality achievement techniques improve

project return on quality investments and reduce the overall project risks.

 92

4.1 VBSQM ROI Analyses for Different Types of Software

Systems

4.1.1 A Dependable Order Processing System

This section illustrates an initial use of the VBSQM to develop a rough

software quality Return On Investment (ROI) analysis, using the Sierra

Mountainbikes order processing system business case analysis in [Boehm-Huang

2003]. It is a case study representative of two real world order processing systems.

We uses their business case analysis as the baseline for assessing future investments

in software quality over and above the nominal investments usually made for

business data processing systems.

4.1.1.1 Business Case Analysis of Sierra Mountainbikes Order Processing

System

Table 4.1 summarizes the business case for an improved order processing

system through its proposed development in 2004-2005 and proposed operation in

2005-2008. The cumulative cost of fully replacing the old system by the new one is

$6 million, of which $3.44 million is for software. Table 4.1 also shows the

corresponding expected dollar benefits and return on investment, ROI = (Benefits –

Costs) / Costs, annually for the years 2004-2008. For simplicity in this analysis, the

costs and benefits are shown in 2004 dollars to avoid the complications of discounted

cash flow calculations, and the 10% annual growth rate in estimated market size is

not compounded, both for simplicity and conservatism.

 93

As seen in columns 2-5 of Table 4.1, Sierra’s current market share and profit

margins are estimated to stay roughly constant over the 2004-2008 period, with

annual profits growing from $7M to $12M, if the new program is not executed. This

is a conservative estimate, as the problems with the current system would increase

with added sales volume, leading to decreased market share and profitability.

The next columns in Table 4.1 up through ROI show the expected

improvements in market share and profit margins (due both to economies of scale

and decreased operational costs) achievable with the new system, and the resulting

ROI relative to continuing with the current system. They show that the expected

increase in market share (from 20% to 30% by 2008) and profit margins have

produced a 45% ROI by the end of the second year of new-system operation (2006):

45.0
5.6

5.64.9
=

−
=

−
=

Costs
CostsBenefitsROI

The expected ROI by the end of 2008 is 297%.

The final four columns in Table 4.1 show that qualitative as well as

quantitative aspects of ROI need to be estimated and tracked. They show a simple

balanced-scorecard array of expected 2004-2008 improvements in overall customer

satisfaction and three of its critical components: percentage of late deliveries, ease of

use, and in-transit visibility. The latter capability was identified as both important to

distributors (if they know what is happening with a delayed shipment, they can

improvise workarounds), and one which some of Sierra’s competitors were

providing. Sierra’s expected 2004-2008 improvements with the new system were to

improve their 0-5 satisfaction rate on in-transit visibility from a low 1.0 to a high 4.6,

 94

and to increase their overall customer satisfaction rate for order processing from 1.7

to 4.6.

Table 4.1. Order Processing System: Expected Benefits and Business Case

4.1.1.2 VBSQM Software Quality ROI Analysis and Results

The VBSQM ROI analysis begins by analyzing the effect of increasing

software quality investments from the normal business levels to the next higher

levels of investment in analysis tool support, peer review practices and test

thoroughness. The resulting increase from a Nominal to High COCOMO II RELY

rating level increases the mean time between failure (MTBF) from 300 hours to

10,000 hours (see Figure 3.2). And it also incurs a $3.44M * (1.10-1.0) = $344K

additional software quality investment.

New System

Current
System

 Financial Customers

D
at

e

M
ar

ke
t S

iz
e

($
M

)

M
ar

ke
t S

ha
re

 %

Sa
le

s

Pr
of

its

M
ar

ke
t S

ha
re

 %

Sa
le

s

Pr
of

its

C
os

t S
av

in
gs

C
ha

ng
e

in
 P

ro
fit

s

C
um

ul
at

iv
e

C
ha

ng
e

in
 P

ro
fit

s

C
um

ul
at

iv
e

C
os

t

R
O

I

La
te

 D
el

iv
er

y
%

C
us

to
m

er

Sa
tis

fa
ct

io
n

(0
-5

)
In

-T
ra

ns
it

Vi
si

bi
lit

y
(0

-5
)

Ea
se

 o
f U

se
 (0

-5
)

12/31/03 360 20 72 7 20 72 7 0 0 0 0 0 12.4 1.7 1.0 1.8

12/31/04 400 20 80 8 20 80 8 0 0 0 4 -1 11.4 3.0 2.5 3.0

12/31/05 440 20 88 9 22 97 10 2.2 3.2 3.2 6 -.47 7.0 4.0 3.5 4.0

12/31/06 480 20 96 10 25 120 13 3.2 6.2 9.4 6.5 .45 4.0 4.3 4.0 4.3

12/31/07 520 20 104 11 28 146 16 4.0 9.0 18.4 7 1.63 3.0 4.5 4.3 4.5

12/31/08 560 20 112 12 30 168 19 4.4 11.4 29.8 7.5 2.97 2.5 4.6 4.6 4.6

 95

 Assuming from relevant business experience a mean time to repair of 3

hours yields an improvement in availability = MTBF/(MTBF + MTTR) from

300/303 ≅ 0.99 to 10,000/10,003 ≅ 0.9997. If we use availability as a proxy for

software quality, and assume that a 1% increase in downtime is roughly equivalent to

a 1% loss in sales, we can use the Sierra Mountainbikes business case to determine a

software quality Value Estimating Relationship (VER). Applying the difference

between a .01 loss in sales and a .0003 loss in sales to the 2005-2008 Sierra new

system sales total of $531M (adding up the 2005-2008 numbers in column 7 of Table

4.1) yields a net return on the software quality investment of (.01) ($531M) – (.0003)

($531M)= $5.31M – 0.16M = $5.15M. The COCOMO II Cost Estimating

Relationships (CER’s) for Tool Support and Process Maturity also generate software

rework savings from the investments in early defect prevention and removal of

$0.45M, for a total savings of $5.59M. The resulting software quality ROI is (5.59 –

0.345) / 0.345 = 15.1.

A related interesting result is that added quality investments have relatively

little payoff, as there is only $0.16M left to be saved by decreasing downtime. Table

4.2 summarizes the VBSQM ROI analysis results by increasing the availability level

of the Sierra Mountainbikes Order Processing System from Nominal to High, High

to Very High and Very High to Extra High, respectively.

4.1.1.3 Project Key Stakeholders’ Feedback and Implications

In discussing this analysis in non-directed interviews with relevant business

personnel (including a representative of one of the failed projects on which the Sierra

 96

Mountainbikes case study was based), they indicated that the results were realistic,

and that use of the tool would have helped them in several decision situations.

However, when asked whether their interests in software quality would

disappear with the negative ROI shown in Table 4.2 in going from a High to a Very

High RELY level, some of the respondents indicated that availability would no

longer be a concern, but that other concerns such as security would likely be

deserving of further investment once the availability was not causing significant

business losses. This would suggest that they are operating within a Maslow need

hierarchy in which satisfied availability needs are no longer motivators, but in which

higher level needs such as reducing security risks may now become more significant

motivators.

This casts the analysis of software quality (Q-) attributes in an entirely new

light. Previously, the problem of software attribute analysis has been largely cast as

an exercise in static multi-attribute optimizing or satisficing, operating on some pre-

weighted combinations of Q-attribute satisfaction levels. The practical decision-

making issue above indicates that achieving an acceptable or preferred combination

of software Q-attributes leads to a new situation in which the attribute priorities are

likely to change.

In this situation, software Q-attribute requirements become more emergent

than pre-specifiable. The process for achieving acceptable software Q-attribute

requirements becomes no longer a single-pass process, but an evolutionary process,

subject to the need to anticipate and develop architectural support for downstream

software quality needs.

 97

4.1.2 A Mission Critical NASA Planetary Rover

As part of the NASA High Dependability Computing Program (HDCP), we

also performed an exploratory VBSQM analysis of a representative NASA planetary

rover robot; in collaboration with Jet Propulsion Laboratory (JPL) Mission Data

System and Mars Science Laboratory personnel.

4.1.2.1 Business Case Analysis of NASA Planetary Rover

JPL planetary mission experts indicated that a planetary rover’s top-priority

software Q-attribute is survivability. Otherwise, its first failure on a remote planet

will be its last. Survivability has some attributes such as graceful degradation, so that

at a minimum, the rover can keep enough power and communication capability to be

able to transmit its status to its Mission Control Center on Earth, and to receive and

execute recovery commands from the Mission Control Center. However, since

availability is strongly correlated with survivability, and is more straightforward to

analyze, we used availability as a proxy for survivability.

A more detailed hazard analysis and fault-tolerance/graceful degradation

cost-benefit analysis would be needed for safety or survivability ROI analyses. A

more detailed vulnerability and protection cost-benefit analysis would be needed for

security ROI analysis.

As part of a business case for determining a planetary rover software quality

value estimating relationship (VER), we used a total mission value equal to a

representative planetary rover mission cost of $300 million, with a baseline software

cost of $20M at a Nominal COCOMO II software reliability (RELY) rating. We also

assumed as a baseline that a 1% decrease in availability was roughly equivalent to a

 98

1% loss in the mission value of $300M. For a representative mean time to repair, the

JPL personnel indicated that 150 hours or roughly a week was a representative

amount of time for a Mission Control Center to diagnose a planetary rover problem,

to formulate and prepare a recovery sequence, and to test its validity.

4.1.2.2 VBSQM Software Quality ROI Analysis and Results

Since a planetary rover requires at least a High level of reliability and

availability, the VBSQM ROI analysis begins by analyzing the effect of increasing

reliability and availability investment from High to Very High which corresponds to

the COCOMO II estimates of a cost increase of 16% to $25.2M and an increase in

mean time between failure (MTBF) from 10,000 hours to 300,000 hours (see Figure

3.2). Assuming a mean time to repair (MTTR) of 150 hours yields an improvement

in availability = MTBF/(MTBF+MTTR) from 0.985 to 0.9995 as shown in Table 4.2.

Further increasing RELY rating from Very High to Extra High goes outside

the COCOMO II rating scale range and requires a special analysis. Investing in an

independent verification and validation (V&V) activity to bring the MTBF up to 1

million hours (114 years), using the COQUALMO Extra High levels of activity,

incurs estimated additional investments in formal analysis tool support and usage

($2M), peer review practices ($1M), and test thoroughness ($3M). As a cross-check,

the resulting $6M investment is near the usual value of 30% added cost for

Independent V&V on such missions. At this point, the added reliability and

availability investments have negative payoff (ROI = -0.98), as there is only $0.15M

left to be saved by decreasing downtime. Table 4.2 summarizes the VBSQM ROI

 99

analysis results by increasing the availability level of the Planetary Rover from High

to Very High and from Very High to Extra High, respectively.

4.1.2.3 Project Key Stakeholders’ Feedback and Implications

In discussing these results in a non-directed group discussion with the JPL

personnel, they indicated that such tool and analysis results made them more

confident in deciding an appropriate software availability investment level for their

project situation.

They also pointed out that the losses in reputation, corrective action, and in

some cases human lives as with the Columbia Shuttle failure, can amount to much

more lost value than the cost of the mission, and that these can produce a positive

ROI for an Extra High availability investment effort.

4.1.3 Comparing the VBSQM Availability ROI Analysis Results of

Order Processing System and NASA Planetary Rover

Figure 4.1 summarizes and compares the VBSQM availability ROI analysis

results of the Sierra Mountainbikes Order Processing System and the NASA

Planetary Rover. The trend of the Order Processing System is in a black dashed line

and that of the Planetary Rover is in a red solid line.

Thus we see that different mission situations lead to different diminishing

returns points for the business application, whose ROI goes negative in going from a

High to a Very High RELY rating; and for the planetary rover application, whose

positive ROI is sustained through Very High, but not through Extra High .

 100

Note also that we have assumed a linear value model in this analysis, which

results in the monotone decreasing of the mission value by decreasing the

availability level. Most often, value models look like S-shaped economic production

functions in Figure 3.5, with an initial low-slope Investment segment, a high-slope

High Returns segment, and a final low-slope Diminishing Returns segment.

Table 4.2. VBSQM Availability ROI Analysis Results of Sierra Mountainbikes
Order Processing System and NASA Planetary Rover: Increasing MTBF

Figure 4.1. Comparing the VBSQM Availability ROI Analysis Results of Sierra
Mountainbikes Order Processing System and NASA Planetary Rover

Projects RELY
Rating

MTBF
(hrs)

MT
TR

(hrs
)

Availability Loss
($M)

Increased
Value
($M)

Cost
($M)

∆
Cost
($M)

ROI

Nominal 300 3 0.9901 5.31 0 3.45 0 ----

High 10K 3 0.9997 0.16 5.15 3.79 0.344 14

Very High 300K 3 0.99999 0.005 0.155 4.34 0.55 -0.72

Sierra
Mountain-

bikes
Order

Processing
System Extra

High 1M 3 1 0 0.005 5.38 1.04 -1.0

High 10K 150 0.9852 4.44 0 22 0 ----

Very High 300K 150 0.9995 0.15 4.29 25.2 3.2 0.32
NASA

Planetary
Rover

Extra
High 1M 150 0.99985 0.045 0.105 31.2 6.0 -0.98

VH->XHN->H H->VH0

-1

-2

1

2

14

R
O

I

14

-0.72 -0.98

0.32

-1.0
Availability Investment Levels (RELY)

VBSQM ROI Analysis Results On Increasing Availability Investment Levels
(starting from the baseline investment level: Nominal)

Sierra Order Processing
Planetary Rover

VH->XHN->H H->VH0

-1

-2

1

2

14

R
O

I

14

-0.72 -0.98

0.32

-1.0
Availability Investment Levels (RELY)

VBSQM ROI Analysis Results On Increasing Availability Investment Levels
(starting from the baseline investment level: Nominal)

Sierra Order Processing
Planetary Rover

 101

4.2 VBSQM ROI Analyses for Different Scenarios in One

Software System

We performed VBSQM ROI analyses for three different classes of mission

scenarios in NASA/USC Inspector SCRover project. The analysis results helped

stakeholders to define three different Availability levels for the SCRover project.

Please refer to section 5.1.2.3.1 for details.

4.3 VBSQM Combined Risk Analyses to Determine How

Much Software Quality Investment is Enough

Figure 4.2 demonstrates how to build up information and perform VBSQM

combined risk analyses (refer to section 3.2.2.2) based on the COCOMO II,

COQUALMO, and VERs illustrated in section 3.2.1.4. The analyses results show

what level of quality investment is enough for three typical project business cases

(i.e. early start-up, normal commercial, and high finance) [Huang-Boehm 2006].

The probability of loss Pq(L) (e.g., financial, reputation, future prospects) due

to unacceptably low quality can be estimated based on the COQUALMO estimate of

delivered defect density in Figure 3.4: to first order, the fewer the defects, the lower

the probability of loss. We can use the Very Low estimate of 60 defects/KSLOC in

Figure 3.4 as the baseline for Pq(L), and set its default value to 1. The Pq(L) for other

RELY ratings from Low to Very High can then be computed based on the

corresponding delivered defect density relative to the baseline, as shown in the

 102

second row of numbers at the bottom of Figure 4.2. A baseline VER for the size of

loss Sq(L) due to unacceptable quality can be obtained for value-based testing

[Bullock 2000, Gerrard 2002, Ramler et. al. 2006] from the Pareto distribution in

Figure 4.3(a), using a negative Pareto distribution for value loss as shown in rows 3,

4 and 5 at the bottom of Figure 4.2. In Figure 4.2, relative Sq(L) is shown in three

representative business cases such as early start-up (row 3), representing relatively

defect-tolerant early adopters; normal commercial (row 4), representing the Bullock

data [Bullock 2000]; and high finance (row 5), representing very high-volume time-

sensitive cash flows dependent on reliable operation of the software system. For

simplicity, we use a factor of 3 to distinguish the relative values of the three cases.

Then we can compute the software quality investment risk exposure as

)()(LSLPRE qqq ×= .

These values enable us to calculate relative software quality investment risk

exposures as functions of added testing time for the three classes of business cases.

Each of these classes of stakeholders can then determine their own “how much

software quality investment is enough?” sweet spot by combining their software

quality investment risk exposure curve with their market share erosion risk exposure

curve mRE (obtained from the Critical Region of the market share loss curve in

Figure 3.10) shown as the line of diamonds in Figure 4.2. For simplicity, we have

shown this to be equal to 1.0 for a Very High RELY rating and an added COCOMO-

calibrated 54% delay in time to market, and decreasing by a factor of 0.3 for each

 103

successively lower RELY rating, as shown in the bottom line of numbers in Figure

4.2.

Figure 4.2. Combined Risk Exposures: Early Startup, Commercial and High
Finance

Finally, we can find a sweet spot (the minimum) from the combined risk

exposure due to both unacceptable software quality and market share erosion. Figure

4.2 shows the three combined RE curves in dashed lines and the corresponding oval

sweet spots of software quality investment levels for the three business cases. For the

high finance business case, its sweet spot of software quality investment is located at

the right-most side because the risk exposure of low system quality qRE dominates.

For the early startup business case, its sweet spot of software quality investment

COCOMO II:
COQUALMO:
Early Startup:
Commercial:
High Finance:
Market Risk:

 0
1.0
.33
1.0
3.0

.008

34
.125
.06
.18
.54

.30

 54
.06
.03
.10
.30

1.0

Added % test time
Pq(L)
Sq(L)
Sq(L)
Sq(L)

REm

12
.475
.19
.56
1.68

.027

22
.24
.11
.32
.96

.09

Co m b in e d R is k Ex p os u r e

0

0 . 2

0 . 4

0 . 6

0 . 8

1

V L L N H V H R EL Y

R E =
P(L) * S (L)

Ma rke t S h a re Ero s io n Ea r ly S ta r tu p

Commerc ia l Hig h Fin a n c e

Sweet
Spot

 104

located at the left-most side because the risk exposure of high market share erosion

mRE dominates. Such risk analyses can help project decision-makers determine

where is the optimal stopping point in planning for “how much testing will be

enough,” or more generally, the optimal level of the software quality investment for

their project based on their own business case.

The baselining at 1.0 of the highest mainstream size of loss due to low

software quality and of the highest risk exposure due to market share erosion means

that the model in Figure 4.2 can be straightforwardly adapted to other business

situations. For example, a software vendor in the High Finance market sector could

replace the 1.0 baseline market share risk exposure with his/her estimate of a $10M

loss in late delivery of a new feature in row 6 of Figure 4.2 by multiplying the

numbers in row 6 by $10M. Similarly, he/she could adjust the numbers in row 4 by

replacing the 1.0 baseline business loss size in row 4 by his/her estimate of a $30M

business loss of releasing a Very Low quality upgrade, to generate a curve similar to

the star curve in Figure 4.2 with a RELY investment sweet spot halfway between

Nominal and High. Note that other analyses can be made to determine how much

software quality investment is enough for other types of mission value loss reference

points or alternative curves [Boehm-Huang 2004a]. We should point out that

determining absolute business values such as $10M and $30M may not be easy,

particularly if one has not done a business case for the project. However, even

relative values can be used to obtain useful decision insights.

In addition, with VBSQM combined risk analyses, users can perform

sensitivity analyses of the most appropriate quality investment level and strategies

 105

with respect to uncertainties in stakeholder value propositions or marketplace

conditions, for different risk exposure situations, or for additional qualitative

considerations.

The current VBSQM tool supports the software quality ROI analysis

discussed in section 4.1 and 4.2 as well as the above combined risk analyses. As for

the combined risk analysis, it provides the default values of Sq(L) and mRE of each

RELY rating for three business cases (i.e., early start-up, normal commercial and

high finance). Users can also provide their own values for Sq(L) and mRE based on

their project business case. After the user inputs the project size in SLOC and rates

each COCOMO II cost driver except RELY according to their own project situation,

VBSQM will generate the curve for combined risk exposure and help to locate the

sweet spot for their software availability investment level. In addition, since the

VBSQM tool is spreadsheet-based, it is easy to modify to handle other types of

analyses using different VERs for different situations, or to perform analyses of the

sensitivity if the outcomes or sweet spots to unavoidable uncertainties in the input

parameters or value functions.

4.4 Value-based Testing vs. Value-neutral Testing

Much of current software testing research and tool building is done in a

value-neutral setting, in which every requirement, object, test case, and defect is

considered equally important. This section compares the value-based testing and

value-neutral testing in terms of the ROI and combined project risks.

 106

4.4.1 Value Estimating Relationships (VERs) and ROI Analysis

With value-neutral testing, such as using the output of most automated test

generation (ATG) tools, the earned mission value with invested testing effort will be

linear shown as the dotted line in Figure 4.3(a), since each requirement and test case

is considered equally important. However, in most operational situations [Bullock

2000, Gerrard 2002, Ramler et. al. 2006], the value earned by each requirement will

more likely follow a Pareto distribution shown as a solid curve in Figure 4.3(a).

Value-based testing focuses the testing effort on the roughly 20% of the features that

provide roughly 80% of the system value. As an example from Bullock’s project

experience [Bullock 2000], the Return On Investment (ROI) analysis is based on the

following assumptions:

 $1M of the development costs have been invested in the customer billing

system by the beginning of testing.

 The ATG tool will cost $300K and will reduce test costs by 50% as

promised.

 The business case for the system will produce $4M in business value in

return for the $2M investment cost.

 The business case will provide a similar 80:20 distribution for the remaining

14 customer types.

Table 4.3 shows the relative levels of investment costs, business benefits, and

returns on investment ROI = (benefits – costs) / costs, for the value-neutral ATG

testing and value-based Pareto testing strategies. Figure 4.3(b) provides a graphic

comparison of the resulting ROIs. As seen in Figure 4.3(b), the resulting ROI for

 107

value-based testing peaks earlier and at a considerably higher level than that for

value-neutral testing.

Bullock’s empirical data shows that testing each customer type improves

billing revenues from 75% to 90%, and that a single one of the 15 customer types

account for 50% of all billing revenues. The ROI analysis results indicate that

focusing initial testing on that one customer type provides an immediate boost in

billing revenues per dollar invested in testing.

Value-neutral ATG Testing Value-based Pareto Testing % of
Test
Runs Cost Value Net Value ROI Cost Value Net Value ROI

0 1300 0 -1300 -0.10 1000 0 -1000 -1.0
10 1350 400 -950 -0.70 1100 2560 1460 +1.33
20 1400 800 -600 -0.43 1200 3200 2000 1.67
40 1500 1600 100 +0.07 1400 3840 2440 1.74

Table 4.3. Comparative Business Cases: ATG and Pareto Testing

Figure 4.3. (a) Value Estimating Relationships (VERs) for Value-Neutral
Testing vs. Value-Based Testing; (b) Return On Investment (ROI): Value-

Neutral ATG Testing vs. Value-Based Pareto Testing

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80 90 100

% Tests Run

R
et

ur
n

O
n

In
ve

st
m

en
t (

R
O

I)

Value-Neutral ATG Testing Value-Based Pareto Testing

% of
Value
for

Correct
Customer

Billing

Customer Type

100

80

60

40

20

5 10 15

Automated test
generation (ATG) tool

- all tests have equal value

Bullock data
– Pareto distribution% of

Value
for

Correct
Customer

Billing

Customer Type

100

80

60

40

20

5 10 15

Automated test
generation (ATG) tool

- all tests have equal value

% of
Value
for

Correct
Customer

Billing

Customer Type

100

80

60

40

20

5 10 15

Automated test
generation (ATG) tool

- all tests have equal value

Bullock data
– Pareto distribution

(a)

(b)

 108

However, there may be good reasons, such as preserving good customer

relationships, to continue testing after reaching the peak ROI. And frequently the

testing experience from the high-value testing can be used to make the selection of

test cases or the use of test data generators for the lower-value requirements more

cost-effective.

4.4.2 VBSQM Combined Risk Analyses

VBSQM combined risk analyses can also be applied in comparing the value-

based quality achievement techniques with value-neutral ones in terms of the

combined project risks. Figure 4.4 presents the VBSQM combined risk analysis

results of value-based testing and value-neutral testing, when the high finance

business case is used as an example. The decrease in Sq(L) with testing time will be

linear for the value-neutral testing, while the decrease in Sq(L) with testing time will

follow the negative Pareto distribution for the value-based one as shown in rows 3

and 4 at the bottom of Figure 4.4. The combined risk exposure of value-based testing

is shown as the dashed line of triangles, while the combined risk exposure of value-

neutral testing is shown as the dashed line of stars in Figure 4.4. The sweet spot of

value-neutral testing moves to up and right of that of value-based testing, which is

also shown in Figure 4.4. For this example, the minimum risk exposure for value-

neutral testing is about 40% higher than that of value-based testing. Of course, the

project will need to invest in some form of early requirements prioritization, such as

business case analysis, stakeholder win-win negotiation, Total Quality Management,

or agile methods story prioritization, but these generate other project advantages as

well.

 109

Figure 4.4. High Finance Combined Risk Exposures: Comparing Value-Based
Testing vs. Value-Neutral Testing

4.5 Conclusions

This chapter describes how the integrative VBSQM was applied to perform

ROI analyses and combined risk analyses in order to determine an approximate

quantitatively-optimal software quality investment level and strategy for a project.

(There may be qualitative factors such as key-stakeholder satisfaction that may make

other levels or strategies preferable.) With such value-based software quality models,

users can perform sensitivity analyses of the most appropriate quality investment

level and strategies with respect to uncertainties in stakeholder value propositions or

marketplace conditions, for different risk exposure situations, or for additional

COCOMO II:
COQUALMO:
Value-Based:
Value-Neutral:
Market Risk:

0
1.0
3.0
3.0

.008

34

.125

.54

0.975

.30

54

.06

.30

.30

1.0

Added % test time
Pq(L)
Sq(L): Pareto
Sq(L): Linear

REm

12

.475

1.68

2.33

.027

22

.24

.96

1.65

.09

Combined Risk Exposure

0

0.2

0.4

0.6

0.8

1

VL L N H VH RELY

RE =
P(L) * S(L)

Market Share Erosion Value-based Testing Value-neutral Testing

Sweet
Spot

 110

qualitative considerations. The combined risk analysis model realized in VBSQM is

also valuable for determining the relative payoff of value-based vs. value-neutral

testing, which can be up to 40% higher for high-value applications, as shown in

Figure 4.4.

Even with only approximate information on relative values, the models can

provide a framework to help reason about quality investment tradeoffs and decisions.

 111

Chapter 5

VBSQA Process Application and Results

This chapter presents the application of Value-Based Software Quality

Achievement (VBSQA) process framework in three case studies. Section 5.1

discusses the entire procedure of applying the VBSDA process in NASA/USC

Inspector SCRover (ISCR) project developed by six graduate students in the Center

for Software Engineering (CSE) at USC. The final product served as one of the

testbeds for NASA High Dependability Computing Program (HDCP). Section 5.2

describes the partial application of VBSDA process in a Graduate Software

Engineering class e-service project for USC librarian. Section 5.3 shows how we

apply VBSDA process framework in a real world Enterprise Resource Planning

(ERP) project in China. These application results validate the following research

hypothesis:

 Hypothesis 3: The Value-Based Software Dependability Achievement

(VBSDA) Process can be applied by rational decision-makers to

o 3a. determine whether a software system with stakeholder mutually

satisfactory software quality (Q-) attribute requirements is achievable.

o 3b. help stakeholders and projects avoid software Q-attribute mismatches

and achieve successful software quality outcomes.

 112

5.1 Apply VBSDA Process in NASA/USC Inspector

SCRover (ISCR) Project

This section describes how the VBSQA process was applied in NASA/USC

Inspector SCRover (ISCR) project to help success-critical stakeholders achieve

successful software quality outcome.

5.1.1 NASA/USC ISCR Project Overview

The ISCR project was developed to serve as a distributable HDCP testbed for

evaluating current and emerging dependability-enhancing technologies. It involved

obtaining requirements from the USC Department of Public Safety (DPS) for an

autonomous robot that could investigate the possible presence of hazardous materials

in an environment unfit or dangerous for human intervention. Such an environment

could be caused due to an earthquake or a failed chemical/biological experiment in a

chemistry/biological laboratory. It would have several risks, such as loss of human

health or life due to failure to identify a dangerous target with chemical leak or

radiation, and the damage of robot itself.

Here are the top-level requirements that were determined for the ISCR

system. The robot shall be able to autonomously maneuver around in the area

designated by the robot operator and identify the potentially hazardous targets. The

robot shall simultaneously return pictures taken by the camera mounted on the robot

and the available sensor information to the designated host computer. Additionally,

 113

the robot shall maintain enough power so that it can return back to the initial

designated location.

The development of the SCRover was planned in 3 increments. The case

study is based on the increment 3 of the project which covers most of the important

mission scenarios.

5.1.2 ISCR Application of VBSDA Process

5.1.2.1 Identify Top-level Mission Objectives and Stages

The top-level objectives and stages for the Inspector SCRover (ISCR) are

summarized in section 5.1.1. And the top-level capabilities of the SCRover are as

follows:

 Autonomously maneuver around in the area designated by operator and

identify potentially hazardous targets

 Return continuous camera video images and sensor information to host

computer

 Power maintenance

We applied the VBSDA process on the increment 3 of the ISCR project.

5.1.2.2 Perform Project Cost/Benefit Analysis

Besides project budget estimation, project success-critical stakeholders and

their top-level value propositions are identified to perform the project benefit

analysis. The Results Chain technique, developed by the DMR Consulting Group

[Thorp 1998] is a way to identify missing initiatives and success-critical stakeholders

in a software development project.

 114

Figure 5.1 shows the software quality-elaborated Results Chain for

developing the Initial Operational Capabilities (IOC) of the ISCR increment 3

operational scenarios. We have omitted the Assumptions for simplicity, but added

the identification of success-critical stakeholders in parallelograms. Note that the text

in italic shows the original simple initial Results Chain for the project developing the

Initial Operational Capability (IOC) of the ISCR increment 3 information processing

(IP) and operational capabilities without the software quality considerations. The full

Results Chain identifies additional success-critical Initiatives, such as prevention and

avoidance of ISCR risks and vulnerabilities (R&Vs), training operator and

maintainers. Besides the Acquirers and Developers identified in the simple initial

Results Chain, the additional software quality initiatives identify success-critical

stakeholder class (Dependability Experts), and also the employment of additional

software quality enhancing tools and techniques such as verification and validation

(V&V). Other success-critical stakeholders are also identified whose inputs are

needed for the risk and vulnerability analysis: ISCR System Dependents (i.e. USC

Lab Faculty, Students and Staff), Operators and Maintainers.

 115

Acquirers,
Developers

Develop ,
V&V, Test

Initial ISCR IP

Dependable,
Evolvable

ISCR IP Initial
Operational
Capabilities

Dependable
ISCR IP

Deliverables

Operate,
Maintain
ISCR IP

IOC

Minimize Risks
to human life

Identify
ISCR IP Risks,
Vulnerabilities

R&V's

System
Dependents

(Faculty, Students,
Staff), ISCR
Operators,
Maintainers

Dependability
Experts

Train
Operators,
Maintainers

Trained O&M'ers

Operators,
Maintainers

R&V
Avoidance

Best Practices

Assess Best
Practices for

R&V Avoidance

Figure 5.1. Software Quality-Elaborated Results Chain for ISCR Increment 3

5.1.2.3 Stakeholders Negotiate Quality (and Other) Goals and Relevant

Mission Scenarios

Table 5.1 identifies a matrix of the primary ISCR success-critical

stakeholders as rows and their prioritized goals with respect to the ISCR system

development, operation, and evolution as columns. The specific columns represent

the primary categories of system requirements to be negotiated by the stakeholders.

Project goals and requirements include desired constraints on the ISCR

project such as choices of programming language, infrastructure packages, and

computing platforms; development and operational standards; and constraints on

budgets, schedules, and other scarce resources as listed in Table 5.2. Capability goals

include the functions the SCRover should perform. Interface goals include message

formatting and content, and interaction protocols with other interoperating systems.

Level of Service goals include the ISCR quality goals, except for cost and schedule

(covered under Project goals) and interoperability (covered under Interface goals).

 116

Evolution goals include downstream goals that the initial ISCR architecture should

support, such as deferred capabilities or scalability to accommodate workload growth.

 Goals

Stakeholders

Project Capability Interface Level of Service Evolution

ISCR System Dependents
(USC lab faculty,
students, staff, etc.)

ISCR Operators
ISCR Acquirers (USC
DPS)

ISCR Developers,
Maintainers (USC CSE)

Table 5.1. Inspector SCRover (ISCR) Stakeholder/Goal Matrix (Priorities:
High, Medium, Low)

 Goals
Stakeholders Project Goals Priority

Develop an autonomous mobile robot that shall
help the USC DPS perform its goals of
investigating hazardous agents in the USC labs.

H
ISCR System Dependents
(USC lab faculty, students,
staff, etc.),
Operators Post-Mission data analysis M
ISCR Acquirers (USC DPS) Acquire the Core Initial Operational Capabilities

(IOC) within budget and schedule H

Develop IOC within $200K and 9 months H ISCR Developers,
Maintainers (USC CSE) Use MDS (Mission Data System) Framework H

Table 5.2. Inspector SCRover (ISCR) Stakeholder/Goal Matrix I: ISCR Project
Goals and Priorities (Priorities: High, Medium, Low)

 Stakeholders
Goals ISCR System Dependents/Operators
Project …
Capability …
Interface …
Level of Service H: Availability >= 0.9998 for ISCR mission critical scenarios

H: Availability >= 0.993 for ISCR on-line operational scenarios
M: Availability >= 0.807 for ISCR post-mission data analysis scenarios
H: Accuracy of Target Sensing >= 99%
…

Evolution …

Table 5.3. Inspector SCRover (ISCR) Stakeholder/Goal Matrix II: ISCR
System Dependents/Operators Goals and Priorities (High, Medium, Low)

Table

Table 5.2

 117

Instead of using one number to define the ISCR system availability goal, we

distinguished three classes of mission scenarios. As shown in Table 5.3, the ISCR

system dependents’ and operators’ goals for system availability are 0.9998 for

mission-critical scenarios, 0.993 for on-line operational scenarios, and 0.807 for

post-mission data analysis scenarios. Such numbers are traditionally difficult to

determine. We will show how the Value-Based Software Quality Model (VBSQM)

[Boehm-Huang 2004b] helps determine them in the following subsection.

5.1.2.3.1 Determine ISCR Availability Goals: VBSQM ROI Analysis

Multiple stakeholder negotiation of ISCR system goals involves a mix of

collaborative win-win option exploration with prototyping and analysis of candidate

options. Here, the VBSQM can be used to help the stakeholders determine how

much availability is enough for the three primary classes of ISCR scenarios. Table

5.4 shows the key availability-related parameters for the software related to the three

classes of ISCR scenarios; the size in thousands of source lines of code (KSLOC),

the cost per line of code and total cost independent of investments in software

reliability, and the dollar mission value of risk if the class of the scenarios fails. For

instance, there are 15 KSLOC of software for mission-critical scenarios such as

Target Sensing and Target Rendezvous. Its cost per instruction of a Nominal

COCOMO II Required Reliability level is $6.24/LOC (at graduate-student labor

rates), leading to a nominal cost of $93.6K. A failure in the mission-critical software

is likely to cause complete contamination and replacement of the robot and the lab,

with an impact equal to the $2.5M of an entire lab. A failure and loss of availability

of the online-operational ISCR scenarios (i.e., display continuous video images and

 118

sensor data to operator) would require repair and rerun of the mission, possibly

losing $200K of lab equipment. A failure of post-mission data analysis would require

debugging, fixing, and regression testing the software, typically costing about $14K.

Table 5.5 summarizes an VBSQM analysis of the return on investment (ROI)

involved in increasing the reliability level from Nominal to High; High to Very High;

and Very High to Extra High. As determined from the calibrated parameters in the

COCOMO II [Boehm, et. 2000], and COQUALMO [Steece, et. 2002] models on

which VBSQM [Boehm-Huang 2004a] is based, increasing the reliability level of the

ISCR On-Line Operational software from Nominal to High involves an additional

$45K(0.10) = $4.5K investment. It results in an increase in MTBF from 300 to

10,000 hours, which at an experienced-based Mean Time To Repair (MTTR) of 72

hours results in an increase in availability from .807 to .993. Using a linear relation

between fraction of downtime and fraction of lost value as in [Demillo 2001], this

0.186 increase applied to the $200K risk impact of the On-Line Operational scenario

results in an added benefit of $200K (0.186) = $37.2K, and a resulting ROI = (37.2-

4)/4 = 7.29. However, an additional $45K (0.16) = $7.19K investment to take the

software from High to Very High only gains in a ($200K)(.9998-.993)=$1.38K

benefit, for a negative ROI of -0.81.

Nominal Classes of Scenarios Size
(KSLOC) $/LOC $K

Risk Impact
($K)

Mission-Critical 15 6.24 93.6 2500
Online-Operational 8 5.62 45 200
Post-Mission Data Analysis 6 4.48 26.9 14

Table 5.4. Size, Cost, and Risk Impact of Three Classes of SCRover Scenarios

 119

COCOMO RELY Level Nom High Very High Extra High
MTBF(hrs) 300 10,000 300,000 1,000,000
Availability (MTTR=72hrs) .807 .993 .9998 .99993
Incremental Availability .186 .0069 .00001
Incremental Cost Fraction 0.10 0.15 0.24
Mission-Critical
Incr. Cost @ $$93.6K $.9.36K $14.55K $16.84K
Incr. Benefit @ $2.5M $466K $17.27K $.42K
ROI = (B-C)/C +48.8 +0.15 -0.98
Online-Operational
Incr. Cost @ $45K $4.5K $7.19K
Incr. Benefit @ $200K $37.28K $1.38M
ROI = (B-C)/C +7.29 -0.81
Post-Mission Data Analysis
Incr. Cost @ $26.9K $2.69K $4.3K
Incr. Benefit @ $14K $2.61K $100
ROI = (B-C)/C -0.03 -.0.98

Table 5.5. VBSQM ROI Analysis of ISCR Increment 3 Availability Goals for
Three Scenario Classes

This and the ROI results for the other two classes of ISCR scenarios

calculated in Table 5.5 are summarized in Figure 5.2. The incremental cost of

achieving the higher availability levels still keeps the total cost below $200K. From a

pure calculated ROI standpoint, one could achieve some potential savings by

interpolating to find the availability-requirement levels at which the ROI goes from

positive to negative, but it is best to be conservative in a safety-related situation. Or

one can identify desired and acceptable availability levels to create a tradeoff space

for balancing availability with other software quality attributes.

 120

Figure 5.2. Summary of VBSQM ROI Analysis of ISCR Increment 3

Availability Goals

5.1.2.4 Concurrently Engineer Top-level Q-attribute and Other Requirements

and Solution Tradeoff Spaces; Identify Top-level Risks and Execute

Risk-mitigation Spirals

E1. Identify software quality (Q-) attributes

The top-level software Q-attributes for the ISCR system are availability,

safety, accuracy, performance, usability, cost and schedule.

E2. Establish system operational profile scenarios and prioritize scenarios

The operational scenarios of the ISCR increment 3 Initial Operational

Capability (IOC) identified by the stakeholders are shown in the Table 5.6. The

lower-priority scenarios can be added in past-IOC increments.

 48.8 7.29

- 1

0

1

ROI

-.81

.15

- .98

Post-Mission
Data Analysis

Mission- Critical

RELY Increase
Cost Increase
Availability

ROI

.98

RELY Increase Nom → H
0.10

 0.993

H → VH
0.15

 0.9998

VH → XH
0.24

 0.99993

-.03

Online-
Operational

 121

Scenarios Component Scenarios Priority
Target sensing H

Trajectory planning
Localization Target rendezvous
Obstacle avoidance

H

Return target state info state variable to operator Display environment state
information to operator Return terrain state variable to operator H

Return camera state variable to operator
Return range finder health state variable to operator
Return wheel motor health state variable to operator

Display sensor and actuator
health state information to
operator

Return battery state of charge to operator

H

Display continuous camera
video images to operator

 M

Post-mission data analysis L
Goal conflict identification and
resolution

 L

Table 5.6. ISCR Increment 3 Operational Profile Scenarios

E3. Map Q-attributes into scenarios and determine metrics, stakeholder/value

dependencies and value estimating relationships (VERs) for software Q-

attributes of each scenario

Table 5.7 shows the top-level direct stakeholder/value dependencies on the

Q-attributes in the Target Sensing scenario. Acquirers and developers are not directly

concerned with availability, accuracy, safety, etc., but become concerned with them

when their operational stakeholders are.

Table 5.7. Target Sensing Scenario: Stakeholder/Value Dependencies on
software Q-attributes

Stakeholders

Q-attributes
System

Dependents Operators Acquirers Developers Maintainers

Availability * ** *
Accuracy **
Cost ** *
Schedule ** **
Evovability **

** Critical * Significant () Insignificant or indirect

 122

E4. For each scenario, stakeholders define their acceptable and desired values

for concerned Q-attributes

The results of the VBSQM ROI analysis for three ISCR scenario classes

discussed in section 5.1.2.3.1 were used as a guidance for stakeholders to define their

expected and desired levels for Q-attributes based on the priority of a particular

scenario and their value dependencies on the scenario-related Q-attributes.

In both Target Sensing and Target Rendezvous scenarios, Operators have

critical dependency on availability so that they defined the 99.98% acceptable

availability for those two scenarios, which is corresponding to the Very High RELY

cost driver rating in the VBSQM ROI analysis. System Dependents and Operators

are most concerned about the lab safety which is directly dependent on the accuracy

of Target Sensing so that they proposed a requirement of 99% acceptable and 99.9%

desired accuracy of target sensing.

E5. For each scenario, identify the risks of not achieving the acceptable values

of Q-attributes

E6. For each scenario, identify the architecture/technologies to mitigate the Q-

risks

E7. Architecture/technologies evaluation

By grouping the risks for the two mission-critical ISCR scenarios Target

Sensing and Target Rendezvous, the top-level risks for not achieving the 99.98%

acceptable availability requirements are summarized in Table 5.8. Similarly, the risks

for not achieving the 99% acceptable accuracy requirement in the Target Sensing

scenario are summarized in Table 5.9.

 123

For each pair of risk and architecture/technology strategy in each scenario,

we provide an estimate (expert judgement) of the mitigation of the risk in the

scenario as shown in the “Mitigation” column in Table 5.8 and Table 5.9. We define

the “mitigation” as the proportion by which the risk would be reduced were that

architecture/technology strategy to be applied. At the same time, the cost/effort of

applying a particular architecture/technology strategy should also be recorded.

E8. Identify conflicting Q-attributes and perform tradeoff analysis

In the ISCR project, the conflicting Q-attributes we experienced are primarily

due to the confliction between the cost/effort of achieving the acceptable levels of

some Q-attributes and the project cost/schedule constraint. Note that in our

stakeholder/value dependency framework, cost and schedule are also considered as

the Q-attributes which both system acquirers and developers directly depend on.

Based on the stakeholder acceptable levels of availability and accuracy

requirements in E4 and the architecture/technology evaluation results in E7,

developers and ISCR acquirers found that cost and schedule constraint would be

overrun if all the technology strategies need to be applied for the risk mitigation.

Specifically, in the Target Rendezvous scenario, in order to satisfy the 99.98%

acceptable availability requirement, we would need to replace the current Laser

Range Finder (LRF) with one having a wider range and develop more complex

algorithms to accommodate the two environment risks (i.e., mirrors and big holes).

On the other hand, in order to satisfy the 99% acceptable accuracy of Target Sensing,

a redundant camera would need to be installed on the SCRover to mitigate the risk of

inaccurate camera data.

 124

The development team consisting of 5 half-time CSE research assistants was

required to finish the increment 3 of the ISCR project within 9 months. For the

Target Rendezvous scenario, it would incur almost 25% of the schedule overrun in

order to design, implement and test the more complex algorithms to accommodate

the two environment risks. In addition to that, a more expensive LSR would need to

be installed which will incurs budget overrun. As for the achieving of 99%

acceptable accuracy requirement in the Target Sensing scenario, it only incurs the

budget overrun if a redundant camera needs to be installed. Then three options listed

as below were proposed for stakeholders to perform the tradeoff analysis:

 Option 1. Achieve 99.98% availability in Target Rendezvous but sacrifice

other D-attributes such as accuracy, performance and usability, etc.

 Option 2. Relax both 99.98% availability and 99% accuracy requirements

to some extent.

 Option 3. Relax the schedule and cost constraint and try to achieve both

99.98% availability and 99% accuracy requirements.

Based on the assessment of the above options on a group of prioritized Q-

attributes with scenarios, stakeholders could assess their tradeoff functions and score

the three options. Finally the option 2 won.

 125

Architecture/Technology
Strategies Categories Risk Description

Impact on
Scenario(s)

S(L)

Prob. of
Loss
P(L) Name Risk

Mitigation
Missing availability
requirement 0.5 0.1 Peer Review 0.99

Requirement Ambiguous or
untestable
requirement

0.5 0.8 Peer Review 0.95

MDS Framework 0.3
Peer Review 0.5
Mae 0.9
Acme Studio 0.7
Unit Testing 0.5

Communication
problems between
components (e.g.,
parameter type
mismatch, pre/post
condition mismatch,
etc.)

0.8 0.3

Integrated Simulation 0.8
Peer Review 0.8
Mae 0.6
Acme Studio 0.6
Unit Testing 0.8

Incorrect
method/function/algori
thm

0.9 0.5

Integrated Simulation 0.9
Peer Review 0.6
Unit Testing 0.8

Design/Code

Data initialization
errors 0.3 0.2

Integrated Simulation 0.9
New LRF 0.5 Reflective obstacles

(e.g. mirrors) 0.5 0.01 Reflective obstacle
avoidance algorithm 0.95

New LRF with a
wider range 0.9 Environment

An environment with
big holes 0.9 0.05 Hole avoidance

algorithm 0.9

Table 5.8. Target Sensing and Target Rendezvous Scenarios: Top-level Risks of
Not Achieving 99.98% Availability and Risk Mitigation of

Architecture/technology Strategies

Architecture/technology
Strategies Categories Risk Description

Impact on
Scenario(s)

S(L)

Prob. of
Loss
P(L) Name Mitigation

Hardware Inaccurate camera
data 0.8 0.3 Sensor Redundancy 0.99

MDS Framework 0.8
Peer Review 0.5
Mae 0.6
Acme Studio 0.3

Design/Code
Inaccurate estimation
of target
position/safety status

0.8 0.3

Monte Carlo
Simulation 0.9

Table 5.9. Target Sensing Scenario: Top-level Risks of Not Achieving 99%
Accuracy and Risk Mitigation of Architecture/technology Strategies

 126

E9. Stakeholders negotiate WinWin balanced Q-attribute requirements and

redefine the acceptable and desired values for conflicting Q-attributes

The Operator agreed to relax the availability requirement by ignoring the

mirrors and big holes because the probability of their occurrence in the DPS mission

modes is very low as shown in Table 5.8. It was redefined as the acceptable

availability of Target Rendezvous in a controlled environment (without mirrors or

big holes) is 99.98%. As for the accuracy requirement, developers proposed a new

approach to ensure at least 98% accuracy of Target Sensing by double-checking the

target sign from two different angles. It not only avoids the installation of a

redundant camera but also saves some software development effort. Both System

Dependents and Operators accepted this suggestion and relaxed the acceptable

accuracy of Target Sensing to 98%.

5.1.2.5 Develop Initial Feasibility Rationale; Hold Life Cycle Objective (LCO)

Review

A Life Cycle Objective (LCO) Review was held with the participation of all

the project key stakeholders, and independent experts who were NASA Jet

Propulsion Laboratory (JPL) planetary mission software experts for ISCR. This

indicates a milestone of the LCO phase in the WinWin Spiral Model. The exit

criteria of LCO Review were to provide at least one feasible architecture to satisfy

the requirements, and to provide proofs of requirement satisfaction including the

software quality requirements. At the same time, the initial risk analyses identified

all the major risks and propose an initial risk mitigation plan. Risks without

mitigation in LCO stage had to be resolved in Life Cycle Architecture (LCA) stage.

 127

The result of LCO ARB was to Pass and to go to Step 9 (see Table 3.4).

However, a risk was identified that the tool evaluation needs for the HDCP tool

researchers had been incompletely defined for ISCR.

5.1.2.6 Concurrently Engineer Detailed Q-attribute and Other Requirements

and Solutions; Resolve Risks

Thus, the major new activity in Step 9 (see Table 3.4 in section 3.3.2)

involved surveying HDCP interventionists for additional evaluation needs. The

primary need identified was a three-dimensional graphic user interface (3D GUI).

Originally, developers planned to use Player/Stage as the robot simulator

platform. Because of the 3D GUI requirement, we had to reevaluate the existing

technologies or identify new technologies to mitigate this Q-risk. In this case, since

Stage doesn’t support a 3D GUI, the developers had to find a replacement. After the

evaluation, stakeholders finally chose Gazebo because it supports the new stereo

camera model and a 3D GUI which also enabled most devices to be directly

controlled/inspected through the simulator GUI. Since Stage and Gazebo are both

Player-compatible, client programs written using one simulator can usually be run on

the other with little or no modification. The key difference between these two

simulators is that whereas Stage is designed to simulate a very large robot population

with low fidelity, Gazebo is designed to simulated a small population with high

fidelity [Gazebo 2005]. Thus Gazebo fits with most of DPS missions which can be

accomplished by a few robots. Furthermore, Gazebo is more valuable to stakeholders

since it improved the usability and evolvability of the system.

 128

5.1.2.7 Develop Detailed Feasibility Rationale; Hold Life Cycle Architecture

(LCA) Review

The Life Cycle Architecture (LCA) Review was held with the participation of

all the project key stakeholders and the JPL experts. The exit criteria of Life Cycle

Architecture Review Board (LCA ARB) were to commit one architecture to satisfy

all the requirements of the system. And the LCA FRD provided the detailed proofs

of all requirement satisfaction including the software quality requirements.

The result of the LCA ARB was again to Pass, and to proceed to Step 12 (see

Table 3.4).

5.1.2.8 Construct, Test, and Deploy System

During the construction phase of ISCR Increment 3, the proposed mission

scenarios discussed in section 5.1.2.4 were used to simulate the ISCR Q-attribute

requirements (e.g. availability, accuracy) in Gazebo and to evaluate whether the

acceptable Q-attribute levels can be achieved. ISCR Core Capability Demo (CCD)

was successfully performed with the participation of JPL experts and other project

key stakeholders.

5.2 Avoid Q-attribute Mismatches in Fulltext Title

Database Project

This section illustrates how the VBSQA process helped avoid software Q-

mismatches through a USC e-service project, the Fulltext Title Database (FTD).

 129

Note that only the process activities closely related to avoidance of Q-attribute

mismatches are discussed.

5.2.1 Fulltext Title Database (FTD) Project Overview

 The Fulltext Title Database (FTD) system is designed and developed for

faculty, students, researchers and librarians at USC. USC subscribes to many

different vendors’ databases that index and abstract popular and scholarly articles

and make them available over the World Wide Web. In some cases these databases

include the full text of the articles as well. A major problem faced by faculty,

students, researchers and librarians is identifying where a particular periodical title is

indexed, the dates of coverage and whether it is available in full text. Title lists are

available from the vendors, but are large files that can be difficult to use on the fly.

As a result, the initiative of this project was to retrieve and consolidate the

information in vendors’ title lists into a searchable database that can be accessed via

the web. A major challenge is to architect the software system to be completed by

satisfying the project key stakeholders’ requirements (including software quality

requirements) with 24 weeks. The following sections describe how the process

elements (as indicated by the section titles) were applied within the project lifecycle

to avoid Q-attribute mismatches.

5.2.2 Stakeholder Identification and Feature Prioritization

The key stakeholders of the FTD project included a system acquirer

representative from USC Information Service Division (ISD), a USC-ISD librarian

who is designated as database administrator and system maintainer, and software

 130

developers from USC-CSE. The USC/GroupSystem EasyWinWin requirements

negotiation tool were used to help stakeholders converge on a mutually satisfactory

(win-win) set of project and capability requirements (named as system features here).

The resulting prioritization is presented in Table 5.10. Stakeholders also identified

the top-priority quality requirements associated with the system features, which

include architecture Evolvability and Schedule.

Table 5.10. Prioritized Fulltext Title Database System Features

5.2.3 Engineer Software Quality Requirements and Tradeoff

Analysis

5.2.3.1 Estimate Features for Firm 24 week Schedule

The student developers participate in the project course for a maximum of

two semesters, hence there is a firm 24-week schedule constraint. Exacerbating this,

students are not full time developers (i.e. not 40 hours/week developers) and this

System Features Priority
F1 Search and locate full-text journal titles by title keywords Very High
F2 Search and locate full-text journal titles by title keywords and date,

title keywords and volume or number, title keywords with any
combination of the other three attributes

Very High

F3 Provide hyperlinks to vendors’ databases in the searching results Very High
F4 Update Fulltext Title Database using current vendors’ title lists High
F5 Automatically FTP downloaded title lists from administrator’s local

machine to remote server
High

F6 System administrator authentication High
F7 Administrator password maintenance High
F8 Add new vendor’s title list profile Medium
F9 Delete existing vendor’s title list profile Medium
F10 Modify existing vendor’s title list profile Medium
F11 View existing vendor’s title list profile Medium
F12 Allow more searching options starting with searching by ISSN, etc. Low

 131

must be taken into account. The system construction phase mostly occurs in the

second semester, which leaves only 12 weeks for implementation and transition. The

project allocated 2 weeks at the end of the semester to insure successful transition to

the customer, leaving only 10 weeks for actual implementation. It is assumed that

student will spend no more than 12 hours per week doing project work. Thus there

are about (10 wks) (12 project hrs/week) = 120 project-hrs. available per team

member. To use COCOMO II for effort estimates we had to convert student

development effort to COCOMO II person-months [Boehm et. al. 2000a]. For this

purpose this we assumed that 72% of the effort is spent in construction (28%

elaboration of system concept) and only 66% of the day is spent doing project work.

As such, 120 project-hrs is approximately (1.67)(.72)(.66 project-hrs/total hrs)(152

hrs/person-month) and so with our five team members our COCOMO II effort

should not exceed (5) (1.67)=8.35 person-months or around 34 person-weeks.

The developers used COCOMO II to determine that prioritized features from

the EasyWinWin negotiations indicated in Table 5.10 would take at least 40 person-

weeks using the pessimistic 90% confidence limit on effort. This significantly

exceeds the 34 person-week schedule constraint, hence we must consider dropping

some features. COCOMO II estimated that the seven top-priority features F1-F7

could be implemented pessimistically in 17 person-weeks. However there is no

guarantee that implementing these features will result in a usable system. This will

be elaborated in the next section.

 132

5.2.3.2 Core Capability Determination

Next, a core capability feature set from Table 5.10 was determined. To

accomplish this, developers first had to make sure that the core capability set was

selected so that its features add up to a coherent and workable end-to-end operational

capability. Second, the remainder of the lower-priority IOC requirements and

subsequent evolution requirements must be used in determining a system

architecture that will facilitate evolution to a full operational capability. For the

Fulltext Title Database project, three core capabilities, comprised of multiple top-

priority features were proposed:

1. Provide a full-text journal title search capability

This core capability aggregates the first three highest priority features F1, F2,

and F3. At the same time, a low priority feature F12 was assigned to this

capability and thus it could be dropped (although still architected for) if

needed.

2. Update the Fulltext Title Database

This core capability incorporates three high priority features F4, F5 and F6.

3. Administrator password maintenance

This uses the high priority feature F7 which enables the system administrator

to change his/her password in the future and was deemed critical for long term

functionally.

The above three capabilities formed a coherent, end-to-end core capability (as

negotiated with the stakeholders) that, if implemented would also provided

 133

reasonable value to users. While it is not totally coincidental that these happen to be

the top-7 priority features, this was by no means assured until after this core

capability analysis and negotiation with stakeholders. As discussed in section 5.2.3.1,

COCOMO II estimated that even pessimistically these features could be developed

in 17 person-weeks. As it turned out, the developers did indeed have enough time to

add most of the lower prioritized capabilities and even a late requirements change for

the IOC, in spite of the originally pessimistic 40 person-week estimate. The key

lesson here is that this effort was strategically risk managed so that there was high

assurance of delivering a functionally valuable system for the IOC. This was clearly

facilitated by designing an underlying architecture that was easy to scale up to the

full feature set and workload requirements after the core capabilities were developed.

This will be elaborated next.

5.2.3.3 Determine Architecture Evolvability: Evolvability and Schedule

Tradeoff Analysis

Architecting a set of core capabilities to encapsulate foreseeable sources of

changes within modules incurs overhead. It is not enough to simply modularize the

core capabilities; the sources of anticipated changes must also be taken into account.

This includes accounting for the possible new features themselves (e.g. method stubs,

abstract objects), their interaction with each other (e.g. interfaces), and their

interaction with the existing core capabilities (for example changes to method

parameters and return types, pre- and post-validation). The architecture must be

strategically designed in such a way as to enable delivery of the core features while

providing an appropriate level of Evolvability without introducing an excessive risk

 134

of schedule overrun. Too much Evolvability may delay the delivery of the core

capabilities. Too little may not enable changes to be made after core capability

delivery without substantial re-work. In general, haphazard Evolvability architecting

can lead to excessive schedule risk.

We illustrate the points above by making use of a “combinatorial” effort

model shown as Formula 5.1. While this model can be empirically calibrated for a

particular project, it does not strictly provide a predictive estimation of effort. Rather,

it indicates the “expectation” (or average) of additional effort that may be incurred

for making changes within the architecture of a given degree of Evolvability. As

such, the model can help with the advanced planning of architecture with respect to

specific schedule constraints. Suppose we plan to build a software system with N

features, and we plan for architectural Evolvability by grouping the features into

modules. As a first order estimation to this problem we assume that each module on

the average will implement m features (so m is at least 1 and cannot exceed N). We

make no assumptions on the actual distribution of the features. For small systems or

in localized parts of a system, the distribution may have a significant effect on the

modification effort. However taken as a whole over a sufficiently complex system,

the average is reasonably representative. In larger systems, some modules may have

many features, thereby reducing the amount in others, or perhaps they are equally

distributed. In either case, the overall effort in making changes to a group of these

modules is “expected” (that is on the average) to be the same. We call m the

modularity factor and so we expect to create N/m modules (some modules may be

empty, but are defined so as to accommodate features later). The extreme case m=N

 135

would be a “totally rigid” architecture, or all features in a single module, whereas at

the other extreme m=1 is “hyper-flexible”, where every feature exists in a single

module. Consider the expected change effort E to add or modify a fraction α of the

N total planned features after the core features have been developed. We must

account for the effort to add an expected Nα features, create some new modules,

create new interfaces and interfacing with old modules, and interfacing between new

and old features. The following model is a first order “expectations” model to

represent this effort:

A little elaboration of the above model is in order here. The first term is the

effort for adding or modifying α N features. The value 1c represents the average

effort to develop a feature. One possible means of establishing this value is by taking

the core capability COCOMO II schedule estimate and dividing by the number of

core capabilities. In addition, we should also consider adjusting the value by

adjusting some of the relevant COCOMO II cost drivers to account for the

experience gained and established development. The other constants in the equation

may be estimated empirically in other ways. Note that the core capability COCOMO

mNcmN
m

c
mN

cNcE)1(/
22

/
4321 αα

α
α −+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

E – total change effort
N – total number of features
m – modularity factor
α – a fraction of anticipated changes
c1 – average effort to develop a feature
c2 – average development effort of per inter-module interaction
c3 – average development effort of per intra-module feature interaction
c4 – average effort to accommodate a new feature within each existing

feature in a module

(5.1)

 136

II schedule estimate does not incorporate the effort for planning the architecture

design to add or modify features up to N.

The second term accounts for the additional effort required to develop the

modules for all N planned features (e.g. interfaces and all possible interactions

between them) and 2c represents the average inter-module interaction development

effort per module.

The third term represents the effort to make changes within each module to

accommodate the new (or modified) features (e.g. passed values, validations, etc.)

with each other. Note that this is where modularity helps. The fewer features there

are per module, the lower this term is. Again, the 3c coefficient represents the

average effort per intra-module feature interaction.

The final term is slightly more subtle as it accounts for the effort needed to

accommodate the new features within the existing features for each particular

module. Within each module an average of mα features will be modified and these

changes may affect an average of m)1(α− of the unmodified features. The product

of these provides the average number of interactions. The coefficient 4c represents

the average effort to accommodate each new feature within each existing feature in a

module. Note that it is reasonable that this term contributes its maximum at

2/1=α as more or fewer changes would imply less interaction effort between

modified and existing features. Typically this accounts for the type of changes due

to interfaces and data validation. Here again, the fewer features per module, the

lower this term becomes.

 137

The individual terms described above hopefully account for all the major

sources of change effort. But why is it reasonable to assume the terms are additive?

Certainly there are strong dependences between the effort sources. However, here is

where we take advantage of the “linearity of expectations” whereby the sum of the

averages is the average of the sum regardless of dependencies. Optimizing over an

average value is a common useful modeling approach and for our purposes practical

in light of the linearity simplification.

The values of the effort coefficients c2, c3 and c4 relative to c1 will vary as a

function of the relative modularity and coupling involved in the application, as

approximately represented by such techniques as design structure matrices [Baldwin-

Clark 2000, Sullivan et. al. 2001]. An example of these coefficients from our case

study described in section 5.2.1 where N=12 is 6.0,7.0,4.0,7.1 4321 ==== cccc (An

explanation on how we estimated these values is detailed below in this section.). We

use these values in Figure 5.3 to illustrate the change effort E versus fraction

modified α for various modularity values m:

0

10

20

30

40

50

60

0.2 0.4 0.6 0.8 1

Flexible
m=2.74

Rigid
m = 12

Hyper-flexible
m = 1

Fraction of features modified α

Effort
(person-weeks)

Figure 5.3. Change Effort E vs. Fraction of Features Modified α

 138

The general trend shown in Figure 5.3 indicates that the initial effort for a

hyper-flexible architecture is very high, while the rigid architecture is very low, but

increases significantly when features are added. For our case study objective of

adding 5 features between the Core Capability Demo and IOC milestones

(12/5=α), we find that a modularity factor of 2.74 minimizes the change effort in

our model. This degree of Evolvability not only allows us to adapt to changes well

but also has low initial design effort. So long as the initial effort does not exceed our

schedule constraint, it is feasible to strategically plan for future changes to features

using this modularity. It is clear from this example that careless modularization can

lead to excessive, perhaps fatal additional project effort. A good example of a hyper-

flexible architecture was the MEDLARS II publication system. It had seven layers of

abstraction and was finally dropped after two years and four hardware upgrades

could not handle the workload. A good example of a totally-rigid architecture was

the initial design of the ARPANET Interface Message Accessor software, which was

so tightly coupled that it could not be modified even for performance measurement.

It is important to note that our model deals with determining a degree of

Evolvability that helps achieve a particular schedule constraint (which will be

exemplified further in the case study section) and not determining the best modular

design according to the natural dependencies of the capabilities and techniques.

There is related work that does deal with this more tactical issue by considering the

net-present-value of modularization within a design structure matrix [Sullivan et. al.

2001]. After using such an approach to determine a modular architecture, our

approach can help determine if it or some variation is feasible with respect to the risk

 139

of exceeding a particular schedule constraint. Alternatively, it can be used in advance

of design modularization to help narrow the design option space by indicating a

schedule-feasible range of the number of modules and average functions per module.

Beyond this, the model does not provide any technical design guidance predictive

estimates.

Here we estimate how flexible the architecture should be to accommodate the

12 features for the Fulltext Title Database system based on the expected effort model.

We previously determined that there are 3 core capabilities integrating features F1-

F7. As such we anticipated a desire to add 5 medium or low priority features after the

core capabilities were developed, hence for our model, α = 5/12. The average effort

per feature 1c (=1.7) was estimated based on another COCOMO II estimate of 11.9

person-weeks for the 7 core feature set by adjusting the COCOMO II cost drivers for

having the experience of already building the core-capabilities. The values

)6.0(),7.0(),4.0(432 === ccc were determined empirically from actual effort

expended on the prototype and expert judgement. Naturally we would also like to

architect the system for ease of adding the remaining lower priority features to get as

many of the 12 features as possible. This was also important as the clients’

requirements were volatile. For example, after an early project review, they proposed

a new requirement that would enable the Fulltext Title Database system to

accommodate vendors’ title lists in various formats. It aggregated the four medium-

priority features F8, F9, F10, F11. Clients also promoted F12 from a low-priority

evolutionary requirement up to high priority.

 140

Given the above information, if the developers had planned to build a hyper-

flexible architecture, for example by creating generic database “adaptors” to enable

the system to be compatible with an assortment of databases, the schedule estimate

from the model gives nearly 53.6 person-weeks. Note that even though the effort

needed to add features is very low, the effort expended on both planning to

add/modifying features in the hyper-flexible architecture and actually adding any of

the remaining 5 features is estimated at around 36.6 person-weeks (see Figure 5.3).

While undoubtedly our model is inaccurate, it does indicate that there is a

considerable risk of exceeding the 34 person-week schedule limit. On the other hand,

if we had used a rigid architecture, the 36.5 person-weeks estimate there is also

undue schedule risk to re-architect and implement the new features along with the

core capabilities.

Therefore, the developers tried to build a flexible, but not “too flexible”

architecture given possible requirement changes in the following manner. Given that

we anticipated 5 feature changes, we found that m = 2.74 in our model gives the

minimum effort (using the usual calculus method of setting the derivative to zero) for

the value α = 5/12. This resulted in an effort estimate of about 33.5 person-weeks

(17 person-week for the core feature set based on a COCOMO II estimate, plus 16.5

person weeks “change effort” which is the additional effort E for adding 5 features,

see Figure 5.4). Based on this estimate, it’s possible for the developers to meet the 34

person-week schedule constraint. Subject to particular technical considerations for

modularity design, if we target architecting 3 or 4 modules which grouped 4 or 3

coherent features in each (on the average), we increase our chances of being able to

 141

deliver the 5 additional features beyond the core within the 34 person-week schedule.

This degree of modularity is nice in that it has a reasonably low initial effort (only

slightly higher than a rigid architecture) and that adding features beyond the 5

doesn’t increase the effort rapidly. Such an architecture tolerates volatile

requirements well, which proved to be the case for this project.

With this in mind, we designed four modules: the Fulltext Title Search

module, the FTD System Administrator module, and the Fulltext Title Information

Archive module and the Fulltext Maintenance module which was initially a “stub”

used to encapsulate the four medium-priority features. Thus the actual modularity

factor m was 3, which was consistent with our estimated “optimal” modularity factor

2.74 from the model. While mainly the technical considerations drove the

modularization (and hence the choice of four modules) that this was compatible with

the strategic estimate provided two valuable project management elements. First, it

helped rationalize our invested effort (and the plan to do such) for the design of the

four modules. Second, it increased our confidence in our decision to be satisfied with

only four modules, helping suppress the urge to “generalize” the design further. Both

these factors contributed to managing the risk of not meeting our fixed delivery

schedule.

Several general interfaces (such as Title_Search_Information) were created to

accommodate future changes and capabilities. In addition, some of these modules

utilized method stubs and meta-methods to adhere to these interfaces without

implementing the capabilities (but enable easy implementation at a later time). At the

 142

completion of the project, we ended up implementing the 5 remaining features in

addition to several requirement changes.

0

5

1 0

1 5

2 0

2 5

3 0

3 5

0 .2 0 .4 0 .6 0 .8 1

E ffo rt
(p e rso n - w eek s)-

F rac tio n o f fea tures m o d ified α

m = 2 .74

α = 5 /12

Ε = 1 6 .5

Figure 5.4. Change Effort E When 5/12 Planned Features Modified

5.2.4 Project Results and Discussion

Based on the tradeoff analysis between FTD architectural Evolvability and

project schedule, we strategically planned two iterative increments to develop the

FTD system development and to cope with the potential requirement changes within

24 weeks. Three FTD core capabilities were successfully delivered within

approximate 70-80% of the project schedule in increment I. In addition, we also

successfully accommodated two new high-priority change requests from clients in

increment II as follows:

1. Accommodate vendors’ title lists in various formats

2. Add F13 (Partial keyword searching) and drop F12 (Allow more searching

options starting with searching by ISSN, etc.)

 143

Software develops have long understood the negative effects of too little

architecture Evolvability. Many have also understood that attempting to achieve

maximum Evolvability can pose the risk of not leaving sufficient time for project

completion, of increasing project cost beyond acceptable limits and/or rendering the

desired software quality impossible to achieve given cost and schedule constraints.

Previous attempts at achieving a balance between too little and too much architecture

Evolvability have been based solely on technical considerations. Our current

approach to strategic architectural Evolvability has been used successfully on 24 of

26 e-services applications at USC, to deliver highly client-satisfactory applications

on a fixed schedule in a climate of rapid changes. We have been using and refining

this approach to assist project managers in determining an appropriate degree of

architectural Evolvability with respect to fixed schedule, cost, or quality constraints

by introducing a modularity factor for the software architecture based on the core

capabilities and a set of anticipated changes. In particular, architectural Evolvability

determination is an integral part of the Schedule as Independent Variable (SAIV)

approach [Boehm-Brown 2001, Boehm et. al. 2002].

While our approach does not predict technical actual design modularity, we

have found it instrumental in guiding technical modularity design decisions and

managing risk of schedule overruns. It shows an example of how to construct a

tradeoff function between software Evolvability and project schedule. An analogous

approach can be used to provide guidance to meet cost, quality, or cost-schedule-

quality goals.

 144

5.2.5 Extension to Cost, Quality, and Schedule/Cost/Quality Goals

Simply substituting "cost" for "schedule" in the steps described above

provides an equally effective way to handle cost rather than schedule constraints.

Handling combined Schedule/Cost/Quality constraints is a straightforward extension

of this. It involves setting the system's quality goals (e.g., a delivered defect density

of 0.3 nontrivial defects per thousand source lines of code (KSLOC), or of 0.03

nontrivial defects per function point), and tracking progress with respect to achieving

the desired combination of schedule, cost, or quality goals. If any of these goals

becomes unachievable in delivering the current feature set, the project must drop

enough lower-priority features to make the combination of goals achievable. There

may be limits to the project's ability to do this, such as insufficient schedule to

develop even a viable core capability, which we have discussed via a production-

function perspective in [Boehm-Brown 2001].

5.3 Apply VBSDA Process in Real-world ERP Software

Development

5.3.1 Introduction

Enterprise Resource Planning (ERP) is a business management system that

integrates all facets of the business process, including planning, manufacturing, sales,

and marketing. The booming economy in China has encouraged the development of

ERP software to improve various business operations such as inventory control,

order tracking, customer service, finance and human resources. Attracted by the

 145

potential huge profit, more and more software companies are jumping into this field,

which leads to severe competition among ERP solution providers. They are

expected to provide continuous value realization for their success-critical

stakeholders to survive the competition. These trends drive the changes in the

characteristics of ERP software development in China as follows:

 A variety of stakeholders with different value propositions are involved in

the entire software development life cycle.

 Product lines are maintained as a basis for future upgrades.

 Three process patterns (deadline-driven, product-driven and market-trend

driven) are selectively applied in their software development life cycle based

on different business cases.

 Different software quality assessment criteria are set based on different

business cases by various project success-critical stakeholders. Thus

different software development activities are adopted in different process

patterns.

ERP solution providers in China have established their own sets of software

development process activities. Most of the activities are based upon value-neutral

approaches and/or the Waterfall model, which are difficult to adapt to changing

characteristics and often lead to project failures.

 146

5.3.2 VBSQA Process Experience On A Real-World ERP Software

Project Case Study

The case study was originated from a real-world project in Neusoft Co. Ltd.,

one of the biggest solution providers and software companies in China [Huang et. al.

2006b]. It produces software to support ERP in the fields including

telecommunication, electric power, enterprise e-business, social insurance, finance,

education, tax, and mobile Internet. We name all of these software products as ERP

software in this dissertation.

Based on the above VBSQA process framework we conducted the initial

exercise with 2 project managers from Neusoft and 2 facilitators from Nanjing

University. And an undergoing ERP software project in Neusoft, which is to upgrade

a Documents and Images Management System (DIMS)1 from version 6.0 to 7.0, was

used as a case study. The current 6.0 version of the DIMS software developed by

Neusoft had been used in several departments of Chinese government for three years.

Some departments were going to change their database platforms. At the same time,

they might also add, remove or update certain attributes in the DIMS 6.0 database

schema. In this case, DB administrators needed to export all the data from the old

databases and import them to the upgraded ones. With the common requirements of

the DB administrators from various departments, Neusoft decided to upgrade the

DIMS from 6.0 to 7.0 by adding a new capability of data migration. The objective of

1 The DIMS project is anonymous for the sake of commercial confidentiality.

 147

this exercise was to tailor the VBSQA process to the ERP software development

activities in China.

5.3.2.1 The New Process Learning Curve

Two project managers from Neusoft were given two-week series of tutorials

on the VBSQA process framework and the WinWin Spiral model. Then we started to

evaluate the effectiveness of the tutorials. Two project managers were to utilize the

VBSQA process framework as a guideline to generate a value-based process instance

based on the current ERP software development activities in order to achieve the

WinWin balanced DIMS quality requirements from various project success-critical

stakeholders. They developed a process instance composed of 22 ERP software

development activities. During the discussion after the exercise, we detected 6

misplaced activities due to the misinterpretation of the process steps in the VBSQA

process framework. We also identified 4 missing activities which should have been

included in the process instance due to the misunderstanding of value-based

approach and WinWin Spiral model.

This exercise and previous experience suggested that project managers

typically had very short attention spans and low tolerance for new “methods” since

they were usually very busy. They all suggested that we provide an easy-to-use

process framework with a short learning curve.

Furthermore, project managers tended to use the VBSQA process as a

guideline. They expected it to be able to adapt to the changes in the ERP software

development activities and workflows. Thus, customization of VBSQA process

framework toward specific software development, such as ERP software

 148

development, would improve its application and provide considerable value for

project managers and software companies.

5.3.2.2 Maintaining the Flexibility of the Process

The VBSQA process framework covers all the phases and milestones in the

entire software development life cycle of the WinWin Spiral model. It also includes

various software development activities to incorporate the value-based consideration.

On the one hand, for most Chinese ERP solution providers, different software

quality assessment criteria are set based on different business cases so that different

activities may be selected to meet them. Three different process patterns (deadline-

driven, product-driven and market-trend driven) are usually applied in the software

development based on different business cases. Deadline-driven business case

applies when rapidly accommodating a few minor product upgrading requirements

from one or two departments within an organization. Product-driven business case

applies when accommodating a request to upgrade to the next version due to the

aggregation of some common upgrading requirements from various departments. In

this case, the quality of the upgraded product is the process driver rather than

meeting a schedule. Market-driven business case applies when the upgrade of the

product is driven by the market trend or rivals’ products, for instance, a change from

the Client/Server architecture to the Web-based architecture. In this case, providing

superior capabilities to capture greater market share as early as possible is the key

process driver. To meet the different requirements of different business cases, a

flexible process generation platform should be created to enable the trim and/or

addition of the steps/activities based on the VBSQA process framework.

 149

5.3.2.3 Identifying Flaws in a Process Instance

Maintaining the flexibility of the VBSQA process framework might

introduce flaws during process instance creation. While a process step and/or a

software development activity in the process instance could be included or excluded

by project managers, the created process instance might contain flaws and/or risks.

For instance, the dropped activities might cause the violation of the critical path

activity dependencies so that the precondition(s) of a specific activity could not be

satisfied prior to its execution.

5.3.2.4 Tradeoffs among Conflicting Quality (Q-) Attributes

Software quality is an integrative concept consisting of a number of attribute

dimensions such as availability, security, performance, evolvability, schedule and

cost. Thus, achieving software quality is a multi-attribute decision problem. Each

project success-critical stakeholder can define his/her expected and desirable levels

for each Q-attribute. The WinWin-balanced quality requirements are the

reassessment and compromise of the Q-attributes among success-critical

stakeholders.

As reported by the project managers, there usually existed at least one pair of

conflicting Q-attributes in many ERP software projects. In the DIMS upgrade project,

Performance and Evolvability were a pair of conflicting Q-attributes. There were

several architecture options to select from. Direct copy between DBs favored

Performance in terms of both throughput and storage space at the cost of

Evolvability. XML-based architecture favored Evolvability by accommodating

future changes of DB platforms and schema at the cost of Performance. Developers

 150

had to select one feasible architecture from several options in order to balance the

stakeholders’ conflicting Q-attribute requirements. If we could identify the

conflicting Q-attributes as early as possible in the software development life cycle,

we would be able to mitigate the risk of project failure by performing tradeoff

analysis among conflicting Q-attributes. Our exercise showed that the stakeholder

interaction activities (e.g., External Prototype Evaluation, Architecture options

external review, Selected architecture external review) in the software development

process were more effective in identifying the conflicting Q-attributes and that the

stakeholder negotiation activities were more effective in performing tradeoff analysis.

5.3.2.5 The Importance of Determining Project Stakeholders’ Perspectives and

Interaction Point(s)

Our exercise showed that not all the stakeholders were required to have the

same level (intensity) or type of involvement [West 2004] in every activity in the

software development process. Thus planning the level of involvement of each

stakeholder was critical.

In the mean time, the project success-critical stakeholders’ interaction

activities could either mitigate the software quality risks or drive the changes of

stakeholders’ value-propositions. And the costs (i.e., activity cost, potential rework

cost) are also associated and/or resulted from such activities. Thus, planning the

activities for stakeholders’ interaction and negotiation at different phases of the

software development life cycle might result in different Return-On-Investment

(ROI). For instance, the ROI of the External Prototype Evaluation activity and

Architecture Options External Review in LCO stage might be different than the

 151

counterparts in LCA stage. Therefore, determining the time of the stakeholders’

interaction activities in a process instance was very important.

5.3.3 Modeling VBSQA Process Using Object Petri Nets (OPN)

To tackle the problems encountered in our first attempt at the VBSQA

process training and exercise, we built a VBSQA process simulation tool VBSQA

Process Generator which could be used for ERP software development in China.

Some related works on process simulation have been investigated in [Kellner 1999,

Padberg 2003]. The purposes of process simulation modeling are discussed in

[Kellner 1999]. And a discrete-time process simulator to support software project

managers in task scheduling is presented in [Padberg 2003].

The overall structure of VBSQA Process Generator is shown in Figure 5.5

[Huang et. al. 2006b]. It is composed of three components: VBSQA Process Creator,

VBSQA Process Checker and VBSQA Process Simulator. The simulation results can

be utilized as a feedback to adjust and improve the current VBSQA process instance.

Their application is illustrated using DIMS upgrade case study in section 5.4. It aims

to help industrial practitioners visualize the process and generate an appropriate and

optimized VBSQA process instance based on a certain project business case.

 152

Figure 5.5. The Overall Structure of VBSQA Process Generator

In order to build the process simulation tool, first we needed to model the

VBSQA process using a process language that could capture its characteristics.

Furthermore, the process language should be precise enough to eventually support

verification and drive simulations which could help us address some problems

identified in section 5.3.2.

5.3.3.1 Purpose of VBSQA-OPN Process Modeling

Value-based software development processes tend to be stakeholder–

involved with a great deal of concurrency and backtracking. VBSQA process is one

of these processes with the emphasis on achieving stakeholder WinWin-balanced

software quality requirements. Thus, it usually involves multiple stakeholders with

different value propositions on Q-attributes and different perspectives about the on-

going process.

Object Petri Nets (OPN) [Valk 1998], which is an extension of traditional

Petri Nets, was chosen to model the VBSQA process. Based on the fact that the

control structures of software processes are similar to those of programming

 153

languages, Osterweil proposed the idea of “Software processes are software too”

[Osterweil 1987]. Because the control structures of Petri Nets (PN) are similar in

expression to programming languages, they can be used to model software processes

[Deiters-Gruhn 1994]. Aalst has listed three reasons for using Petri Nets for process

modeling and analysis: 1) formal semantics despite the graphical nature, 2) state-

based instead of event-based, 3) abundance of analysis techniques [Aalst 1998].

Furthermore, PN has the merit of modeling concurrent process activities. As an

extension of traditional PN, OPN inherits these merits of PN in process modeling.

In addition, OPN supports the separation of concerns among different

stakeholders’ perspectives of the process by object oriented approach. Each

stakeholder’s process instance can be modeled in a separate Object Net (ON) by

inheriting the activities from the relevant process steps in the System Net (SN) (i.e.,

the VBSQA process framework). We took the “object-oriented” approach in the

sense that the VBSQA process framework was modeled as a SN which was used as a

process guideline. And each stakeholder’s process instance was modeled as an object

that followed the workflow of the guideline to perform the ERP software

development activities. Then the interaction and negotiation among stakeholders and

the synchronization between each stakeholder’s ON and the SN could be defined

later. Thus, OPN is able to adapt to the changes in the ERP software development

activities and workflows.

VBSQA-OPN model provides a feasible solution to automation or semi-

automation of the VBSQA process. Section 5.3.3.2 provides the formal definitions of

our VBSQA-OPN process modeling.

 154

5.3.3.2 Formal Definitions of VBSQA-OPN Process Modeling

This section presents the formal definitions of the VBSQA-OPN.

Definition 1. Object Petri Nets (OPN)

A Petri net is a 3-tuple),,(FTPPN = , where P is a finite set of places, T is a

finite set of transitions, φ=∩ TP ,)()(PTTPF ×∪×⊆ is a set of arcs, representing

the flow relation between places and transitions. Tokens, representing the pre- and

post- conditions of activating a specific transition, flow from one place to another. In

the diagram, we use a circle to represent a place, use a bar to represent a transition

and use a solid dot to represent a token. Please refer to [Reisig 1985] for the basic

concepts of Petri nets.

An OPN is a 3-tuple),,(ρsONSNOPN = . This definition supports multi-

objects and it is extended from the Valk’s definition [Valk 1998].

),,(WTPSN = is a Petri net, named System Net,)()(PTTPW ×∪×⊆ . The

tokens in SN refer to the Object Nets defined below.

 },...,{ 1 nS ONONON = (n>1) is a finite set of Object Nets in OPN ,

),,(iiii FEBON = is a Petri net, named Object Net.)()(iiiii BEEBF ×∪×⊆ .

 SN and sON synchronize via “channels” (ρ). ρ is the synchronous relation

between SN and sON , ET ×⊆ρ , where }1|{: niEE i ≤≤= U .

 To support multi-objects in VBSQA-OPN model, we extend a special

Occurrence Rules based on the Valk's Three Occurrence Rules [Valk 1998],

which are omitted here.

 155

Definition 2. VBSQA-OPN

),,(ρsONSNOPNVBSQA − is the modeling of VBSQA process based upon

OPN , where

),,(WTPSN = is the VBSQA process framework. Here, the transition set T

represents the steps/milestones and it is divided into two disjoint subsets synT

and stT , where stsyn TTT ∪= .

 synT is a set of synchronous transitions, which represent the process

steps/milestones that are actually performed by stakeholder(s) in their

process instances.

 stT is a set of status transitions. A status transition can only immediately

follow a synchronous transition in the SN .

The graphical representations of the two types of transitions are shown in the

legend of Figure 5.6. The tokens in SN refer to Object Nets (i.e.,

stakeholders’ process instances) and point to the marking of Object Nets.

Here, SN can be either the entire VBSQA process framework 0SN or a

tailoring from 0SN based on the project business cases. Given the set of

transitions to be deleted, we can construct the tailored process framework SN

as follows.

The set of transitions to be deleted are denoted as DEL . When transition t is

deleted,

1) Let }{: tDEL = ,

2) ∪= DELDEL : {the status transitions immediately following t }

 156

3) ,DELx∈∀ if iLoopxi ∈∃ , then iLoopDELDEL ∪= . iLoop denotes the set

of transitions which belong to the same closed loop in the directed graph.

4) Delete the transitions in DEL and add the arc(s) from the places before

DEL to the transitions following DEL .

 },...,{ 1 nS ONONON = (n>1) represents a set of process instances of stakeholders

and),,(iiii FEBON = is the process instance of stakeholder i. In iON , the

transition set iE represents the ERP software development activities that

should be performed by stakeholder i and it includes three disjoint subsets,

iautoE , isynE , istE , where istisyniautoi EEEE ∪∪= .

 iautoE is a set of the object-autonomous transitions, which represents the

autonomous activities of stakeholder i that can not be mapped to any

given step/milestone in SN (i.e., VBSQA process framework).

 isynE is a set of synchronous transitions, which can be mapped to the

steps/milestones in SN (i.e., VBSQA process framework) and has

synchronous relation with SN .

 istE is a set of status transitions, which can only immediately follow a

synchronous transition.

The graphical representations of the three types of transitions are shown in

the legend of Figure 5.7. The tokens in iON represent the Q-attributes (e.g.,

Performance, Evolvability, Schedule, Cost, etc.) concerned by the

stakeholder i.

 157

 synsyn ET ×=ρ })1|{:(niEE isynsyn ≤≤= U defines the synchronous relation

between SN and sON , that is, a mapping between the VBSQA process

framework steps/milestones and ERP software development activities.

 Guard functions are defined to set the activation condition(s) for some

transitions. In this case, a transition Tt ∈ is activated in a marking M

(denoted as >tM [) iff tM •≥ and the t transition’s guard functions are both

satisfied.

 Constraint 1. The chronological order of ERP software development

activities in the stakeholders’ process instances
sON is consistent with the

chronological order of VBSQA process framework steps/milestones in the

SN based on their mapping. For a),,(ρsONSNOPNVBSQA =− , if there is a

path from step sA to sB in the SN , denoted as ss BA p , and in the sON , there

exist two ERP activities oA and oB such that ρ∈),(os AA and ρ∈),(os BB , then

there must exist a path from oA to oB , denoted as oo BA p .

 Constraint 2. Critical Path Activity Dependency. For a

),,(ρsONSNOPNVBSQA =− , if transition sA must be completed before

transition sB (i.e. ss BA p) in the SN , (denoted as ss AB a), and

transition oB exists in iON , that is, ρ∈∈∃),(, osio BBEB in),,(iiii FEBON = ,

then ρ∈∈∃),(, osjo AAEA in),,(jjjj FEBON = (denoted as oo AB a).

 158

5.3.4 Application of VBSQA Process Generator Built on VBSQA-

OPN Model

Based on the VBSQA-OPN Modeling of the VBSQA process, the VBSQA

Process Generator was built. We asked two project managers to apply this tool on the

DIMS upgrade case study. Section 5.3.4.1 shows how to use the VBSQA Process

Creator to create the process instances for project success-critical stakeholders based

on the VBSQA process framework. Section 5.3.4.2 illustrates how to identify the

flaws of a process instance based on defined process constrains in the VBSQA

Process Checker. Section 5.3.4.3 presents some simulation results of the ERP

VBSQA process.

5.3.4.1 VBSQA Process Creator: Creating an ERP VBSQA Process Instance

5.3.4.1.1 Mapping the ERP Software Development Activities into VBSQA Process

Framework

To shorten the VBSQA process learning curve and to reduce the flaws such

as the misplacement of ERP development activities when creating a process instance,

we mapped the ERP software development activities into each step/milestone in the

VBSQA process framework. Table 5.11 shows a part of this mapping based on the

current ERP software development activities. In the VBSQA-OPN model, VBSQA

process framework was modeled as the System Net (SN) and each stakeholder

class’s process instance was modeled as an Object Net (ON) inherited from the SN.

Note that we only distinguished different stakeholder classes in creating a process

instance but not the various roles in one stakeholder class. For instance, we assumed

 159

that IV&V team and testing team belong to the Developers. Thus, to create a process

instance for a stakeholder, project managers just needed to select a specific activity

mapped into the VBSQA process step and added it into the plan for this stakeholder.

The chronological orders of these activities were automatically inherited from the SN,

which eliminated the process flaws of misplaced activities due to the

misinterpretation of the process steps in the VBSQA process framework as discussed

in section 3.3.2. And new activities which were not mapped into any step/milestone

could be added into the stakeholders’ ON as needed. Furthermore, if the ERP

software development activities and/or workflows are changed in the future, we will

only need to change the mapping.

 160

VBSQA Process Framework
Steps/Milestones (System Net)

ERP Software Development Activities
(Object Nets)

Initiate project Acquire system upgrade requirements (Developer)
Estimate system upgrade cost & develop DMR
results chain (Developer) Project cost/benefit analysis
Verify system upgrade cost (System Acquirer)
Requirement elicitation meeting SCS define acceptable & desired values

for Q-attributes Groupware WinWin negotiation
Internal prototype evaluation (Developer) Risk analysis & architecture/technology

evaluation External prototype evaluation
Identify conflicting Q-attributes &
perform tradeoff analysis

Identify conflicting Q-attributes & perform
tradeoff analysis

SCS adjust acceptable values for Q-
attributes Stakeholder renegotiation

System top-level design and initial
Feasibility Rationale Description (FRD) System top-level design (Developer)

Architecture options internal review (Developer) LCO Review Architecture options external review
Requirement elicitation meeting SCS refine acceptable & desired values

for Q-attributes Groupware WinWin negotiation
System detailed design and detailed
Feasibility Rationale Description (FRD) System detailed design (Developer)

Selected architecture internal review (Developer) LCA Review Selected architecture external review
Core capability implementation Core capability implementation (Developer)
Value-based core capability testing Internal core capability testing (Developer)

Internal core capability demo (Developer) CCD Onsite core capability demo
Remaining features implementation Complete system implementation (Developer)
IOC Acceptance Review Onsite System Acceptance Review

Table 5.11. Mapping the ERP software development activities into VBSQA
process framework steps/milestones

 5.3.4.1.2 DIMS Upgrade Case Study: Creating the ERP VBSQA Process Instance

In the DIMS upgrade case study, we identified 4 stakeholder classes

including System Acquirer, DB Administrators, Software Maintainers and

Developers. Figure 5.6 shows a segment of the SN (i.e, VBSQA process framework).

Figure 5.7 illustrates the corresponding segment of the ON representing a process

instance for the Developers generated from the SN. Figure 5.8 illustrates the

 161

corresponding segment of the ON representing a process instance for the System

Acquirer. Figure 5.9 shows an example of the creation of the Developer process

instance using VBSQA Process Creator.

When the mouse cursor was rested over a particular process step/milestone of

the SN in the VBSQA Process Creator as shown in Figure 5.9, the applicable

procedure/approach, if any, was displayed in a textbox. In this way, a project

manager could associate the procedure/approach to the specific activity mapped to

this process step/milestone. Similarly, when the mouse cursor was rested over a

particular activity in the ON representing the stakeholder process instance, the

corresponding stakeholder responsibilities (e.g., the documents and/or product to be

delivered) were displayed in a textbox. Therefore, by creating different process

instances for various stakeholders, we could separate one stakeholder’s

responsibilities from others’ with respect to the activities that he/she was involved in.

 162

Figure 5.6. VBSQA-OPN System Net (SN): the LCO Phase of VBSQA Process
Framework

 163

Figure 5.7. VBSQA-OPN Developer Object Net (ON): the LCO Phase of the

Developer Process Instance Generated from the SN

 164

Figure 5.8. VBSQA-OPN System Acquirer Object Net (ON): the LCO Phase of
the System Acquirer Process Instance Generated from the SN

 165

Figure 5.9. VBSQA Process Creator: VBSQA Process Framework (System Net)

and the Generated Developer Process Instance (Object Net)

5.3.4.2 VBSQA Process Checker: Identifying the Flaws in a VBSQA Process

Instance

Based on the project business case, the project manager could choose to skip

some steps in the VBSQA process framework during the ERP VBSQA process

instance creation for success-critical stakeholders. That is, it allowed project

managers to inherit a NULL activity from each step in the SN (i.e., VBSQA process

framework). However, such flexibility provided by the tool could be both a strength

 166

and a weakness. It might introduce the flaws of missing activities which could cause

the violation of critical path activity dependencies in a process instance.

One way to validate the process was to provide a process analysis capability

to verify that critical path activity dependency constraints were not violated by the

process definition. These constraints were represented as formal properties defined in

the VBSQA-OPN System Net (SN) and implemented in the VBSQA Process

Checker. Some examples of the activity dependency constraints in the SN could be

as follows:

 SCS define acceptable & desired values for Q-attributes must be completed

before Risk analysis & architecture/technology evaluation

 Risk analysis & architecture/technology evaluation must be completed

before System top-level design

 System top-level design must be completed before LCO Review

 Value-based core capability testing must be completed before CCD

 And they needed to be translated into the precise formal definitions based on

the Constraint 2 of Definition 2 in section 5.3.3.2.

For instance, the activity System top-level design had been planned in the

LCO phase of the Developers’ process instance. However, neither Internal prototype

evaluation nor External prototype evaluation which were mapped to the Risk

analysis & architecture/technology evaluation as shown in Table 5.11 was planned

in any stakeholder’s process instance. After analyzing the stakeholders’ process

instances in sON based on the defined critical path activity dependency constraints,

 167

the VBSQA Process Checker would display a warning message as “Risk analysis &

architecture/technology evaluation must be completed before System top-level

design”.

5.3.4.3 VBSQA Process Simulator: Comparing the ROI of Synchronous

Stakeholder Interaction Activities

The synchronous stakeholder interaction activities in the VBSQA process

were usually effective in mitigating the software quality risks. At the same time,

higher activity costs and different potential rework costs were incurred by such

activities in different phases of software development. Thus, performing the

stakeholder interaction activity at different phases of the software development life

cycle might result in different Return-On-Investment (ROI). However, there lacked

of the quantitative analysis approaches and simulation tools to help project managers

determine when to perform the synchronous stakeholder interaction activities during

software development.

In this section, we present the simulation results of different ROI for various

stakeholder interaction activities in different software development phases. The ROI

was computed as following:

Cost

CostValueROI −
= (5.2)

 168

5.3.4.3.1 Value Earned: the Synchronous Stakeholder Interaction Activity vs.

Developer Internal Activity

Let’s assume that totally m Q-attributes were identified for the project. And n

(n=4) software development phases were defined in the VBSQA process framework

(LCO, LCA, CCD and IOC).

 ∑ ∏
= =

××−−=
m

i

n

j
iij VREValue

1 1

)))1(1(((5.3)

In DIMS upgrade case study, two project managers provided the inputs for

each parameter based on their experience and expert judgement. Total value of the

project was estimated as the contracted payment ($50,000) that Neusoft would obtain

from the system acquirer after the project was successfully completed by satisfying

of all success-critical stakeholders’ Q-attribute requirements. Totally 4 Q-attributes

and their related operational scenarios were identified for this project as shown in

Table 5.12.

Q-attributes Related Scenario Priority Ri (0-1)

Performance
Complete data migration from the old
DB to the upgraded DB within 1 day
and within required storage space

High 0.8

Evolvability Accommodate different DB platforms
and schema in data migration Medium 0.4

Schedule — High —
Cost — High —

Table 5.12. DIMS Upgrade Project: Q-attributes and Their Risks to the Project
Value (Ri)

V: the total value of the project;
Eij (0-1): the effectiveness of a specific process activity on mitigating
the risk of Q-attribute i if it is performed in phase j;
Ri (0-1): the risk of Q-attribute i to the total value of the project.

 169

We treated the failure of achieving a Q-attribute requirement as the risk to the

total value of the project. Table 5.12 lists the risk of Performance and Evolvability to

the project value, denoted as Ri. Ri is the product of the risk impact and the

probability of risk occurrence. We defined the “risk impact” as the proportion of the

total project value that would have been lost if that Q-attribute risk had occurred.

Thus Ri was from 0 to 1. In this project, Performance was a High priority

requirement from DB administrators and failure of achieving it would result in 80%

loss of the project value. Evolvability was a Medium priority requirement from

software maintainer and failure of achieving it would result in 40% loss of the

project value. In this case study, we did not take into account the other two Q-

attributes (Schedule, Cost) because they were not the major risks to this project.

Some steps in the VBSQA process framework such as Risk analysis &

architecture/technology evaluation, LCO Review, LCA Review, CCD aimed to

mitigate the quality risks. As shown in Table 5.11, two types of ERP software

development activities were mapped to each of them, which were developer internal

activities and synchronous stakeholder interaction activities. The examples of the

former were Internal prototype evaluation, Architecture options internal review,

Selected architecture internal review, Internal core capability demo as shown in the

right column of Table 5.11. These activities were accomplished only by developers

without other stakeholders’ participation. They were usually less effective in

identifying Q-attribute risks. The examples of the latter were External prototype

evaluation, Architecture options external review, Selected architecture external

review, Onsite core capability demo. These activities were accomplished by

 170

developers and other success-critical stakeholder(s). Stakeholders were able to

evaluate the prototype(s), review the architecture(s) or test the core capabilities

together under the realistic operational environment. Thus, these activities were

usually more effective in identifying Q-attribute risks. Furthermore, these activities

at different phases of the software development life cycle also had different

effectiveness in identifying Q-attribute risks. Table 5.13 shows the effectiveness of a

specific process activity on mitigating the risk of Q-attribute i if it was performed in

phase j, denoted as Eij. Project managers provided the estimate of Eij as the

proportion by which the risk of Q-attribute i would have been reduced if that process

activity had been performed in phase j. Thus Eij was from 0 to1. Note that we treated

the risk mitigation Eij in its most general sense, which incorporated both the decrease

of the probability of risk occurrence and their impact on the project value.

Risk Mitigation (Eij) (0-1) Project Phases Process Activities Performance Evolvability
Architecture options internal
review 0.2 0.2 LCO

(Life Cycle
Objectives) Architecture options external

review 0.6 0.6

Selected architecture internal
review 0.3 0.3 LCA

(Life Cycle
Architecture) Selected architecture external

review 0.8 0.8

Internal core capability demo 0.2 0.2 CCD
(Core Capability

Demo) Onsite core capability demo 0.5 0.5

IOC
(Initial Operational

Capability)

Onsite system acceptance
review 0.3 0.3

Table 5.13. DIMS Upgrade Project: the Effectiveness of Developer Internal
Activities vs. Stakeholder Interaction Activities on Q-attribute Risk Mitigation

(Eij)

 171

5.3.4.3.2 Cost: the Synchronous Stakeholder Interaction Activity vs. Developer

Internal Activity

Two types of cost, the activity cost and the potential rework cost, were

associated with a synchronous stakeholder interaction activity or a developer internal

activity. The cost was computed as following:

∑
=

+=
n

j
raj CCCost

1

 (5.4)

Caj: the cost of a process activity at phase j;
Cr: the potential rework cost.

5.3.4.3.2.1 Activity Cost (Caj)

The cost of the developer internal activity in DIMS upgrade project was

estimated as $500 by ERP software project managers. The synchronous stakeholder

interaction activity usually had 2 or 3 time higher activity cost, estimated as $1,500.

5.3.4.3.2.2 Rework Cost (Cr)

Whenever a Q-attribute risk was identified by a process activity, some

amount of rework was needed as a remedy. Table 5.14 shows the potential rework

cost Cr at 4 phases of VBSQA software development process. In the best case,

rework was only needed for the current phase. However, sometimes rework extended

to the previous phases. In the worst case, the rework needed to be done from the

beginning of the project. The numbers in Table 5.14 show the rework cost Cr from

phase(S) to phase(F). The numbers in the diagonal of Table 5.14 represent the

rework cost within the LCO, LCA, CCD and IOC phases respectively. For instance,

the cost of only reworking LCA phase was $9,000, the cost of reworking LCA and

 172

CCD phases was $35,000 and the cost of reworking LCA, CCD and IOC phases was

$46,000. Note that if developers needed to rework both the LCA and CCD phases

because a risk was identified at the Onsite Core Capability Demo, the rework cost

provided by project managers was $35,000, which was larger than the sum of the

rework cost within LCA and CCD phases ($9,000 + $19,000). They explained that

since developers had to change the detailed architecture design and to redo the Core

Capability Implementation, they usually needed extra effort to become familiar with

the programming techniques for the new architecture design. Based on the ERP

project managers, developer internal activities usually incurred little rework.

Phase (F) Rework Cost
Cr ($) LCO LCA CCD IOC

LCO 3,000 12,000 38,000 50,000
LCA — 9,000 35,000 46,000
CCD — — 19,000 31,000 Ph

as
e

(S
)

IOC — — — 11,000

Table 5.14. DIMS Upgrade Project: Potential Rework Cost Cr at Different
Phases of VBSQA Software Development Process

5.3.4.3.2.3 Simulation Results: ROI

Assuming that the synchronous stakeholder interaction activity (i.e., Onsite

System Acceptance Review) was required in the IOC phase, we enumerated the

possible combinations of stakeholder interaction activities and developer internal

activities in the first three phases of software development life cycle (LCO, LCA and

CCD). As shown in the second column of Table 5.15, LCO(i) denotes that we

performed the developer internal activity (i.e., Architecture Options Internal Review)

in the LCO phase. LCO(s) denotes that we performed synchronous stakeholder

 173

interaction activities (i.e., Architecture Options External Review) in the LCO phase.

The same notation applies for other phases.

Given the inputs from two project managers, our simulation computed two

ROI’s for each process activity combination except the first one as shown in Table

5.15. One was for the worst-case scenario; the other was for the best-case scenario in

terms of the potential rework cost. In the worst-case scenario, we assumed that

rework happened after each synchronous stakeholder interaction activity. And

performing such activity in a certain phase could only avoid the future rework

extending to this phase. For instance, only performing the Selected Architecture

External Review in the LCA phase (i.e., LCO(i)\LCA(s)\CCD(i)\IOC(s)) would incur

the rework on both LCO and LCA and another rework on both CCD and IOC. In the

best-case scenario, we assumed that once we performed such activity in a certain

phase the rework would only be needed from the beginning of the project to this

phase and it could avoid all the future rework incurred by the Q-attribute risks

afterwards.

Even in the worse case scenario, Selected Architecture External Review in

the LCA phase was particularly effective in improving the ROI since all the

combinations with this activity (see 3, 5, 7, 8) in Table 5.15 produced relatively high

worst-case ROI (0.162, 0.194, 0.205, 0.215). In the best-case scenario, Architecture

Options External Review in the LCO phase was particularly effective in improving

the ROI because we assumed that it avoided all the future rework incurred by Q-

attribute risks after the LCO phase. Both results implied that performing

synchronous stakeholder interaction activities in the architecting phase of a software

 174

project could produce higher return in terms of software quality risk mitigation.

Figure 5.10 is a snapshot of using VBSQA Process Simulator to compute the ROI of

a combination of stakeholder interaction activities and developer internal activities

based on the System Net (i.e., VBSQA process framework).

ROI
Process Activity Combinations Worst-Case

Scenario
Best -Case
Scenario

1 LCO(i)\ LCA(i) \ CCD(i) \ IOC(s) -0.223 —
2 LCO(s)\ LCA(i) \ CCD(i) \ IOC(s) -0.045 6.23
3 LCO(i)\ LCA(s) \ CCD(i) \ IOC(s) 0.162 2.414
4 LCO(i)\ LCA(i) \ CCD(s) \ IOC(s) -0.09 0.149
5 LCO(s)\ LCA(s) \ CCD(i) \ IOC(s) 0.194 6.165
6 LCO(s)\ LCA(i) \ CCD(s) \ IOC(s) 0.002 5.765
7 LCO(i)\ LCA(s) \ CCD(s) \ IOC(s) 0.205 2.33
8 LCO(s)\ LCA(s) \ CCD(s) \ IOC(s) 0.215 5.48

Table 5.15. Comparing the ROI of Various Combinations of Synchronous
Stakeholder Interaction Activities and Developer Internal Activities

Figure 5.10. VBSQA Process Simulator: Computing the ROI of a Combination

of Stakeholder Interaction Activities and Developer Internal Activities in an
ERP VBSQA Process

 175

5.3.4.3.2.4 Project Results and Feedback on the ROI Simulation Results

The results in Table 5.15 enabled the project managers to rapidly assess the

best-case and worst-case outcomes for their risk–mitigation decision options. Based

on the feedback from two ERP project managers, the best-case scenario was usually

not applicable in this project especially for the Performance attribute. In the LCO

Review, developers usually could only provide the top-level system design and the

non-functional prototype. Thus, the assumption that the Architecture Options

External Review in the LCO phase could avoid all the future rework was too

optimistic. However, in the LCA Review, when the detailed system design and the

functional prototype were available, the assumption of avoiding the future rework

after LCA phase was more applicable. Therefore, the real case scenario for

Performance and Evolvability attributes in the DIMS upgrade project was closer to

the worst-case scenario.

As a result of this analysis, the DIMS project managers committed to hold a

Selected Architecture External Review at the end of the LCA phase to evaluate the

performance of selected XML architecture with totally 3,840,000 DB records. With

the participation of DB administrators, software maintainers and developers in this

activity, they identified the architectural risk on the Performance of data migration

because the entire memory would be consumed by totally 97 intermediate XML files

generated. After stakeholders’ renegotiation, the developers re-architected the

capability as Direct Copy with additional algorithms to only accommodate certain

DB platforms and schema. Based on the project managers, without such analysis

results they would have planned the process activities in a value-neutral way (e.g.,

 176

holding Selected Architecture Internal Review at the end of the LCA phase only to

save some activity cost) which would have increased the chance of project failure.

5.3.5 VBSQA-OPN Modeling Costs and Benefits

The VBSQA-OPN modeling and application costs and benefits are

summarized in Figure 5.11 based on the Neusoft DIMS upgrade project. The benefits

are measured by the saved efforts (in hours) in terms of : 1) mutual learning; 2)

developing project plan; 3) verification and validation (V&V) of project plan; 4)

improving plan; 5) early vs. late plan rework.

VBSQA-OPN Modeling Costs and Benefits

24

2 4 3

56

6 6

Many Hours!

0

10

20

30

40

50

60

70

80

90

100

Mutual Learning Developing Plan V&V of Plan Improving Plan Early vs. Late
Plan Rework

H
o
u
r
s

VBSQA-OPN Modeling Costs (hrs) VBSQA-OPN Modeling Benefits (Saved hrs)

Figure 5.11. VBSQA-OPN Modeling Costs and Benefits in Neusoft DIMS
Upgrade Project

 177

In the meantime, the VBSQA-OPN modeling and VBSQA Process Generator

improved user satisfaction in that

 Project managers and stakeholders became more confident in generated

project plans.

 ROI simulation results were very helpful in optimizing project plans

 The VBSQA Process Generator is easy to learn.

 Neusoft DIMS upgrade project was successfully built and working to plan.

5.3.6 Tailor VBSQA Process to Project Business Cases

5.3.6.1 Characteristics of Three Business Cases in ERP Software Development

For most ERP solution providers in China, different software quality

assessment criteria are set based on different business cases [Reifer 2002] so that

different process strategies should be selected to meet them. Three process strategies

(schedule-driven, product-driven and market-trend driven) can be selectively applied

in the ERP software development based on different business cases. To improve the

flexibility of the VBSQA process, the risk-based process strategy decision-making

approach embedded in the VBSQA process framework can be applied to tailor the

process strategy to different project business cases [Huang et. al. 2006a]. When

tailoring the process, we may skip some process steps/milestones, relax the

deliverables/outputs of a particular process step/milestone, select a particular ERP

software development activity, or decide the participants of a process activity.

Firstly, we shall determine whether the project is dominated by schedule risks

or quality risks. Table 5.16 compares the different characteristics of three typical

business cases in ERP software projects. Then we will use the real-world ERP

 178

software system, a Documents and Images Management System (DIMS) developed

by Neusoft, as an example to illustrate how to use the risk-based process decision-

making approach to tailor the VBSQA process to three different business cases. Four

success-critical stakeholder classes were identified in DIMS project, including the

System Acquirer, DB Administrators, Software Maintainers and Developers.

Business Cases Schedule-
Driven

Market Trend-
Driven

Product-Driven

Primary
Objective

Rapid value by adding
small extra
functionalities

Rapid Market Share
Occupation

Version upgrade with Q-
attribute achievement:
reliability, availability,
performance, evolvability,
etc.

Quality Risks Low Medium High; major business losses

Schedule Risks High; major business
losses

High; market share loss Low

Stakeholders Single collocated
representatives

Many success-critical
stakeholders

Multiple success-critical
stakeholders with various Q-
attribute requirements

Requirements 1) A few specific and
stable requirements
2) Mostly functional

1) Goals generally known
(e.g., platform changes)
2) Detailed requirements
often vague, volatile and
emergent
3) Functional and non-
functional [Chung 1999]

1) Critical and conflicting Q-
attribute requirements from
various stakeholders
2) Most requirements
relatively stable; others
volatile, emergent
3) Functional and
nonfunctional[Chung 1999]

Architecture 1) Extend from
existing system
architecture
2) Little architecting
effort
3) Stakeholder high
confidence

1) Brand new architecture
2) Most architecting effort;
3) Stakeholder low
confidence

1) Evolve based on existing
product-line architecture
2) High confidence in some
parts; low confidence in
others

Refactoring Inexpensive with
skilled people

More expensive with mix
of people skills

Very expensive, with mix of
people skills

Table 5.16. Characteristics of Three Example Business Cases in ERP Software
Development

5.3.6.2 Tailor VBSQA Process to Schedule-Driven Business Case

Schedule-driven business case applies when rapidly accommodating a few

minor product upgrading requirements from one or two departments within an

 179

organization. The examples of such requirements can be adding, deleting, updating

certain attributes in the current DIMS database schema. Those functionalities are

usually needed urgently so that delivering the functionalities on time becomes the

stakeholders’ highest-priority value proposition. Thus, we need to prioritize the

process steps/activities and tailor the VBSQA process framework to only retain the

most effective process steps/milestones/activities. In this case, system users are

willing to tolerate some quality degradation and delay the Q-attribute requirements

until the system operation.

Based on the schedule-driven business case analysis in Table 5.16, the added

functionalities are extended from the existing system architecture and the

stakeholders are more confident in the architecture. Thus there is no need to propose

or review several feasible architectural options. And requirements are specific

enough to skip the high-level design and to proceed directly to the detailed design

stage. In this case, the process steps in Life Cycle Objective (LCO) stage are less

effective than those in the Life Cycle Architecture (LCA) stage in VBSQA process.

For the same reason, we may also skip the intermediate milestone Core Capability

Demo (CCD) and proceed to Initial Operational Capability (IOC) Readiness Review.

Since the quality risks are relatively low and developers only need to extend from the

existing system architecture, in LCA stage the Selected Architectural Internal

Review within the developer team is per-formed instead of the onsite External

Review with the participation of all success-critical stakeholders, which would have

require more time and effort. Figure 5.12 shows an example of schedule-driven

process strategy for DIMS project.

 180

Figure 5.12. An Example of Schedule-driven Process Strategy for DIMS Project

5.3.6.3 Tailor VBSQA Process to Product-Driven Business Case

Product-driven business case applies when accommodating a request to

upgrade to the next version due to the aggregation of some common upgrading

requirements from various departments. In this case, the quality of the upgraded

product is the process driver rather than meeting a schedule. Quality risks are

dominant compared with schedule risks shown in Table 5.16. The requirements are

relatively stable. Since the requirements are aggregated from various project

stakeholders, the Q-attribute requirements may conflict with one another. An

example is the DIMS version upgrade from 6.0 to 7.0. Functional requirements and

their associated Q-attribute requirements were prioritized through stakeholder

WinWin negotiation in Table 5.17.

 181

Requirements Description Category Priority
R1 Data migration from old DB platform to

upgraded DB platform Functional High

R2 Data migration shall be completed within 1
day and within the storage space

Quality
(Performance) High

R3 Accommodate different DB platforms and
schema in data migration

Quality
(Evolvability) Medium

R4 Add a printing function in DIMS system Functional High

R5 Build a unified log in user interface for
different DIMS subsystems Functional Medium

R6 Improve search response time from 2 seconds
to 0.5 seconds

Quality
(Performance) Medium

Table 5.17. Prioritized Requirements in DIMS Upgrade from 6.0 to 7.0

Multiple project increments can be proposed based on the priorities of

requirements. A process instance is generated for each increment. Figure 5.13 shows

an example of product-driven process strategy in DIMS upgrade project. R1, R2, R3

and R4 are grouped into the first increments due to their high priorities. R5 and R6

are grouped into the second increment. In product-driven business case, process

instances of multiple increments can proceed concurrently since the functional and

Q-attribute requirements are relatively stable. In each increment, process strategy

shall place emphasis on involving stakeholders in identifying and resolving

conflicting Q-attributes, concurrently identifying and mitigating Q-risks with

architecture/technology evaluation. Thus, its iteration cycle is longer than schedule-

driven process in order to address the quality risks and maintain the product-line

architecture.

LCO/LCA reviews and CCD are all necessary to identify and mitigate Q-

risks in each increment. It is also important to involve all success-critical

stakeholders in the prototype evaluation and each milestone review (i.e., LCO, LCA,

 182

CCD, IOC). Therefore, performing the onsite External Prototype Evaluation,

Architecture Options External Review and Selected Architecture External Review

with the participation of the System Acquirer, DB Administrators, Software

Maintainers and Developers, is more effective than their internal counterparts within

developer team.

5.3.6.4 Tailor VBSQA Process to Market Trend-Driven Business Case

Market trend-driven business case applies when the upgrade of the product is

driven by the market trend or competing companies’ products, such as a change from

Client/Server architecture to web-based architecture in the DIMS system. In this case,

providing superior capabilities to capture greater market share as early as possible is

the key process driver.

The priorities of schedule risks and quality risks are comparable for market

trend-driven business case as shown in Table 5.16. Therefore, the process strategy

for market trend-driven business case is a mixture of the schedule-driven and

product-driven process strategies. It is similar to schedule-driven process strategy in

that it maintains the short iteration cycle in the first project increment since meeting

the product delivery deadline is critical for capturing the market share early.

However, since stakeholders are less confident in the web-based architecture, it is

different from schedule-driven process strategy in that stakeholders should be closely

involved in the prototype evaluation and each milestone review (i.e., LCO, LCA,

CCD, IOC) as shown in Figure 5.14. Furthermore, there can be multiple project

increments.

 183

It is similar to product-driven process strategy in that it emphasizes

stakeholder involvement and multiple project increments can be proposed based on

the stakeholders’ priorities of functional and Q-attribute requirements. However, it is

different from product-driven process strategy in that only the top-priority

capabilities can be accommodated in the first increment (see Figure 5.14) based on

the Schedule/Cost/Quality as Independent Variable (SCQAIV) process strategy

[Boehm et. al. 2002]. Stakeholders are usually willing to tolerate some quality (e.g.,

performance, evolvability) degradation at the initial trial of the system. In addition,

the process strategy of the following increments heavily depends on the market

feedback of the product delivered in the first increment. Thus, there is a gap between

each increment to wait for the market feedback. As the operation of new platform

becomes stable with sufficient market feedback, product-driven process strategy can

be applied in the following increments.

5.3.7 Conclusions and Discussion

As we discovered in our application experiences of VBSQA process, solving

a problem in theory and in practice were very different. In spite of the practical

difficulties in applying a new process in software industry where traditional

processes and methods dominated, the results showed that the application of value-

based approaches was inherently better than the value-neutral ones that most ERP

software projects employed in China.

In Microsoft Secrets [Cusumano-Selby 1995], the ability to synchronize and

stabilize multiple internal development teams is identified as a Microsoft critical

success factor. The VBSQA-OPN model provided a framework in which the

 184

activities, value propositions, and commitments of multiple success-critical

stakeholders could be synchronized and stabilized for a wide variety of process

drivers.

The tailored VBSQA process based on project business case can be used as

an input to the System Net (SN) of the VBSQA-OPN process model.

The experience with the VBSQA Process Generator also told us process

visualization and simulation tools significantly increased management visibility and

controllability for the success of software project. In order to build such tools to

visualize, verify and simulate the value-based processes involved by various

stakeholders, the Object Petri Nets (OPN) provided a feasible solution to the value-

based process modeling.

 185

Figure 5.13. An Example of Product-driven Process Strategy for DIMS Version Upgrade

Figure 5.14. An Example of Market Trend-driven Process Strategy for Changing from Client/Server-based DIMS

to Web-based DIMS

185

 186

Chapter 6

Contributions and Future Research Challenges

6.1 Summary of Key Contributions

Despite the emergent of a large number of software quality improving

techniques, in practice people tend to use the value-neutral approaches in software

quality analysis and achievement. Based on the literature survey and empirical

results, the traditional views of software quality often lead to stakeholder

unsatisfactory outcomes even if sometimes an almost zero-defect product is

delivered. The reason is that different systems have different success-critical

stakeholders, and even for the same system these stakeholders may depend on it in

different ways. There are no universal one-size-fits-all software quality metrics to

optimize and we need to balance stakeholders’ different value propositions on

software quality attributes. Thus, there is an increasing need for stakeholder/value-

based approaches to software quality modeling and its achievement monitoring and

control.

The key contributions of this dissertation research can be summarized as

follows: It proposes a Value-Based Software Quality Analysis framework, which

consists of the definitions, metrics, model, and process to address various aspects of

software and system quality analysis and achievement using value-based approaches.

Specifically,

 187

 The stakeholder/value-based definitions and metrics of software attributes

differ from the traditional value-neutral ones in that they explicitly reflect the

relevant success-critical stakeholders’ value propositions and operational

scenarios of a software system.

 Software quality investments compete for resources with investments in

other project requirements and/or constraints. Weak quality business case

analysis lead to inadequate or excessive investments. The VBSQM provide a

technique for reasoning about the ROI of software quality attributes and

performing combined risk analyses of both quality and market share erosion.

It helps project decision-makers determine how much software quality

investment is enough based on their project’s business case. Furthermore, it

provides a way to define appropriate quality attribute levels for different

software classes or mission scenarios based on stakeholders’ value

propositions, which avoids the one-size-fits-all quality metrics for a software

system.

 The combined risk analysis of VBSQM also shows that value-based software

quality achievement techniques reduce the overall project risks.

 The Value-Based Software Quality Achievement (VBSQA) process, driven

by the VBSQM and scenario-based approach, can be applied to determine

whether a software system with stakeholder mutually satisfactory quality

attribute requirements is achievable and to realize achievable stakeholder

mutually satisfactory project outcomes. Furthermore, it enables us to

 188

perform iterative value-based feedback control of the actual progress of a

project’s quality achievement.

 In spite of the practical difficulties in applying a new process in software

industry where traditional Waterfall processes and methods dominated, the

application experience of VBSQA process in real-world ERP software

development shows that the application of value-based approaches is

inherently better than the value-neutral ones that most ERP software projects

have employed in China.

 The Object Petri Nets (OPN) enables the separation of concerns among

various stakeholders with different dependencies on quality attributes and

different perspectives on software development process. In the meantime, it

supports the synchronization and interaction among stakeholders when

needed. Our successful experience of VBSQA-OPN modeling for ERP

software development in China shows that OPN provides a feasible solution

to the value-based process modeling.

 189

6.2 Future Research Challenges

There are many useful extensions and future research that can be done to the

VBSQM and the VBSQA process.

6.2.1 Future Research on the VBSQM

The suggestive extensions on the VBSQM can be:

 Develop and calibrate domain-oriented quality-attribute-estimating

relationships (QERs) and value-estimating relationships (VERs) for

additional quality attributes such as safety, security, performance,

survivability, accuracy, etc.

 Calibrate and validate the VBSQM in various software project domains and

in various organizations.

6.2.2 Future Research on the VBSQA Process

The suggestive future research on the VBSQA process can be:

 Apply the VBSQA process on more project domains.

 Investigate more tradeoff models among software quality attributes based on

different project domains.

 The relationship between what a certain quality improving technology do

(e.g., to remove certain classes of defects) and what stakeholders depend on

(e.g. to achieve acceptable/desired levels of a quality attribute) is often not

straightforward. Constructing a more specific bridge between them is

worthy of further research effort.

 190

 Create value-based counterparts for such value-neutral software quality

technologies as test data generators, inspection checklists, defect closure

metrics, and test plan aids.

6.2.3 Future Research on the VBSQA-OPN Model

 Support more simulations in VBSQA Process Simulator based on VBSQA-

OPN model in order to provide more complete support for process decision-

making.

 Compare OPN with other process modeling techniques (e.g., Little-Jil [Wise

et. al. 2000]) in modeling value-based processes.

 191

Bibliography

[Aalst 1998] W. M. P. van der Aalst, “The Application of Petri Nets to Workflow
Management”, Journal of Circuits, Systems, and Computers, 1998, pp. 21-66.

[Al-Said 2003] M. Al-Said, "Ph.D. Dissertation: Identifying, Analyzing, and
Avoiding Software Model Clashes," USC-CSE, 2003.

[Arlat 2001] J. Arlat, “Dependability Benchmarking: The SIG Class/Factor/Criteria
Framework,” presentation at the 39th Meeting of IFIP WG 10.4, February 2001,
Paraty, Brazil.

[Aurum et. al. 2005] A. Aurum, S. Biffl, B. Boehm, H. Erdogmus, and P.
Gruenbacher (eds.), Value-Based Software Engineering, Springer Verlag, 2005.

[Austin 1996] R. D. Austin, Measuring and Managing Performance in Organization,
Dorset House, 1996.

[Avizienis et. al. 2002] A. Avizienis, J.C. Laprie, B. Randell, “Fundamental
Concepts of Computer System Dependability”, in IARP/IEEE-RAS Workshop on
Robot Dependability: Technological Challenge of Dependable Robots in Human
Environments, May 2002, Seoul, Korea.

[Baldwin-Clark 2000] C. Baldwin, and K. Clark, Design Rules: The Power of
Modularity, MIT Press, 2000.

[Basili 2004] V. Basili, P. Donzelli, and S. Asgari, “A Unified Model of
Dependability: Capturing Dependability in Context”, IEEE Software,
November/December 2004, vol. 21, no. 6, pp. 19-25.

[Bass 1998] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
Addison Wesley, 1998.

[Boehm et. al. 1978] B. Boehm, J. Brown, H. Kaspar, M. Lipow, G. MacLeod, M.
Merritt, “Characteristics of Software Quality”, TRW Report to National Bureau of
Standards, November 1973; TRW Software Series Report, TRW-SS-73-09. Also
published by North Holland, 1978.

[Boehm 1989] B. W. Boehm, Software Risk Management, IEEE Computer Society
Press, 1989.

 192

[Boehm et. al., 1995] B. Boehm, P. Bose, E. Horowitz, and M. Lee, “Software
Requirements Negotiation and Renegotiation Aids: A Theory-W Based Spiral
Approach”, Proceedings of the 17th International Conference on Software
Engineering (ICSE-17), IEEE Computer Society Press, Seattle, April 1995.

[Boehm 1999] B. Boehm, D. Port, "When Models Collide: Lessons from Software
System Analysis," IT Professional, IEEE-CS, January/February 1999, pp. 49-56.

[Boehm 2000] B. Boehm, “Unifying Software Engineering and Systems
Engineering”, Computer, vol.33, no. 3, March, 2000.

[Boehm et. al. 2000a] B. Boehm, C. Abts, A.W. Brown, S. Chulani, B. Clark, E.
Horowitz, R. Madachy, D. Riefer, and B. Steece, Software Cost Estimation with
COCOMO II, Prentice Hall, 2000.

[Boehm et. al. 2000b] B. Boehm, D. Port, M. Al-Said, “Avoiding the Software
Model-Clash Spiderweb,” Computer, November 2000, pp. 120-122.

[Boehm 2001] B. Boehm, “Overview: USC Annual Research Review”, February,
2001.

[Boehm-Brown 2001] B. Boehm, and A.W. Brown, “Mastering Rapid Delivery and
Change with the SAIV Process Model,” Proceedings, ESCOM 2001, April 2001.

[Boehm-Hansenzz, 2001] B. Boehm, W. Hansenzz, “Understanding the Spiral
Model as a Tool for Evolutionary Acquisition”, CrossTalk, May, 2001.

[Boehm et. al. 2002] B. Boehm, D. Port, L. Huang, A. W. Brown, “Using the Spiral
Model and MBASE to Generate New Acquisition Process Models: SAIV, CAIV,
and SCQAIV”, CrossTalk, vol. 15, no. 1, January 2002.

[Boehm-Huang 2003] B. Boehm and L. Huang, “Value-Based Software Engineering:
A Case Study”, IEEE Computer, vol. 36, no. 3, March 2003, pp. 33-41.

[Boehm-Huang 2004a] B. Boehm, L. Huang, A. Jain and R. Madachy, “The ROI of
Software Dependability: The iDAVE Model”, IEEE Software, vol. 21, no. 3,
May/June 2004, pp.54-61.

[Boehm-Huang 2004b] B. Boehm, L. Huang, A. Jain, and R. Madachy, “The Nature
of Information System Dependability: A Stakeholder/Value Approach” (Draft 6)”,
USC-CSE Technical Report, December, 2004.

[Boehm-Turner 2004] B. Boehm, R. Turner, Balancing Agility and Discipline,
Addison Wesley, 2004.

 193

[Boehm 2005] B. Boehm, “The Future of Software and Systems Engineering
Processes”, USC-CSE Technical Report 2005-507, June 2005.

[Bullock 2000] J. Bullock, “Calculating the Value of Testing,” Software Testing and
Quality Engineering, May/June 2000, pp. 56-62.

[Butler 2002] S. Butler, “Security Attribute Evaluation Method: A Cost-Benefit
Approach”, Proceedings ICSE 2002, pp. 232-240.

[Cai 2002] Y. Cai, K. Sullivan, “Stochastic Optimal Switching”, Proc. 4th Workshop
on Economics-Driven Software Engineering Research, IEEE CS Press, 2002.

[Chung 1999] L. Chung, B. Nixon, E. Yu, J. Mylopoulos, Non-Functional
Requirements in Software Engineering, Kluwer, 1999.

[Clements 2002] P. Clements, R. Kazman, and M. Klein, Evaluating Software
Architecture: Methods and Case Studies, Addison Wesley, 2002.

[Cockburn 2002] A. Cockburn, Agile Software Development, Addison Wesley, 2002.

[CODASYL 1976] CODASYL Systems Committee, “Selection and Acquisition of
Data Base Management Systems”, ACM, New York, March, 1976.

[Cusumano-Selby 1995] M. Cusumano and R. Selby, Microsoft Secrets, The Free
Press, October, 1995.

[Deiters-Gruhn 1994] W. Deiters and V. Gruhn, “The FUNSOFT Net Approach to
Software Process Management”, International Journal on Software Engineering and
Knowledge Engineering, 1994, pp. 229-256.

[Demillo 2001] R. DeMillo, “Why Software Falls Down”, Mutation Testing for the
New Century, W.E. Wong, ed., Kluwer Academic, 2001.

[Deming 1989] E. Deming, Out of Crisis, MIT Center for Advanced Engineering
Study, Cambridge, MA, 1989.

[DoD 1974] U.S. Department of Defense, “Software Quality Assurance Program
Requirements”, MIL-S-52779 (AD), 5, April 1974.

[Emam 2003] Khaled El Emam, The ROI from Software Quality: An Executive
Briefing, K Sharp Technology Inc., 2003.

[Eureka-Ryan 1988] W. E. Eureka and N. E. Ryan, The customer-Driven Company:
Managerial Perspectives on QFD, Dearborn, Mich.: ASI Press, 1988.

 194

[Feather 2002] M. S. Feather, S. L. Cornford, J. Dunphy, “A Risk-Centric Model for
Value Maximization”, Proceedings of 4th Workshop on Economics-Driven Software
Eng. Research, IEEE CS Press, 2002.

[Flowers 1996] S. Flowers, Software Failure: Management Failure, Wiley, 1996.

[Gazebo 2005] “Gazebo: 3D Multiple Robot Simulator With Dynamics”,
http://playerstage.sourceforge.net/gazebo/gazebo.html.

[Gerrard 2002] P. Gerrard, N. Thompson, Risk-Based E-Business Testing, Artech
House, Inc., 2002.

[Gilb 1969] T. SCHARF (GILB), “Weighted Ranking by Levels”, IAG Journal, 2,
1969, pp. 7-23.

[Gilb 1976] T. Gilb, Software Metrics, Studentlitteratur AB, Lund, Sweden, 1976.

[Gilb 1988] T. Gilb, Principles of Software Engineering Management, Addison
Wesley, 1988.

[Glass 1998] R. Glass, Software Runaways, Prentice Hall, 1998.

[Grady 1992a] R. Grady, D. Caswell, Software Metrics: Establishing A Company-
wide Program, Prentice Hall, 1992.

[Grady 1992b] R. Grady, Practical Software Metrics for Project Management and
Process Improvement, Prentice Hall, 1992.

[Highsmith 2002] J. Highsmith, Agile Software Development Ecosystems, Addison
Wesley, 2002.

[Huang 2005] L. Huang, “A Value-Based Process for Achieving Software
Dependability”, Proceeding of 1st International Software Process Workshop, Beijing,
May 2005.

[Huang-Boehm 2005a] L. Huang and B. Boehm, “Determining How Much Software
Assurance Is Enough? A Value-based Approach”, Proceeding of the 7th
International Workshop on Economics-Driven Software Engineering Research
(EDSER), May 2005.

[Huang-Boehm 2005b] LiGuo Huang and Barry Boehm, “Determining How Much
Software Assurance Is Enough? A Value-Based Approach”, Proceedings of 4th
International Symposium on Empirical Software Engineering (ISESE), November,
2005.

 195

[Huang-Boehm 2006] LiGuo Huang and Barry Boehm, “How Much Software
Quality Investment Is Enough: A Value-Based Approach”, IEEE Software, vol. 23,
no. 5, September/October, 2006, pp. 88-95.

[Huang et. al. 2006a] LiGuo Huang, Hao Hu, Jidong Ge, Barry Boehm, and Jian Lü,
“Tailor the Value-Based Software Quality Achievement Process to Project Business
Cases”, Proceedings of Software Process Workshop (SPW) 2006, May 2006, LNCS.

[Huang et. al. 2006b] LiGuo Huang, Barry Boehm, Hao Hu, Jidong Ge, Jian Lu and Cheng
Qian, “Applying the Value/Petri Process to ERP Software Development in China”,
Proceedings of 28th International Conference of Software Engineering (ICSE), May 2006.

[Huynh 2003] D. Huynh, M. Zelkowitz, V. Basili, and I. Rus, “Modeling
Dependability for a Diverse Set of Stakeholders”, The International Conference on
Dependable Systems and Networks, 2003 (DSN-2003).

[IEEE 1988a] IEEE Std 982.1-1988, IEEE Standard Dictionary of Measures to
Produce Reliable Software, 1988.

[IEEE 1988b] IEEE Std 982.2-1988, IEEE Guide for the Use of IEEE Standard
Dictionary of Measuresto Produce Reliable Software, 1988.

[IEEE 1990] ANSI/IEEE Std. 610.12-1990, IEEE Standard. Glossary of Software
Engineering Technology, IEEE Computer Society Press, 1990.

[IEEE 1992] IEEE Std 1061-1992, IEEE Standard for a Software Quality Metrics
Methodology, 1992.

[IEEE 1994] IEEE Standard 1228-1994, Software Safety Plans, 1994.

[IEEE 1998] IEEE Standard 1219-1998, Software Maintenance, 1998.

[IFIP WG10.4] International Federation for Information Processing (IFIP WG-10.4),
www.dependability.org.

[In 1998] H. In, “Conflict Identification and Resolution for Software Attribute
Requirements”, USC Ph.D. Dissertation, 1998.

[In 2001] H. In, B. Boehm, T. Rodgers, M. Deutsch, “Applying WinWin to Quality
Requirements: A Case Study”, Proceedings, ICSE 2001, ACM/IEEE, pp. 525-564.

[Kaplan-Norton 1996] Robert S. Kaplan and David P. Norton, The Balanced
Scorecard: Measures That Drive Performance (HBR OnPoint Enhanced Edition),
Harvard Business School Press, 2000.

 196

[Keeney 1993] R. L. Keeney, H. Raiffa, Decisions With Multiple Objectives,
Cambridge University Press, 1993.

[Kellner et. al. 1999] M. Kellner, R. Madachy, D. Raffo: “Software process
simulation modeling: Why? What? How?”, Journal of Systems and Software, Vol.
46, No. 2/3, April, 1999.

[Kitchenham 1989] B. Kitchenham, L. Pickard, “Towards a Constructive Quality
Model”, Software Engineering Journal, 1989, 2(4), pp. 114-126.

[Kleijnen 1980] J. Kleijnen, Computers and Profits: Quantifying Financial Benefits
of Information, Addison Wesley, 1980.

[Koopman 1999] P. Koopman, H. Madeira, “Dependability Benchmarking and
Prediction: A Grand Challenge Technology Problem”, in Real-Time Mission-Critical
Systems: Grand Challenge Problems, Phoenix, Arizona, November 1999.

[Lapire 1992] Jean-Claude Lapire, “Dependability: Basic Concepts and Terminology,
Dependable Computing and Fault Tolerance”, Vienna, Austria, Springer-Verlag,
1992.

[Laprie 1998] J. C. Laprie, “Dependability of Computer Systems: from Concepts to
Limits”, IFIP International Workshop on Dependable Computing and its
Applications, Johannesburg, January, 1998, pp. 108 –126.

[Lee 2005] Keun Lee, Barry Boehm, “Empirical Results from an Experiment on
Value-Based Review (VBR) Processes”, 4th International Symposium on Empirical
Software Engineering (ISESE), November, 2006.

[Leveson 1995] N. G. Leveson, Safeware, System Safety and Computers, Addison-
Wesley Publishing Company, 1995.

[Li 2002] P. Li, M. Shaw, K. Stolarick, K. Wallnau, “The Potential for Synergy
Between Certification and Insurance”, Special edition of ACM SIGSOFT from the
ICSR7, April 2002.

[Lientz-Swanson 1978] B. Lientz, E. Swanson, and G. Tompkins, “Characteristics of
application software maintenance”, Communications of the ACM, 21(6), June 1978.

[Linger 1996] Richard Linger and Carmen Trammell, “Cleanroom Software
Engineering Reference Model Version 1.0,” Technical Report, CMU/SEI-96-TR-022,
November 1996.

 197

[Lyu 1996] Jean-Claude Laprie and Karama Kanoun, in Michael Lyu, ed., Handbook
of Software Reliability Engineering, IEEE Computer Society Press, McGraw Hill,
1996, 27-69.

[Madachy-Lee 2003] Ray Madachy, Keun Lee, “Opportunity Trees Demo”, HDCP
Review, June 2003.

[Madeira 2001] H. Madeira and P. Koopman, “Dependability Benchmarking:
Making Choices in an N-Dimensional Problem Space”, the First Workshop on
Evaluating and Architecting System dependability (EASY), July 2001, Goteborg,
Sweden.

[Maslow 1954] A.H. Maslow, Motivation and Personality, New York, NY: Harper
and Bros, 1954.

[MBASE 2003] Guidelines for Model-Based (System) Architecting and Software
Engineering (MBASE), http://cse.usc.edu/research/MBASE, USC-CSE, 2003.

[McCall et. al., 1977] J. McCall, P. Richards, P. Walters, Factors in Software Quality,
NTIS AD-A049-014, 015, 055, 1977.

[Nejmeh 2002] B. Nejmeh, I. Thomas, “Business-Driven Product Planning Using
Feature Vectors and Increments”, Software, November-December 2002, pp. 34-42.

[Osterweil 1987] L. J. Osterweil, “Software Processes are Software too”,
Proceedings of International Conference of Software Engineering, 1987, pp. 2-13.

[Padberg 2003] F. Padberg, “A Software Process Scheduling Simulator,"
Proceedings of 25th International Conference of Software Engineering (ICSE'03),
May, 2003.

[Pardee 1996] W. Pardee, To Satisfy & Delight Your Customer: How to Manage for
Customer Value, Dorset House Publishing, NY, 1996.

[Prowell 1999] Stacy Prowell, Carmen Trammell, Richard Linger, and Jesse Poore,
Cleanroom Software Engineering: Technology and Process, SEI series in Software
Engineering, Addison-Wesley, 1999.

[Radice 1985] R. Radice et. al., “A Programming Process Study”, IBM Sys. J. 24(2),
pp. 91-101, 1985.

[Ramler et. al. 2006] R. Ramler, S. Biffl, and P. Gruenbacher, “Value-Based
Management of Software Testing,” in A. Aurum, S. Biffl, B. Boehm, H. Erdogmus,
and P. Gruenbacher, Value-Based Software Engineering, Springer Verleg, 2006.

 198

[Raz 2001] O. Raz, M. Shaw, “Software Risk Management and Insurance”,
Proceedings of the 23rd International Conference on Software Engineering
(Workshop on Economics-Driven Software Engineering Research), 2001.

[Reifer 2002] D. Reifer, Making the Software Business Case, Addison Wesley, 2002.

[Reifer 2003] D. Reifer, B. Boehm, and M. Gangadharan, "Estimating the Cost of
Security for COTS Software," Proceedings Second Intl. Conf. COTS-Based
Software Systems, February 2003, pp.178-186.

[Reisig 1985] W. Reisig, Petri Nets, An Introduction, Springer Verlag, Berlin, 1985.

[Ross-Swanson 2003] R. Ross, M. Swanson, G. Stoneburner, S. Katzke, A. Johnson,
Guide for the Security Certification and Accreditation of Federal Information
Systems, NIST (National Institute of Standards and Technology) Special Publication
800-37, 2003.

[Rus et. al. 2002] I. Rus, V. Basili, B. Boehm, “ Empirical Evaluation of Techniques
and Methods Used for Achieving and Assessing Software High Dependability”,
Workshop on Dependability Benchmarking, in conjunction with the International
Conference on Dependable Systems and Networks (DSN-2002), Washington, DC,
June 2002.

[Rus et. al. 2003] I. Rus, S. Komi-Servio, P. Costa, “Software Dependability
Properties: A Survey of Definitions, Measures and Techniques,” Fraunhofer
Technical Report 03-110, January 2003.

[Saaty 1989] Saaty, T.L. and J. Alexander, Conflict Resolution: The Analytic
Hierarchy Process, Praeger, New York.

[Schwaber and Beedle 2002] K. Schwaber and M. Beedle, Agile Software
Development with Scrum, Prentice Hall, 2002.

[Shaw 2002] M. Shaw, “Everyday Dependability for Everyday needs”, Keynote on
13th International Symposium on Software Reliability Engineering (ISSRE), Nov.
2002.

[Snir 2003] M. Snir and D. A. Bader, “A Framework for Measuring Supercomputer
Productivity'', Technical Report, October 2003.

[Sommerville 2004] Ian Sommerville, Software Engineering (7th Edition), Chapter
20, Addison Wesley, May 2004.

[Standish 1995; Standish 2001] The Standish Group, CHAOS Report, 1995, 2001;
www.standishgroup.com.

 199

[Steece, et. al. 2002] B. Steese, S. Chulani, B. Boehm, “ Determining Software
Quality Using COQUALMO,” Case Studies in Reliability and Maintenance, W.
Blischke and D. Murthy, eds., Jon Wiley & Sons, 2002.

[Sullivan 1999] K. Sullivan, P. Chalasani, S. Jha, V. Sazawal, “Software Design as
an Investment Activity: A Real Options Perspective”, in Real Options and Business
Strategy: Applications to Decision Making, L. Trigeorgis, consulting editor, Risk
Books, December 1999.

[Sullivan et. al. 1999-2005] K. Sullivan et. al., The International Workshop on
Economics-Driven Software Engineering Research (EDSER), affiliated each year
with the International Conference of Software Engineering, 1999-2005. See
http://www.edser.org.

[Sullivan et. al. 2001] K. Sullivan, Y. Cai, B. Hallen, W. Griswold, “The structure
and value of modularity in software design” 3rd International Workshop on
Economics-driven Software Engineering Research (EDSER), May, 2001.

[Thorp 1998] J. Thorp and DMR, The Information Paradox, McGraw Hill, 1998.

[Tockey 2004] S. Tockey, Return on Software, Addison Wesley, 2004.

[Valk 1998] R. Valk, “Petri nets as token objects: An introduction to elementary
object nets”, Proceedings of Application and Theory of Petri Nets, Springer-Verlag,
1998, pp. 1-25.

[Weinstock 2004] C. B. Weinstock, J. B. Goodenough, “Dependability Cases”,
Technical Note, CMU/SEI-2004-TN-016, May 2004.

[West 2004] M. West, Real Process Improvement Using the CMMi, CRC Press, Feb.
1, 2004.

[Wilson 2002] D. Wilson, B. Murphy and L. Spainhower, “Progress on Defining
Standardized Classes for Comparing the Dependability of Computer Systems”,
Workshop on Dependability Benchmarking, in conjunction with the International
Conference on Dependable Systems and Networks (DSN-2002), Washington , DC,
June 2002.

[WinWin 2006] WinWin Spiral Model & Groupware Support System,
http://sunset.usc.edu/research/WINWIN/index.html.

 200

[Wise et. al. 2000] Alexander Wise, Aaron G. Cass, Barbara Staudt Lerner, Eric K.
McCall, Leon J. Osterweil, Stanley M. Sutton, Jr., “Using Little-JIL to Coordinate
Agents in Software Engineering”, Proceedings of the Automated Software
Engineering Conference (ASE 2000), Grenoble, France, pp. 155-163, September
2000.

 201

Appendices

Appendix A: Behavior Analysis of COCOMO II RELY

Ratings

The correspondence between COCOMO II RELY ratings and COQUALMO

defect removal profile ratings is based upon a mapping between the behavior

analysis behind the COCOMO RELY effort multiplier and the rationales of

COQUALMO defect removal profile ratings. Table A.1 indicates the differences in

project activities which will result from having a higher or lower required reliability

(RELY).

 202

RELY
Ratings

Requirements and
Product Design

Detailed
Design

Code and
Unit Test

Integration
and Test

Very
Low

Little detail
Many TBDs
Little verification
Minimal QA, CM, draft
user manual, test plan
Minimal PDR

Basic design
information
Minimal QA,
CM, draft user
manual, test
plans
Informal design
inspections

No test procedures
Minimal path test,
standards check
Minimal QA, CM
Minimal I/O and
off-nominal tests
Minimal user
manual

No test
procedures
Many
requirements
untested
Minimal QA,
CM
Minimal stress,
off-nominal tests
Minimal as-built
documentation

Low Basic information,
verification
Frequent TBDs
Basic QA, CM,
standards, draft user
manual, test plans

Moderate detail
Basic QA, CM
draft user
manual, test
plans

Minimal test
procedures
Partial path test,
standards check
Basic QA, CM,
user manual
Partial I/O and off-
nominal tests

Minimal test
procedures
Frequent
requirements
untested
Basic QA, CM,
user manual
Partial stress,
off-nominal tests

Nominal Nominal project V&V

High Detailed verification,
QA, CM, standards,
PDR, documentation
Detailed test plans,
procedures

Detailed
verification, QA,
CM, standards,
CDR,
documentation
Detailed test
plans, procedures

Detailed test
procedures, QA,
CM,
documentation
Extensive off-
nominal tests

Detailed test
procedures, QA,
CM,
documentation
Extensive stress,
off-nominal tests

Very
High

Detailed verification,
QA, CM, standards,
PDR, documentation
IV&V interface
Very detailed test
plans, procedures

Detailed
verification, QA,
CM, standards,
CDR,
documentation
Very thorough
design
inspections
Very detailed
test plans,
procedures
IV&V interface

Detailed test
procedures, QA,
CM,
documentation
Very thorough
code inspections
Very extensive off-
nominal tests
IV&V interface

Very detailed
test procedures,
QA, CM,
documentation
Very extensive
stress, off-
nominal tests
IV&V interface

Table A.1. Product Activity Differences Due to Required Software Reliability
(RELY)

 203

Appendix B: COQUALMO Defect Removal Profiles

Rating Automated Analysis Peer Reviews Execution Testing
and Tools

Very
Low

Simple compiler syntax
checking.

No peer review. No testing.

Low Basic Compiler capabilities
for static module-level code
analysis, syntax, type-
checking.

Ad-hoc informal walk-
throughs
Minimal preparation, no
follow-up

Ad-hoc testing and
debugging.
Basic text-based debugger.

Nominal Some compiler extensions
for static module and inter-
module level code analysis,
syntax, type-checking.
Basic requirements and
design consistency,
traceability checking.

Well-defined sequence of
preparation, review, minimal
follow-up.
Informal review roles and
procedures.

Basic unit test, integration
test, system test process.
Basic test data
management, problem
tracking support.
Test criteria based on
checklists.

High Intermediate-level module
and inter-module code
syntax and semantic
analysis.
Simple requirements/design
view consistency checking.

Formal review roles with all
participants well-trained and
procedures applied to all
products using basic
checklists, follow up.

Well-defined test sequence
tailored to organization
(acceptance/alpha/beta/fligh
t/etc.) test.
Basic test coverage tools,
test support system.
Basic test process
management.

Very
High

More elaborate
requirements/design view
consistency checking.
Basic distributes-processing
and temporal analysis, model
checking, symbolic
execution.

Formal review roles with all
participants well-trained and
procedures applied to all
product artifacts & changes
(formal change control
boards).
Basic review checklists, root
cause analysis.
Formal follow-up.
Use of historical data on
inspection rate, preparation
rate, fault density.

More advanced test tools,
test data preparation, basic
test oracle support,
distributed monitoring and
analysis, assertion
checking.
Metrics-based test process
management.

Extra
High

Formalized* specification
and verification.
Advanced distributes
processing and temporal
analysis, model checking,
symbolic execution.

*Consistency-checkable pre-
conditions and post-
conditions, but not
mathematical theorems.

Formal review roles and
procedures for fixes, change
control.
Extensive review checklists,
root cause analysis.
Continuous review process
improvement.
User/Customer involvement,
Statistical Process Control.

Highly advanced tools for
test oracles, distributed
monitoring and analysis,
assertion checking
Integration of automated
analysis and test tools.
Model-based test process
management.

Table B.2. Rationales of COQUALMO defect removal profile ratings

 204

Appendix C: Empirical Analysis on Stakeholder/Value

Dependency on Quality Attributes in Information Systems

 Information System Quality-Attribute-Dependency-Differing

Stakeholder Classes

The empirical analyses on USC-CSE e-service projects summarizes the

stakeholder classes involved with an information system to have different patterns of

dependency on quality attributes. The stakeholder classes are shown in Figure C.1

and the role of each stakeholder class is described as follows.

Figure C.1. Major Information System Stakeholder Classes

Information Suppliers. These stakeholders have supplied information that will be

used by other classes of stakeholders. They may be either individuals (medical

patients, Internet shoppers, others) or organizations (companies filing tax data,

Information
System

Information Brokers
- financial services, news media

Information Consumers
- decisions, education,
 entertainment

Developers, Maintainer, Administrators, Acquirers

Dependents
 - passengers, patients

Mission Controllers
- pilots, distribution controllers

Information
Supplier

 205

submitting contract proposals, others). In their role as information suppliers, they

will depend directly on the information system to protect their information’s privacy

and security. They may depend on other attributes when they also play other roles

(such as information consumers when acting as Internet shoppers), but as

information suppliers, their only other critical dependency is on the accuracy of the

data about themselves in the information system. And, not all information suppliers

are concerned with privacy, e.g., advertisers, other public information sources.

Information Consumers. These stakeholders consume information supplied by an

information supplier or a broker. In conjunction with the above given examples, this

stakeholder class includes individuals (doctors, sales executives, movie-goers, others)

or organizations (the revenue service, retail stores, others). The stakeholders in this

class depend on quite a few attributes such as the timeliness, trustworthy provenance

and accuracy of the information given to them by an information supplier. We have

discussed earlier the challenges in generalizing a stakeholder class with respect to a

set of attributes that are of concern to them; as operational contexts vary, so will

these attributes. Although this is true for all stakeholder classes, we have further

categorized this stakeholder class into two extreme contexts: mission-critical

information consumers (e.g., doctors) vs. mission-uncritical information consumers

(e.g., moviegoers).

Information Brokers. The stakeholders in this class consume information that is often

reanalyzed to produce a more refined and customized set of information to their

respective consumers. There are individuals (stockbrokers, journalists, consultants,

others) and organizations (brokerage companies, search engine companies,

 206

consulting companies, others) that normally belong to this class. We also note that,

albeit the stakeholders in this class fall into the two aforementioned classes as

consumers of information and suppliers of information, we chose to specialize them

as brokers. This is because our analysis in Table C.3 found that brokers’ value

dependencies were not just a simple combination of information-supplier and

information-consumer dependencies.

System Dependents. Stakeholders in this class are people that are not involved in the

system’s development or operation, but are dependent on some of its attributes.

These people could be either airplane passengers or medical patients and they are

normally concerned about the system’s safety, security and survivability. As an

example of time-varying priorities with improved flight safety engineering and

increased terrorist threat levels, we have begun to see an increased emphasis on

security as well as on survivability and safety in the concerns of these system

dependents.

System Controllers. These stakeholders such as airplane pilots, spacecraft mission

controllers, or electric power distribution controllers, perform real-time control of a

system. Value dependencies of such system controllers are analogous to those of

their system dependents and end users. Thus, safety is a critical concern for airplane

pilots and manned spacecraft mission controllers, but not for unmanned spacecraft

mission controllers. Most real-time mission control systems do not have privacy

concerns.

 207

Administrators. These stakeholders are responsible for monitoring and managing

system resources, security operations, user requests, system backup, etc. Typically

administrators are also a type of system user. Their direct concerns with respect to

reliability, accuracy and availability for doing their own job are significant but not

critical. Their indirect concerns with these and safety, security, and survivability are

critical only when they are critical for their users and system dependents.

Administrators are also concerned about interoperability to the extent that the

successful operation of the administrator’s system depends on successful data

interchange and control coordination with external systems.

Developers. These stakeholders are individuals or organizations that perform

development activities such as requirements analysis, design, programming, and

testing during the system’s life cycle process. Developers’ direct value dependencies

on the system are primarily for sufficient reliability, availability, performance, etc. to

perform their development functions correctly within cost and schedule constraints.

Their concerns with safety, security, etc. derive from the value dependencies of their

end users. Their concerns with reusability reflect its ability to facilitate their future

development capabilities.

Maintainers. These stakeholders are responsible for making changes to the system

for corrective, adaptive, perfective and preventive maintenance. That is, to make the

system work right and often work better. Dependability of a system for a

maintainer’s direct functions imply a system that has rare and easily recoverable

failures; performs efficiently; is easy to modify and evolve; and for which reusability

can be leveraged, as with developers.

 208

Acquirers. These stakeholders are procurers of a system, software product, or

software service from a supplier as a customer. Their direct value dependencies are

that the delivered capabilities correctly implement end user requirements within cost

and schedule constraints, and are also easy to evolve and interoperate with co-

dependent systems, and perhaps have product-line reusable components. Their

concerns with Protection, Robustness, and Quality of Service attributes will derive

from those of their system end users and dependents.

Note that a stakeholder may belong to multiple classes. For instance, an

airline pilot is both a system controller and a system-dependent passenger.

 Information System Top-Level Stakeholder/Value Dependency

on Quality Attributes

Table C.3 provides a top-level summary of the relative strengths of

dependency on information system quality attributes, for classes of information

system stakeholders exhibiting different patterns of strengths of dependency. Its

initial portions were obtained from empirical analysis of different classes of

information system stakeholders’ primary concerns during win-win requirements

negotiations. The dependency ratings refer only to direct dependencies. For example,

system developers, acquirers, and administrators are concerned with safety or

security only to the extent that a system’s information suppliers, users, and

dependents are concerned with them. And information suppliers and system

dependents are only concerned with reliability and availability to the extent that

these help provide their direct concerns with security and safety.

 209

Stakeholder Classes

Info. Consumers Quality Attributes

Info. Supplier

System

D
ependents

Info. B
rokers Mission -

System

C
ontrollers

D
evelopers

M
aintainers

A
dm

inistrators

A
cquirers

Protection Critical Uncritical
 Safety ** ** **
 Security * ** ** ** **
 Privacy ** ** * *
Robustness
 Reliability * * ** ** * *
 Availability * * ** ** * *
 Survivability * * ** ** * *
Quality of Service
 Performance ** ** * ** * *
 Accuracy, Consistency ** ** ** * ** *
 Usability * * ** ** ** *
Evolvability * ** * * ** * **
Interoperability ** * **
Correctness * **
Cost * **
Schedule * ** * * ** **
Reusability ** * *

Table C.3. Information System Top-Level Stakeholder/Value Dependencies on

Quality (Q-) Attributes

The starting point for the stakeholder/value dependency ratings in Table C.3

was an empirical analysis of stakeholder win-win negotiations between student

development teams and USC campus service providers negotiating the requirements

for a Web-based capability to improve their campus services [In 2001] shown as

Figure 2.2 in Chapter 2. The thin lines and dotted lines in Figure 2.2 reflect the

study’s initial hypotheses about critical stakeholder/value dependencies. The dotted

lines show hypothesized dependencies that were not borne out by the data. These

have some claim to be special cases: the developers were student teams working for

** Critical * Significant () Insignificant or indirect

 210

free and not concerned with labor costs, although the fixed 2-semester schedule was

a critical concern. And since they were temporary workers developing one-of-a-kind

systems, they were not much concerned about producing reusable software. The

broad arrows were additional Customer dependencies on Assurance (Protection and

Robustness), Interoperability, and Usability reflecting their concerns as

administrators of the delivered system.

As in Table C.3, Figure 2.2 only records the direct concerns of the

stakeholders with quality attributes. For example, the developers of the digital library

systems did not furnish win conditions about Assurance, Interoperability, Usability,

and Performance. They were generally furnished by the Customers and Users with

direct value dependencies, and thereby became Developer concerns for the desired

system.

Table C.4 provides a mapping between the stakeholder classes in Table C.3

and stakeholder categories in Figure 2.2 The interoperability category is more

extensive than just the set of Information Brokers associated with an information

system. It can also include other external co-dependent systems furnishing or being

furnished with needed data and services. For example, interoperating systems

associated with the digital library applications included the commercial SIRSI

system used for main campus library services, three interlibrary loan systems, and

several national archives operated by such agencies as the National Library of

Medicine, the Securities and Exchange Commission, and the Dissertation Abstracts

service. The customers involved in the digital library applications were campus

 211

librarians or archive administrators acting as both system Acquirers and

Administrators.

Stakeholder Classes in Figure 2.2 Stakeholder Classes in Table C.3
General Public Information Suppliers, System Dependents
Interoperator Information Brokers

User Information Brokers, Consumers and System
Controllers

Developer Developers
Maintainer Maintainers
Customer Administrators, Acquirers

Table C.4. Mapping of Stakeholder Classes in Table C.3 and Figure 2.2

Table C.5 provides the counterpart mapping from the top-level quality

attributes in Figure 2.2 to the quality attributes in Table C.3. The Assurance attribute

in Figure 2.2 covered the Protection, Robustness, and Correctness attributes in Table

C.3, while the other categories covered other quality attributes for which some

classes of stakeholders exhibited significant value dependencies.

Quality Attributes in Figure 2.2 Quality Attributes in Table C.3

Assurance (Dependability)
Safety, Security, Privacy, Reliability,
Availability, Survivability, Accuracy,
Correctness

Interoperability Interoperability
Usability Usability
Performance Performance
Evolvability and Portability Evolvability
Cost, Schedule Cost, Schedule
Reusability Reusability

Table C.5. Mapping of Quality Attributes in Figure 2.2 into Quality Attributes
in Table C.3

 212

 Top-level Stakeholder/Value Dependency Patterns in Table C.3

1. Some of the attributes have the same rating patterns for all the stakeholder

classes, but are still individually important.

An example involves the Robustness attributes: reliability, availability, and

survivability. One can have a system with a very high reliability or Mean Time

Between Failures (MTBF), but if a database crash requires a week to repair, the loss

of availability can be severe. The survivability metric is particularly important in

hard-to-fix situations. As one example, in many distributed-processing applications,

it is difficult to reproduce the cause of failure, increasing the value of a self-recovery

or degraded-operation capability. As other example, unattended operations such as

interplanetary spacecraft have limited recovery options, increasing the value of self-

recovery capabilities.

2. There are no pairs of stakeholder classes that have the same rating patterns for

all of the attributes.

This is the case by design: separate stakeholder classes with the same rating

patterns for all of the attributes were combined, for example, there are several classes

of administrators: database administrators, system administrators, application

administrators. When these turned out to have the same overall rating patterns, they

were combined for simplicity. On the other hand, roles merge in many cases. In

some organizations, developers are also the maintainers – and for evolutionary

development, the distribution is blurred. In some organizations such as startup

companies, developers are also the acquirers. In such cases, the combined roles

generally assume the most critical rating for each attribute.

 213

3. Stakeholders with indirect value dependencies generally assume the criticality

ratings of the stakeholders they are depending on.

Although one can’t tell directly from the role of an acquirer, developer, or

maintainer their strength of dependency on making a product safe or secure, one can

usually assume that it reflects the strength of dependency of their operational

stakeholders on safety or security. On the other hand, although a COTS user may not

care what the cost of developing the COTS product may have been, they will usually

care about the product price, which may or may not be well-correlated with its

development cost. And operational stakeholders relying on maintainers with limited

resources to satisfy their need for new capabilities will be concerned about the

relative cost of the capabilities. Thus stakeholder/value dependencies will vary by

situation or life cycle stage, confirming that the criticality levels are more suggestive

than universally definitive.

 Capabilities Provided by the Stakeholder/Value Dependency

Analysis

Even with the complexities and challenges during its application, the

stakeholder/value dependency analysis provides some much-needed capabilities for

reasoning about software quality attributes by capturing the stakeholders’ value

propositions in project scoping. These capabilities include:

 The framework corroborates the statement above that the universal one-size-

fits-all quality metrics are unachievable in most project situations.

 214

 It highlights the importance of using operationally representative

stakeholders and scenarios in prioritizing and evaluating a software system’s

quality attributes.

 It provides first-order guidance on which stakeholder classes to consult in

determining a system’s quality-attribute priorities.

 It explicitly identifies sources of complexity in software quality assessment,

and helps avoid the measurement dysfunction accompanying overly

simplistic quality improvement initiatives.

 It provides the basis for developing specific processes for stakeholder-

oriented quality achievement.

