
1

The Rosetta Stone: Making COCOMO 81 Files Work With COCOMO II

Donald J. Reifer, Reifer Consultants, Inc.
Barry W. Boehm, University of Southern California
Sunita Chulani, University of Southern California

As part of our efforts to help COCOMO users, we, the COCOMO research team
at the Center for Software Engineering at the University of Southern California
(USC), have developed the Rosetta Stone for converting COCOMO 81 files to
run using the new COCOMO II software cost estimating model. The Rosetta
Stone is very important because it allows users to update estimates made with the
earlier version of the model so that they can take full advantage of the many new
features incorporated into the COCOMO II package. This paper describes both
the Rosetta Stone and guidelines for making the job of conversion easy.

Setting the Stage
During the past few years, the COCOMO team at the University of Southern California

(USC) has been working to update the 1981 version of the COnstructive COst MOdel
(COCOMO) estimating model (COCOMO 81)1. The new version of the model called COCOMO
II builds on the experiences that industrial affiliates of the USC Center for Software Engineering
have had and addresses life cycle processes and paradigms that have become popular since the
original model was first introduced in 1981. These new paradigms include reuse-driven
approaches, commercial off-the-shelf (COTS) life cycle developments, component-based
software engineering approaches, use of object-oriented methods and a variety of other
improvements to the way we do business stimulated by process maturity initiatives.

In this article, we will focus attention on a tool we have developed to permit our users to
update their original COCOMO 81 files so that they can be used with the COCOMO II model.
We call the tool the Rosetta Stone because it is not unlike the black slab found by French troops
in 1799 in Egypt containing three scripts (Greek, demotic and hieroglyphics) that enabled
archaeologists to construct translations among the three languages. This Rosetta Stone permits
its users to translate files prepared using the original COCOMO 81 model to a form compatible
with COCOMO II.

 You are probably asking why our affiliates thought creation of the Rosetta Stone was
important. Many of them wanted to use the new version of the model to take advantage of its
many advanced capabilities including the COCOMO II package’s auto-calibration features. But,
they couldn’t make the move because they had files that required older versions of model to run
(original COCOMO, Ada-COCOMO, etc.). Others wanted to calibrate the new version of the
model using their historical databases. But, the new version of the model had a new structure,
altered mathematics and different parameters and parametric ratings. Under such circumstances,
converting files was no easy task.

2

The COCOMO II Estimating Model
Based upon our introduction, you are probably asking “What are the major differences

between COCOMO 81 and COCOMO II and why are they important?” Model differences are
summarized in Table 1. These changes are important because they reflect how the state of
software engineering technology has matured during the past two decades. For example,
programmers were submitting batch jobs when the COCOMO 81 model was first published.
Turnaround time impacted their productivity. Therefore, a parameter TURN was used in the
model to reflect the average wait a programmer experienced prior to receiving their job back.
Such a parameter is no longer important because most programmers have instant access to
computational facilities through their workstation. Therefore, the parameter has been removed in
the COCOMO II model.

The following summary highlights the major changes made to the original version of
COCOMO 81 as COCOMO II was developed:

� The COCOMO II addresses the following three phases of the spiral life cycle: applications
development, early design and post-architecture.

� The three modes in the exponent are replaced by five Scale Factors.

� The following cost drivers were added to COCOMO II: DOCU, RUSE, PVOL, PEXP,
LTEX, PCON and SITE.

� The following cost drivers were deleted from the original COCOMO: VIRT, TURN, VEXP,
LEXP and MODP.

� The ratings for those cost drivers retained in COCOMO II were altered considerably to
reflect more up-to-date calibrations.

The Rosetta Stone
As illustrated in Table 2, users need to convert factors in the COCOMO equations (i.e.,

the exponent, the size estimate and the ratings for the cost drivers) from the original to the new
version of the model. We suggest that users employ the following four steps to make the
conversion so original files can be used with the COCOMO II model:

� Update size - The original COCOMO model used deliverable source lines of code (DSI) as
its measure of the size of the software job. DSI were represented by card images (e.g.,
includes all non-blank, non-comment carriage returns). COCOMO II uses the following
three different measures to bound the volume of work associated with a software job: source
lines of code (SLOC's), function points and object points. SLOC's are counted using logical
language statements per Software Engineering Institute guidelines2 (e.g., IF-THEN-ELSE,
ELSE IF is considered a single not two statements). Table 2 provides guidelines for
converting size in DSI to SLOC's for their use with the COCOMO II model. Whenever
possible, we suggest that you use counts for the actual size for the file instead of the original
estimate. Such practices allow you to correlate your actuals (e.g., the actual application size
with the effort required to do the work associated with developing the software).

3

Table 1 Model Comparisons
COCOMO 81 COCOMO II

Model
structure

Single model which assumes you start
with requirements allocated to
software

Three models which assume you
progress through a spiral type
development to solidify your
requirements, solidify the architecture
and reduce risk

Mathematical
form of effort
equation

Effort = A(ci) (Size)Exponent Effort = A(ci) (Size)Exponent

Exponent Exponent = fixed constant selected as
a function of mode
- Organic = 1.05
- Semi-detached = 1.12
- Embedded = 1.20

Exponent = variable established based
upon rating of five scale factors
- PREC, Precedentedness
- FLEX, Development Flexibility
- RESL, Architecture/Risk Resolution
- TEAM, Team Cohesion
- PMAT, Process Maturity

Size Source lines of code (with extensions
for function points)

Object points, function points or source
lines of code

Cost
drivers (ci)

Fifteen drivers each of which must be
rated:
- RELY, Reliability
- DATA, Data Base Size
- CPLX, Complexity
- TIME, Execution Time Constraint
- STOR, Main Storage Constraint
- VIRT, Virtual Machine Volatility
- TURN, Turnaround Time
- ACAP, Analyst Capability
- PCAP, Programmer Capability
- AEXP, Applications Experience
- VEXP, Virt. Machine Experience
- LEXP, Language Experience
- TOOL, Use of Software Tools
- MODP, Use of Modern

Programming Techniques
- SCED, Required Schedule

Seventeen drivers each of which must be
rated
- RELY, Reliability
- DATA, Data Base Size
- CPLX, Complexity
- RUSE, Required Reusability
- DOCU, Documentation
- TIME, Execution Time Constraint
- STOR, Main Storage Constraint
- PVOL, Platform Volatility
- ACAP, Analyst Capability
- PCAP, Programmer Capability
- AEXP, Applications Experience
- PEXP, Platform Experience
- LTEX, Language & Tool Experience
- PCON, Personnel Continuity
- TOOL, Use of Software Tools
- SITE, Multi-site Development
- SCED, Required Schedule

Other model
differences

Model based upon:
- Linear reuse formula
- Assumption of reasonably stable

requirements

Has many other enhancements including:
- Non-linear reuse formula
- Reuse model which looks at effort

needed to understand and assimilate
- Breakage ratings which are used to

address requirements volatility
- Auto-calibration features

4

Table 2 Converting Size Estimates
COCOMO 81 COCOMO II

DSI
- 2nd generation languages
- 3rd generation languages
- 4th generation languages
- object-oriented languages

SLOC3

- reduce DSI by 35%
- reduce DSI by 25%
- reduce DSI by 40%
- reduce DSI by 30%

Function points Use the expansion factors developed by Capers
Jones4 to determine equivalent SLOC’s

Feature points Use the expansion factors developed by Capers
Jones to determine equivalent SLOC’s

The size reduction in COCOMO II is attributable to need to convert card images to source
line of code counts. As already noted, the pair IF-THEN-ELSE and END IF would be
counted as either two card images in COCOMO 81 and as a single source instruction in
COCOMO II. The guidelines offered in Table 2 are based on statistical averages in order to
simplify conversions. However, we encourage you to use your actuals if you have them at
your disposal.

We would like to address the following two misconceptions about COCOMO use of source
lines of code (SLOC) and function points (FP):

- Misconception 1: COCOMO does not support the use of function points- Function
point versions of COCOMO have been available since the Before You Leap commercial
COCOMO software package implementation in 1987. As noted in Table 1, COCOMO II
supports use of either SLOC or FP metric. In both cases, this is done via “backfiring”
tables which permit you to convert function points to lines of code at different levels.

- Misconception 2: It is irresponsible to use SLOC as a general productivity metric,
but it is not irresponsible to use FP as a general sizing parameter for estimation -
This misconception breaks down into the two following cases:

� Your organization uses different language levels to develop software. In this case, it
is irresponsible to use SLOC as your productivity metric, as you get higher
productivity/SLOC at higher language levels. However, it is also irresponsible to use
FP as a general sizing metric because pure FP will generate the same cost (or
schedule or quality) estimate for a program with the same functionality developed
using different language levels. This is clearly wrong. To get responsible results in
this case, FP-based estimation models need to use some form of backfiring to account
for the difference in language level.

� Your organization always uses the same programming language (level). Here, it is
responsible to use pure FP as your sizing metric for estimation. But, it is also
responsible to use SLOC as your productivity metric. Both metrics work in practice.

5

� Convert exponent - Convert the original COCOMO 81 modes to Scale Factor settings using
the Rosetta Stone values in Table 3. Then, adjust the ratings to reflect the actual situation.
For example, the Rosetta Stone rates PMAT low because most projects using COCOMO 81
are assumed to have been at level 1 on the Software Engineering Institute (SEI) process
maturity scale5. However, the project’s actual rating may have been higher and an adjustment
may be in order.

Table 3 Mode/Scale Factor Conversion Ratings
MODE/SCALE FACTORS ORGANIC SEMI-DETACHED EMBEDDED

Precedentedness (PREC) XH H L
Development flexibility (FLEX) XH H L
Architecture/risk resolution (RESL) XH H L
Team cohesion (TEAM) XH VH N
Process maturity (PMAT) MODP MODP MODP

An exception is the process Maturity (PMAT) scale factor, which replaces the COCOMO 81
Modern Programming Practices (MODP) cost driver. As seen in Table 4, MODP ratings of
VL or L translate into a PMAT rating of VL, or a low level on the SEI CMM scale. A
MODP rating of N translates into a PMAT rating of L, or a high Level 1. A MODP rating of
H or VH translates into a PMAT rating of N or CMM Level 2. As with the other factors, if
you know that the project’s actual rating was different from the one provided by the Rosetta
Stone, use the actual value.

The movement from modes to scale factors represents a major change in the model. To
determine the economies/diseconomies of scale, five factors have been introduced. Because
each of these factors can influence the power to which size is raised in the COCOMO
equation, they can have a profound impact on cost and productivity. For example, increasing
the rating from H to VH in these parameters can introduce as much as a six percent swing in
the resulting resource estimate. Most of these factors are modern in their derivation. For
example, the concept of process maturity wasn't even in its formative stages when the
original COCOMO 81 model was published. In addition, the final three factors RESL,
TEAM and PMAT show how an organization can exercise management control over its
diseconomies of scale. Finally, the first two, PREC and FLEX, are the less controllable
factors contributing to COCOMO 81 mode definitions.

� Rate Cost Drivers - The trickiest part of the conversion is the cost drivers. Cost drivers are
parameters to which cost is sensitive. For example, as with the scale factors you would
expect use of experienced staff would make a software development less expensive. Else,
why use them? Because the new version of the model uses altered drivers, the Rosetta Stone
conversion guidelines outlined in Table 4 are important. For those interested in more details
about the cost drivers, we suggest that you refer to the COCOMO II Model Definition
Manual6. Again, the ratings need to be adjusted to reflect what actually happened on the
project. For example, the original estimate may have assumed that applications experience
was very high. However, the caliber of analysts actually assigned might have been nominal
because key personnel were not available to the project when they were needed.

6

Table 4 Cost Drivers Conversions
 COCOMO 81

DRIVERS
COCOMO II

DRIVERS
CONVERSION

FACTORS
RELY RELY None, rate the same or the actual
DATA DATA None, rate the same or the actual
CPLX CPLX None, rate the same or the actual
TIME TIME None, rate the same or the actual
STOR STOR None, rate the same or the actual
VIRT PVOL None, rate the same or the actual
TURN Use values in Table 5
ACAP ACAP None, rate the same or the actual
PCAP PCAP None, rate the same or the actual
VEXP PEXP None, rate the same or the actual
AEXP AEXP None, rate the same or the actual
LEXP LTEX None, rate the same or the actual
TOOL TOOL Use values in Table 5
MODP Adjust PMAT

settings
If MODP is rated VL or L, set PMAT to VL
 N, set PMAT to L
 H or VH, set PMAT to N

SCED SCED None, rate the same or the actual
RUSE Set to N, or actual if available
DOCU If Mode = Organic, set to L

 = Semi- Detached, set to N
 = Embedded, set to H

PCON Set to N, or actual if available
SITE Set to H, or actual if available

Users should take advantage of their actual knowledge of what occurred on the project to
make their estimates more reflective of what really went on as the application was developed.
Use of such knowledge can improve the credibility and accuracy of their estimates.

The TURN and TOOL rating scales have been affected by technology changes since 1981.
These days, virtually everyone uses interactive workstations to develop software. TURN has
therefore been dropped from COCOMO II and its calibration assumes the TURN rating is L.
Table 5 provides alternative multipliers for other COCOMO 81 TURN ratings.

The tool suites available in the 1990’s far exceed the COCOMO 81 VH TOOL rating and
virtually no projects operate at the COCOMO 81 VL or L TOOL levels. COCOMO II has
shifted the TOOL rating scale two levels higher so that a COCOMO 81 N TOOL rating
corresponds to a VL COCOMO II TOOL rating. Figure 5 also provides a set of COCOMO
II multipliers corresponding to COCOMO 81 project ratings.

Some implementations of COCOMO II, such as the USC COCOMO II package, provide
slots for extra user defined cost drivers. The values in Figure 5 can be put into such slots (if
you do this, use a N rating in the normal COCOMO II TOOL slot).

7

Table 5 TURN and TOOL Adjustments
COCOMO II MULTIPLIER/COCOMO 81

RATING
VL L N H VH

TURN 1.00 1.15 1.23 1.32
TOOL 1.24 1.10 1.00

For those interested in learning more about the cost drivers and their ratings, we refer you
to the USC web site (the URL is http://sunset.usc.edu/COCOMOII) or several of the Center
for Software Engineering’s other publications7,8. Because the goal of this article is to present the
Rosetta Stone, we did not feel it was really necessary to go into the details of the model and an
explanation of its many parameters.

Experimental Accuracy
To assess the accuracy of the translations, the team used the Rosetta Stone to convert 89

projects. These projects were clustered subsets of the databases we used for model calibration.
Clusters were domain specific. We updated our estimates using actuals whenever we could. We
then used the auto-calibration feature of the USC COCOMO II package to develop a constant for
the effort equation (i.e., the A in the equation: Effort = A(SIZE)P). Finally, we compared our
estimates to actuals and computed the relative error as a function of the following cases:

� Using the Rosetta Stone with no adjustments,

� Using the Rosetta Stone with knowledge base adjustments (i.e., updating the estimate
files with actuals when available), and

� Using the Rosetta Stone with knowledge base adjustments and domain clustering (i.e.,
segmenting the data based upon organization or application area).

The results of these analyses, which are summarized in Table 6, were very positive. They show
that we can achieve an acceptable degree of estimating accuracy when using the Rosetta Stone
to convert COCOMO 81 files to run with the COCOMO II software cost model.

Table 6 Estimate Accuracy Analysis Results

CASES
ACCURACY

(RELATIVE ERROR)
Using the COCOMO II model as calibrated Estimates within 25% of actuals,

68% of the time
Using the COCOMO II model as calibrated using
developer or domain clustering

Estimates within 25% of actuals,
76% of the time

Using Rosetta Stone with no adjustments Estimates within 25% of actuals,
60% of the time

Using the Rosetta Stone with knowledge base adjustments Estimates within 25% of actuals,
68% of the time

Using the Rosetta Stone with knowledge base adjustments
and domain clustering

Estimates within 25% of actuals,
74% of the time

8

 Summary and Conclusions
The Rosetta Stone was developed to provide its users with both a process and tool for

converting their original COCOMO 81 files so that they can be used with the new COCOMO II
estimating model. The Stone represents a starting point for such efforts. It does not replace the
need to understand either the scope of the estimate or the changes that occurred as the project
unfolded. Rather, the Stone takes these considerations into account as you update its knowledge
base with actuals.

The value of the Rosetta Stone was demonstrated convincingly based upon an accuracy
analysis of an eighty-nine project database. As expected, the accuracy increased as we adjusted
the estimates using actuals and looked at results based upon domain segmentations. We are
encouraged by the results. We plan to continue our efforts to provide structure and support for
such conversion efforts.

References
1. Boehm, B. (1981), Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ.
2. Park, R. (1992), “Software Size Measurement: A Framework for Counting Source

Statements, CMU/SEI-92-TR-20, Software Engineering Institute, Pittsburgh, PA.
3. Reifer, D. (1998), personal correspondence.
4. Jones, C. (1991), Applied Software Measurement, Assuring Productivity and Quality,

McGraw-Hill, New York, NY.
5. Paulk, M., C. Weber, B. Curtis, M. Chrissis (1995), The Capability Maturity Model:

Guidelines for Improving the Software Process, Addison-Wesley, Reading, MA.
6. Boehm, B., et. al., (1997), COCOMO II Model Definition Manual, Version 1.4, University of

Southern California, Los Angeles, CA.
7. Boehm, B., et. al. (1996), “The COCOMO 2.0 Software Cost Estimation Model,” American

Programmer, pp. 2-17.
8. Clark, B. and D. Reifer (1997), “The Rosetta Stone: Making Your COCOMO Estimates

Work with COCOMO II,” Software Technology Conference, Salt Lake City, UT, 1998.

About the Authors

Donald J. Reifer is one of the leading figures in the fields of
software engineering and management, with over 30 years of
progressive experience in both government and industry. From
1993 to 1995, he was Chief of the Ada Joint Program Office,
technical advisor to the Center for Software, and Director of the
DoD Software Reuse Initiative under an Intergovernmental
Personnel Act assignment with the Defense Information Systems
Agency. Currently, Reifer serves as President of RCI, a small firm
that specializes in helping Fortune 500 clients improve the way they
do business. Mr. Reifer is a visiting associate at the University of
Southern California where he serves on the COCOMO team.

9

Reifer holds a BS degree in Electrical Engineering, an MS degree in Operations Research, and a
Certificate in Business Management (MBA equivalent). His many honors include the Secretary
of Defense’s medal for Outstanding Public Service, the NASA Distinguished Service Medal, the
Freiman award, and the Hughes Aircraft Fellowship. Reifer has over 100 publications including
his popular IEEE Software Management Tutorial (5th Edition) and his new Wiley book entitled
Practical Software Reuse.

Donald J. Reifer, President
Reifer Consultants, Inc.
P.O. Box 4046,
Torrance, CA 90505
Phone: 310-530-4493
E-mail: d.reifer@ieee.org

Dr. Barry Boehm is considered one of the fathers of the field of
software engineering. Currently, he serves as the Director of the
Center for Software Engineering at the University of Southern
California. Between 1989 and 1992, he served within the U.S.
Department of Defense (DOD) as Director of the DARPA
Information Science and Technology Office, and as Director of the
DDR&E Software and Computer Technology Office. He worked at
TRW from 1973 to 1989 as the Chief Scientist of the Defense
Systems Group and at the Rand Corporation from 1959 to 1973 as
Head of the Information Sciences Department. He was a
Programmer-Analyst at General Dynamics between 1955 and 1959.

His current research interests include software process modeling, software requirements
engineering, software architectures, software metrics and cost models, software engineering
environments, and knowledge-based software engineering. His contributions to the field include
the Constructive Cost Model (COCOMO), the Spiral Model of the software process, the Theory
W approach to software management and requirements determination, and the TRW Software
Productivity System and Quantum Leap advanced software engineering environments.

Boehm received his BA degree from Harvard in 1957, and his MS and Ph.D. degrees from
UCLA in 1961 and 1964, all in Mathematics. He has served on the board of several scientific
journals, including the IEEE Transactions on Software Engineering, IEEE Computer, IEEE
Software and ACM Computing Reviews. He has served as Chair of the AIAA Technical
Committee on Computer Systems, Chair of the IEEE Technical Committee on Software
Engineering, and as a member of the Governing Board of the IEEE Computer Society. He
currently serves as Chair of the Board of Visitors for the Software Engineering Institute. His
many honors and awards include the AIAA Information Systems Award (1979), the J.D. Warnier
Prize for Excellence in Information Sciences (1984), the ISPA Freiman Award for Parametric
Analysis (1988), the NSIA Grace Murray Hopper Award (1989), the Office of the Secretary of
Defense Award for Excellence (1992), the ASQC Lifetime Achievement Award (1994), and the
ACM Distinguished Research Award in Software Engineering (1997). He is an AIAA Fellow, an
ACM Fellow, an IEEE Fellow, and a member of the National Academy of Engineering.

10

 Dr. Barry W. Boehm, Director
Center for Software Engineering
University of Southern California
941 West 37th Place
Los Angeles, CA 90089
Phone: 213-740-8163
E-mail: boehm@sunset.usc.edu

Ms. Sunita Chulani is a research assistant at the Center for Software
Engineering at the University of Southern California. She is an
active participant of the COCOMO II research team and is working
on a Bayesian approach to data analysis and model calibration. She
is also working on a Cost/Quality Model that will be an extension
to the existing COCOMO II model. Her main interests include
software process improvement with statistical process control,
software reliability modeling, risk assessment, software cost
estimation and software metrics.

Ms. Chulani holds a BE in Computer Engineering from Bombay University and an MS in
Computer Science from the University of Southern California. She is currently a Ph.D.
candidate at the Center for Software Engineering at the University of Southern California.

Ms. Sunita Chulani
Center for Software Engineering
University of Southern California
941 West 37th Place
Los Angeles, CA 90089
Phone: 213-740-6470
E-mail: sdevnani@sunset.usc.edu

