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1,2,3Abstract—This paper references the basis, assumptions, and derivations of the r2 Software 
Estimating Framework (r2SEF) and then shows this framework instantiated for the COnstructive 
COst MOdel (COCOMO). The r2SEF is a set of general software effort, duration, and defects 
estimating relationships that are based on the notion that that projects behave according to certain 
dynamic properties, that duration, effort, cost, and defects are all inexorably linked (correlated), 
that these correlations can be expressed as functions of people, project, and product attributes, 
and that, prior to project completion, everything is uncertain. It is the author’s contention that a 
primary goal of any thorough project estimating process should be to not only yield estimated 
values for these metrics; it should also indicate whether or not these estimated values satisfy their 
corresponding project goals within some corresponding specified confidence limits (probabilities 
of success). Instantiating the r2SEF for COCOMO extends COCOMO’s capabilities to include 
defect estimation, to permit schedule versus effort versus cost versus defects tradeoffs within 
associated limits, and to provide confidence-driven estimating based on people, project, and 
product uncertainties. 
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1. INTRODUCTION 

Purpose 
This paper reviews the basis, assumptions, and derivations of the r2 Software Estimating 
Framework (r2SEF)™ [8] and then shows this framework instantiated for several forms of the 
Constructive Cost Model (COCOMO) [1] [2]. 

Scope 
Instantiating the r2SEF for COCOMO extends COCOMO’s capabilities to include defect estima-
tion, to permit schedule versus effort versus cost versus defects tradeoffs within associated lim-
its, and to provide confidence-driven estimating based on people, project, and product uncertain-
ties. While this paper focuses on an instantiation of the r2SEF for COCOMO, the derivation 
process described herein can be used to create instantiations for other models such as Jensen 
(Seer) [4] and Norden-Putnam-Rayleigh (SLiM®) [7] [6]. 

Background 
It is the author’s contention that a primary goal of any thorough project estimating process 
should be to not only yield estimated values for the key management metrics (duration, effort, 
cost, and defects); it should also indicate whether or not these estimated values satisfy their cor-
responding project goals within some corresponding specified confidence limits (probabilities of 
success) [9]. 

2. r2 SOFTWARE ESTIMATING FRAMEWORK 
The r2SEF is a set of general software effort, duration, and defects estimating relationships that 
are based on the notion that that projects behave according to certain dynamic properties, that du-
ration, effort, cost, and defects are all inexorably linked (correlated), that these correlations can 
be expressed as functions of people, project, and product attributes, and that, prior to project 
completion, everything is uncertain. [8] 

Fundamental Software Productivity Equation4 
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where 

C
E  ::= Software Construction Effort5 

C
t  ::= Software Construction Duration6 

                                                 
4 [8] p. 14 
5 [8] pp. 9-10 
6 [8] p. 9 
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E
!  ::= Effort Exponent7 

t
!  ::= Duration Exponent8 

e
S  ::= Effective Software Size9 

!  ::= Specific Efficiency10 

k!  ::= Fundamental Software Productivity Equation proportionality constant11 

Fundamental Software Defect Propensity Equation12 
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where 

E
!  ::= Defect Effort Exponent13 

t
!  ::= Defect Duration Exponent14 

[ ],a b!  ::= Defect Count15 

[ ],a b!  ::= Specific Defect Vulnerability16 

k!  ::= Fundamental Software Defect Propensity Equation proportionality constant17 

Fundamental Software Management Stress Equation18 

 C

M C

E
M

k t
!

=  (3) 

where 

!  ::= Gamma (Economy Exponent)19 

                                                 
7 [8] p. 11 
8 [8] p. 11 
9 [8] p. 10 
10 [8] pp. 11-15 
11 [8] p. 12 
12 [8] p. 29 
13 [8] p. 26 
14 [8] p. 26 
15 [8] p. 25 
16 [8] pp. 26-29 
17 [8] p. 27 
18 [8] p. 18 
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M  ::= Specific Management Stress20 

M
k  ::= Fundamental Software Management Stress Equation proportionality con-

stant21 

Typical (Nominal Stress) Equation22 

 nom

nom

nom

C

M C

E
M

k t
!

=  (4) 

nomC
E  ::= Nominal (Typical) Software Construction Effort 

nomC
t  ::= Nominal (Typical) Software Construction Duration 

nom
M  ::= Nominal (Typical) Management Stress 

Minimum Duration Limit (Brooks’ Law)23 

 min

max max

min

 
C
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M C M C
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k t k t
! !

" # =  (5) 

minC
t
E  ::= Software Construction Effort at Minimum Software Construction Duration24 

minC
t  ::= Minimum Software Construction Duration25 

max
M  ::= Maximum-Achievable Specific Management Stress26 

Minimum Effort Limit (Parkinson’s Law)27 

 
min

min

min min
 

C

C C

M C M E

E E
M M

k t k t
! !

" # =  (6) 

minC
E  ::= Minimum Software Construction Effort28 

minC
E
t  ::= Software Construction Duration at Minimum Software Construction Effort 29 

                                                                                                                                                             
19 [8] pp. 16-17 
20 [8] pp. 16-18 
21 [8] p. 17 
22 Instantiation of the Fundamental Software Management Stress Equation at the sample mean management stress 
value for a particular data set. 
23 [8] pp. 20-21 
24 [8] pp. 20-21 
25 [8] pp. 20-21 
26 [8] pp. 19-20 
27 [8] pp. 22-23 
28 [8] pp. 22-23 
29 [8] pp. 22-23 
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min
M  ::= Minimum Practical Specific Management Stress30 

Note that k! , k! , and 
M
k  in the above equations are proportionality constants that resolve the 

system of units being used; their values being unity when effort is measured in person-weeks and 
duration is measured in calendar weeks. For the purposes of this paper, we will consistently 
scale in weeks; therefore, these proportionality constants will always have a value of one and 
thus disappear from the subsequent equations in this paper. 

3. COCOMO 81 INSTANTIATION 

Category31 Data Elements 
• Category Name: text string 

• Category Id: GUID 

• Defect Units: text string 

• COCOMO-Form Effort Equation Exponent B : real 

• COCOMO-Form Duration Equation Exponent A : real 

• COCOMO-Form Effort Equation Scale Factor 
nomE

C : real 

• COCOMO-Form Duration Equation Scale Factor 
nomt

C : real 

• Defect Density Scale Vector 
Scale
ù : array [-3.0, -2.5…3.0] of real 

• future enhancement: move EM rating scale table to here 
• Profile List: list of Profile 

Profile Data Elements32 
• Profile Name: text string 

• Profile Id: GUID 

• Effort Multiplier Vector EM : vector of triangularly-distributed real random variables 

• Minimum Duration Percentage 
min
P : percentage 

• Nominal Duration Percentage 
nom
P : percentage 

• Maximum Duration Percentage 
max
P : percentage 

• Defect Density 
B

ù : triangularly-distributed real random variable 

                                                 
30 [8] pp. 22-23 
31 “Category”, within the context of this paper, refers to a collection of data elements that together describe a par-
ticular r2SEF calibration (typically the result of analyzing a particular historical data set or instantiating a particular 
estimating relationship/model). Default categories for COCOMO 81 include “Organic”, “Semi-Detached”, and 
“Embedded”. 
32 “Profile”, within the context of this paper, refers to a collection of data elements that together describe a particular 
project or set of closely related projects within an associated r2SEF Category. 
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Metrics Definitions 
All of the COCOMO 81 metrics definitions contained in this section are taken from Ref. [1]. 

Metrics with Associated Rating Scales 
These metrics are triangularly-distributed random variables that each represent an associated pa-
rameter (required software reliability, data base size, product complexity, execution time con-
straint, main storage constraint, virtual machine volatility, computer turnaround time, analyst ca-
pability, applications experience, programmer capability, virtual machine experience, program-
ming language experience, use of modern programming practices, and use of software tools) 
where 

 [ ]< > Low Most Likely High

Low Most Likely High

=

! !

metric
 (7) 

with rating scales described below. 

 

VLO LO NOM HI VHI XHI

0.75 0.88 1.00 1.15 1.40

0.94 1.00 1.08 1.16

0.70 0.85 1.00 1.15 1.30 1.65

1.00 1.11 1.30 1.66

1.00 1.06 1.21 1.56

0.87 1.00 1.15 1.30

0.87 1.00 1.07 1.15

1.46 1.19 1.00 0.86 0.71

metric< >

RELY

DATA

CPLX

TIME

STOR

VIRT

TURN

ACAP

1.29 1.13 1.00 0.91 0.82

1.42 1.17 1.00 0.86 0.70

1.21 1.10 1.00 0.90

1.14 1.07 1.00 0.95

1.24 1.10 1.00 0.91 0.82

1.24 1.10 1.00 0.91 0.83

AEXP

PCAP

VEXP

LEXP

MODP

TOOL  (8) 

Effort Multiplier Vector 
Each effort multiplier vector element is a triangularly-distributed random variable, the scales of 
each having been described in (8) above. 

 
, , , , ,

, , , , ,

, , ,

! "
# $

= # $
# $% &

EM

RELY DATA CPLX TIME STOR

VIRT TURN ACAP AEXP PCAP

VEXP LEXP MODP TOOL

 (9) 
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r2SEF Metric Assignments 
Software Productivity Equation – r2SEF Random Variable Form 
The random variable form of the r2SEF software productivity equation is 

 tE
!!
= e

C C

S
E t

ç
 (10) 

We multiplicatively combine the two equations from the COCOMO 81 model definition [1] 

 ( )
14

nom

1
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E i

i

C

=

= ! EMMM KEDSI  (11) 

and 

 
nom

A

t
C=TDEV MM  (12) 

to yield 

 ( )( ) ( )
14

nom nom

1
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E i t

i

C C

=

= ! EMMM TDEV KEDSI MM  (13) 

Converting COCOMO units (person-months, months, KSLOC) to r2SEF form units (person-
weeks, weeks, SLOC), forcing the exponent on 

e
S  to unity, and arranging the factors to be con-

sistent with the r2SEF form yields 
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 (14) 

Software Management Stress Equation – r2SEF Form 
The random variable form of the r2SEF management stress equation is 

 M
!

=
C C
E t  (15) 

From the COCOMO 81 model definition 
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nom

A

t
C=TDEV MM  (16) 

Converting COCOMO units (person-months and months) to r2SEF form units (person-weeks 
and weeks) forcing the exponent on 

C
E  to unity, and arranging the factors to be consistent with 

the r2SEF form yields 

 

nom

1

1

1

nom

12 7 12 7

365.25 365.25

84

365.25

A

t

A

A

A

A

t

C
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!" #
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" #
$ %
& '

" #
$ %
& '

( " ( #" # " #
=$ % $ %$ %

& ' & '& '

" #
" #$ %
$ %$ %& '

= $ %
$ %
$ %
& '

C C

C C

t E

E t

 (17) 

Software Defect Propensity Equation – r2SEF Random Variable Form 
The random variable form of the r2SEF defect propensity equation is 

 
[ ]

[ ]

where 0 and 0

tE

E t

!!

! !

=

" #

a,b

C C

a,b

Ö
E t

ä  (18) 

There is no defect estimating relationship within COCOMO 81; therefore, one has been derived 
from Ref. [5] as follows: 

From Ref. [5], defect count is assumed to be linearly proportional to software size; therefore, de-
fect density is constant. We refine this assumption such that defect density !  is constant for a 
given specific efficiency and specific management stress; however, defect density increases with 
increasing specific management stress and decreases with increasing specific efficiency. Defect 
density is therefore given as 

 

[ ]

[ ]

1000

1000

!
" #
$ %
& '

" #
( =$ %
& '

a,b

b
e

a,be

b

Ö
ù

S

ÖS

ù

 (19) 

Converting Equation (11) to r2SEF form variables and units yields 
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( )

( )

14

nom

1

14
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B
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i

C

C

=
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=
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EM
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 (20) 

Substituting Equation (19) into Equation (20) yields 

 ( ) [ ]
14

nom

1

84

365.25

B

E i

i

C

=

! "! "
= # $# $ # $% & % &

' EM
a,b

C

b

Ö
E

ù
 (21) 

Converting Equation (16) to r2SEF form variables and units yields 
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nom

12 7 12 7

365.25 365.25

A

t
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t
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C

=

! " # "! # ! #
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TDEV MM

E t

 (22) 

Ratio combining Equation (21) with Equation (22) and arranging the factors to be consistent with 
the r2SEF form yields 
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 (23) 

Duration Exponent 
t

!  (alpha t) 

We define the duration exponent 
t

!  (Greek lower case alpha subscript t) to be the exponent on 

C
t  in Equation (14); therefore, 

 

1

1
inversely 

t

t

B

B
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=

=

 (24) 
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Effort Exponent 
E

!  (alpha E) 

We define the effort exponent 
E

!  (Greek lower case alpha subscript E) to be the exponent on 

C
E  in Equation (14); therefore, 

 

1

inversely 1

E

t E

E

t
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A B

!
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!

"
=

"
= " =

 (25) 

Tradeoff Economy !  (gamma) 
We define tradeoff economy !  (Greek lower case gamma) to be the exponent on 

C
t  in Equation 

(17); therefore, 

 1

A
! =  (26) 

Specific Efficiency ç  (eta) 
We define specific efficiency ç  (Greek lower case eta) as the denominator of the right-side term 
in Equation (17). Specific efficiency is a random variable resulting from the random variable 
product of the effort multiplier random variables. 
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Since the “nominal” rating of each effort multiplier evaluates to unity, nominal efficiency !  
(Greek lower case eta bar) is therefore 
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Specific Management Stress 
min nom max
, ,M M M  

We define management stress M  to be the coefficient on 
C
t  in Equation (17); therefore, 
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Let P  represent the percentage of 
C
t !  in which we are interested and let 

CP
t  represent the con-

struction duration at that percentage of 
C
t !  

 
CP C
t Pt !"  (30) 

Let 

 
CP C
t t
E xE

!
"  (31) 

when 

 
CP C
t Pt !=  (32) 

Instantiating Equation (15) for P  yields 
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t

P
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E
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 (33) 

Instantiating Equation (10) for ! , 
C
E ! , and 

C
t !  yields 

 tE

C

e
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S
E t

!

""

!
!

=  (34) 

Instantiating Equation (10) for ! , 
CP
t
E , and 

CP
t  yields 
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 tE

CP

e

CP t

S
t E

!!

"
=  (35) 

Substituting Equation (35) into Equation (34) yields 

 t tE E

C CP
t C t CP
E t E t

!

" "" "

! =  (36) 

Substituting Equation (31) and Equation (32) into Equation (36) and solving for x  yields 
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Substituting Equation (37) into Equation (31) yields 

 1
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E
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E E

P
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 (38) 

Substituting Equation (38) and Equation (32) into Equation (33) and isolating the ratio 
C
t
E

!
 to 

C
t

!

"  yields 
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Instantiating Equation (15) for 
C
t
E

!
 and 

C
t ! , substituting Equation (29) into the result, substitut-

ing that result into Equation (39), and solving for 
P

M  yields 
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Therefore 
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Defect Duration Exponent 
t

!  (phi t) 

We define the defect duration exponent 
t

!  (Greek lower case phi subscript t) to be the exponent 
on 

C
t  in Equation (23); therefore, 

 

1

1
inversely 

t t
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! "
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 (42) 

Defect Effort Exponent 
E

!  (phi E) 

We define the defect effort exponent 
E

!  (Greek lower case phi subscript E) to be the exponent 
on 

C
E  in Equation (23); therefore, 
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Specific Defect Vulnerability [ ]a,b
ä  (delta) 

We define specific defect vulnerability [ ]a,b
ä  (Greek lower case delta) as the denominator of the 

right-side term in Equation (23); therefore, 
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To maintain duration confidence consistency between effort and defects, we choose to treat de-
fect vulnerability as a single value rather than as a random variable. The value we choose is the 
median of the random variable. Since the “nominal” rating of each effort multiplier evaluates to 
unity, we define median defect vulnerability !

)
 (Greek lower case delta frown) to be 
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4. COCOMO II INSTANTIATION 

Category Data Elements33 
• Category Name: text string 

• Category Id: GUID 

• Defect Units: text string 

• Minimum entropy 
min
B : real 

• Schedule equation exponent offset ! : real 

• COCOMO-Form Effort Equation Scale Factor 
nomE

C : real 

• COCOMO-Form Duration Equation Scale Factor 
nomt

C : real 

• Defect Density Scale Vector 
Scale
ù : array [-3.0, -2.5…3.0] of real 

• future enhancement: move SD and EM rating scale tables to here 
• Profile List: list of Profile 

Profile Data Elements34 
• Profile Name: text string 

• Profile Id: GUID 

• Scale Driver Vector SD : vector of triangularly-distributed real random variables 

• Effort Multiplier Vector EM : vector of triangularly-distributed real random variables 

• Minimum Duration Percentage 
min
P : percentage 

• Nominal Duration Percentage 
nom
P : percentage 

• Maximum Duration Percentage 
max
P : percentage 

• Defect Density 
B

ù : triangularly-distributed real random variable 

Metrics Definitions 
All of the COCOMO II metrics definitions contained in this section are taken from Ref. [2]. 

Metrics with Associated Rating Scales 
These metrics are triangularly-distributed random variables that each represent an associated pa-
rameter (product reliability and complexity, required reuse, platform difficulty, personnel experi-

                                                 
33 “Category”, within the context of this paper, refers to a collection of data elements that together describe a par-
ticular r2SEF calibration (typically the result of analyzing a particular historical data set or instantiating a particular 
estimating relationship/model). 
34 “Profile”, within the context of this paper, refers to a collection of data elements that together describe a particular 
project or set of closely related projects within an associated r2SEF Category. 
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ence, facilities, required software reliability, data base size, documentation match to life-cycle 
needs, product complexity, required reusability, execution time constraint, main storage con-
straint, platform volatility, analyst capability, applications experience, programmer capability, 
platform experience, language and tool experience, personnel continuity, use of software tools, 
multisite development, precedentedness, development flexibility, architecture / risk resolution, 
team cohesion, and process maturity) where 

 [ ]< > L M H

L M H

=

! !

metric  (46) 

with rating scales described below. 



 17 

 

XLO VLO LO NOM HI VHI XHI

0.73 0.81 0.98 1.00 1.30 1.74 2.38

0.95 1.00 1.07 1.15 1.24

1.00 1.29 1.81 2.61

2.12 1.62 1.26 1.00 0.83 0.63 0.50

1.59 1.33 1.12 1.00 0.87 0.71 0.62

1.43 1.30 1.10 1.00 0.87 0.73 0.62

metric< >

RCPX

RUSE

PDIF

PERS

PREX

FCIL

R 0.92 1.00 1.10 1.26

0.90 1.00 1.14 1.28

0.81 0.91 1.00 1.11 1.23

0.73 0.87 1.00 1.17 1.34 1.74

0.95 1.00 1.07 1.15 1.24

1.00 1.11 1.29 1.63

1.00 1.05 1.17 1.46

0.87 1.00 1.15 1.30

1.42 1.19 1.00 0.85 0.71

ELY

DATA

DOCU

CPLX

RUSE

TIME

STOR

PVOL

ACAP

A 1.22 1.10 1.00 0.88 0.81

1.34 1.15 1.00 0.88 0.76

1.19 1.09 1.00 0.91 0.85

1.20 1.09 1.00 0.91 0.84

1.29 1.12 1.00 0.90 0.81

1.17 1.09 1.00 0.90 0.78

1.22 1.09 1.00 0.93 0.86 0.80

6.20 4.96 3.72 2.48 1.24 0.00

EXP

PCAP

PEXP

LTEX

PCON

TOOL

SITE

PREC

F 5.07 4.05 3.04 2.03 1.01 0.00

7.07 5.65 4.24 2.83 1.41 0.00

5.48 4.38 3.29 2.19 1.10 0.00

7.80 6.24 4.68 3.12 1.56 0.00

LEX

RESL

TEAM

PMAT

 (47) 

Effort Multiplier Vector 
Each effort multiplier vector element is a triangularly-distributed random variable, the scales of 
each having been described in (47) above. 

For Model Name Early Design= : 

 [ ], , , , ,=EM RCPX RUSE PDIF PERS PREX FCIL  (48) 

For Model Name Post Architecture= : 
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, , , , , , , ,

, , , , , , ,

! "
= # $
% &

EM
RELY DATA DOCU CPLX RUSE TIME STOR PVOL

ACAP AEXP PCAP PEXP LTEX PCON TOOL SITE
 (49) 

Scale Driver Vector 
Each scale driver vector element is a triangularly-distributed random variable, the scales of each 
having been described in (47) above. 

 [ ], , , ,=SD PREC FLEX RESL TEAM PMAT  (50) 

r2SEF Metric Assignments 
Software Productivity Equation – r2SEF Form 
The random variable form of the r2SEF software productivity equation is 

 tE
!!
= e

C C

S
E t

ç
 (51) 

We multiplicatively combine the two equations from the COCOMO II.1999 model definition 

 ( )nom

1

n

B

E i

i

C

=

= ! EMPM KESLOC  (52) 

and 

 
nom

A

t
C=TDEV PM  (53) 

to yield 

 ( )( ) ( )nom nom

1

n

B A

E i t

i

C C

=

= ! EMPM TDEV KESLOC PM  (54) 

where B  is defined as 

 ( )
5

min

1

median median 0.01
i

i

B B

=

! "
# = +$ %

& '
(SDB  (55) 

And where A  is defined as 

 ( )min
0.2A B B!" + #  (56) 

Converting COCOMO units (person-months, months, KSLOC) to r2SEF form units (person-
weeks, weeks, SLOC), forcing the exponent on 

e
S  to unity, and arranging the factors to be con-

sistent with the r2SEF form yields 
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( )

( )

16

nom nom

1

1 1

2

1

nom nom

1

12 7 12 7 12 7

365.25 365.25 1000 365.25

84
1000

365.25

( )( )

AB

E i t

i

A

B B

A

B

n B

E t i

i

C C

C C

=

!" # " #
$ % $ %
& ' & '

!" #
$ %
& '

" #
$ %
& '

=

( ( " ( #" #" # " # " #
=$ % $ % $ %$ % $ %

& ' & ' & '& ' & '

=
" #

" #$ %
$ %$ %& '

$ %
$ %" #
$ %$ %$ %
& '& '

)

)

EM

EM

e

C C C

e

C C

S
E t E

S
E t

 (57) 

Software Management Stress Equation – r2SEF Form 
The random variable form of the r2SEF management stress equation is 

 M
!

=
C C
E t  (58) 

From the COCOMO II.1999 model definition 

 
nom

A

t
C=TDEV PM  (59) 

Converting COCOMO units (person-months and months) to r2SEF form units (person-weeks 
and weeks) forcing the exponent on 

C
E  to unity, and arranging the factors to be consistent with 

the r2SEF form yields 

 

nom

1

1

1

nom

12 7 12 7

365.25 365.25

84

365.25

A

t

A

A

A

A

t

C

C

!" #
$ %
& '

" #
$ %
& '

" #
$ %
& '

( " ( #" # " #
=$ % $ %$ %

& ' & '& '

" #
" #$ %
$ %$ %& '

= $ %
$ %
$ %
& '

C C

C C

t E

E t

 (60) 

Software Defect Propensity Equation – r2SEF Random Variable Form 
The random variable form of the r2SEF defect propensity equation is 

 
[ ]

[ ]

where 0 and 0

tE

E t

!!

! !

=

" #

a,b

C C

a,b

Ö
E t

ä  (61) 

There is no defect estimating relationship within COCOMO II; therefore, one has been derived 
from Ref. [5]. 
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From Ref. [5], defect count is assumed to be linearly proportional to software size; therefore, de-
fect density is constant. We refine this assumption such that defect density !  is constant for a 
given specific efficiency and specific management stress; however, defect density increases with 
increasing specific management stress and decreases with increasing specific efficiency. Defect 
density at delivery is therefore given as 

 

[ ]

[ ]

1000

1000

!
" #
$ %
& '

" #
( =$ %
& '

a,b

b
e

a,be

b

Ö
ù

S

ÖS

ù

 (62) 

Converting Equation (52) to r2SEF form variables and units yields 

 
( )

( )

nom

1

nom

1

12 7

365.25 1000

n

B

E i

i

B
n

E i

i

C

C

=

=

=

! " #" #
=$ % $ %

& ' & '

(

(

EM

EM
e

C

MM KEDSI

S
E

 (63) 

Substituting Equation (62) into Equation (63) yields 

 ( ) [ ]
nom

1

84

365.25

B
n

E i

i

C

=

! "! "
= # $# $ # $% & % &

' EM
a,b

C

b

Ö
E

ù
 (64) 

Converting Equation (53) to r2SEF form variables and units yields 

 
nom

nom

12 7 12 7

365.25 365.25

A

t

A

t

C

C

=

! " # "! # ! #
=$ % $ %$ %

& ' & '& '
C C

TDEV MM

E t

 (65) 

Multiplicatively combining Equation (64) with Equation (65) and arranging the factors to be 
consistent with the r2SEF form yields 



 21 

 

( ) [ ]

[ ]

( )

nom nom

1

1 1

1

nom

nom

1

84 84 84

365.25 365.25 365.25

84

365.25

BA
n

t E i

i

A

B B

B

A

B
t

n

E i

i

C C

C

C

=

+! " ! "
#$ % $ %

& ' & '

! "
$ %
& '

! "
$ %
& '

=

! "! "! " ! " ! "
= $ %$ % $ % $ %$ % $ %& ' & ' & '& ' & '

=
! "

! "$ %
$ %$ %! "$ %$ %$ %

& '$ %$ %$ %$ %& '
& '

(

(

EM

EM

a,b

C C C

b

a,b

C C

b

Ö
E E t

ù

Ö
E t

ù

 (66) 

Duration Exponent 
t

!  (alpha t) 

We define the duration exponent 
t

!  (Greek lower case alpha subscript t) to be the exponent on 

C
t  in Equation (57); therefore, 

 

1

1
inversely 

t

t

B

B

!

!

=

=

 (67) 

Effort Exponent 
E

!  (alpha E) 

We define the effort exponent 
E

!  (Greek lower case alpha subscript E) to be the exponent on 

C
E  in Equation (57); therefore, 

 

1

inversely 1

E

t E

E

t

A

B

A B

!

! !
!

!

"
=

"
= " =

 (68) 

Tradeoff Economy !  (gamma) 
We define tradeoff economy !  (Greek lower case gamma) to be the exponent on 

C
t  in Equation 

(60); therefore, 

 1

A
! =  (69) 

Specific Efficiency ç  (eta) 
We define specific efficiency ç  (Greek lower case eta) as the denominator of the right-side term 
in Equation (57). Specific efficiency is a random variable resulting from the random variable 
product of the effort multiplier random variables. 
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1000

365.25
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# $
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)# $
% &
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# $
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' (

+

+

EM

EM

ç

ç

 (70) 

Since the “nominal” rating of each effort multiplier evaluates to unity, nominal efficiency !  
(Greek lower case eta bar) is therefore 

 

( )

( )( )nom nom

12 7
1000

365.25

1

t E

t

E t
C C

! !

!
"

#
$% &

' (
) *=  (71) 

Specific Management Stress 
min nom max
, ,M M M  

We define management stress M  to be the coefficient on 
C
t  in Equation (60); therefore, 

 

1

1

nom

nom

84

365.25

84

365.25

E

t E

A

A

A

t

t

M

C

M
C

!

! !

"

#$ %
& '
( )

$ %
& '
( )

$ %
& '

#( )

$ %
$ %& '
& '& '( )

= & '
& '
& '
( )

$ %
$ %& '
& '& '( )* = & '
& '
& '
( )

 (72) 

Let P  represent the percentage of 
C
t !  in which we are interested and let 

CP
t  represent the con-

struction duration at that percentage of 
C
t !  

 
CP C
t Pt !"  (73) 

Let 

 
CP
t C
E xE !"  (74) 
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when 

 
CP C
t Pt !=  (75) 

Instantiating Equation (58) for P  yields 

 
CP

CP

t P CP

t

P

CP

E M t

E
M

t

!

!

=

=
 (76) 

Instantiating Equation (51) for 
C
E !  and 

C
t !  yields 

 tE e

C C

S
E t

!!

" "
"

=  (77) 

Instantiating Equation (51) for 
CP
t
E  and 

CP
t  yields 

 tE

CP

e

CP t

S
t E

!!

"
=  (78) 

Substituting Equation (78) into Equation (77) yields 

 t tE E

CP
C C t CP
E t E t

! !! !

" " =  (79) 

Substituting Equation (74) and Equation (75) into Equation (79) and solving for x  yields 

 
( ) ( )

1

E t
tE

t

E

C C C C
E t xE Pt

x

P

! !!!
" " " "

!

!

# $
% &
' (

=

=
 (80) 

Substituting Equation (80) into Equation (74) yields 

 1

CP
t

E

t C
E E

P

!"

"

# $
% &
' (

# $
% &

= % &
% &
' (

 (81) 

Substituting Equation (81) and Equation (75) into Equation (76) and isolating the ratio 
C
E !  to 

C
t

!

"  yields 
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 ( )

1

t

E

E t

E

C

P

C

C

P

C

E

P
M

Pt

E
P M

t

!"

"

#

!

#" "

" !

#
!

$ %
& '
( )

$ %+
& '
( )

$ %
& '
& '
& '
( )=

=

 (82) 

Instantiating Equation (58) for 
C
t
E

!
 and 

C
t ! , substituting Equation (72) into the result, substitut-

ing that result into Equation (82), and solving for 
P

M  yields 

 

nom

nom

84

365.25

84

365.25

E

t E

E t

E

E

t E

E t

E

P

t

P

t

P M
C

M

P C

!

! !

"! !

!

"

!

! !

"! !

! "

# $
% &

'( )
# $+
% &
( )

# $
% &

'( )

# $+
% &
( )

# $
# $% &
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= % &
% &
% &
( )

# $
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( )

=

 (83) 

Therefore 

 

min

max nom

nom

nom nom

max

min nom
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 (84) 
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Defect Duration Exponent 
t

!  (phi t) 

We define the defect duration exponent 
t

!  (Greek lower case phi subscript t) to be the exponent 
on 

C
t  in Equation (66); therefore, 

 

1

1
inversely 

t t

t

B

B

! "

!

# $
= % = %& '

( )

# $
= %& '

( )

 (85) 

Defect Effort Exponent 
E

!  (phi E) 

We define the defect effort exponent 
E

!  (Greek lower case phi subscript E) to be the exponent 
on 

C
E  in Equation (66); therefore, 

 

1
2
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E t E

E t

E

t

A

B

A B

! " "

! !
!

!

+
= = #

# #
= # =

 (86) 

Specific Defect Vulnerability ä  (delta) 
We define specific defect vulnerability ä  (Greek lower case delta) as the denominator of the 
right-side term in Equation (23); therefore, 
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 (87) 

To maintain duration confidence consistency between effort and defects, we choose to treat de-
fect vulnerability as a single value rather than as a random variable. The value we choose is the 
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median of the random variable. Since the “nominal” rating of each effort multiplier evaluates to 
unity, we define median defect vulnerability !

)
 (Greek lower case delta frown) to be 
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5. TRADEOFF RELATIONSHIPS AND CONFIDENCE-DRIVEN 
ESTIMATING 

At this point in the paper, we choose to select the COCOMO II instantiation effort-duration 
tradeoff relationship as an example to graphically illustrate tradeoff relationships and confi-
dence-driven estimating. Note that the method can and has been applied to the defects-duration 
and cost-duration tradeoff relationships as well. Examples of all three tradeoff relationships in a 
duration-synchronized format appear later in the paper. 

Charting Tradeoff Relationships 
To begin, a common thread in all but the simplest software estimation models is the desire to es-
timate construction effort (labor) 

C
E  and construction duration (time) 

C
t  as a function of the ef-

fective software size 
e
S  and some quantification of specific efficiency (reciprocal net environ-

mental complexity) ! . For COCOMO II this has been accomplished by Equation (57). 

In the typical estimating situation we try to determine reasonable expectations for both effort 
C
E  

and duration 
C
t . Ignoring, for the moment, the notion of uncertainty and confidence, we use a 

single-point estimating form of Equation (57) as our estimating relationship and having just de-
clared effort and duration to be our dependent variables in a bivariate relationship, we need to in-
stantiate effective software size 

e
S  and specific efficiency !  in order to get any kind of mean-

ingful result. A convenient way to illustrate the dynamics of this relationship is to chart effort as 
a function of duration for a given size/efficiency ratio ! .  
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where !EM  is a vector of single-point values for each of the COCOMO II effort multipliers. 

Solving the single-point estimating form of Equation (57) for effort, assuming a unit system with 
person-weeks and calendar weeks, and substituting Equation (89) into the result yields 
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Charting Equation (90) for a given effective software size and efficiency (set of single-point ef-
fort multiplier values) (and therefore a given size/efficiency ratio ! ) is shown in Figure 1 below. 
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Figure 1:  Example Tradeoff Curve (Software Productivity Law) 

Charting Tradeoff Limits 
Often times correlations have effectiveness limits; i.e., there is a range where they work and out-
side the range the correlation tends to break down (historical data is sparse or non-existent out-
side the range). This is true for the software productivity relationship; there exists, for a given 
software development project, unique minimum duration and minimum effort limiting functions. 

Minimum Duration Limit—Each and every software development project, by its nature (divisi-
bility or potential for concurrency), can effectively handle only so many additional people at a 
given time; therefore, there exists, for each and every software development project, some mini-
mum achievable development duration. [8] In the r2SEF, this limit is defined by Equation (5) 
where 

max
M  quantifies the maximum management stress that the project can withstand. Equation 

(84) solved for 
max

M  instantiates this limit for COCOMO II. Therefore, substituting Equation 
(84) solved for 

max
M  into Equation (5) and solving for effort 

C
E  yields 
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Figure 2 shows the region excluded by this limit in red. Note that the curve described by the 
margin between the red region and the white region is actually the minimum duration limiting 
function (Equation (91) as an equality). 
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Figure 2.  Minimum Duration Limit 

Minimum Effort Limit—Theoretically, a software development project is not limited by some 
maximum development duration. Rare is the software engineer who complains about having too 
much time to develop software. However, we submit that there exists, for each and every project, 
some point of maximum productivity; i.e., some point that represents the most efficient use of 
labor on the project. [8] In the r2SEF, this limit is defined by Equation (6) where 

min
M  quantifies 

the minimum management stress that the project needs to be productive. Equation (84) solved 
for 

min
M  instantiates this limit for COCOMO II. Therefore, substituting Equation (84) solved for 

min
M  into Equation (6) and solving for effort 

C
E  yields 
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Figure 3 shows the region excluded by Equation (6) in yellow. Note that the curve described by 
the margin between the yellow region and the white region is actually the minimum effort limit-
ing function (Equation (92) as an equality). 
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Figure 3.  Minimum Effort Limit 

Ross Chart Basics 
Figure 3 is an example of using linear programming techniques to solve problems with multiple 
limits or constraints. We now extend the Cartesian format of Figure 3 with additional chart ob-
jects to yield what we will ultimately refer to as a Ross chart. 

Fundamental Ross Chart Layout 
The Ross chart uses, as its foundation, a two-dimensional Cartesian plane or grid. Each of two 
correlated dependent variables is represented by one of the two axes. In Figure 3 we are using, as 
an example, software development effort (labor) and software development duration (time) as 
our two correlated dependent variables, represented on the y  (vertical) axis and the x  (horizon-
tal) axis respectively. In our example, effort is measured in person-weeks and duration is meas-
ured in calendar weeks. 

The correlation between the two variables, in this case effort versus duration, is represented as a 
curve in the Cartesian plane (e.g., the black curve shown in Figure 3). The minimum duration 
and minimum effort limits are shown as red and yellow regions respectively. 

Goals 
Most software development projects are governed by management constraints. We define a 
management constraint, within this context, to be a two-parameter vector associated with some 
management measure or metric; these two parameters being a goal value and a desired confi-
dence probability of success value. For our evolving example, we assume there exists a con-
straint for each of effort and duration. 
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Figure 4 shows the goal values associated with each constraint as interactive dynamic goal sym-
bols (blue diamonds) that traverse each axis and represent the goal value associated with the cor-
responding variable (metric). In our evolving example, the effort goal is displayed as 1,200 per-
son-weeks and the duration goal is displayed as 120 calendar weeks. 

 

Figure 4.  Goal Symbols 

Reasonable Solutions 
Figure 5, Figure 6, and Figure 7 each show the addition of an interactive dynamic solution sym-
bol (blue circle) with projection lines to each axis, each of which represents a specific instance 
(effort-duration solution) on the correlation curve. 

Minimum Duration Solution—Figure 5 shows the blue solution circle positioned on what we re-
fer to as the minimum duration solution. Note that the solution occurs at the intersection of the 
correlation curve and the minimum duration limiting function. Mathematically, the x  (duration) 
coordinate can be found by substituting Equation (90) instantiated with 

minC
t  and 

minC
t
E  into 

Equation (91) as an equality, it also instantiated with 
minC
t  and 

minC
t
E , and then solving for dura-

tion 
minC
t . 



 34 

 

( )

( )

( )

1

1

1 1

1 1

min min1

1

min nom

1

1

1

min nom

min 1

84

365.25

84

365.25

A
A

B

A A A

C C

A

t

A

A

ABt

C A

t t

P C

P C
t

!

!

" #
$ %
& '(

" # " # " #
($ % $ % $ %

( (& ' & ' & '

" #
$ %
(& '

(

" #
$ %
(& '

(

" #
" #$ %
$ %$ %& ' =$ %
" #$ %
$ %$ %$ %
& '& '

" #
$ %
$ %=
$ %" #
$ %$ %
& '& '

 (93) 

The y  (effort) coordinate can then be found from Equation (91) expressed as an equality; i.e., 
projecting duration off of the minimum duration limit equality (the margin between the red re-
gion and the white region) onto the y  (effort) axis. 
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Figure 5.  Minimum Duration Solution 

Minimum Effort Solution—Figure 6 shows the blue solution circle positioned on what is referred 
to as the minimum effort solution. Note that the solution occurs at the intersection of the correla-
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tion curve and the minimum effort limiting function. Mathematically, the x  (duration) coordi-
nate can be found by substituting Equation (90) instantiated with 

minC
E
t  and 

minC
E  into Equation 

(92), it also being instantiated with 
minC

E
t  and 

minC
E , and then solving for duration 

minC
E
t . 
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The y  (effort) coordinate can then be found from Equation (92) expressed as an equality; i.e., 
projecting duration off of the minimum effort limit equality (the margin between the yellow re-
gion and the white region) onto the y  (effort) axis. 
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Figure 6.  Minimum Effort Solution 

Typical (Nominal Stress) Solution— The r2SEF includes a third (and somewhat arbitrary) man-
agement stress curve referred to as the typical (nominal stress) curve that is described by Equa-
tion (4) where 

nom
M  quantifies mean or default management stress. [8] Equation (84) solved for 

nom
M  instantiates this curve for COCOMO II. Therefore, substituting Equation (84) solved for 

nom
M  into Equation (4) and solving for effort 

nomC
E  yields 
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Figure 7 shows the blue solution circle positioned on the typical or nominal stress solution. Note 
that the solution occurs at the intersection of the correlation curve and the nominal stress curve. 
Mathematically, the x  (duration) coordinate can be found by substituting Equation (90) instanti-
ated with 

nomC
t  and 

nomC
E  into Equation (97) and then solving for duration 

nomC
t . 
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The y  (effort) coordinate can then be found from Equation (97) ; i.e., projecting duration off of 
the nominal stress curve onto the y  (effort) axis. 

 

Figure 7.  Typical (Nominal Stress) Solution 

Size/Efficiency Ratio as a Random Variable 
Up until this point, we have been treating the independent variables effective software size 

e
S , 

the effort multipliers that determine specific efficiency ! , and the size/efficiency ratio !  as cer-
tain; i.e., single-point values. Unfortunately, until project completion, we have exact values for 
neither effective software size nor specific efficiency; these values are uncertain; i.e., they have 
many different possible outcomes. We, therefore, choose to represent effective software size and 
specific efficiency as random variables 

e
S  and ç , and instantiation becomes selecting an appro-

priate distribution function for each.35 From this we write the ratio of these two random variables 
Ø , itself a random variable, as 

 = eSØ
ç

 (99) 

The choice of specific distributions for 
e
S and for ç  is a subject worthy of debate and a future 

paper. For convenience sake we have chosen to model both of these random variables as being 
triangularly distributed. Triangular distributions have the advantages of being mathematically 
simple, having a finite range, able to roughly approximate a Gaussian (normal) distribution, and 
able to model skew. Regardless of the distributions chosen, we need some way to determine the 
Cumulative Distribution Function (CDF) ( )xø

D  of our size/efficiency ratio Ø . Finding a neat 

                                                 
35 We use the Arial bold italic typeface to indicate a random variable. 
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closed-form CDF that is the quotient of two random variables, triangularly distributed or other-
wise, is problematic at best. We therefore recommend using Monte Carlo methods to determine 
the CDF of the size/efficiency ratio. One approach to this process is summarized as follows: 

1. Create a randomly-ordered n -element vector of distributed (triangularly or other-
wise) possible outcomes 

e
S  and ç  for each of effective software size 

e
S  and specific 

efficiency ç . 

2. Compute an n -element vector ø  for the size/efficiency ratio Ø  that is the vector 
quotient of 

e
S  and ç  where the vector quotient is defined as 
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 (100) 

3. Use quantization (binning) and hit counting to produce a frequency distribution vec-
tor 

Ø
F  associated with the size/efficiency ratio Ø  where each vector element consists 

of the bin lower and upper boundary values and a hit count value. 

4. Use accumulation (numerical integration) applied to the size/efficiency ratio fre-
quency distribution vector 

Ø
F  to produce an ascending-sorted CDF vector 

Ø
D  where 

each vector element consists of a size/efficiency ratio value and its associated confi-
dence probability (i.e., the probability that the associated size/efficiency ratio value 
will be greater than or equal to the actual outcome value). 

Analyzing tradeoff relationships such as the one previously described where the independent 
variables are uncertain and must be treated as random variables is a difficult, tedious, and time-
consuming process when using a calculator or a spreadsheet. The number of variables combined 
with the non-intuitive nature of stochastic mathematics makes it virtually impossible to analyze 
the solution space in a timely fashion. It is also difficult to present the results of such an analysis 
in a way that others can understand and accept. We therefore include, as part of our Ross chart 
definition, interactive dynamic features for analyzing and presenting probabilistic bivariate 
tradeoff relationships as described in the following paragraphs; these features being well-suited 
for implementation as part of a dedicated software application. 

Ross Charts and Uncertainty 
Size/Efficiency Ratio Confidence Probability 
Recall that the correlation between our two dependent variables effort and duration is based on 
the expected size/efficiency ratio which is a random variable. We begin by postulating that the 
correlation curve shown in all of the figures thus far is based on the 50% probability value for the 
size/efficiency ratio. In other words, each point on the curve represents an effort-duration solu-
tion where there is a 50% probability that the corresponding effort value and duration value will 
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be achieved or bettered. We therefore rewrite Equation (90), the equation of the correlation 
curve, to reflect this 50% confidence probability assumption 

 ( )( )
1

50% 50%
50% t

E

C C
E t

! !

" #
$ %&
' (= -1

ø
D  (101) 

where 

( )50%
-1

ø
D  ::= Inverse-indexing the size/efficiency ratio CDF vector with a probability of 

50% to yield the associated size/efficiency ratio value. 

Focusing now on Figure 7, the current solution, as represented by the blue solution circle and its 
projection lines, is one of these 50% probability solutions. Because of the probabilistic nature of 
the correlation, there is actually a family of correlation curves, each curve corresponding to a dif-
ferent confidence probability of the size/efficiency ratio. 
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t E
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D  (102) 

Figure 8 illustrates three members of this family; the 50% probability curve (solid black line) and 
two additional member curves (dashed black lines); the curve at 1% confidence probability and 
the curve at 99% confidence probability. 
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and 
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We choose these particular confidence probabilities to provide a reasonable (for estimating pur-
poses) range of confidence probabilities that we will use later in the paper. 
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Figure 8:  Family of Size/Efficiency Correlation Curves 

Projecting Uncertainty 
We can generalize the previously-described projection process to map the size/efficiency ratio 
(input) uncertainty to duration and effort (output) uncertainties. The x  (duration) coordinate of a 
solution with management stress M  for any confidence probability of the size/efficiency ratio 
can be found by substituting Equation (102) into Equation (4) and solving for duration. 
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The y  (effort) coordinate can then be found by solving Equation (4) for effort; i.e., projecting 
duration off of the management stress curve (its position determined by M ) onto the y  (effort) 
axis. 
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 (106) 

Focusing on the situation illustrated in Figure 8, we can use the projection process defined by 
Equation (105) and Equation (106) to map size/efficiency ratio (input) uncertainty to duration 
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and effort (output) uncertainty. We use probability values between 1% and 99% to create a spec-
trum on each axis that reflects the cumulative distribution function (CDF) for the associated de-
pendent variable. Figure 9 shows these spectra displayed as what we choose to call dynamic cu-
mulative distribution range symbols (black bar on each axis); dynamic since they move and 
change width as the blue solution circle is moved along the correlation curve.36 

 

Figure 9:  Cumulative Distribution Range Bars 

Desired Probability 
We have already defined the notion of a constraint and described one of its two constituents, the 
goal. The other constituent is the desired confidence probability. It specifies the desired probabil-
ity that the final outcome of the associated dependent variable will be less than or equal to the 
goal value. 

Figure 10 shows the desired confidence probability values associated with each constraint as in-
teractive dynamic confidence probability symbols (blue confidence triangles) on each associated 
cumulative distribution range bar. Each represents the desired probability of success associated 
with its corresponding dependent variable. If the dependent variable value associated with the lo-
cation of its blue confidence triangle is greater than the goal value, then the associated cumula-
tive distribution range bar turns red; otherwise it is green. In other words, if the current solution 
does not meet the conditions of a particular constraint (the goal cannot be met with the desired 
probability of success) then the associated range bar will be red. 

In our evolving example, the desired confidence probabilities for both effort and duration are set 
to 70%; however, they could have been set to any desired probability value and need not have 
been the same value for both metrics. 

                                                 
36 The projection of uncertainty process used in this paper is derived from Ref. [1] pp. 6-10. 
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Interpreting the Ross chart in Figure 10, we conclude that the typical (nominal stress) solution 
does satisfy the effort goal of 1,200 person-weeks with a desired confidence probability of 70%; 
however, it does not satisfy the duration goal of 120 weeks with a desired confidence probability 
of 70%. 

 

Figure 10.  Desired Confidence Probability Symbols 

It is important to note here that the distributions of probabilities on the range bars are neither 
symmetrical nor linear due to the nonlinear and skewed nature of the distributions involved in 
this particular example. This explains why the projection lines from the current solution circle, 
which represent median (50% probability) values, do not intersect their associated cumulative 
distribution range bars at the center of the range. 

Analyzing Alternative Situations 
Interpreting the Ross chart in Figure 11, we conclude that the minimum duration (maximum 
stress) solution does not satisfy the effort goal of 1,200 person-weeks with a desired confidence 
probability of 70%; however, it does satisfy the duration goal of 120 weeks with a desired confi-
dence probability of 70%. 
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Figure 11:  Minimum Duration Solution with Probabilities 

Interpreting the Ross chart in Figure 12, we conclude that the minimum effort (minimum stress) 
solution does satisfy the effort goal of 1,200 person-weeks with a desired confidence probability 
of 70%; however, it does not satisfy the duration goal of 120 weeks with a desired confidence 
probability of 70%. 

 

Figure 12:  Minimum Effort Solution with Probabilities 
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The Ross chart in Figure 13 shows a solution where we have examined various points on the cor-
relation curve (varied the management stress M ) until we found a point that would satisfy both 
constraints (goals with their respective desired probabilities). Note that now both cumulative dis-
tribution range bars are green indicating the solution to be satisfactory in both dimensions (dura-
tion and effort). 

 

Figure 13:  Acceptable Solution 
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6. EXAMPLE SOFTWARE PROJECT ESTIMATING SCENARIO 

Assumptions and Constraints 
To demonstrate the application of our COCOMO II instantiation of the r2SEF with its associated 
Ross chart capabilities, we present a proposed project with the following assumptions and con-
straints: 

• COCOMO II scale driver and effort multiplier settings and associated uncertainty consis-
tent with a typical aerospace contractor developing real-time embedded avionics software 
for commercial air transport application (see Figure 14). 

• Nominal defect density assumption: [1.06; 1.48; 2.07] defects per KSLOC (triangular). 

• Effective software size estimate: [45,000; 50,000; 60,000] SLOC (triangular). 

• Cost of labor assumptions: 40 person-hours per person-week; $100 per person-hour. 

• Duration constraint: Goal ≤ 104 weeks (2 years); Confidence ≥ 80%. 

• Effort constraint: Goal ≤ 2,000 person-weeks; Confidence ≥ 50%. 

• Cost constraint: Goal ≤ $10,000,000; Confidence ≥ 80%. 

• Defects constraint: Goal ≤ 75 defects remaining at delivery; Confidence ≥ 90%. 

We use the r2ESTIMATOR™ estimating tool37 and its Ross chart capabilities to show various 
estimation alternatives for the above-described project. Note that the r2ESTIMATOR™ blue so-
lution circles, blue confidence triangles, and blue goal diamonds are all mouse-moveable. 

                                                 
37 r2ESTIMATOR™ is developed and distributed by r2ESTIMATING®, LLC; http://www.r2estimating.com. 
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Figure 14:  COCOMO II Scale Driver and Effort Multiplier Settings 

Initial Examination of the Solution Space 
Typical (Nominal Management Stress) Solution— Figure 15 is a synchronized set of three Ross 
charts that are displaying the nominal stress solution for the above-described scenario. Note that 
neither the duration constraint nor the cost constraint are satisfied. On the other hand, the effort 
and defects constraints are satisfied. Accepting this solution implies accepting a duration confi-
dence probability of 39.0% and a cost confidence probability of 62.5%. Note that the Ross chart 
illustrating the cost versus duration tradeoff shows both confidence probability range bars as red. 
This is an indication there is no solution that will simultaneously satisfy both of these constraints. 
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Figure 15:  Synchronized Ross Charts: 
Typical (Nominal Management Stress) 
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Minimum Acceptable Duration Solution— Figure 16 is a synchronized set of three Ross charts 
that are displaying the minimum acceptable duration solution for the above-described scenario. 
This is achieved by finding the solution that exactly meets the duration goal with the desired con-
fidence probability (i.e., placing the duration confidence probability triangle directly on the dura-
tion goal value diamond). Note that this is the green to red transition point for the duration confi-
dence probability range bar. In this scenario, barely satisfying the duration constraint satisfies the 
effort constraint; however, neither the cost constraint nor the defects constraint is satisfied. Ac-
cepting this solution implies accepting a cost confidence probability of 41.1% and a defects con-
fidence probability of 65.3%. 

 

Figure 16.  Synchronized Ross Charts: 
Minimum Acceptable Duration Solution 



 50 

 

Minimum Necessary Duration Solution— Figure 17 is a synchronized set of three Ross charts 
that are displaying the minimum necessary duration solution for the above-described scenario. 
This is achieved by finding the solution that exactly meets the most aggressive of the effort, cost, 
and defects goals with its desired confidence probability (i.e., placing the confidence probability 
triangle directly on the goal value diamond). One way to describe this solution is that it is the so-
lution requiring the minimum amount of time necessary to cause the effort, cost, and defects con-
fidence probability range bars to all turn green. We can see from Figure 17 that the cost con-
straint is the most aggressive of the three (i.e., is the last to turn green as the duration is in-
creased). Accepting this solution implies accepting a duration confidence probability of 7.3%. 

 

Figure 17:  Synchronized Ross Charts: 
Minimum Necessary Duration Solution 
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Identifying and Analyzing Solution Alternatives 
Identifying Solution Alternatives— As was pointed out in the description of the typical (nomi-
nal management stress) solution, we have, with our example project, an all-too-common situa-
tion where, for the given size and efficiency, the goals and the desired probabilities are mutually 
impossible to achieve. We call this an over-constrained situation, one that offers an interesting 
challenge to the cost analyst and program manager. It is generally not a good political strategy to 
present findings that conclude a particular project can’t be done. It is much more prudent to offer 
alternative strategies and allow the decision-makers to choose. 

A reasonable way to list potentially satisfactory solution alternatives is to consider changing each 
of the project’s assumptions (estimating relationship independent variables) and constraints 
(goals with desired confidence probabilities), individually, and in combination. For our example 
project, a partial list of alternatives might look like the following: 

• Change Assumptions 

o Reduce the effective software size (i.e., postpone or eliminate functionality), 

o Reduce the uncertainty range around effective software size (i.e., refine the size 
estimate and secure functionality freezes to reduce variability and potential for 
growth), 

o Increase efficiency (i.e., better people, better processes/tools, less complex prod-
uct, etc.), 

o Reduce the uncertainty range around efficiency (i.e., lock down decisions about 
the product technology and the development environment). 

• Change Constraints 

o Relax one or more of the goal values, 

o Relax one or more of the desired confidence probabilities. 

The number of possible alternatives is virtually endless; we analyze five of these in the following 
pages. 
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Reduced Effective Software Size Solution— “How much functionality would we have to post-
pone or eliminate in order to satisfy the given effort, cost, delivered defects, and duration con-
straints?” Figure 18 is a synchronized set of three Ross charts that are displaying a reduced ef-
fective software size solution for the above-described scenario. By postponing or eliminating 
11.5% of the original functionality (i.e., reducing the effective software size to [39,825; 44,250; 
53,100] SLOC), we can satisfy all of the original constraints. 

 

Figure 18:  Synchronized Ross Charts: 
Reduced Effective software size 
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Relaxed Duration Goal Solution— “By how much would we have to slip the duration goal in 
order to preserve its 80% desired confidence probability while satisfying the given effort, cost, 
and delivered defects constraints?” Figure 19 is a synchronized set of three Ross charts that are 
displaying a relaxed duration goal solution for the above-described scenario. Slipping the dura-
tion goal by 14.8 weeks (a 14.2% schedule slip from 104 weeks to 118.8 weeks) while preserv-
ing its 80% confidence probability, we can satisfy all of the other original constraints. 

 

Figure 19.  Synchronized Ross Charts: 
Relaxed Duration Goal 
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High Duration Risk Solution— “How much schedule risk must we accept in order to preserve 
the original duration goal while satisfying the given effort, cost, and delivered defects con-
straints?” Figure 20 is a synchronized set of three Ross charts that are displaying a high duration 
risk solution for the above-described scenario. Satisfying the effort, cost, and delivered defects 
constraints within the 104-week duration goal implies a duration confidence probability of only 
7.2%. 

 

Figure 20.  Synchronized Ross Charts: 
High Duration Risk 
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Composite Solution #1— “Show me a reasonable solution given that I really need to deliver 
something useful (at least 90% of the total functionality) and given that I can negotiate an addi-
tional 4 weeks into the schedule.” Figure 21 shows a composite solution with: 

• Reduced (90%) size [40,500; 45,000; 54,000] 

• 108-week duration goal with 80% confidence 

 

Figure 21.  Synchronized Ross Charts: 
Composite Solution #1 
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Composite Solution #2— “Given that I must deliver all of the functionality in 104 weeks with 
80% certainty, to what values for effort, cost, and duration can I commit and maintain the asso-
ciated original desired confidence probabilities?” Figure 22 shows a composite solution with the 
goals: 

• 104-week duration; 80% confidence 

• 1,823 person-week effort; 
50% confidence 

• $8,502,200 cost; 80% confidence 

• 115 delivered defects; 
90% confidence 

 

Figure 22.  Synchronized Ross Charts: 
Composite Solution #2 
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