
Software Process Control Without Calibration

Oussama El-Rawas

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science in Electrical Engineering
(with Software Engineering as a major focus)

Tim Menzies, Ph.D., Chair
Hany Ammar, Ph.D.
Bojan Cukic, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2008

Keywords: Search-based Software Engineering, COCOMO, COQUALMO,
SCHEDULE, THREAT, Simulated Annealing, STAR, Managing Uncertainty, AI Search

Abstract

Software Process Control Without Calibration

Oussama El-Rawas

Software process control is important for large enterprise since it is essential for software project
management. Boehm [10, 12–15, 20] argues that the best way to do software process control is
reusing old proven models (e.g. COCOMO for effort, COQUALMO for defects, etc) while tuning
them to local data in order to obtain accurate estimates. This however suggests that historic data is
available related to the use of these models in previous software projects. This is not the case, as
the availability of relevant historic data related to the use of the above models in a specific software
environment is scarce, whether due to the lack of documentation or the unwillingness of companies
to disclose such data [63].

To bypass this problem, we implemented a system called STAR. This system uses a combi-
nation of an AI search algorithm and a back-select algorithm to determine recommended work
that needs to be done on a software project. STAR also has the ability to use multiple models in
the evaluation of recommended practice; a feature that is not available in any previous work to
the best of our knowledge. The models used are part of the USC family of software engineering
models [15] and include: COCOMO II for effort, COQUALMO for defects, a schedule model for
development time, and the Madachy [55] threat model for risk assessment.

Upon implementing STAR, we observed stable results that were comparable to those generated
by tools currently used, while bypassing the local tuning problem that those tools face. In addition,
we were able to tackle several issues related to software process control using STAR. So, in the
future we recommend that, in situations where local tuning data isn’t available, we exploit the
uncertainty of not having local tuning data by searching for stable conclusions withing the space
of possible recommendations using AI search engines similar to STAR.

Dedication

I would like to dedicate this work God, who has seen me through many trials and has given me

the ability and the talent to produce this work, and who continues to show me grace everyday

through his son Jesus Christ.

iii

Acknowledgments

I acknowledge my parents, whom without their unwavering support I would not have been able to
achieve what I have; my brother whom I dearly love; my friends and family here in the US and in
Morgantown, WV specifically: I’ve been blessed by knowing you and by how you’ve embraced
me as one of your own; my research advisor Dr. Tim Menzies for guiding my research and keeping
me on track with what I need to do; my committee who have each contributed towards this work
in one way or another; the ICSE 2008 May 13 panel members, facilitators and scribe (thank you
Greg Gay); all my colleagues that I’ve had the pleasure to work with, who include Dan Baker,
Omid Jalali, Phillip Green, Steve Williams, among others; Julian Richardson and Jarius Hihn for
supporting this work either through funding or by supplying valuable data and feedback; and last
but not least my roommates for being patient with me and Amanda Berousek for support and
encouragement.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Statement of Thesis . 3
1.3 Contribution of this Work . 3

1.3.1 Publications from this work . 4
1.4 Relation to Other Work . 4
1.5 Document Description . 5

2 Related Work 6
2.1 Models . 6

2.1.1 Effort - COCOMO II . 7
2.1.2 Schedule . 10
2.1.3 Defects - COQUALMO . 11
2.1.4 Threat . 15

2.2 Local Calibration(LC) . 15
2.3 Search Based Software Engineering . 19

2.3.1 Search Algorithms . 19
2.3.2 Applications of SBSE . 33

2.4 Moving on . 38

3 STAR and Internal Studies 41
3.1 The Fitness Function and Heuristic Modifications 41
3.2 Ranking Method: Support-Based Bayesian Ranking with “BORE” 43
3.3 The STAR Algorithm . 45
3.4 Standard NASA Case Studies and Policies . 47
3.5 Sanity Checks . 50
3.6 Stability and Performance . 51
3.7 STAR vs. LC . 53

3.7.1 Experiments . 53
3.7.2 Discussion . 54

v

4 NASA Experiments and Advanced ASE Tools 57
4.1 Sociology vs. Tools . 57
4.2 NASA Experiments and ASE Tools . 59

5 Expert Studies 75
5.1 JPL Studies . 75
5.2 Futures . 79

5.2.1 Data Collection . 79
5.2.2 Policies . 83
5.2.3 Reductions . 84

6 S-cost and Drastic Control 91
6.1 Conflict Analysis with S-Cost . 91

6.1.1 The problem . 92
6.1.2 S-Cost . 92
6.1.3 The strategies . 93

6.2 Drastic vs. Conservative Control (Hoh In strategies) 95

7 Better, Faster, Cheaper 100
7.1 History of BFC . 100

7.1.1 The Start and Successes of BFC . 100
7.1.2 The Legacy of BFC . 103

7.2 Analysis of BFC: Pick Any Two? . 105

8 Conclusions 109
8.1 Future work . 111

A Obtaining and Using STAR 113

B Source Code 114
B.1 main.cpp . 114
B.2 project.cpp . 133
B.3 minmax.cpp . 148
B.4 policy.awk . 151

vi

List of Figures

2.1 Features in the USC software process models. 7
2.2 COCOMO II.2000 values . 8
2.3 The values of SCED% . 11
2.4 COQUALMO: effort multipliers and defect introduction 12
2.5 COQUALMO: scale factors and defect introduction 12
2.6 COQUALMO: defects introduced. 13
2.7 COQUALMO: defect removal . 13
2.8 COQUALMO: defects added and removed . 13
2.9 COQUALMO: ratio of defects removed . 14
2.10 An example risk table . 15
2.11 THREAT: the calculations. 16
2.12 THREAT: the details . 17
2.13 COCOMO II rating ranges . 18
2.14 LC applied to COCOMO using NASA93 . 18
2.15 SA pseudo-code . 22
2.16 Processing a JPL requirements model. 22
2.17 SA runs plot . 23
2.18 Feature subset selection results from [53] . 24
2.19 Pseudo-code for KEYS . 26
2.20 Pseudocode for SEESAW. 27
2.21 Single run of SEESAW, score normalized min..max to 0..1 28
2.22 A diagram offering an overview of where and how XOMO is meant to operate.

This provided the inspiration to make STAR. 29
2.23 TAR3: Playing golf. 30
2.24 TAR3: Class distributions . 30
2.25 The reductions that XOMO was able to produce in the model estimates. 32
2.26 The occurance of attributes in the TAR3 recommendations over 10 runs of XOMO. 33
2.27 XOMO output from [62] . 39

3.1 The four NASA case studies . 48
3.2 The policy classifications of the variables of COCOMO, COQUALMO, and the

THREAT model. 49

vii

3.3 Sanity Checks: Showing the differences in estimates produced by STAR and the
reference models . 50

3.4 Stability of the policies produced for running the flight project. 51
3.5 Stability of the policies produced for running the OSP project. 52
3.6 Performance statictics of STAR runs on the Flight and OSP projects. 53
3.7 MRE plots for LC and STAR . 55
3.8 Median δ between STAR and LC . 55

4.1 Relative effects of COCOMO attributes on development effort 58
4.2 Default analysis: ALL results. 61
4.3 Strategic analysis: ALL results. 62
4.4 Tactical analysis: ALL results. 63
4.5 Default analysis: flight results. 64
4.6 Strategic analysis: flight results. 65
4.7 Tactical analysis: flight results. 66
4.8 Default analysis: ground results. 67
4.9 Strategic analysis: ground results. 68
4.10 Tactical analysis: ground results. 68
4.11 Default analysis: OSP results. 69
4.12 Strategic analysis: OSP results. 70
4.13 Tactical analysis: OSP results. 71
4.14 Default analysis: OSP2 results. 71
4.15 Strategic analysis: OSP2 results. 72
4.16 Tactical analysis: OSP2 results. 72
4.17 Policies produced for the NASA projects, part 1 73
4.18 Policies produced for the NASA projects, part 2 74

5.1 JPL flight circa 1990 and 2000 . 76
5.2 JPL flight circa 1970 and 1980 . 76
5.3 JPL ground circa 1990 and 2000 . 77
5.4 JPL ground circa 1970 and 1980 . 77
5.5 Policies produced for the JPL projects, part 1 . 78
5.6 Policies produced for the JPL projects, part 2 . 79
5.7 Pictures of the panel at ICSE 2008. 80
5.8 The baseline settings representing present day software engineering 80
5.9 Common settings for all future trend variants . 81
5.10 Future results for large projects . 84
5.11 Future results for medium projects . 85
5.12 Future results for small projects . 86
5.13 Part 1 of the results of the panel discussions. 88
5.14 Part 2 of the results of the panel discussions. 89
5.15 Future recommendations summary with ALL policy 90
5.16 Future recommendations summary with Strategic policy 90

viii

5.17 Future recommendations summary with Tactical policy 90

6.1 Nine drastic changes from [10]. 93
6.2 Implementing drastic changes. 96
6.3 Drastic vs. Conservative change; EFFORT . 96
6.4 Drastic vs. Conservative change; TIME . 97
6.5 Drastic vs. Conservative change; Defects . 97

7.1 Better, Faster, Cheaper [77]. 101
7.2 Better, Faster, Cheaper; EFFORT . 106
7.3 Better, Faster, Cheaper; TIME . 106
7.4 Better, Faster, Cheaper; Defects . 107

ix

Chapter 1

Introduction

Software process control allows managers to control software projects and keeping them within

required specifications, whether for performance or cost or time to market. A repeated theme

in literature [10, 12–15, 20] suggests that the most effective way of doing this is through using

software engineering models that have been pre-calibrated to the particular software development

environment. This assumes that there is an abundance of historical information that is available

to tune these models. This however is a false assumption, as in reality there is a “data drought”

regarding project data [60], causing uncertainty within the software models. So instead we de-

veloped a system that uses this uncertainty and mutates the models around the ranges of possible

tunings using an AI search engine, while at the same time evaluating possible recommendations to

control the software project.

1.1 Motivation

Process models have many purposes including estimating project parameters or conducting what-if

queries to find better ways to organize a project. Most process models calibrate their internal set-

tings using local data. Collecting this data is expensive, tedious, and often an incomplete process

1

[63]. For example, after 26 years of trying, Boehm et al. [60] have only collected less than 200

sample projects for the COCOMO database. Also, even after two years of effort, only 7 records

were added to a NASA-wide software cost metrics repository. For this reason we wanted to inves-

tigate whether or not we had the ability to:

1. Make process decisions without historical data while achieving stability in those decisions.

2. Produce accurate estimates of different project properties (such as effort, defects, etc).

3. Move on to investigate other issues related to software process control.

We needed to determine which SE models to use for our studies, for which we chose the USC

family of models. This includes the the COCOMO II.2000 effort model [15, p254-268], the CO-

QUALMO defect model [15, p29-57], the Madachy risk model [15, 284-291], and the COCOMO II

based Months time of development (SCHEDULE) model [15]. These were chosen for their open-

ness in terms of specification, their widespread adoption by such institutions like NASA and JPL,

and for the wider availability of data on these models compared to other models in the software

engineering industry. This is useful to us since it helps us determine variability in the parameters

of these models, and therefore the space of tunings.

Having determined the models to be used, we attempted to evaluate whether we could fulfill

the above stated goals. By using an AI search engine to explore the range of tunings of the selected

process models, we were able to produce results with a good deal of stability, while at the same

time achieving control over project estimates. We were also able to produce estimates with the ball

park of figures produced with tuned models. In addition, we were able to use this system to do

other studies relating to the subject of software process control.

Based on our results and empirical data, we present the following statement of thesis.

2

1.2 Statement of Thesis

Variability in software process model output arises from (a) uncertainty in model inputs relating to

the project and (b) uncertainty in the tuning of internal parameters that control the process model

outputs. We find that, for USC process models such as COCOMO and COQUALMO, the model

ouputs are less dependent on the uncertainty in the internal parameters of the model as compared

to the dependence on the uncertainty of the project parameters. We are hence able to control the

variance of the process models by setting project parameters rather than resorting to calibrating the

models.

1.3 Contribution of this Work

The area of search based software engineering is one that is growing at the moment at a quick

pace [40], and this work further contributes to this field. We introduce a novel method of evaluating

and controlling the software process, using four of the USC family models in conjunction with an

AI search engine, without the need for local tuning. From a business perspective, this result means

that certain process models can be used for decision making in one of two ways:

1. Either constrain the tuning variance using historical data;

2. Or constrain the project choices using an AI search engine like STAR, presented in §3.3.

Note that this second method avoids a lengthy and expensive data collection phase prior to decision

making. This result is of tremendous practical benefit since it is often very difficult to find relevant

data within a single organization to precisely tune all the internal parameters inside a process

model. This thesis, in addition to the above, also contributes several case studies and experiments.

The data of these studies is publicly available, along with the tool developed and its source code,

for third parties to attempt to regenerate the results presented. Note that this work has also been

used as a proof of concept for further work.

3

1.3.1 Publications from this work

This work has generated several publications:

• ICSE’09: How to avoid drastic software process change. [64]

• ASE’07: The business case for automated software engineering. [60]

• ASE’07 workshop: On the value of stochastic abduction. In International Workshop on

Living with Uncertainty . [58]

• ICSP’08: Accurate estimates without calibration (in the International Conference on Soft-

ware Process). [59]

In addition to the above publications, there are plans to generate several others directly derived

from this work.

1.4 Relation to Other Work

This thesis discusses the design of an AI decision support system called STAR. STAR’s design has

inspired other work by other WVU graduate students: For example, the author assisted another

WVU graduate student, Mr. Steve Williams, in his work building a LISP version of STAR.

In order to assign appropriate credit to the work reported in this document, it should be noted

that:

• For all the STAR results reported in this thesis, El-Rawas was the lead analyst/programmer.

• For all the SEESAW results reported in this thesis, Williams was the lead analyst/program-

mer while El-Rawas served as programmer and assistant.

4

1.5 Document Description

The rest of this document is organized as follows. Chapter 2 will present previous work that is

relevant to this thesis. This is followed by a detailed description and analysis of STAR in chapter

3, accompanied several internal studies to verify its use. Chapter 4 presents the NASA case studies

and the case for the use of automated software engineering tools. Chapter 5 presents studies done

in conjunction with experts in the field. Chapters 6 and 7 are case studies into two software engi-

neering practices: Drastic change and “better, faster, cheaper”. The document is concluded with

some notes on the results, external validity and future work that is already ongoing. The appendix

contains the code listing and how to obtain the tool presented here.

5

Chapter 2

Related Work

To motivate this work, we discuss a model with a widely-used software engineering predictor for

development effort, threats, development time, and defects.We identify certain problems with this

model (calibration instability) which makes it inadequate to report point solutions. Hence, this

chapter reviews methods for using AI search over the space of possible solutions.

Note that this thesis explores one such method and other WVU graduate researchers ([64], [71],

[34]) are exploring others. In the following, all references to STAR describe the code developed

for this thesis and all references to SEESAW describe an alternate system developed by Menzies

and Williams [64] that follows the design principles described in this thesis.

2.1 Models

In this section we will present the USC software engineering models that were used in this work

and which influenced the fitness function used.

6

Definition Low-end = {1,2} Medium ={3,4} High-end= {5,6}

Defect removal features
execution-
based
testing
(ett)

all procedures and tools used for
testing

none basic testing at unit/ integration/
systems level; basic test data man-
agement

advanced test oracles, assertion
checking, model-based testing

automated
analysis
(aa)

e.g. code analyzers, consistency and
traceability checkers, etc

syntax checking with com-
piler

Compiler extensions for static
code analysis, Basic requirements
and design consistency, traceabil-
ity checking.

formalized specification and
verification, model checking,
symbolic execution, pre/post
condition checks

peer re-
views
(peer)

all peer group review activities none well-defined sequence of prepara-
tion, informal assignment of re-
viewer roles, minimal follow-up

formal roles plus extensive
review checklists/ root cause
analysis, continual reviews, sta-
tistical process control, user in-
volvement integrated with life
cycle

Scale factors:
flex development flexibility development process rigor-

ously defined
some guidelines, which can be re-
laxed

only general goals defined

pmat process maturity CMM level 1 CMM level 3 CMM level 5
prec precedentedness we have never built this kind

of software before
somewhat new thoroughly familiar

resl architecture or risk resolution few interfaces defined or few
risk eliminated

most interfaces defined or most
risks eliminated

all interfaces defined or all risks
eliminated

team team cohesion very difficult interactions basically co-operative seamless interactions

Effort multipliers
acap analyst capability worst 15% 55% best 10%
aexp applications experience 2 months 1 year 6 years
cplx product complexity e.g. simple read/write state-

ments
e.g. use of simple interface wid-
gets

e.g. performance-critical em-
bedded systems

data database size (DB bytes/SLOC) 10 100 1000
docu documentation many life-cycle phases not

documented
extensive reporting for each
life-cycle phase

ltex language and tool-set experience 2 months 1 year 6 years
pcap programmer capability worst 15% 55% best 10%
pcon personnel continuity

(% turnover per year)
48% 12% 3%

plex platform experience 2 months 1 year 6 years
pvol platform volatility

(f requency o f ma jor changes
f requency o f minor changes)

12 months
1 month

6 months
2 weeks

2 weeks
2 days

rely required reliability errors are slight inconve-
nience

errors are easily recoverable errors can risk human life

ruse required reuse none multiple program multiple product lines
sced dictated development

schedule
deadlines moved to 75% of
the original estimate

no change deadlines moved back to 160%
of original estimate

site multi-site development some contact: phone, mail some email interactive multi-media
stor required % of available RAM N/A 50% 95%
time required % of available CPU N/A 50% 95%
tool use of software tools edit,code,debug integrated with life cycle

Figure 2.1: Features in the USC software process models.

2.1.1 Effort - COCOMO II

The COCOMO II model [15] is and evolution of the original COCOMO 81 model [11] which was

published by Barry Boehm. Both of these models have the same form referred to in Equation 2.1,

7

vl l n h vh xh
Scale factors:
flex 5.07 4.05 3.04 2.03 1.01

pmat 7.80 6.24 4.68 3.12 1.56
prec 6.20 4.96 3.72 2.48 1.24
resl 7.07 5.65 4.24 2.83 1.41
team 5.48 4.38 3.29 2.19 1.01
Effort multipliers:
acap 1.42 1.19 1.00 0.85 0.71
aexp 1.22 1.10 1.00 0.88 0.81
cplx 0.73 0.87 1.00 1.17 1.34 1.74
data 0.90 1.00 1.14 1.28
docu 0.81 0.91 1.00 1.11 1.23
ltex 1.20 1.09 1.00 0.91 0.84
pcap 1.34 1.15 1.00 0.88 0.76
pcon 1.29 1.12 1.00 0.90 0.81
plex 1.19 1.09 1.00 0.91 0.85
pvol 0.87 1.00 1.15 1.30
rely 0.82 0.92 1.00 1.10 1.26
ruse 0.95 1.00 1.07 1.15 1.24
sced 1.43 1.14 1.00 1.00 1.00
site 1.22 1.09 1.00 0.93 0.86 0.80
stor 1.00 1.05 1.17 1.46
time 1.00 1.11 1.29 1.63
tool 1.17 1.09 1.00 0.90 0.78

Figure 2.2: Co-efficient values according to the precalibrated COCOMO II.2000 model.

where ci is the sum of the cost drivers and A is domain specific.

E f f ort = A∗ (ci)(Size)Exponent (2.1)

The difference is in what Size and Exponent represent. In COCOMO 81, Size is dependent on

deliverable source lines of code (DSI), while for COCOMO II it represents source lines of code

(SLOC), function points (FP) and object points. In addition, the Exponent in COCOMO 81 is

actually a fixed constant that is selected as a function of development mode, which only exists in

COCOMO 81, while in COCOMO II it is dependent on scale factors, which were introduced in

COCOMO II. This is evident in Equation 2.2. Other differences, as well as a guide to converting

from COCOMO 81 to COCOMO II, are further elaborated on by D.J. Reifer and B. Boehm [74].

For this thesis, we will be exclusively using COCOMO II.

The COCOMO effort predictor estimates development effort in terms of person months where

8

one month is 152 hours (and includes development and management hours). In COCOMO, the

scale factors SFi of 2.1 effect effort exponentially (on KSLOC, i.e. Thousand Source Lines of

Code) while effort multipliers EM j effect effort linearly:

PM = a∗
(

KSLOC(b+0.01∗∑5
i=1 SFi)

)
∗

(
17

∏
j=1

EM j

)
(2.2)

where KSLOC is estimated directly or computed from a function point analysis; SFi and EM j are

the scale factors; and effort multipliers respectively of Figure 2.1; and a and b are domain-specific

parameters. In our NASA data, the following ranges were seen for a and b

(3.72≤ a≤ 9.18)∧ (0.88≤ b≤ 1.09) (2.3)

With the effort multipliers, off-nominal ranges (i.e. {vl=1, l=2, h=4, vh=5, xh=6}) change the

prediction by some amount. In the special case of the nominal range (i.e. {n=3}), the factor it

translates to is one; i.e. the nominal range make no change to the prediction. Hence, these ranges

can be modeled as a straight line y = mx + b passing through the point {x,y}={3,1}. Such a line

has a y-intercept of b = 1−3m. Substituting this value of b into y = mx+b yields:

∀x ∈ {1..6} EMi = ma(x−3)+1 (2.4)

where ma denotes the effect of effort multiplier a on effort.

The effort multipliers form into two sets:

1. The positive effort EM features, with slopes m+
a , that are proportional to effort. These fea-

tures are: cplx, data, docu, pvol, rely, ruse, stor, and time.

2. The negative effort EM features, with slopes m−a , are inversely proportional to effort. These

features are acap, apex, ltex, pcap, pcon, plex, sced , site, tool.

Based on prior work [12], we can describe the space of known tunings for COCOMO effort mul-

9

tipliers to be (
0.073≤ m+

a ≤ 0.21
)
∧
(
−0.178≤ m−a ≤−0.078

)
(2.5)

Similarly, using experience from 161 projects [12], we can say that the space of known tunings

for the COCOMO scale factors (prec, flex, resl,team, pmat) are:

∀x ∈ {1..6} SFi = mb(x−6)∧ (−1.56≤ mb ≤−1.014) (2.6)

where mb denotes the effect of scale factor b on effort.

Note that the above ranges for the slopes were obtained by finding the average slope for each

COCOMO attribute for both effort multipliers and scale factors over the range of values of that

attribute.

2.1.2 Schedule

The COCOMO schedule predictor estimates development time in terms of elapsed calendar months.

This model is largely based on the COCOMO effort in that it uses those attributes, there values, and

the calibrated coefficients (i.e, a and b). The following are the equations for calculating months:

F = d +0.2∗
(
0.01∗ (∑5

i=1 SFi)
)

T DEV =
[
c∗ (PMNS)F

]
∗SCED%÷100

(2.7)

where PMNS is the effort calculated without the inclusion of SCED, SFi are the scale factors of

2.1, c and d are domain-specific parameters that can be calibrated, and SCED% is the percentage

of schedule relative to the nominal schedule.

2.3 shows the value of this parameter based on SCED. T DEV is the development time in

months calculated by this model, and F is referred to as the scaling exponent for schedule.

10

SCED SCED%
1 75
2 85
3 100
4 130
5 160

Figure 2.3: The values of SCED%

2.1.3 Defects - COQUALMO

The COQUALMO model is used to estimate the amount if defects within a software project. CO-

QUALMO has two core models, used three ways:

• The defect introduction model is similar to 2.2; i.e. settings to 2.1’s effort multipliers and

scale factors map to predictions about number of defects.

• The defect removal model represents how various tasks (peer review, execution-based test-

ing, and automated analysis) decrease the introduction of defects.

• The above two models are repeated three times for defects introduction & removal for re-

quirements, design, or coding.

COQUALMO follows the same convention as COCOMO for the effort multipliers; i.e. nom-

inal values (n = 3) add nothing to the predicted number of defects. As the above, COQUALMO

is:

∀x ∈ {1..6} EMi = mc(x−3)+1 (2.8)

where mc denotes the effect of c on defect introduction.

The effort multipliers and scale factors form two sets:

1. The positive defect features, with slopes m+
c , that are proportional to the estimated introduced

defects. These features are flex, data, ruse, cplx, time, stor, and pvol.

2. The negative defect features, with slopes m−c , that are inversely proportional to the estimated

introduced defects. These features are acap, pcap, pcon, apex, plex, ltex, tool, site, sced,

11

rely data ruse docu cplx time stor pvol acap pcap pcon aexp plex ltex tool site sced
requirements:
xh 1.05 1.32 1.08 1.08 1.16 0.83
vh 0.7 1.07 1.03 0.86 1.21 1.05 1.05 1.1 0.75 1 0.82 0.81 0.9 0.93 0.92 0.89 0.85
h 0.85 1.04 1.02 0.93 1.1 1.03 1.03 1.05 0.87 1 0.91 0.91 0.95 0.97 0.96 0.95 0.92
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l 1.22 0.93 0.95 1.08 0.88 0.86 1.17 1 1.11 1.12 1.05 1.04 1.05 1.1 1.09

vl 1.43 1.16 0.76 1.33 1 1.22 1.24 1.11 1.07 1.09 1.2 1.18
design:
xh 1.02 1.41 1.2 1.18 1.2 0.83
vh 0.69 1.1 1.01 0.85 1.27 1.13 1.12 1.13 0.83 0.85 0.8 0.82 0.86 0.88 0.91 0.89 0.84
h 0.85 1.05 1 0.93 1.13 1.06 1.06 1.06 0.91 0.93 0.9 0.91 0.93 0.91 0.96 0.95 0.92
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l 1.23 0.91 0.98 1.09 0.86 0.83 1.1 1.09 1.13 1.11 1.09 1.07 1.05 1.1 1.1

vl 1.45 1.18 0.71 1.2 1.17 1.25 1.22 1.17 1.13 1.1 1.2 1.19
coding:
xh 1.02 1.41 1.2 1.15 1.22 0.85
vh 0.69 1.1 1.01 0.85 1.27 1.13 1.1 1.15 0.9 0.76 0.77 0.88 0.86 0.82 0.8 0.9 0.84
h 0.85 1.05 1 0.92 1.13 1.06 1.05 1.08 0.95 0.88 0.88 0.94 0.94 0.91 0.9 0.95 0.92
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l 1.23 0.91 0.98 1.09 0.86 0.82 1.05 1.16 1.15 1.07 1.08 1.11 1.13 1.09 1.1

vl 1.45 1.18 0.71 1.11 1.32 1.3 1.13 1.16 1.22 1.25 1.18 1.19

Figure 2.4: COQUALMO: effort multipliers and defect introduction

prec flex resl team pmat
requirements:
xh 0.7 1 0.76 0.75 0.73
vh 0.84 1 0.87 0.87 0.85
h 0.92 1 0.94 0.94 0.93
n 1 1 1 1 1
l 1.22 1 1.16 1.17 1.19

vl 1.43 1 1.32 1.34 1.38
design:
xh 0.75 1 0.7 0.8 0.61
vh 0.87 1 0.84 0.9 0.78
h 0.94 1 0.92 0.95 0.89
n 1 1 1 1 1
l 1.17 1 1.22 1.13 1.33

vl 1.34 1 1.43 1.26 1.65
coding:
xh 0.81 1 0.71 0.86 0.63
vh 0.9 1 0.84 0.92 0.79
h 0.95 1 0.92 0.96 0.9
n 1 1 1 1 1
l 1.12 1 1.21 1.09 1.3

vl 1.24 1 1.41 1.18 1.58

Figure 2.5: COQUALMO: scale factors and defect introduction

prec, resl, team, pmat, rely, and docu.

12

function defectsIntroduced() {
return 10*Ksloc()*defectsIntroduced1("requirements") +

20*Ksloc()*defectsIntroduced1("design") +
30*Ksloc()*defectsIntroduced1("coding") }

function defectsIntroduced1(table) {
return the product of the Figure 2.4 and
and the Figure 2.5 figures }

Figure 2.6: COQUALMO: defects introduced.

automated peer execution testing
analysis reviews and tools

requirements:
xh 0.4 0.7 0.6
vh 0.34 0.58 0.57
h 0.27 0.5 0.5
n 0.1 0.4 0.4
l 0 0.25 0.23
vl 0 0 0
design:
xh 0.5 0.78 0.7
vh 0.44 0.7 0.65
h 0.28 0.54 0.54
n 0.13 0.4 0.43
l 0 0.28 0.23
vl 0 0 0
coding:
xh 0.55 0.83 0.88
vh 0.48 0.73 0.78
h 0.3 0.6 0.69
n 0.2 0.48 0.58
l 0.1 0.3 0.38
vl 0 0 0

Figure 2.7: COQUALMO: defect removal

function Total_defects() {
return defects("requirements",Coqualr) +

defects("design", Coquald) +
defects("coding", Coqualc)

}

function defects(what,table) {
introduced = defectsIntroduced1(what,table);
percentRemoved = defectsRemovedRatio(what);
return percentRemoved*introduced

}

Figure 2.8: COQUALMO: defects added and removed

13

function defectsRemovedRatio(table, auto,review,tool) {
return (1 - drf(table,"automated_analysis")) *

(1 - drf(table,"peer_reviews")) *
(1 - drf(table,"execution_testing_and_tools"))

}

function drf(table,x) {
return x’s value in table from Figure 2.7

}

Figure 2.9: COQUALMO: ratio of defects removed

The space of tunings for defect introducing features are:

requirements

 0≤ m+
c ≤ 0.112

−0.183≤ m−c ≤−0.035

design

 0≤ m+
c ≤ 0.14

−0.208≤ m−c ≤−0.048

coding

 0≤ m+
c ≤ 0.140

−0.19≤ m−c ≤−0.053

(2.9)

The space of tunings for defect removal features are:

∀x ∈ {1..6} SFi = md(x−1)

requirements : 0.08≤ md ≤ 0.14

design : 0.1≤ md ≤ 0.156

coding : 0.11≤ md ≤ 0.176

(2.10)

where md denotes the effect of d on defect removal.

14

rely= rely= rely= rely= rely=
very low nominal high very
low high

sced= very low 0 0 0 1 2
sced= low 0 0 0 0 1
sced= nominal 0 0 0 0 0
sced= high 0 0 0 0 0
sced= very high 0 0 0 0 0

Figure 2.10: An example risk table

2.1.4 Threat

The THREAT model returns a heuristic estimate of the threat of a schedule over run in the project.

This estimation model is dependent upon the COCOMO effort multipliers

Internally, THREAT contains dozens of tables of the form of 2.10. Each such table adds some

“threat” value to the overall project risk when multiplied by the effort multiplier values of the

corresponding COCOMO attributes. There are six major categories: schedule, product, personnel,

process, platform and reuse. After the threat for each category is calculated, the sum is normalized

to produce the final threat rating.

2.10 can be represented as an exponentially decaying function that peaks in one corner of the

risk table at a value of two. All the tables peak at either a value of two or four. Since this model

is heuristic in nature, the exact height of the peak is not certain. When we perform Monte Carlo

simulations over THREAT, we vary the height of the peak by a random factor 0.5 ≤ x ≤ 1 if the

peak is four, and 0.5≤ x≤ 1.5 if the peak is two.

2.2 Local Calibration(LC)

This section describes local calibration (LC), the standard regression procedure used by the CO-

COMO community. LC is used in conjunction with local data to calibrate the COCOMO II model,

as well as the other COCOMO based models.

LC assumes that a matrix Di, j holds:

15

Total_threat =
(Schedule_threat + Product_threat + Personnel_threat + Process_threat + Platform_threat + Reuse_threat)/3.73

Schedule_threat=
Sced_Rely_threat + Sced_Time_threat + Sced_Pvol_threat + Sced_Tool_threat + Sced_Acap_threat + Sced_Aexp_threat +
Sced_Pcap_threat + Sced_Plex_threat + Sced_Ltex_threat + Sced_Pmat_threat

Product_threat =
Rely_Acap_threat + Rely_Pcap_threat + Cplx_Acap_threat + Cplx_Pcap_threat + Cplx_Tool_threat + Rely_Pmat_threat +
Sced_Cplx_threat + Sced_Rely_threat + Sced_Time_threat + Ruse_Aexp_threat + Ruse_Ltex_threat

Personnel_threat =
Pmat_Acap_threat + Stor_Acap_threat + Time_Acap_threat + Tool_Acap_threat + Tool_Pcap_threat + Ruse_Aexp_threat +
Ruse_Ltex_threat + Pmat_Pcap_threat + Stor_Pcap_threat + Time_Pcap_threat + Ltex_Pcap_threat + Pvol_Plex_threat +
Sced_Acap_threat + Sced_Aexp_threat + Sced_Pcap_threat + Sced_Plex_threat + Sced_Ltex_threat + Rely_Acap_threat +
Rely_Pcap_threat + Cplx_Acap_threat + Cplx_Pcap_threat + Team_Aexp_threat

Process_threat =
Tool_Pmat_threat + Time_Tool_threat + Tool_Pmat_threat + Team_Aexp_threat + Team_Sced_threat + Team_Site_threat +
Sced_Tool_threat + Sced_Pmat_threat + Cplx_Tool_threat + Pmat_Acap_threat + Tool_Acap_threat + Tool_Pcap_threat +
Pmat_Pcap_threat

Platform_threat =
Sced_Time_threat + Sced_Pvol_threat + Stor_Acap_threat + Time_Acap_threat + Stor_Pcap_threat + Pvol_Plex_threat +
Time_Tool_threat

Reuse_threat =
Ruse_Aexp_threat + Ruse_Ltex_threat

Figure 2.11: THREAT: the calculations.

• The natural log of the LOC (lines of code) estimates;

• The natural log of the actual efforts for each project j;

• The natural logarithm of the cost drivers (the scale factors and effort multipliers) at locations

1≤ i≤ 15 (for COCOMO 81) or 1≤ i≤ 22 (for COCOMO-II).

With those assumptions, Boehm [11] shows that for COCOMO 81, the following calculation yields
estimates for “a” and “b” that minimize the sum of the squares of residual errors:

EAFi = ∑
N
j Di, j

a0 = t

a1 = ∑
t
i KLOCi

a2 = ∑
t
i(KLOCi)2

d0 = ∑
t
i (actuali−EAFi)

d1 = ∑
t
i ((actuali−EAFi)∗KLOCi)

b = (a0d1−a1d0)/(a0a2−a2
1)

a3 = (a2d0−a1d1)/(a0a2−a2
1)

a = ea3



(2.11)

16

vl l n h vh xh
rely

sced vl 1 2
l 1

cplx
sced vl 1 2 4

l 1 2
n 1

time
sced vl 1 2 4

l 1 2
n 1

pvol
sced vl 1 2

l 1
tool

sced vl 2 1
l 1

pexp
sced vl 4 2 1

l 2 1
n 1

pcap
sced vl 4 2 1

l 2 1
n 1

aexp
sced vl 4 2 1

l 2 1
n 1

acap
sced vl 4 2 1

l 2 1
n 1

ltex
sced vl 2 1

l 1
pmat

sced vl 2 1
l 1

vl l n
acap

rely n 1
h 2 1

vh 4 2 1
pcap

rely n 1
h 2 1

vh 4 2 1
acap

cplx h 1
vh 2 1
xh 4 2 1

pcap
cplx h 1

vh 2 1
xh 4 2 1

tool
cplx h 1

vh 2 1
xh 4 2 1

pmat
rely n 1

h 2 1
vh 4 2 1

acap
pmat vl 2 1

l 1
acap

stor h 1
vh 2 1
xh 4 2 1

acap
time h 1

vh 2 1
xh 4 2 1

acap
tool vl 2 1

l 1
pcap

tool vl 2 1
l 1

vl l n
aexp

ruse h 1
vh 2 1
xh 4 2 1

ltex
ruse h 1

vh 2 1
xh 4 2 1

pcap
pmat vl 2 1

l 1
pcap

stor h 1
vh 2 1
xh 4 2 1

pcap
time h 1

vh 2 1
xh 4 2 1

pcap
ltex vl 4 2 1

l 2 1
n 1

pexp
pvol h 1

vh 2 1
pmat

tool vl 2 1
l 1

tool
time vh 1

xh 2 1
aexp

team vl 2 1
l 1

sced
team vl 2 1

l 1
site

team vl 2 1
l 1

Figure 2.12: THREAT: the details. For example, looking at the top-left matrix, the
Sced Rely risk is highest when the reliability is very high but the schedule pressure is very
tight.

In the case of COCOMO 81 [11] these a,b values are used in the following equation to generate

effort estimates. In this equation, EMi are the effort multipliers from Figure 2.1:

e f f ort = a ·KSLOCb ·
15

∏
i

EMi

What is not widely appreciated is the size of the variance in the (a,b) values. The left-hand-side of

Figure 2.14 shows the COCOMO-I (a,b) values learned by Baker [6] after, 300 times, extracting

17

feature low high feature low high
aa 1 6 time 3 6
peer 1 6 stor 3 6
ett 1 6 pvol 2 5
prec 1 6 acap 1 5
flex 1 6 pcap 1 5
resl 1 6 pcon 1 5
team 1 6 apex 1 5
pmat 1 6 plex 1 5
rely 1 5 ltex 1 5
cplx 1 6 tool 1 5
data 2 5 sced 1 5
docu 1 5 site 1 6
ruse 2 6 Ksloc 1 980

Figure 2.13: The default ranges for ratings of the COCOMO II attributes according to COCOMO
II.2000 [15]

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 3 4 5 6 7 8 9 10 11 12 13

b

a

NASA93 : COCOMO Calibration Coefficients

 0

 100

 200

 300

 400

 500

All values, sorted

MRE1: from LC

Figure 2.14: Results of applying LC numerous times to 90% of the NASA93 data sets (available
from http://promisedata.org/data). Left-hand-side shows computed (a,b) values. Right-
hand-side shows MREs generated in 20 repeats over the NASA93 data set.

10 projects at random from COCOMO data sets, then applying Equation 2.3 to the remaining data.

The data sets used in this study contained 93 projects, so LC was applied to 93−10
93 = 89% of the

data. A pre-experimental intuition was that we were using enough of the data to yield stable (a,b)

values. As can be clearly seen by the wide variance on the (a,b) values in Figure 2.14, this was

not the case.

The right-hand-side of Figure 2.14 shows the magnitude of the relative error (or MRE) values

seen in Baker’s study (MRE is a standard measure in the effort estimation field as follows: MRE =
abs(actual−predicted)

actual).

Some of the MRE errors are very large (up to nearly 500%) suggesting that LC was incomplete

18

or that the variance in the (a,b) calculations have significant impact on the estimation. In fact, after

thirty 90% random samples of that NASA data, Baker found that the a, b ranges were surprisingly

large:

(2.2≤ a≤ 9.18)∧ (0.88≤ b≤ 1.09)

Note that the right-hand-side Figure 2.14 is not without precedent in the estimation literature: it is

a well-established result that initial development effort estimates may be incorrect by a factor of

four [11] or even more [49].

Elsewhere we have been partially successful in reducing estimation variance of Figure 2.14

using feature subset selection (FSS) [19, 63] or more data collection. Unfortunately, FSS reduces

but does not eliminate the a,b variance. Also, further data collection is possible, but only at great

organizational expense. This is due to data not being collected or the business sensitivity associated

with the data as well as differences in how the metrics are defined, collected and archived.

2.3 Search Based Software Engineering

The contribution of this thesis falls within the area of search based software engineering [21, 39].

This is a diverse area of study, and also a young one, that has attempted to deal with many different

phases of the software development life cycle. These vary from software testing to requirements

engineering, among others. This thesis, as the title suggests, deals with software process control.

Search based software engineering (SBSE) is done by using a combination of a chosen search

technique, combined with a fitness function that evaluates the results.

2.3.1 Search Algorithms

There are a variety of meta-heuristic search algorithms that are used in SBSE. Some of these are

widely used and considered baseline algorithms, while others are custom made algorithms that

19

rely on domain knowledge to optimize their performance. Crawford and Baker [26] offer one

explanation for the strange success of stochastic search. For models, such as the ones used in

this thesis, the solutions are a small part of the total space. A complete search wastes much time

exploring uninformative areas of the problem. A stochastic search, on the other hand, does not get

stuck in such uninformative areas.

Genetic Algorithms

Genetic algorithms (GA) [43] are AI search algorithms that attempt to immitate the population

based evolutionary model of nature. The algorithm initially starts with a random population of so-

lutions. These solutions, individually referred to as chromosomes, are iteratively seleted, mutated,

and recombined based on how well they score with a predefined fitness function. This eventually

increases the fitness of the population, after which the algorithm stops when reaching a certain

performance milstone in a chromosome, or when it has gone through a certain number of genera-

tions. GA has been historically widely used in the field of SBSE, and is very much considered and

standard SBSE algorithm.

Reactive Tabu Search

Tabu search [33] is a local search algorithm that allows the jump to sub-optimal non-improving

solutions in order to avoid local optima. Tabu search uses a list, called the tabu list, that keeps a

record of the recent search history of the algorithm. This is done in order to avoid visiting the same

solution repeatedly so that when a sub-optimal jump does occur, a new solution in the search space

is being explored. Note that old solutions are not banned forever, but rather they are restricted for

a while. This algorithm was developed in 1986 as a response to the development of SA, and like it

is based on an analogy of a natural phenomenon.

20

Simulated Annealing

Simulated Annealing is the AI search algorithm that is used in this work. It belongs to the fam-

ily of Monte Carlo algorithms. Monte Carlo algorithms randomly sample the space of possible

controllable model states. A Metropolis Monte Carlo algorithm [65] creates new states by small

mutations to some current state. If a new state is “better” (as assessed via an energy function),

it becomes the new current state used for future mutations. Otherwise, a Boltzmann acceptance

criteria is used to probabilistically decide to assess the new state: the worse the new state, the less

likely that it becomes the new current state. The algorithm is silent on the mutation mechanism.

For our experiments, we freeze 2
3 of the features and randomly select ranges for the rest.

In 1983, Kirkpatrick et al. [51] proposed a modification that was inspired by a procedure used

to make the strongest possible glass. Initially, glass is heated to allow atoms to move freely.

The temperature is then slowly lowered such that the atoms can find the stablest configuration

with lowest energy. A simulated annealing (SA) algorithm adds a “temperature” variable to the

Boltzmann accept criteria such that, at high temperatures, it is more likely that the algorithm will

jump to a new worse current state. This allows the algorithm to jump out of local minima while

sampling the space of options, a useful ability. As the temperature cools, such jumps become less

likely and the algorithm reverts to a simple hill climber.

The acceptance criteria P for a new state is defined using the current temperature T , the energy

of the current solution (e), and the energy of the new mutation (en):

P(e,en,T) = e(e−en)/T (2.12)

T is defined to decrease as the simulator loops through k = 1 . . .kmax iterations. We use

T = e−100∗k/kmax.

Two advantages of SA algorithms are their implementation simplicity and their ability to handle

21

function sa(kmax)
s := s0; e := E(s) // Initial state, energy.
sb := s; eb := e // Initial "best" solution
k := 0 // Energy evaluation count.
while k < kmax and e > emax // Loop
sn := neighbour(s) // Pick some neighbour.
en := E(sn) // Compute its energy.
if en < eb then // Is this a new best?
sb := sn; eb := en // Yes, save it.

if random() < P(e, en, temp(k/kmax))
then s := sn; e := en // Maybe jump

k := k + 1 // One more evaluation done
return sb // Return best

Figure 2.15: SA pseudo-code: a new solution sn (with new energy en) replaces the current solution
if (a) it has a lower energy or (b) the acceptance predicate P endorses it. Only in the case of (a)
should the new solution replaces the current best solution.

Figure 2.16: Processing a JPL requirements model.

non-linear models:

• Implementation simplicity: 2.15 illustrates the simplicity of the algorithm. Memory is only

required for one current solution (s), one new solution (sn) and one best solution (sb) that

stores the best solution seen at any time in the simulation.

• Non-linear models: Previously [24, 32], SA was applied to non-linear JPL requirements

models where minimizing the cost of project mitigation can decrease the number of require-

ments achieved by that project. Hence, decreasing both the cost and achieved requirements is

a non-linear problem that must trade between minimizing cost and increasing requirements

22

Figure 2.17: Dots & lines are SA output from current & best solution (respectively) after k simu-
lations.

coverage. The top-left line of Figure 2.16 divides the behavior of the JPL requirements

models before and after simulated annealing. As shown below the line, initial Monte Carlo

sampling of the possible mitigation lead to a large range of costs and benefits. Simulated

annealing found a set of mitigation that lead to the small cloud of solutions above the line.

Compared to the initial samples, these new solutions had decreased cost, increased benefit

(number of requirements covered), and decreased variance (shrank the space of solutions).

Two disadvantages of SA algorithms are their incompleteness and the complexity of their solutions:

• Incompleteness: In our domain, we have some evidence that the incomplete nature of the

heuristic SA search is not a major problem. 2.17 shows a sample run of our SA tool running

on our prediction models for K = 10,000 simulations. As k increases for 1. . .10,000, it be-

comes less and less likely that a better best has been missed. Hence, we run our simulations

for ten times the period it takes for best to stabilize (at k ≈ 1000).

• Solution complexity: Simulated annealing offers constraints to all controllable features. Of-

ten this is an over-constrained solution since, in many domains, a repeated empirical result is

a feature subset selection effect; i.e. models that constrain M variables perform just as well,

or better, than models that constrain N variables (M�N) [37,53]. For example, Kohavi [53]

23

av. number of features
dataset before after a f ter

be f ore % accuracy
change

breast cancer 10 2.9 29% +0.14%
cleve 13 2.6 2% +5.89%
crx 15 2.9 19% +4.49%
DNA 180 11 6% +3.63%
horse-colic 22 2.8 13% +1.63%
Pima 8 1 13% +0.79%
sick-euthyroid 25 4 16% +0.38%
soybean 35 12.7 36% +0.15%
average 38.5 4.99 19% +2.14%

Figure 2.18: Feature subset selection results from [53]

studied some machine learners to find that using just 19% of the available features increased

prediction accuracy by just 2.14% (on average). For another example, when feature subset

selection was applied to the JPL requirements model of Figure 2.16, we found that up to

2
3 -rds of the features can be left unconstrained, without effecting the conclusions [32].

Other Algorithms

Harman [40] discusses several standard search algorithms that are used in the field of SBSE, such

as simulated annealing and genetic algorithms. However, SBSE need not be restricted to only these

standard algorithms, as there are other custom made AI search algorithms that attempt to perform

the same functions as these standard algorithms. We will present two such algorithms here.

KEYS Keys is a custom AI serach engine that was developed and compared to other standard

algorithms in [35].

The premise of KEYS is that within the space of possible decisions, there exist a small number

of key decisions that determine all others [57].

If a model contains keys, then a general search through a large space of options is superfluous.

A better (faster, simpler) approach would be to just explore the keys. KEYS uses support-based

Bayesian sampling to quickly find these important variables.

24

There are two main components to KEYS - a greedy search and the BORE ranking heuristic.

This is in some ways similar to part of the STAR Algorithm general structure, which is further

explained in §3.3.

The greedy search explores a space of M mitigation over the course of M “eras”. Initially, the

entire set of mitigations is set randomly. During each era, one more mitigation is set to Mi = X j,

X j ∈ {true, f alse}.

In Keys, each era e generates a set < input,score > as follows:

1: MaxTries times repeat:

• Selected[1. . .(e−1)] are settings from previous eras.

• Guessed are randomly selected values for an unfixed mitigation.

• Input = selected∪guessed.

• Call the fitness function to compute the score.

2: The MaxTries scores are divided into β% “best” while the remainder are sent to “rest”.

3: The mitigation values in the input sets are then scored using BORE (described below).

4: The top ranked mitigation (the default is one, but the user may fix multiple mitigation at

once) are fixed and stored in selected[e].

The search moves to era e+1 and repeats steps 1,2,3,4. This process stops when every mitigation

has a setting. For full details, see Figure 2.19.

KEYS ranks mitigation by combining a novel support-based Bayesian ranking measure, which

is detailed in §3.2.

SEESAW SEESAW is a novel stochastic stability tool that (a) considers a very large set of minor

changes using stochastic sampling; and (b) carefully selects the right combination of effective

25

Procedure KEYS
while FIXED_MITIGATIONS != TOTAL_MITIGATIONS

for I:=1 to 100
SELECTED[1...(I-1)] = best decisions up to this step
GUESSED = random settings to the remaining mitigations
INPUT = SELECTED + GUESSED
SCORES= SCORE(INPUT)

end for
for J:=1 to NUM_MITIGATIONS_TO_SET
TOP_MITIGATION = BORE(SCORES)
SELECTED[FIXED_MITIGATIONS++] = TOP_MITIGATION

end for
end while
return SELECTED

Figure 2.19: Pseudo-code for KEYS

minor changes. Figure 2.20 shows SEESAW’s pseudo-code. The code is an adaption of Kautz

& Selman’s MaxWalkSat local search procedure [48]. The main changes are that each solution

is scored via a Monte Carlo procedure (see score in Figure 2.20) and that SEESAW seeks to

minimize that score.

SEESAW was designed based on observing the properties of USC software engineering mod-

els §2.1. Based on that domain knowledge, the most interesting ranges in the features was found

to be the minimum and maximum values. This observation was due to results produced by STAR

(explained in §3.3) in such papers as [60]. The reason for this is simple: All the functions in the

above indicated models are monotonic, causing the most dramatic effects to occur at the extreme

ends of the ranges. In fact, SEESAW takes its name from the way the algorithm seesaws between

extreme values.

SEESAW is a stochastic algorithm: the selection of the next feature to explore is completely

random. SEESAW incrementally grows solutions from unconstrained (where all features can take

any value in {Low,High}) to fully constrained (where all features are set to a single value). This

is unlike simulated annealing or MaxWalkSat, which simultaneously offer settings to all features

at every step of their reasoning. Figure 2.21 shows a single run of SEESAW: each dot marks one

selection (lines 16,17,18 of Figure 2.20). For example, if Figure 3.1 includes a process maturity

26

1 function run (AllRanges, ProjectConstraints) {
2 OutScore = -1
3 P = 0.95
4 Out = combine(AllRanges, ProjectConstraints)
5 Options = all Out features with ranges low < high
6 while Options {
7 X = any member of Options, picked at random
8 {Low, High} = low, high ranges of X
9 LowScore = score(X, Low)

10 HighScore = score(X, High)
11 if LowScore < HighScore
12 then Maybe = Low; MaybeScore = LowScore
13 else Maybe = High; MaybeScore = HighScore
14 fi
15 if MaybeScore < OutScore or P < rand()
16 then delete all ranges of X except Maybe from Out
17 delete X from Options
18 OutScore = MaybeScore
19 fi
20 }
21 return backSelect(Out)
22 }
23 function score(X, Value) {
24 Temp = copy(Out) ;; don’t mess up the Out global
25 from Temp, remove all ranges of X except Value
26 run monte carlo on Temp for 100 simulations
27 return median score from monte carlo simulations
28 }

Figure 2.20: Pseudocode for SEESAW.

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

no
rm

al
ize

d
sc

or
e

Decisions

Figure 2.21: Single run of SEESAW, score normalized min..max to 0..1

of (3,4,5) and SEESAW selects “5”, then that is three decisions. (this is why the 29 dots of Fig-

ure 2.21 result in 100 decisions). Note how, as decisions are made, the score is minimized. Score

minimization is desirable since the scores are calculated from a combination of project predictions

that we want to reduce (total effort, defects, development time) based on the USC models.

XOMO and TAR3 XOMO [62] is the work that preceded STAR. It was designed as a frame-

work for Monte-Carlo simulations made to run on USC software related models §2.1. The search

technique that is used by this framework is a data miner called TAR3 (and evolution of TAR2 [61]).

TAR3 can be described as a treatment learner, returning concise rules or “treatments” that have the

largest effect on the output of the fitness function used. Having small rules is useful for soft-

ware process control since this reduces the managerial interventions on a software project, while

at the same time ensuring that such interventions will have high utility for the project. Note that

XOMO is the first tool here that integrates multiple models, these being COCOMO, COQUALMO

and the threat model. All previously mentioned tools operate on a single model, that being either

COCOMO or another project specific model.

TAR3 inputs a set of training examples E. Each example maps a set of attribute ranges to

some class symbol; i.e. {Ri,R j, ...→C} The class symbols C1,C2.. are stamped with some utility

score that ranks the classes; i.e. {U1 < U2 < .. < UC}. With E, these classes occur at frequencies

F1%,F2%, ...,FC%. A “treatment” T of size X is a conjunction of attribute ranges {R1 ∧R2...∧

28

Figure 2.22: A diagram offering an overview of where and how XOMO is meant to operate. This
provided the inspiration to make STAR.

RX}. Some subset of e ⊆ E are consistent with the treatment. In that subset, the classes occur at

frequencies f1%, f2%, ... fC%. TAR3 seeks the seek smallest T which most changes the weighted

sum of the utilities times frequencies of the classes. Formally, this is called the li f t of a treatment:

li f t = ∑C UC fC
∑C UCFC

For example, consider the log of golf playing behavior seen in 2.23. In that log, we only play

lots of golf in 6
5+3+6 = 43% of cases. To improve our game, we might search for conditions that

increases our golfing frequency. Two such conditions are shown in the WHERE test of the select

statements in Figure 2.24. In the case of outlook= overcast, we play lots of golf all the time. In

the case of humidity ≤ 90, we only play lots of golf in 20% of cases. So one way to play lots of

golf would be to select a vacation location where it was always overcast. While on holidays, one

thing to watch for is the humidity: if it rises over 90%, then our frequent golf games are threatened.

29

outlook temp(oF) humidity windy? class
sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

Figure 2.23: TAR3: Playing golf.

input:

SELECT class
FROM golf

SELECT class
FROM golf
WHERE
outlook = ’overcast’

SELECT class
FROM golf
WHERE
humidity >= 90

output:

none none none none none
some some some lots lots
lots lots lots lots

lots lots lots lots none none none some lots

distributions:

0
2
4
6

5 3 6
0
2
4
6

0 0 4
0
2
4
6

3 1 1

legend: none some lots

Figure 2.24: TAR3: Class distributions selected by different conditions in Figure 2.23.

The tests in the WHERE clause of the select statements in Figure 2.24 is a treatment. Classes in

treatment learning get a score UC and the learner uses this to assess the class frequencies resulting

30

from applying a treatment (i.e. using them in a WHERE clause). In normal operation, a treatment

learner does controller learning that finds a treatment which selects for better classes and reject

worse classes By reversing the scoring function, treatment learning can also select for the worse

classes and reject the better classes. This mode is called monitor learning since it finds the thing we

should most watch for. In the golf example, outlook = ’overcast’ was the controller and humidity≥

90 was the monitor.

Formally, treatment learning is a weighted-class minimal contrast-set association rule learner.

The treatments are associations that occur with preferred classes. These treatments serve to con-

trast undesirable situations with desirable situation where more of the outcomes are favorable.

Treatment learning is different to other contrast set learners like STUCCO [9] since those other

learners don’t focus on minimal theories.

Conceptually, a treatment learner explores all possible subsets of the attribute ranges looking

for good treatments. Such a search is impractical in practice so the art of treatment learning is

quickly pruning unpromising attribute ranges. This study uses the TAR3 treatment learner [45]

that uses stochastic search to find its treatments.

Sometimes, one round of TAR3 is not enough. Iterative TAR3 runs by conducting multiple

Monte Carlo simulations over the ranges of any uncertain variables. For example, there are 28

variables in XOMO, which uses the USC models:

• Ksloc;

• 5 scale factors;

• 17 effort multipliers;

• 2 calibration parameters (“a,b”);

• 3 defect removal activities (automated analysis, peer reviews, execution testing and tools).

31

Figure 2.25: The reductions that XOMO was able to produce in the model estimates.

In the case studies that follow, only a partial description of some of these variables are available.

Hence, learning is a process of sampling from the known constraints, finding the best treatment,

then revising the constraints. After, say, 1000 Monte Carlo runs, BORE(§3.2), short for “best or

rest”, classifies the outputs as (say) either the 333 best or 667 rest. The treatment learner studies

the results and notes which input ranges select for best. The ranges found by the learner then

become restraints for future simulations.

Using XOMO and TAR3, we were able to able to produce stable conclusions within the space

of options provided to us in a project, as well as achieve control over the estimates of the models.

Figure 2.26 demonstrates one instance of such stability, and shows that some attributes were chosen

regularly for the specific project used. Figure 2.25, on the other hand, shows that at the same time

XOMO was able to offer control over the estimates of a project, reducing the mean and the standard

deviation of those estimates. Further discussing these results is outside the scope of this thesis.

32

Figure 2.26: The occurance of attributes in the TAR3 recommendations over 10 runs of XOMO.

2.3.2 Applications of SBSE

SBSE is being studied for use in tackling many software engineering issues, some of which will

be mentioned here and briefly described. This section is presented in the form of a brief literature

survey, and aims to present the reader with the diversity of the field of SBSE.

Project Planning and Cost Estimation

In [2], software project simulators, such as the likes of STELLA, VENSIM, ITHINK and POSER-

SIM, are used to generate a search space of possible decisions along with the outcome of using such

decisions. This search space is passed to an evolutionary algorithm similar in concept to a genetic

algorithm. By evaluating decisions using a fitness function based on how well the rule classifies

project examples, this algorithm is able to generate a hierarchy of decision rules. They are able

to demonstrate how applying these rules improves the management of the software project. Note

that the model used for this system is project specific rather than an industry standard software

engineering model.

In [4], a scheme is developed for project management and allocating work loads to teams.

The goal of this scheme is to determine the optimal flow of “work packages” (WP) and at the

33

same time determine the optimal team organization given a predetermined staff allocation. This

being an NP-Hard task, the authors elect to use search based techniques, genetic algorithms (GA)

specifically. Note that each of those issues has a dedicated GA for solving it, and that the fitness

function is based on queuing theory [36]. Their system alternates back and forth between the two

problems till equilibrium is achieved, after which the final output of development time is compared

to a supplied deadline. If the deadline isn’t met, rethinking staffing is recommended. In addition

to this, simulation for different project scenarios (involving reworking and/or abandoning parts of

the project) is also undertaken. The estimation model is not specified. An empirical study was

conducted on a massive Y2K maintenance intervention conducted on a large financial software

system from a European financial organization. Using this study they were able to demonstrate

the ability of their scheme of being able to find an optimal or near-optimal solution, and hence

reduce development time. A followup study was conducted [3] where hill climbing and simulated

annealing were also used, and the results from all three algorithms were compared. GA was found

to more efficient in finding the best solution; however, is was also found that the simpler methods

(hill climbing, simulated annealing) also eventually caught up to GA given additional iterations.

In [52], case-based reasoning is used for predicting project effort. The method used for this,

“Angel”, was used on the “Finnish” data set. This data set is comprised of 407 cases, each described

by 90 features. It should be noted that these features aren’t COCOMO features, rather they are

specific to that particular dataset. It should also be noted that the COCOMO model, and standard

models in general, are criticized as being too specific to the data set that they are derived from.

In this study, feature subset selection is used in order to determine the most significant features to

use in predicting the effort. In order to do that, three search based methods were used: Random

Search (RS), Hill Climbing (HC), and Forward Sequential Selection (FSS). While they all reduce

the error rates compared to using all the features, HC and FSS produced the best results, with FSS

edging out HC due to its quicker performance and more stable results.

34

Software testing

In [8], the authors are using evolutionary testing that’s based on genetic algorithms to generate test

data for software projects. The main point of the paper is exploring a testability transformation [41]

algorithm that allows the evolutionary testing system used to handle code with loop-assigned flags.

The system used was the Daimler Chrysler Evolutionary Testing System [47] running on top of the

Matlab Genetic and Evolutionary toolbox [72]. The empirical studies were conducted on several

code bases, one of which was a the code for a car navigation system.

In [18], a genetic algorithm based system is utilized in order to determine test cases where

a given real-time system is apt to failure, effectively stress testing such systems. Failure here is

defined as not being able to complete a time critical task within the time limits set for that task

to be completed. The testing system prototype is called the Real-Time Test Tool (RTTT), and is

based on using GAlib, a C++ genetic algorithm framework, and a POSIX compliant scheduler

that emulates single processor execution. RTTT was used in a case study on a generic avionics

platform that was a joint effort between the software engineering institute , the Naval weapons

center and IBM’s federal sector division. In this scenario and others, RTTT was found to be able

to automatically generate test cases that were able to stress real-time systems. Note that a single

GA execution run under this system took a mean time of 46.5 minutes.

In [54], regression testing and test case prioritization are the tasks being tackled. Test case

prioritization is conducted due to the lack of enough resources to run all the regression test cases

available for a project, and in order to improve the effectiveness of the regression tests being

used. The main purpose of the paper is to compare several algorithms in there ability to generate

prioritized test cases. The algorithms compared were greedy, additional-greedy, 2-optimal, hill

climbing, and genetic algorithms. The first three are greedy algorithms that might settle for a

local minimum solution. Three fitness functions were utilized and involved a percent measure of

coverage of certain code aspects. After conducting empirical studies on code bases of varying

sizes and with varying availability of test suites, it was found that plain greedy search performed

35

the worst, while all the other algorithms performed very closely to each other.

Automated maintenance

The authors of [66] use a tool called “Bunch” in order to generate abstract high level representa-

tions of software. It does so by clustering module dependency graphs (MDG) using a search algo-

rithm that is integrated within Bunch to examine a small subset of all possible clustering outcomes.

The algorithm used within Bunch is hill climbing, with the option of using simulated annealing to

avoid getting stuck in local optima. Note that the MDG’s are produced by other language specific

tools, making Bunch language independent. However, due to the nature of the algorithms used,

the clustering results aren’t always identical, and it isn’t always clear why MDG’s are clustered

the way they are, sometimes requiring user intervention to clear things up a bit. Case studies are

demonstrated on the dot graphing tool, the korn shell and a proprietary AT&T file system, showing

how it is possible using the tool to generate a high level abstraction of the software. This is ulti-

mately meant to facilitate software maintenance on software engineers by giving them an overview

of the software that is simpler to understand.

Automated refactoring of code is explored in [70]. This refactoring is aimed at simplifying

software maintenance by increasing flexibility, reusability and understandability according to the

Object-Oriented Design Quality Assessment (QMOOD) [7]. A system called CODe-Imp was de-

veloped which uses the Java program model (JPM) to assess legal refactoring that is to be applied

to the abstract syntax tree (AST) of java 1.4 based programs. Possible types of refactoring include

moving fields and methods between the classes according to the hierarchy, and modifying the class

hierarchy by inserting or removing intermediate classes. There were three search methods used by

this system: First-Ascent Hill Climbing (HC1), Steepest-Ascent Hill climbing (HC2), and Simu-

lated Annealing (SA). In empirical testing, it was found that all three search methods generated

quality improvements, with slightly different results. HC1 was the least computationally intensive,

HC2had the most consistent results between runs, and SA producing the greatest improvement in

36

some cases. In addition, use of the reusability fitness function produced unsatisfactory results.

Other Applications

Several other applications of SBSE exist, amog those are the following:

• Requirements Engineering: The Multi-objective next release problem (MONRP) is tackled

for the first time in [81]. This is an extension from the next release problem [5], where

instead of having a single release requirement or several requirements that are considered

independent, there are multiple requirements that might conflict with each other. This is an

NP-hard problem with a set of possible solutions that are along a Pareto front. This front

needs to be defined so that a decision maker is able to pick an acceptable approximate Pareto

optimal solution. The search algorithms used in this study were Random Search, used as the

baseline sanity check, and three other algorithms based on genetic algorithms (GA). These

were Single-Objective GA, Pareto GA, and Non-dominated Sorting GA II (NSGA-II) [28].

In the empirical study, all the GA’s performed better than Random Search, and within the

smaller problem instances showed little difference between there results. However, in the

larger problem instances that have more requirements, NSGA-II outperformed the others in

being able to trace the Pareto front, and further widened the gap between it and Random

Search, while Single-Objective GA was better able to find the extreme ranges of the Pareto

front. So, it was demonstrated that solving MONRP is feasible.

• Compiler Optimization: Cohen et al. [23] attempts to improve garbage collection for multi-

threaded applications by clustering threads and creating sub-heaps for each cluster of threads,

while maintaining a shared heap among all the thread clusters. The premise is that this will

aid in parallelizing garbage collection, while at the same time allowing this method to scale

better than providing a heap for every individual thread for very highly threaded programs.

The clustering system used is based on hill climbing, and uses thread dependency graphs to

37

cluster the threads together. The empirical study was conducted on a peer-to-peer file sharing

distributed application based on the .Net platform. By clustering the threads, the size of the

shared heap was reduced by up to 30%, thus contributing to parallelizing garbage collection

and increasing its efficiency.

• Quality Assessment: In [17], an approach is proposed to enhance predictive accuracy of

software quality by reusing expertise from a several experts, and combining them to form

an expert with the optimal predictive accuracy. This approach is modeled as an optimization

problem in a large solution space, making it suitable for meta-heuristic search algorithms

such as simulated annealing (SA) and genetic algorithms (GA). Both of those algorithms are

used in the studies conducted in this paper, with empirical studies conducted on the JAVA

API classes. Note that the specific aspect of software quality that is explored is object ori-

ented software stability, where the quality metrics used to define this are dependent on the

attributes of the software code base. The experts are modeled as Bayes Classifiers. Each ex-

pert is broken up into “expertise chunks” by limiting the input space. These chunks are then

combined and modified to increase the final predictive accuracy. The search algorithm is re-

sponsible for choosing the chunks, where the fitness function used is the predictive accuracy.

The resulting combined expert was shown to be better than any individual expert in terms

of predictive accuracy. This showed that even bad experts have good expertise to contribute,

where a correlation was shown between the accuracy and the amount of experts used to form

the final expert. It was also shown through this study that SA performed comparably to GA,

while being slightly quicker.

2.4 Moving on

The reader may wonder why we use a stochastic methods to explore project options. Would not

a simpler method suffice? For example, in the case of linear models that have been precisely

38

26 inputs 3 outputs
schedule

rely plex ksloc . . . pcap time aa effort risk defects
5 1 118.80 . . . 5 3 5 2083 69 0.50
5 1 105.51 . . . 1 3 5 4441 326 0.86
5 4 89.26 . . . 3 5 3 1242 63 0.96
5 2 89.66 . . . 1 4 5 2118 133 2.30
5 1 105.45 . . . 2 4 5 6362 170 2.66
5 3 118.43 . . . 2 6 2 7813 112 4.85
5 4 110.84 . . . 4 4 4 4449 112 6.81

. . .

Figure 2.27: XOMO output from [62]. Looking at the first and third lines of results, notice how
even though changing project parameters manages to reduce the effort, defects almost doubles.

tuned using local data, it is a simple matter to check if a combination of internal changes improve

the project estimates. Many of the relationships inside the COCOMO model, as well as its sister

models, are linear. For such models, “what- if” queries require just a simple linear extrapolation

to assess the relative effectiveness of some combination of internal changes.

Unfortunately, not all tunings are precise. Sometimes, even after tuning, the gradient of the

relationships may not be known with certainty. One example is the COCOMO effort model pre-

dictions being affected linearly and exponentially by two features a, b. We showed above in §2.2

the Baker result [6] that shows that even with tuning data, variance of the parameters, and the MRE

of the resulting estimates, can be very large.

Another drawback with simplistic linear extrapolation is that, when optimizing for effort and

time and defects and threats, there may be contradictory effects. For example, Figure 2.27 shown

below shows several results, produced by XOMO in subsubsection 2.3.1, where the change in

effort doesn’t transfer to the same amount of change in defects. Hence, optimizing our models is

not a simple matter of moving fixed distances over some linear effect; there are also some trade-offs

to be considered.

Figure 2.27 demonstrates how managing the estimates in one of the models does not necessarily

translate to the estimates of all the other models. One instance that demonstrates this is comparing

39

the last and the second row of Figure 2.27, where plex is reduced from high(4) to very low(1). In

this instance defects is vastly reduced, threat increases drastically, and effort maintains its levels.

Stochastic, AI search, algorithms are able to solve for such non-linear problems and escape from

local minima/maxima, while also finding solutions faster than complete search, and for larger

problems [67].

Since we failed to generate precise tunings that yield exact estimates, and given the need to

consider combinations of effects, we considered a change in our research goals. In our attempt to

find stable conclusions within the space of options provided to us, we created XOMO and were

able to achieve that as presented briefly in subsubsection 2.3.1. However, XOMO proved to be

too slow, taking as much as 30 minutes to rank features [58]. In addition, it was very hard to

maintain and customize the tool, and we were unable to explore the internal variance of the model

tunings using XOMO. This drove us to attempt to embrace this variance within the models and use

it to our advantage [58, 60] by developing and using another faster, more maintainable and more

customizable tool that uses an AI search algorithm to attempt to find stable conclusions. We called

this tool STAR.

40

Chapter 3

STAR and Internal Studies

3.1 The Fitness Function and Heuristic Modifications

When evaluating possible solutions with SA, better solutions have lower score, referred to here as

“energy”. The fitness function defines the energy E such that E ≥ 0 and lower values are better.

This fitness function is here defined as the distance to the origin of the 4-D space composed of

effort (E f), defects (De), threats (T h), and development time (Mo). For our purposes, we model :

RD = relyde f ect(RELY−3)

(3.1)

E =

(√
(E f∗α)2+(De∗(β+RD))2+(T h∗γ)2+(Mo∗δ)2

)
√

α2+(β+RD)2+γ2+δ2
(3.2)

Here, x is a normalized value 0 ≤ x−min(x)
max(x)−min(x) ≤ 1. Hence, our energy ranges 0 ≤ E ≤ 1 and

lower energies are better. α, β, γ, and δ are the weighting factors for the different models, all

set to 1 by default. relyde f ect is a constant that defines a relationship between RELY and the

defect model: as RELY increases, the weighting of the defect model increases as well. The default

41

setting for relyde f ect is 1.8. Initially, this seems like a magic number; however this setting was

intentionally chosen such that, as rely varies from its minimum to maximum ratings of very low(1)

to very high(5), the RD weight factor changes by about a factor of ten as is demonstrated below.

RD(rely = 1) = 1.81−3 = 0.31

RD(rely = 5) = 1.85−3 = 3.24

In addition to the above, we implemented additional heuristic modifications to the models relating

to the defect reduction measures in the COQUALMO model. These modifications where imple-

mented in the form of loop-backs, which modify the rely and the tool model attributes in the

following manner:

rely = rely+(aa−3 > 0?aa−3 : 0)

+(ett−3 > 0?ett−3 : 0)

+(peer−3 > 0?peer−3 : 0)

(3.3)

tool = tool +(aa−3 > 0?aa−3 : 0)

+(ett−3 > 0?ett−3 : 0)
(3.4)

In Equation 3.3 and Equation 3.4, aa, ett and peer are automated analysis, execution-based

testing, and peer reviews as indicated by Figure 2.1. The equations are written in C style for

simplification. For example, (aa−3 > 0?aa−3 : 0) is equivalent to the following:

if (aa > nominal)

return aa-3;

else return 0;

These loop-backs attempt to model a logical relationship that exists between the defect reduction

measures and the reliability and development and testing tools used in the development of the

42

software project. The general reasoning is that, as the rating of defect reduction measures increase,

this automatically means that rely and tool are more highly rated. As a counter example, it doesn’t

make sense for tool to be rated at very low while at the same time aa and ett are rated at very

high, since this inherently indicates that development and testing tools are being heavily used by a

project.

The following is an example of how this would work. Assume that tool is set at low (2),

and aa and ett at set at high (4). This will modify the rating of tool in the following manner:

tool = rating(tool)+[rating(aa)− rating(nominal)]+[rating(ett)− rating(nominal)] = 2+[4−

3]+ [4−3] = 4, i.e. tool would be set to high. Note that for the above two attributes, the values are

restricted in accordance to the default model limits shown in Figure 2.13 as well as the limits set

by the projects. This means that rely and tool can never exceed 5, which corresponds to a rating of

very high.

With the above fitness function applied to the search stage (i.e. the Simulated Annealing stage)

in STAR, this stage constrains all the features. For this reason feature subset selection is very

important to explore and trim non-essential features in order to produce succinct policies. Before

we can remove non-essential features, we must first rank them according to their effectiveness.

3.2 Ranking Method: Support-Based Bayesian Ranking with

“BORE”

BORE [22] (short for “best or rest”) divides numeric scores seen over K runs and stores the top

10% in best and the remaining 90% scores in the set rest (the best set is computed by studying the

delta of each score to the best score seen in any era). It then computes the probability that a value is

found in best using Bayes theorem. The theorem uses evidence E and a prior probability P(H) for

hypothesis H ∈ {best,rest}, to calculate a posteriori probability P(H|E) = P(E|H)P(H) / P(E).

This ranking method is the default ranking method used in STAR, and is hence used in all the

43

subsequent experiments that were conducted. STAR ranks the feature ranges seen in K runs of a

simulated annealer by dividing the K runs into:

• Best: those associated with the BEST% solutions (i.e. those with the BEST% least energy);

• And the rest (i.e. the other 100-BEST% of solutions).

It then computes the probability that a range is found in best using Bayes’ Theorem. Informally,

the theorem says next = old ∗ new i.e. what we’ll believe next comes from how new evidence

effects old beliefs. More formally:

P(H|E) = P(E|H)P(H) / P(E) (3.5)

i.e. using evidence E and a prior probability P(H) for hypothesis H ∈ {best,rest}. The theorem

calculates a posteriori probability P(H|E). Simple Bayes classifiers are often called “naive” since

they assume independence of each feature. While this assumption simplifies the implementation

(frequency counts are required only for each feature), it is possible that correlated events are missed

by this “naive” approach. Domingos and Pazzini show theoretically that the independence assump-

tion is a problem in a vanishingly small percent of cases [31]. This explains the repeated empirical

result that, on average, seemingly naive Bayes classifiers perform as well as other seemingly more

sophisticated schemes (e.g. see Table 1 in [31]).

When applying the theorem, likelihoods are computed from observed frequencies, then normal-

ized to create probabilities (this normalization cancels out P(E) in 3.5, so it need not be computed).

For example, after K = 10,000 runs are divided into 1,000 lowest 10% best solutions and 9,000

rest, the range rely = vh might appears 10 times in the best solutions, but only 5 times in the rest.

Hence:

44

E = (reply = vh)

P(best) = 1000/10000 = 0.1

P(rest) = 9000/10000 = 0.9

f req(E|best) = 10/1000 = 0.01

f req(E|rest) = 5/9000 = 0.00056

like(best|E) = f req(E|best) ·P(best) = 0.001

like(rest|E) = f req(E|rest) ·P(rest) = 0.000504

P(best|E) =
like(best|E)

like(best|E)+ like(rest|E)
= 0.66 (3.6)

Previously [22] we have found that 3.6 is a poor ranking heuristic since it is distracted by low

frequency evidence. For example, note how the probability of E belonging to the best class is

moderately high even though its support is very low; i.e. P(best|E) = 0.66 but f req(E|best) =

0.01.

To avoid such unreliable low frequency evidence, we augment 3.6 with a support term. Support

should increase as the frequency of a range increases, i.e. like(x|best) is a valid support measure.

STAR hence ranks ranges via

P(best|E)∗ support(best|E) =
like(x|best)2

like(x|best)+ like(x|rest)
(3.7)

3.3 The STAR Algorithm

To apply 3.7, STAR runs in six phases. In terms of standard machine learning theory, step 1

generates a training set; steps 2,3,4 do some generalizations; and step 5 tests the learned theory on

data not seen during training.

Incremental decision making is an important property of STAR. Observe how, in Figure 4.7,

50% of the score reduction arises from around 15% of the decisions. If a manager cannot imple-

ment all STAR’s recommendations and a 50% reduction is adequate, she might elect to use just

45

these top 15% decisions. That is, STAR not only makes R recommendations, it also reports on the

value of just applying just some subset of r ⊆ R.

1. SAMPLE: To sample the ranges from the models, STAR runs the simulated annealer K1 times.

Note that here, we sample across the ranges of all the attributes. While most of the time

we sample randomly across the range, we also have a heuristic optimization called extreme

sampling. This form of sampling works in the following manner: for x% (x is set to 5

by default), STAR samples only the extremums of the attributes. SEESAW, presented in

subsubsection 2.3.1, was inspired by the effectiveness of this optimization, and implements

it 100% of the time.

2. DISCRETIZE: The data seen in the K1 samples is then discretized into D = 10 bins. Dis-

cretization converts a continuous range into a histogram with n break points b1 . . .bn where(
∀i < j : bi ≤ b j

)
. After discretization, many observations can fall into the same range be-

tween bi and bi+1 at frequency counts ci. This study used equal width discretization; i.e.

∀i, j : (bi−bi−1) =
(
b j−b j−1

)

3. CLASSIFY: The ranges are then classified into those seen in BEST% best or rest.

4. RANK: The ranges are then ranked in increasing order using Support-Based Bayesian Ranking

§3.2.

5. PRUNE: Also called the back select stage. STAR runs K2 experiments with the models where

the top ranked ranges 1..X ranges are pre-set and the remaining ranges can be selected at

random.

6. REPORT: STAR returns the 1..X settings that optimize the best for the fitness function being

used according to the weights applied to effort, defects, development time, and threats. These

46

settings are determined by iterating back from the minimum point achieved towards the first

point that is statistically similar to the minimum point. This statistical difference is tested

via a standard t-test.

To run our experiments, we had to apply our engineering judgment to set the parameters. The

following are the default values:

K1 = 10,000,K2 = 1,000,D = 10,BEST = 10%

STAR is very much a multi-purpose tool that not only has inspired others tools, but was also

used in order to explore many problems in the software engineering world. Such problems include

the following:

• the importance of automated software engineering (ASE) tools

• the ability to estimate effort without the presence of model calibration data

• the efficacy of drastic change versus improving certain aspects of a project with in the

projects preset limits

• addressing the better-faster-cheaper, “pick any two”, problem and its implications

• the future of software engineering and exploring what policies are going to be needed

Using STAR we will attempt to address these problems and discuss some of the solutions that

STAR suggests.

3.4 Standard NASA Case Studies and Policies

STAR was tested on the four NASA case studies of Figure 3.1:

47

ranges values
project feature low high feature setting

prec 1 2 data 3
OSP: flex 2 5 pvol 2

Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
rely 3 5 tool 2

JPL data 2 3 sced 3
flight cplx 3 6

software time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418

ranges values
project feature low high feature setting

prec 3 5 flex 3
OSP2 pmat 4 5 resl 4

docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 1 4 tool 2
JPL data 2 3 sced 3

ground cplx 1 4
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Figure 3.1: The four NASA case studies. Numeric values {1, 2, 3, 4, 5, 6} map to {very low, low,
nominal, high, very high, extra high}.

• OSP: The Orbital Space Plane GNC prototype (a 1990s NASA system). OSP was an early

prototype for OSP2.

• OSP2: the guidance and navigation control system of a current NASA launch vehicle, under

development.

• FLIGHT/GROUND: these two are project templates used for nasa projects.

In Figure 3.1, values are fixed while ranges represent a space of options. The following obser-

vation can be made concerning the above projects: OSP2 constrains most of its features to fixed

values while OSP allows more variation in feature ranges. Flight and Ground are more like project

templates that, for the most part, enforce restrictions on the ranges of the project. OSP and OSP2

and both considered “Flight” projects.

48

strategic? tactical?
scale prec: have we done this before? 3
factors flex: development flexibility 3
(exponentially resl: any risk resolution activities? 3
decrease team: team cohesion
effort) pmat: process maturity 3

upper acap: analyst capability 3
(linearly pcap: programmer capability 3
decrease pcon: programmer continuity 3
effort) apex: analyst experience 3

plex: programmer experience 3
ltex: language and tool experience 3
tool: tool use 3 3
site: multiple site development 3 3

sced: length of schedule 3

lower rely: required reliability
(linearly data: secondary memory storage requirements
increase cplx: program complexity 3 3
effort) ruse: software reuse 3 3

docu: documentation requirements 3 3
time: runtime pressure
stor: main memory requirements

pvol: platform volatility 3
hline COQUALMO aa: automated analysis 3 3
defect removal ett: execution-based testing tools 3 3
methods peer: peer reviews 3 3

Figure 3.2: The policy classifications of the variables of COCOMO, COQUALMO, and the
THREAT model.

In addition to the above, the policies need to be defined. The last two columns of Figure 3.2

show the results of Delphi panel session at JPL where the COCOMO variables were classified into

those tactical variables that can be changed within the space of one project, and those strategic

variables that required higher-level institutional change (and so may take longer to change). This

effectively defines 2 policies: strategic and tactical. For example, the panel declared that pmat

(process maturity) is hard to change within the space of a single JPL project. Specifying the use of

one policy or the other restricts the attributes explored in the back select “prune” part of the STAR

algorithm, and hence restricts the policies that can be used. These two analysis policies are used in

the following sections for different experiments. When the policy is not specified, this inherently

means that the experiment is using default analysis, i.e. all the attributes are being explored during

the pruning phase.

49

Model STAR Median STAR Spread Refrence Model Differece Difference%
COCOMO II 677.83 159.75 840.3 -162.47 -19.33
COQUALMO 540.39 313.22 417.25 +123.14 +29.51
Months 23.97 2.52 24.2 -0.23 -0.95
Threat 0 0 0 0 0

Figure 3.3: Sanity Checks: Showing the differences in estimates produced by STAR and the refer-
ence models

3.5 Sanity Checks

For the purpose of verifying that our system is valid in its estimations, we need to baseline it

against the reference implementations of the models that we are using to make sure that we obtain

ballpark estimates at least. For this purpose, a “Sanity” project was created that has all the effort

multipliers set to nominal, the scale factors set to extremely high, and the defect removal tools

left unset to allow STAR to be able to run. Note that these tools do not effect the COCOMO II

effort (person-months), the Months (development time), or the Threat estimates. For comparisons

with the reference COQUALMO model, the settings for the defect removal was set to the policy

produced by STAR. Figure 3.3 presents the results of this exercise, where the last column presents

the value of the percent difference between the Median result that STAR produces and the reference

results. Note that the reference implementations are an online form 1 for COCOMO II, threat and

Months and a USC Center of software engineering sourced excel file for COQUALMO.

Note that the results for STAR aren’t set in stone simply because of the stochastic nature of

the search that is conducted with in it, and because of the internal variation in model slopes that is

conducted within the model implementations in STAR. Inspecting the results of the above experi-

ment, we can see that the differences aren’t large enough to warrant concern, keeping in mind that

we aren’t adhering to the calibrated models that the reference implementations are.

1http://sunset.usc.edu/research/COCOMOII/expert cocomo/expert cocomo2000.html

50

Policy % Used Policy % Used
acap = 5 100 stor = 4 70
apex = 5 100 data = 3 60
flex = 6 100 time = 3.5 60
ltex = 4 100 data = 2.5 50
pcon = 5 100 cplx = 3.5 40
plex = 4 100 peer = 6 40
pmat = 3 100 stor = 3.5 40
rely = 5 100 pmat = 2.5 30
resl = 6 100 data = 2 20
site = 6 100 docu = 1.5 20
team = 6 100 pvol = 2.5 20
ett = 6 90 pvol = 4 20
pcap = 5 90 rely = 4.5 20
prec = 6 90 ruse = 2.5 20
aa = 6 80 pvol = 3 10
time = 4 80

Figure 3.4: Stability of the policies produced for running the flight project.

3.6 Stability and Performance

In addition to the necessity of verifying that the results of STAR are within the ballpark of stan-

dardized methods, we also need to verify that we have some degree of stability. For this purpose we

use two sample projects: one that is highly constrained (OSP) and one that is loosely constrained

(flight). STAR was run ten times for both, and then the policy results produced were compared.

Each of the projects were run through STAR ten times while using the all strategy, where all the

model features are included in the search to produce policies. Figure 3.4 and Figure 3.5 below

presents the percentage of times that a certain policy appears: the higher the percentage, the more

that is indicative of the stability of that policy.

As we can see, there is a high rate of stability with respect to the policies being produced

by STAR for these two sample projects. Any degree of instability that is indicated is a normal

occurrence given that the core algorithm used in STAR is a meta-heuristic search algorithm, and

also given that we are actively varying the internal parameters of the models used.

In addition to analyzing stability of the output of STAR in terms of the policies produced, we

can also analyze the stability in terms of the model estimates produced by STAR for the projects,

51

Policy % Used Policy % Used
aa = 6 100 pcon = 2.5 60
acap = 3 100 prec = 1.5 60
apex = 3 100 team = 2.5 60
ett = 6 100 tool = 2.5 60
flex = 5 100 apex = 2.5 40
ltex = 4 100 time = 3 40
pcon = 3 100 aa = 5.5 30
peer = 6 100 acap = 2.5 30
pmat = 4 100 stor = 3.5 30
prec = 2 100 docu = 4 20
resl = 3 100 ett = 5.5 20
team = 3 100 ruse = 2 20
tool = 3 100 sced = 2.5 20
cplx = 5.5 90 docu = 2.5 10
cplx = 5 80 ltex = 3.5 10
pmat = 3.5 80 resl = 2.5 10
sced = 2 80 sced = 3 10
ruse = 2.5 70 time = 4 10
time = 3.5 70

Figure 3.5: Stability of the policies produced for running the OSP project.

as well as the time performance of STAR. Note that these are times produced on a machine running

Ubuntu 8.04 with a 2.2GHz Intel Core 2 Duo processor and 2GB of RAM.

In Figure 3.6, “MinMed” indicates the median value of the corresponding estimate at the policy

point, while “MinSP” indicates the spread of the corresponding estimate. Looking at Figure 3.6,

we present the medians and the spreads of both the medians and the spreads of the estimates

produced at the policy points in STAR. As we can see above, the spreads of the medians are with

in acceptable limits, indicating a stability in estimates produced despite us varying the internal

parameters of the models. In addition, the performance of STAR is quick thanks to fine tuning the

parameters of the search. With regards to performance, we can also observe a correlation between

how much a project is constrained and how long it takes to produce results. While the performance

of the search part of the algorithm, indicated by “SATime”, is almost the same for both projects,

the total time is shorter for OSP. This suggests that the ranking and backselect times are dependent

on how constrained a project is. Note that in either case, STAR is achieving in under a minute what

took XOMO up to 30 minutes.

52

project Flight Stats
run 1 2 3 4 5 6 7 8 9 10 MEDIAN SPREAD
SATime(sec) 1.18 1.32 1.48 1.15 1.13 1.15 1.22 1.27 1.13 1.28 1.2 0.08
TotalTime(sec) 13.6 14.75 14.52 14.05 14.19 14.1 13.81 14.46 13.93 13.86 14.08 0.39
numPol 15 20 14 30 27 27 13 16 22 21 20.5 6.5
attNumber 15 19 14 23 22 22 13 16 19 18 18.5 3.5
MinMedEffort 101.79 86.69 115 51.12 78.88 61.74 111.7 97.54 81.9 99.88 92.11 9.68
MinSpEffort 56.82 49.52 71.55 29.24 41.9 36.09 61.22 65.83 51.32 64.39 54.07 10.32
MinMedDefects 147.23 24.46 168.6 28.52 34.07 22.6 101.8 66.61 42.9 66 54.45 47.35
MinSpDefects 117.25 16.85 129.41 16.88 23.11 14.97 79.06 42.5 31.32 44.82 36.91 42.15
MinMedThreat 0 0 0 0 0 0 0 0 0 0 0 0
MinSpThreat 0 0 0 0 0 0 0 0 0 0 0 0
MinMedMonths 13.97 13.44 15.54 11.55 12.96 12.08 14.4 14.22 13.09 14.48 13.7 0.69
MinSpMonths 2.39 2.23 2.94 1.73 2.13 2.08 2.41 2.79 2.45 2.72 2.4 0.32
project OSP Stats
run 1 2 3 4 5 6 7 8 9 10 MEDIAN SPREAD
SATime(sec) 1.21 1.47 1.21 1.25 1.17 1.2 1.14 1.21 1.22 1.2 1.21 0.01
TotalTime(sec) 8.98 8.86 8.78 8.88 8.66 8.39 8.84 8.74 8.62 8.79 8.79 0.07
numPol 29 20 20 16 27 17 29 21 25 27 23 4
attNumber 19 17 16 16 18 16 18 17 18 18 17.5 0.5
MinMedEffort 516.9 578.42 613.46 564.39 658.75 499.31 648.82 575.46 722.7 543.94 576.94 71.88
MinSpEffort 116 140.28 137.78 159.23 159.14 109.52 131.51 138.18 153.13 126.3 137.98 15.15
MinMedDefects 307.68 249.06 263.7 259.33 215.12 205.38 335.27 245.82 247.84 259.82 254.2 9.51
MinSpDefects 80.7 69.39 79.47 74.39 52.58 50.47 91.32 75.22 66.13 72.06 73.22 6.25
MinMedThreat 3.36 3.42 6.96 5.25 2.6 0 3.46 2.87 4.17 0 3.39 0.78
MinSpThreat 0.33 6.22 4.61 3.28 1.15 0 6.26 3.15 6.63 3.45 3.36 2.86
MinMedMonths 22.64 24.05 24.29 29.28 27.19 23.38 25.09 28.33 25.71 23.23 24.69 2.5
MinSpMonths 2.44 2.83 2.97 3.53 3.4 2.86 2.73 3.03 2.86 2.37 2.86 0.17

Figure 3.6: Performance statictics of STAR runs on the Flight and OSP projects.

3.7 STAR vs. LC

LC is a standard tuning/estimation method presented in §2.2. This method is dependent on local

data to generate the tunings and estimates. We seek to investigate whether STAR can generate

estimates of similar quality to LC. If this is achieved, it will allow us to bypass the the data drought

issue, while at the same time adding validation to using AI search for software process control.

Note that the same study was done by Menzies et. al [59].

3.7.1 Experiments

Figure 3.1 shows various Pro jects expressed in term of f loating and f ixed variables. For example,

with JPL’s flight systems, the rely (required reliability) can float anywhere in the upper range; i.e.

rely ∈ {3,4,5}. However, for flight systems, sced (schedule pressure) is tightly defined (so sced is

53

fixed to the value 3).

For this section, we will be looking at the four case studies of Figure 3.1, plus a fifth study

called “ALL” that uses the entire range COCOMO attributes, unconstrained by a particular project

specification. Each study was repeated twice- one for controlling just the strategic variables and

once for controlling just the tactical variables. This resulted in ten experiments. The results of

the experiments are presented later in Chapter 4. for the purposes of this section, all that was

needed were simulations that were run at the policy point of the particular case. The results of

these simulations were used to create the STAR MRE graphs.

For each of the cases, the following procedure was repeated 20 times. Ten examples were

removed at random and Boehm’s local calibration (LC) procedure [11, p526-529] was used to

train a COCOMO model on the remaining Pro ject examples. LC’s estimates were then compared

to the estimates generated by STAR’s simulation at the policy point (i.e. floating over both the

policy and the Model ranges). Figure 3.8 show the median difference in the estimates generated

by LC and STAR . Note that, in all the cases, the difference is under 35%. This result is confirmed

by the plots in Figure 3.7, where it is evident that for all the cases, the MRE plots for star are close

to the corresponding plots for LC. Also notice that, for all the plots, STAR’s MRE never exceeds

100%. This shows that the difference between STAR and LC is never excessively high, where

STAR generates estimates in the ball park of LC’s estimates.

3.7.2 Discussion

The Above result presented by STAR is very interesting in that, even without any calibration data,

and with only a realization of the space of those tunings, STAR was able to generate estimates

similar to the estimates generated by LC. Keep in mind the LC works with local tuning data, and

really is expected to do better. This result introduces us to the ability and effectiveness of STAR,

and search based methods, to manage uncertainty in the absence of local data.

How are we to explain the remarkable effectiveness of STAR in managing uncertainty? Re-

54

 0.001
 0.01

 0.1
 1

 10
 100

 1000

star
LC

 0.01
 0.1

 1
 10

 100
 1000

star
LC

 0.1
 1

 10
 100

 1000

star
LC

 0.01
 0.1

 1
 10

 100
 1000

star
LC

 0.01
 0.1

 1
 10

 100
 1000

star
LC

 0.1
 1

 10
 100

 1000

star
LC

 0.1
 1

 10
 100

 1000

star
LC

 0.1
 1

 10
 100

 1000

star
LC

 0.1
 1

 10
 100

 1000

star
LC

 0.1
 1

 10
 100

 1000

star
LC

Figure 3.7: Plots of the MREs of the effort estimates generated by LC (fat line) and STAR (thin
line). The ten plots are sorted in order of the median differences (shown in Figure 3.8). Within in
each plot, the results are sorted by the MRE of the estimated offered by LC or STAR. A log scale
is used for the y-axis.

case study control method δ %
OSP strategic 21.78
ground tactical 22.17
All strategic 22.95
All tactical 23.14
ground strategic 23.38
flight tactical 25
OSP2 strategic 26.6
OSP tactical 27.71
flight strategic 28.47
OSP2 tactical 32.07

Figure 3.8: Median δ = (estimate(STAR)− estimate(lc)) between effort estimates generated by
conventional means (LC) and STAR.

searchers in planning and theorem proving have recently shown that as model complexity grows,

other constraining effects may appear such as “master variables”; i.e. a small number of settings

that control all other settings [26, 79]. Such master variables can greatly reduce the search space

within large models.

We hypothesize that software process models also contain master variables; i.e. much much of

uncertainty in a model is due to the influence of a small subset of model variables. If so, then after

(a) ranking variables by their ability to constrain the output; and (b) applying a small number of the

55

top-ranked variables; then it should be possible to (c) make stable predictions in the constrained

space.

56

Chapter 4

NASA Experiments and Advanced ASE

Tools

In this chapter, we will present the anti-automation bias present in the software engineering com-

munity. This is followed by a study that attempts to argue against this bias by presenting a business

case for using automated software engineering (ASE) tools. Note that this study was initially con-

ducted for and reported in ASE’07: The business case for automated software engineering. [60]

4.1 Sociology vs. Tools

Much current ASE research concerns automatic analysis of source code or better execution-based

testing tools, These tools might, say, verify formal properties or search for the fewest regres-

sion tests that exercise most of the system. Some of these tools are ready for industrial use; e.g,

SPIN [44] or JPF [42], just to name a few.

We seeked to make the business case for introducing some of these new ASE tools into large

NASA projects. This case proved difficult to make, due to an anti-automation bias and the local

tuning problem.

57

The anti-automation bias was seen at an ICSE 2007 panel. Tim Lister (a co-author of Peo-

pleware [29]) commented that “sociology beats technology in terms of successfully completing

projects”- a notion endorsed by the other panelists. That is, software project managers should fo-

cus less on new ASE tools and more on managing the sociology aspects of their team (e.g. decrease

staff turnover).

Figure 4.1 offers some support for this bias. This figure shows the known relative productiv-

ity effects of changing project features. According to this figure, the benefits of automatic tools

(ranked number nine in the list) can be equaled or bettered via other means (e.g. any item 1 to 8 or

any pair of items 10 to 22).

Note that this support for the anti-automation bias is based solely on the development effort;

i.e. Figure 4.1 is blind to the impact of new ASE tools in reducing defects and any other threats

to the success of the project. A complete business case should therefore study predictors for effort

and defects and threats and schedule.

id features relative weight
1 Personnel/team capability 3.53
2 Product complexity 2.38
3 Time constraint 1.63
4 Required software reliability 1.54
5 Multi-site development 1.53
6 Doc. match to life cycle 1.52
7 Personnel continuity 1.51
8 Applications experience 1.51
9 Use of software tools 1.50
10 Platform volatility 1.49
11 Storage constraint 1.46
12 Process maturity 1.43
13 Language & tools experience 1.43
14 Required dev. schedule 1.43
15 Data base size 1.42
16 Platform experience 1.40
17 Arch. & risk resolution 1.39
18 Precedentedness 1.33
19 Developed for reuse 1.31
20 Team cohesion 1.29
21 Development mode 1.32
22 Development flexibility 1.26

Figure 4.1: Relative effects of COCOMO attributes on development effort. Data from a regression
analysis of 161 projects [12].

58

4.2 NASA Experiments and ASE Tools

Before we can assess the relative merits of new ASE tools versus other methods, we must first

define “new ASE tools” and “other methods”. Such a definition can be achieved via the ontology

of COCOMO, COQUALMO, SCHEDULE, and THREAT, shown in Figure 2.1, and discussed in

§2.1. This figure lists a variety of project features with the range {very low, low, nominal, high,

very high, extremely high} or

{vl = 1, l = 2,n = 3,h = 4,vh = 5,xh = 6}

Lister’s sociological features occur many times within Figure 2.1. For example, team refers to the

sociology within a development team and its cohesiveness while pcon refers to the staff turnover

rate within a project. Also listed in Figure 2.1 are factors like acap, pcap representing analyst and

programmer capabilities (respectively).

As to technological features, new ASE tools appear as execution-based testing tools (ett) and

automated analysis (aa). Chulani [30] defines the top half of automated analysis as:

4 (high): intermediate-level module and inter-module code syntax and semantic analysis. Sim-

ple requirements/design view consistency checking.

5 (very high): More elaborate requirements/design view consistency checking. Basic distributed-

processing and temporal analysis, model checking, symbolic execution.

6 (extremely high): Formalized1 specification and verification. Advanced distributed process-

ing and temporal analysis, model checking, symbolic execution.

The upper half of execution-based testing and tools is:

4 (high): Well-defined test sequence tailored to organization (acceptance / alpha / beta / flight

/ etc.) test. Basic test coverage tools, test support system.
1Consistency-checkable pre- conditions and post-conditions, but not necessarily mathematical theorems.

59

5 (very high): More advanced test tools, test data preparation, basic test oracle support, dis-

tributed monitoring and analysis, assertion checking. Metrics-based test process manage-

ment.

6 (extremely high): Highly advanced tools for test oracles, distributed monitoring and anal-

ysis, assertion checking Integration of automated analysis and test tools. Model-based test

process management.

A review of recent proceedings of the IEEE ASE conferences suggests that a range of five or

six in the above features includes the kind of “new ASE tools” we mean to explore in this section.

Hence, to compare “new ASE tools” to “other methods”, we will try to reduce effort and defects

and development time and threats using just

automated analysis ∈ {5,6} ∨

execution-based testing and tools ∈ {5,6}

or “other methods” (i.e. other ranges of Figure 2.1).

We ran STAR over the projects specified in Figure 3.1 using the default, strategic and tactical

(defined in Figure 3.2 and §3.4) policies in defining controlable model features. Note that the

ALL project is basically defined as an open ended project with no preset limits on the ranges or

values of the model attributes. Hence, the ranges for all the default ranges of the models, defined

in Figure 2.13.

The lists at the bottom of Figure 4.2 through to Figure 4.16 show how Equation 3.7 ranked

the various project decisions that, according to STAR and the fitness function expressed in Equa-

tion 3.2, achieve the best balance of reducing the various model estimates given the used weights.

These ranks correspond to the X-axis of the plots at the top of that figure. “Median” plots the

60

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008

 0 50 100 150 200 250

E
ne

rg
y

median
spread

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0 50 100 150 200 250

D
ef

ec
ts

median
spread

 0
 500

 1000
 1500
 2000
 2500
 3000

 0 50 100 150 200 250

E
ffo

rt

median
spread

 0
 1
 2
 3
 4
 5
 6

 0 50 100 150 200 250

T
hr

ea
t

median
spread

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0 50 100 150 200 250

M
on

th
s

median
spread

X feature = range
1 rely = 5
2 pcap = 5
3 acap = 5
4 ltex = 5
5 pmat = 6
6 site = 6
7 resl = 6
8 flex = 6
9 team = 6

10 plex = 5
11 prec = 6
12 automated-analysis = 6 NN
13 apex = 5
14 tool = 5
15 pcon = 5
16 execution-testing-and-tools = 6 NN
17 time = 3.5
18 apex = 4.5
19 acap = 4
20 sced = 2.5

Figure 4.2: Default analysis: ALL results.

50% percentile of the defect/ effort/ schedule/ threat values seen after imposing ranges 1..X (and

selecting all other ranges at random). “Spread” shows the 75%-50% percentile range. These plots

are U-shaped:

• On the left-hand-side of each plot, poor results were seen after applying too few constraints.

That is, models perform poorly if we do not control them enough.

• On the right-hand-side of each plot, poor results were also seen. In terms of Equation 3.7 ,

these are the ranges with low support and low probability of belonging to best class. Hence,

it is not surprising that applying these superfluous constraints was counter-productive.

61

 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008

 0 20 40 60 80 100 120 140

E
ne

rg
y

median
spread

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0 20 40 60 80 100 120 140

D
ef

ec
ts

median
spread

 0
 500

 1000
 1500
 2000
 2500
 3000

 0 20 40 60 80 100 120 140

E
ffo

rt

median
spread

 0
 1
 2
 3
 4
 5
 6

 0 20 40 60 80 100 120 140

T
hr

ea
t

median
spread

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100 120 140

M
on

th
s

median
spread

X feature = range
1 acap = 5
2 pcap = 5
3 apex = 5
4 site = 6
5 tool = 5
6 pmat = 6
7 prec = 6

Figure 4.3: Strategic analysis: ALL results.

The policies that recommend new ASE tools in the plots are designated by the “N N” symbol

next to them.

Observing the plots and the policies in Figure 4.2 through to Figure 4.16, there are several

observations we can make. These are global observations which seem to apply across the board

for every one

• For all the models, except threat, the plots have a U-shape with different degrees if concavity.

For these plots, we can also notice that not only are the medians of the estimates being

reduced, but that also the spreads are being reduced as well. Also, these spread curve never

seem to excessively exceed the medians in any of the project/policy combinations. This

implies that through STAR we are able to control the model estimates and consistently reduce

them with varying degrees.

• The policies achieved automatically in STAR always include a very low percentage of all the

possible recommendations in the search space. One example is Figure 4.4, where the policy

62

 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008

 0 20 40 60 80 100 120 140

E
ne

rg
y

median
spread

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0 20 40 60 80 100 120 140

D
ef

ec
ts

median
spread

 0
 500

 1000
 1500
 2000
 2500
 3000

 0 20 40 60 80 100 120 140

E
ffo

rt

median
spread

 0
 1
 2
 3
 4
 5
 6

 0 20 40 60 80 100 120 140

T
hr

ea
t

median
spread

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0 20 40 60 80 100 120 140

M
on

th
s

median
spread

X feature = range
1 resl = 6
2 ltex = 5
3 site = 6
4 plex = 5
5 tool = 5
6 flex = 6
7 automated-analysis = 6 NN
8 peer-reviews = 6
9 pvol = 5

10 execution-testing-and-tools = 6 NN
11 cplx = 1.5
12 sced = 2.5

Figure 4.4: Tactical analysis: ALL results.

contains 12 total recommendations. The search space in this case is about 140 recommen-

dations, making the policy include about 8.6% of the total space of recommendations. This

suggests that STAR is indeed capable of vastly reducing the space of possible recommenda-

tions that a manager can chose from.

• The initial rapid decrease in the estimate curves, compared to the gradual increase in these

curves as superfluous recommendations are added to the list. This suggests that we are able

to control, and initially drastically reduce (especially for less constrained projects), the model

estimates by controlling a subset of the features in those models. This supports the concept

of having “collar” features, which in turn supports our approach in selecting a subset of these

features to be included in policy recommendations.

• The top ranked recommendations produced by STAR always have values that exist on ex-

63

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012

 0 20 40 60 80 100 120 140 160 180

E
ne

rg
y

median
spread

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160 180

D
ef

ec
ts

median
spread

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 20 40 60 80 100 120 140 160 180

E
ffo

rt

median
spread

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 20 40 60 80 100 120 140 160 180

T
hr

ea
t

median
spread

 0
 5

 10
 15
 20
 25
 30
 35

 0 20 40 60 80 100 120 140 160 180

M
on

th
s

median
spread

X feature = range
1 pmat = 3
2 rely = 5
3 ltex = 4
4 site = 6
5 team = 6
6 plex = 4
7 pcap = 5
8 pcon = 5
9 acap = 5

10 automated-analysis = 6 NN
11 stor = 3.5
12 resl = 6
13 data = 3
14 apex = 5
15 time = 4
16 stor = 4
17 flex = 6
18 time = 3.5
19 execution-testing-and-tools = 6 NN
20 ruse = 2.5
21 data = 2.5
22 prec = 6

Figure 4.5: Default analysis: flight results.

tremum of the range specified by the project. Note that it is this phenomenon that inspired

implementing extreme sampling (§3.3), as well as SEESAW [64].

Aside form the above general observations, we can also comment on the importance of ad-

vanced ASE tools. Note that, in all the policies except for one (that is for
14
15

of the cases), ad-

vanced ASE tools are being recommended in one form or the other. It should also be noted that,

64

 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009
 0.01

 0.011
 0.012

 0 20 40 60 80 100 120

E
ne

rg
y

median
spread

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120

D
ef

ec
ts

median
spread

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 20 40 60 80 100 120

E
ffo

rt

median
spread

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 20 40 60 80 100 120

T
hr

ea
t

median
spread

 0
 5

 10
 15
 20
 25
 30
 35

 0 20 40 60 80 100 120

M
on

th
s

median
spread

X feature = range
1 pmat = 3
2 site = 6
3 pcap = 5
4 pcon = 5
5 acap = 5
6 automated-analysis = 6 NN
7 apex = 5
8 execution-testing-and-tools = 6 NN
9 ruse = 2.5

10 prec = 6

Figure 4.6: Strategic analysis: flight results.

when ASE tools are recommended, they are always recommended at the highest levels available.

This results asserts that, not only are these tools important, but that it is also necessary to apply

them at their highest levels whenever they are recommended.

Another observation that can be made is that advanced ASE tools become more important as

a project becomes more constrained. “Constrained” here can be interpreted as more mature and

further down the development path, where more of the properties of the projects are buttoned down

and set. This can be seen through the policies in the different case studies. One example is how

advance ASE tools are ranked 6th and 8th in Figure 4.6 that presents that results of flight strategic,

while they are ranked at 1st , 2nd and 3rd in all the OSP2 case studies presented in Figure 4.14 to

Figure 4.16.

65

 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009
 0.01

 0.011

 0 20 40 60 80 100 120

E
ne

rg
y

median
spread

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120

D
ef

ec
ts

median
spread

 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 20 40 60 80 100 120

E
ffo

rt

median
spread

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 20 40 60 80 100 120

T
hr

ea
t

median
spread

 0
 5

 10
 15
 20
 25
 30
 35

 0 20 40 60 80 100 120

M
on

th
s

median
spread

X feature = range
1 site = 6
2 ltex = 4
3 plex = 4
4 execution-testing-and-tools = 6 NN
5 resl = 6
6 automated-analysis = 6 NN
7 flex = 6
8 peer-reviews = 6
9 ruse = 2.5

10 pvol = 4
11 cplx = 3.5

Figure 4.7: Tactical analysis: flight results.

66

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012

 0 20 40 60 80 100 120 140 160 180

E
ne

rg
y

median
spread

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160 180

D
ef

ec
ts

median
spread

 0
 100
 200
 300
 400
 500
 600
 700

 0 20 40 60 80 100 120 140 160 180

E
ffo

rt

median
spread

-1

-0.5

 0

 0.5

 1

 0 20 40 60 80 100 120 140 160 180
T

hr
ea

t

median
spread

 0
 5

 10
 15
 20
 25
 30
 35

 0 20 40 60 80 100 120 140 160 180

M
on

th
s

median
spread

X feature = range
1 rely = 4
2 site = 6
3 ltex = 4
4 pcon = 5
5 team = 6
6 resl = 6
7 plex = 4
8 prec = 6
9 flex = 6

10 stor = 4
11 acap = 5
12 pcap = 5
13 peer-reviews = 6 NN
14 pmat = 3
15 apex = 5
16 automated-analysis = 6 NN

Figure 4.8: Default analysis: ground results.

67

 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009
 0.01

 0.011
 0.012

 0 20 40 60 80 100 120

E
ne

rg
y

median
spread

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

 0 20 40 60 80 100 120

D
ef

ec
ts

median
spread

 0
 100
 200
 300
 400
 500
 600

 0 20 40 60 80 100 120

E
ffo

rt

median
spread

-1

-0.5

 0

 0.5

 1

 0 20 40 60 80 100 120

T
hr

ea
t

median
spread

 0
 5

 10
 15
 20
 25
 30

 0 20 40 60 80 100 120

M
on

th
s

median
spread

X feature = range
1 pcon = 5
2 site = 6
3 apex = 5
4 pmat = 3
5 execution-testing-and-tools = 6 NN
6 prec = 6

Figure 4.9: Strategic analysis: ground results.

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012

 0 20 40 60 80 100 120

E
ne

rg
y

median
spread

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

 0 20 40 60 80 100 120

D
ef

ec
ts

median
spread

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0 20 40 60 80 100 120

E
ffo

rt

median
spread

-1

-0.5

 0

 0.5

 1

 0 20 40 60 80 100 120

T
hr

ea
t

median
spread

 0
 5

 10
 15
 20
 25
 30

 0 20 40 60 80 100 120

M
on

th
s

median
spread

X feature = range
1 site = 6
2 ltex = 4
3 plex = 4
4 execution-testing-and-tools = 6 NN
5 resl = 6
6 flex = 6

Figure 4.10: Tactical analysis: ground results.

68

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 0 20 40 60 80 100 120

E
ne

rg
y

median
spread

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 20 40 60 80 100 120

D
ef

ec
ts

median
spread

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 20 40 60 80 100 120

E
ffo

rt

median
spread

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120

T
hr

ea
t

median
spread

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 20 40 60 80 100 120

M
on

th
s

median
spread

X feature = range
automated-analysis = 6 NN

1 pmat = 4
2 ltex = 4
3 acap = 3
4 execution-testing-and-tools = 6 NN
5 apex = 3
6 team = 3
7 pcon = 3
8 peer-reviews = 6
9 prec = 2

10 flex = 5
11 resl = 3
12 tool = 2.5
13 tool = 3
14 cplx = 5.5
15 sced = 2
16 cplx = 5
17 pmat = 3.5
18 acap = 2.5
19 team = 2.5
20 pcon = 2.5
21 prec = 1.5
22 time = 3.5

Figure 4.11: Default analysis: OSP results.

69

 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 0 10 20 30 40 50 60 70

E
ne

rg
y

median
spread

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 10 20 30 40 50 60 70

D
ef

ec
ts

median
spread

 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 10 20 30 40 50 60 70

E
ffo

rt

median
spread

 2
 4
 6
 8

 10
 12
 14
 16

 0 10 20 30 40 50 60 70

T
hr

ea
t

median
spread

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70

M
on

th
s

median
spread

X feature = range
1 automated-analysis = 6 NN
2 pmat = 4
3 acap = 3
4 execution-testing-and-tools = 6 NN
5 apex = 3
6 pcon = 3
7 peer-reviews = 6
8 prec = 2
9 tool = 2.5

10 tool = 3
11 cplx = 5.5
12 cplx = 5
13 pmat = 3.5

Figure 4.12: Strategic analysis: OSP results.

70

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0 10 20 30 40 50 60 70 80

E
ne

rg
y

median
spread

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 10 20 30 40 50 60 70 80

D
ef

ec
ts

median
spread

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 10 20 30 40 50 60 70 80

E
ffo

rt

median
spread

 1
 2
 3
 4
 5
 6
 7
 8

 0 10 20 30 40 50 60 70 80

T
hr

ea
t

median
spread

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70 80

M
on

th
s

median
spread

X feature = range
execution-testing-and-tools = 6 NN

ltex = 4
automated-analysis = 6 NN

tool = 3
flex = 5

peer-reviews = 6
resl = 3

sced = 2
cplx = 5
ruse = 2.5

Figure 4.13: Tactical analysis: OSP results.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0 10 20 30 40 50 60

E
ne

rg
y

median
spread

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50 60

D
ef

ec
ts

median
spread

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 10 20 30 40 50 60

E
ffo

rt

median
spread

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40 50 60

T
hr

ea
t

median
spread

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

M
on

th
s

median
spread

X feature = range
1 automated-analysis = 6 NN
2 execution-testing-and-tools = 6 NN
3 peer-reviews = 6
4 pmat = 5
5 ltex = 5
6 prec = 5
7 docu = 4
8 sced = 2.5

Figure 4.14: Default analysis: OSP2 results.

71

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0 5 10 15 20 25 30 35 40 45

E
ne

rg
y

median
spread

 0
 50

 100
 150
 200
 250
 300

 0 5 10 15 20 25 30 35 40 45

D
ef

ec
ts

median
spread

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 5 10 15 20 25 30 35 40 45

E
ffo

rt

median
spread

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30 35 40 45

T
hr

ea
t

median
spread

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 0 5 10 15 20 25 30 35 40 45

M
on

th
s

median
spread

X feature = range
1 automated-analysis = 6 NN
2 execution-testing-and-tools = 6 NN
3 peer-reviews = 6
4 prec = 5
5 pmat = 5

Figure 4.15: Strategic analysis: OSP2 results.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

 0 5 10 15 20 25 30 35 40 45 50

E
ne

rg
y

median
spread

 0
 50

 100
 150
 200
 250
 300

 0 5 10 15 20 25 30 35 40 45 50

D
ef

ec
ts

median
spread

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 5 10 15 20 25 30 35 40 45 50

E
ffo

rt

median
spread

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ea
t

median
spread

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45 50

M
on

th
s

median
spread

X feature = range
1 automated-analysis = 6 NN
2 execution-testing-and-tools = 6 NN
3 peer-reviews = 6
4 ltex = 5
5 docu = 4
6 peer-reviews = 5.5
7 docu = 3.5
8 sced = 3

Figure 4.16: Tactical analysis: OSP2 results.

72

project ALL OSP OSP2 flight ground
policies a s t a s t a s t a s t a s t

acap = 3 • •
acap = 4 •
acap = 5 • • • • •
apex = 3 • •
apex = 5 • • • • • •

aa = 6 • • • • • • • • • • • •
cplx = 2 •
cplx = 4 •
cplx = 5 • • •
cplx = 6 • •
data = 3 •

docu = 4 • •
ett = 6 • • • • • • • • • • • • •

flex = 5 • •
flex = 6 • • • • • •
ltex = 4 • • • • • •
ltex = 5 • • • •

pcap = 5 • • • • •
pcon = 3 • •
pcon = 5 • • • • •
peer = 6 • • • • • • • • •
plex = 4 • • • •
plex = 5 • •

pmat = 3 • • • •
pmat = 4 • •
pmat = 5 • •
pmat = 6 • •

Figure 4.17: Policies produced for the NASA projects, part 1

In addition to the above figures, we present Figure 4.17 and Figure 4.18. These two figures are

what we called braille charts, and aim to summarize the results of the studies in a more concise

fashion compared to the above figures. Using these charts, we can make the observation that, for

effort and months (development time), the reductions produced for less constrained projects are

much larger than those achieved for more constrained ones. In other words, we are able to exploit

the uncertainty within these less constrained projects to drive large improvements. This supports

the result expressed in [58], where it is stated that “if you fix everything, you have nothing else to

fix”. Defects reduction, on the other hand, are dramatic for all the cases, with the least reduction

brings down defects to 26% of its initial value, which can be attributed to the use of advanced ASE

tools.

Note that these studies seem to show that, even though the threat model seems to make sense

73

project ALL OSP OSP2 flight ground
policies a s t a s t a s t a s t a s t
prec = 2 • •
prec = 5 • •
prec = 6 • • • • • •
pvol = 4 •
pvol = 5 •
rely = 4 •
rely = 5 • •
resl = 3 • •
resl = 6 • • • • • •
ruse = 3 • • • •
sced = 2 • •
sced = 3 • • • •
site = 6 • • • • • • • • •
stor = 4 • •

team = 3 •
team = 6 • • •
time = 4 • • •
tool = 3 • • •
tool = 5 • • •
models percentage of original value
effort 5 21 24 54 68 63 78 93 83 9 19 26 13 41 36

defects 1 21 4 10 12 12 17 15 14 3 10 6 4 26 19
threat 0 0 80 69 108 70 0 0 0 0 0 0 0 0 0

months 32 57 54 70 86 79 92 94 94 40 57 59 44 73 67

Figure 4.18: Policies produced for the NASA projects, part 2. This figure also presents the differ-
ences produced by the policies

theoretically in managing and estimating risk, empirically is seems too insensitive to model inputs,

causing low (and usually non-existent) medians and high (and jumpy) spreads (threat never really

exceeds 20). The reason behind this is possibly the look-up table nature of this model, where

instead of progressive transitions, we have value jumps which are exhibited in a small area of

the look-up tables as shown in Figure 2.12. Due to this behavior, the threat model will not be

emphasized throughout this work. Future investigation into redefining or making this model more

effective is possible, but is outside the scope of this work.

In conclusion, social factors are indeed very important. However, advanced ASE tools shouldn’t

be neglected, especially for more defined and constrained projects.

74

Chapter 5

Expert Studies

5.1 JPL Studies

The purpose of this study is to observe how policy recommendations of STAR would change for

ground and flight projects at JPL over time. Through correspondence with Jarius Hihn from JPL

we were able to obtain past and current project specifications of flight and ground software projects

according to the COCOMO-II model. These specifications are indicated in Figure 5.1 through to

Figure 5.4. Note that here the data ranges that are presented for the different JPL projects are based

on actual project ranges from products that are merged together. However this is dependent on the

on the amount of sample projects available, and instances like ground 2000 in Figure 5.3 are due

to only having a single sample project for that type and time period. Aside from this exception,

the general trend for these project templates seems to be that older projects are more restricted

than newer ones, having more set values for attributes, as well as tighter ranges for some of these

attributes. This is a case of “20-20 hindsight”, where we know more about the more mature past

projects than the more recent projects.

In addition to the above project model descriptions, we were also given modified policy spec-

75

ranges values
project feature low high feature setting

prec 2 3 docu 3
flex 1 3
resl 3 4
team 3 4

JPL pmat 3 4
flight rely 4 5

software cplx 4 5
circa 2000 ruse 2 4

time 3 5
stor 3 4
acap 3 4.5
pcap 3 4
pcon 3 5
apex 3 4
plex 1 4.5
ltex 3 4
tool 2 4.5
site 2 6
Ksloc 10.21 294.39

ranges values
project feature low high feature setting

prec 1 5 docu 3
resl 2 3
team 2 6
pmat 2 4

JPL rely 3 4.5
flight cplx 3 6

software ruse 2 3
circa 1990 time 3 6

pvol 2 4
acap 2 5
pcap 3 5
pcon 1.5 5
plex 1 4
ltex 2 5
tool 1 3
site 2 6
docu 3 4
Ksloc 8 253.13

Figure 5.1: JPL flight circa 1990 and 2000

ranges values
project feature low high feature setting

pmat 1 3 prec 2
rely 4 5 flex 2
cplx 4 5 resl 2

JPL data 2 5 team 3
flight time 5 6 ruse 3

software stor 5 6 pcon 3
circa 1980 pvol 2 4 site 4

acap 3 5 docu 4
pcap 3 4
apex 2 4
plex 1 4
ltex 2 4
tool 1 2
sced 3 5
Ksloc 1.5 233

ranges values
project feature low high feature setting

rely 3 5 prec 2
cplx 2 6 flex 2
data 2 4 resl 2

JPL time 3 6 team 3
flight stor 4 6 pmat 3

software pvol 2 4 ruse 3
circa 1970 acap 4 5 pcon 3

pcap 4 5 site 4
apex 4 5 docu 4
plex 1 4
ltex 1 4
tool 1 2
sced 3 5
Ksloc 2.5 165

Figure 5.2: JPL flight circa 1970 and 1980

ifications that are catered to these flight and ground systems. These are indicated in Figure 3.2.

Note that the only difference in the specifications of the JPL flight and ground are in the tactical

policy, where ground tactical adds time and stor in the search space.

Figure 5.5 and Figure 5.6 present the results of the STAR analysis in the form of braille charts.

for the columns in these charts, “s” designates use of the strategic policy, while “t” designates

use of the tactical policy. In addition, for the projects, “f” and “g” indicate flight and ground

respectively, with the numbers following indicating which decade the particular project template

76

ranges values
project feature low high feature setting

sced 3 5 prec 4
flex 2
resl 3
team 4

JPL pmat 3
ground rely 3

software cplx 3
circa 2000 data 2

ruse 4.5
time 3
stor 3
pvol 2
acap 4
pcap 4
pcon 4
apex 5
plex 5
ltex 3
tool 1.5
site 4.5
docu 3
Ksloc 378.42

ranges values
project feature low high feature setting

prec 2 5.5
flex 2 5
resl 2 4
team 2 5

JPL pmat 2 4
ground cplx 2 5

software data 2 4
circa 1990 ruse 2 4.5

time 3 4
stor 3 4
pvol 2 4
acap 3 4.5
pcap 3 5
pcon 1.5 5
plex 2 5
tool 1 4.5
site 4 5
docu 2 5
Ksloc 10.5 900

Figure 5.3: JPL ground circa 1990 and 2000

ranges values
project feature low high feature setting

prec 2 6 ruse 3
flex 2 6 pcon 3
resl 2 6 site 4
team 3 6

JPL pmat 1 3
ground rely 2 5

software cplx 2 6
circa 1980 pvol 2 4

acap 3 5
pcap 3 5
apex 3 5
plex 2 5
ltex 3 4
tool 1 4
sced 2 5
docu 2 4
Ksloc 0.81 333

ranges values
project feature low high feature setting

prec 2 6 ruse 3
flex 2 6 pcon 3
resl 2 6 site 4
team 3 6

JPL pmat 1 3
ground rely 2 5

software cplx 3 6
circa 1970 stor 3 5

pvol 2 4
acap 3 5
pcap 3 5
apex 3 5
plex 1 4
ltex 3 4
tool 1 2
sced 2 5
docu 2 4
Ksloc 63 980

Figure 5.4: JPL ground circa 1970 and 1980

belongs to. Note that any project recommendations produced by STAR are rounded up.

There are several results here that can be observed. One of these is a result that confirms our

findings in Chapter 4 concerning the importance of advanced software engineering tools. Here,

the recommendation to use aa = 6 and/or ett = 6 appears
13
16

times, noting how only the highest

values available for these tools are recommended. In addition to this, we can also see how tool

77

project f00 f70 f80 f90 g00 g70 g80 g90
policies s t s t s t s t s t s t s t s t

acap = 4.0 • •
acap = 5.0 • • • • • • •
apex = 4.0 • • •
apex = 5.0 • • • •

aa = 6.0 • • • • • • • • • • •
cplx = 2.0 • •
cplx = 3.0 • •
cplx = 4.0 • • • • • •
cplx = 5.0 • • • •
docu = 3.0 • • •
docu = 4.0 • •

ett = 6.0 • • • • • •
flex = 2.0 •
flex = 3.0 •
flex = 5.0 •
flex = 6.0 • •
ltex = 3.0 •
ltex = 4.0 • • • • •
ltex = 5.0 • •

pcap = 4.0 • • •
pcap = 5.0 • • • •
pcon = 5.0 • • •
peer = 6.0 • •
plex = 4.0 • • • •
plex = 5.0 • • •

pmat = 3.0 • • •
pmat = 4.0 • • •
prec = 3.0 •
prec = 5.0 •
prec = 6.0 • •
pvol = 2.0 • •
pvol = 3.0 • •
pvol = 4.0 •

Figure 5.5: Policies produced for the JPL projects, part 1

is recommended across the board at its highest levels available to that particular project template.

This results implies that, no matter the time period or the development tools available, project

managers should seek to apply these tools at there highest levels available for that project.

Another result that can be observed is in the reductions that the recommendations produced

by STAR generate, and how that relates to how constrained projects are. Notice how the most

constrained projects (ground 2000, flight 1970 and 1980) have the least reductions. On the other

hand, the most unconstrained project (flight 1990) exhibits that largest reductions compared to the

initial estimates of that project template. This is a result that is also seen in Chapter 4, as well

as presented in a workshop paper by Menzies et. al [58], where it is observed that “if you fix

78

project f00 f70 f80 f90 g00 g70 g80 g90
policies s t s t s t s t s t s t s t s t

stor = 4.0 • •
time = 4.0 • • •
resl = 3.0 • •
resl = 4.0 • •
resl = 6.0 • •
ruse = 2.0 • •
ruse = 3.0 • •
sced = 2.0 • •
sced = 3.0 • • • • • •
sced = 4.0 • •
site = 5.0 • •
site = 6.0 • • • •
tool = 2.0 • • • • • •
tool = 3.0 • • • •
tool = 4.0 • •
tool = 5.0 • • • •
models percentage of original value
effort 51 40 76 52 65 75 25 29 81 78 45 34 45 49 43 58

defects 53 49 88 40 74 53 16 22 29 16 33 15 64 40 40 63
threat 00 00 00 00 00 70 00 00 00 00 00 00 00 00 00 00

months 79 63 89 64 86 85 62 60 91 92 77 71 77 65 74 65

Figure 5.6: Policies produced for the JPL projects, part 2. This figure also presents the differences
produced by the policies

everything, you have nothing else to fix”.

In the following section, we will present a study similar to this one, however applied to future

projects in order to study possible future trends in software engineering. Also, the project templates

themselves are meant to be more descriptive of software engineering practices at large and how

leading experts see that field progressing in the medium term.

5.2 Futures

5.2.1 Data Collection

In this section we will describe how data was collected in order to provide some insight on future

trends in the software industry. That will be followed with presenting the results of this data

collection and how those were used in STAR.

The panel meeting was conducted during ICSE 2008 on May 13. Figure 5.7 are photos of this

79

Figure 5.7: Pictures of the panel at ICSE 2008.

feature setting feature setting
aa 3 tool 3
acap 3 time 3
apex 4.5 team 3.5
cplx 3 stor 3
data 4 site 4.5
docu 3 sced 3
ett 2 ruse 4
flex 3 resl 3
ltex 4.5 rely 2.5
pcap 3 pvol 2
pcon 3 prec 4.5
peer 2.5 pmat 2.5
plex 4.5

Figure 5.8: The baseline settings representing present day software engineering

panel. It was composed of seven seasoned experts in the field of software engineering:

• Barry Boehm

• Vic Basili

• Ray Madachy

• Thomas Ostrand

• Deiter Rombach

• Rick Selby

80

ranges values
feature low high feature setting
aa 3 6 data 4
acap 3 5 docu 3
apex 1 4.5 ltex 4.5
cplx 3 6 pcap 3
ett 2 6 plex 4.5
flex 3 5 team 3.5
pcon 1 3
peer 2.5 6
pmat 2.5 5
pvol 2 5
rely 2.5 5
resl 3 5
ruse 2 6
sced 1 3
site 1 4.5
tool 3 5

Figure 5.9: Common settings for all future trend variants

• Elaine Weyeuker

These experts formed the part of the panel from whom insights concerning the future trends

in the software industry was derived. They discussed projections concerning all the COCOMO

II/COQUALMO factors. Note that the time frame for these projections is within a decade. Other

assumptions concerning the future projects include the following:

• The projects/applications are NASA-like applications.

• They are mission critical real-time applications.

• They are contractor built.

• They have a long life time (between 5 and 10 years).

Three facilitators were present as well:

• Bojan Cukic

• Tim Menzies

• David Raffo

81

The role of the facilitators was to guide the discussion on the model attribute projections in an

attempt to keep the discussions focused. Gregory Gay acted as scribe during this session in order

to transcribe notes from the meeting.

During discussions, consensus was rarely reached concerning projections about how the soft-

ware environment might change relative to the models. For this reason, after brief discussions

about every attribute, a vote was taken concerning the future behavior of the attribute. These

behaviors include the following:

• Bump: The attribute would increase in value at first, and then decrease later on. PREC was

voted to have such behavior.

• Rick: This is the opposite of bump, where attribute would decrease in value at first, and then

increase later on.

• Up: The attribute would increase in value. ACAP was voted to have such behavior.

• Down: The attribute would decrease in value. APEX was voted to have such behavior.

Some chose to abstain from some of the votes as well. Figure 5.13 and Figure 5.14 contain the

summary of the results of these discussions, as well as the votes.

Note that in order to have future projections, we had to set a baseline that represents the current

trends in software engineering. This had been set prior to the panel session with input from one

of the expert panelists, Barry Boehm, and is presented in Figure 5.8 . From this baseline, we

branched 8 main projections. the reason being that, as we see in Figure 5.13 and Figure 5.14 , only

3 attributes (PREC, STOR and TIME) were voted as not having a single direction of variation,

namely bumps. Figure 5.9 shows all the other attributes that were voted to have a single direction

of change, and there corresponding ranges and values.

82

5.2.2 Policies

When referring to Figure 5.10, Figure 5.11 and Figure 5.12 , we notice that the policies that are

chosen by STAR are very similar across project sizes and projections. This would seem to suggest

that, even though we have 8 separate base projections, the overall projection is stable and determi-

nant enough to actually draw stable conclusions from that would apply across the board. In other

words, for the purposes of STAR, the experts panel from whom the projections originate don’t

necessarily need to have consensus for us to draw stable future predictions about policies that need

to be applied in the future.

One interesting effect that we see here relates to ASE tools. On the one hand these tools are

recommended for the majority of our case studies. This applies most to those cases with full or

technical analysis, and to a lesser extent to those with strategic analysis. Note however that in

all cases, whenever these tools are applied, they are applied at very high or extremely high levels

(between 5 and 6), which emphasizes the importance of advanced ASE tools for future projects.

These tools however have the most utility whenever the project is in the development phases. This

explains our result since statistical analysis is more related to the planning stages of a project, which

tactical analysis is more related to the development stage of a project. Also notice that for the same

analysis methods the emphasize the use of advanced ASE tools, the TOOL is recommended at its

highest value, which means having it integrated in to the life cycle according to Figure 2.1. So

there seems to be a correlation between having the need for ASE tools, and requiring having these

tools integrated into the software life cycle.

83

LARGE
(KLOC = 2500 to 7500)

projection (p- s- t-) (p+ s- t-) (p- s+ t-) (p- s- t+) (p+ s+ t-) (p+ s- t+) (p- s+ t+) (p+ s+ t+)
policies a s t a s t a s t a s t a s t a s t a s t a s t

acap = 4.5 •
acap = 5 • • • • • • • • • • • • • • • •
apex = 4 • • •
apex = 4.5 • • • • • • • • • • • • • • • •

aa = 5.5 •
aa = 6 • • • • • • • • • • • • • • • • • • •

cplx = 3 • • •
cplx = 3.5 • • • • • • • •
cplx = 4 •

ett = 5.5 •
ett = 6 • • • • • • • • • • • • • • • • • • •

flex = 4.5 • • • • • •
flex = 5 • • • • • • • • • • • • • • • •

pcon = 2.5 •
pcon = 3 • • • • • • • • • • • • • •
peer = 6 • • • • • • • • • • • • • • • • •

pmat = 4.5 • • •
pmat = 5 • • • • • • • • • • • • • • • •
prec = 4 •
prec = 4.5 • • • • • • • • • •
prec = 5 • • • • • • • •
pvol = 2.5 • • • • •
rely = 4.5 •
rely = 5 • • • • • • • •
resl = 4.5 • • • • • • • •
resl = 5 • • • • • • • • • • • • • • • •
ruse = 2 •
ruse = 2.5 • • • • • • • • • • •
ruse = 3 •
sced = 1.5 • • •
sced = 2 • • • • • • • • • • • • • • •
sced = 3 • • •
site = 4.5 • • • • • • • • • • • • • • • •
stor = 3 • • • • • • • • •
stor = 3.5 • • • •
stor = 4 • •

time = 3 • • • • • •
time = 3.5 • •
time = 4 • •
tool = 4.5 • • • • • • • •
tool = 5 • • • • • • • • • • • • • • • •
models percentage of original value
effort 28 37 54 29 49 55 24 38 57 17 36 56 31 40 52 25 42 60 23 49 53 26 39 50

defects 04 22 16 05 17 15 05 23 18 04 35 17 07 24 16 05 27 17 05 47 15 10 41 25
threat 00

months 60 69 92 62 75 76 55 69 77 50 68 75 62 73 75 61 75 85 61 74 75 59 72 77

Figure 5.10: Future results for large projects

5.2.3 Reductions

The lower parts of Figure 5.10, Figure 5.11 and Figure 5.12 refer to the size of the final model

prediction values compared to the initial ones, i.e. the ones before applying any kind of policies

84

Medium
(KLOC = 250 to 750)

projection (p- s- t-) (p+ s- t-) (p- s+ t-) (p- s- t+) (p+ s+ t-) (p+ s- t+) (p- s+ t+) (p+ s+ t+)
policies a s t a s t a s t a s t a s t a s t a s t a s t

acap = 4.5 • • •
acap = 5 • • • • • • • • • • • • • • • •
apex = 4 • • •
apex = 4.5 • • • • • • • • • • • • • • • •

aa = 6 • • • • • • • • • • • • • • • • • •
cplx = 3 • • • •
cplx = 3.5 • • • • • • • • • • • • •

ett = 6 • • • • • • • • • • • • • • •
flex = 4.5 • • • • •
flex = 5 • • • • • • • • • • • • • • • •

pcon = 2 •
pcon = 2.5 • • •
pcon = 3 • • • • • • • • • • • • • • • •
peer = 6 • • • • • • • • • • • • • • •

pmat = 4.5 • • • •
pmat = 5 • • • • • • • • • • • • • • • •
prec = 4 •
prec = 4.5 • • • • • • • • • • •
prec = 5 • • • • • • • •
pvol = 2 •
pvol = 2.5 • • • • • •
pvol = 3 • •
rely = 4.5 • •
rely = 5 • • • • • • • •
resl = 4.5 • • • •
resl = 5 • • • • • • • • • • • • • • • •
ruse = 2 • • • • • • •
ruse = 2.5 • • • • • • • • • •
ruse = 3 • •
sced = 1 • • •
sced = 1.5 • • • • • • •
sced = 2 • • • • • • • • • • •
site = 4 • •
site = 4.5 • • • • • • • • • • • • • • • •
stor = 3 • • • • • • • • • • •
stor = 3.5 • • •
stor = 4 • •

time = 3 • • • • • • • •
time = 3.5 • • •
time = 4 •
tool = 4.5 • • • • •
tool = 5 • • • • • • • • • • • • • • • •
models percentage of original value
effort 27 42 64 21 46 50 21 46 50 16 40 46 26 41 46 22 48 57 22 43 62 25 44 65

defects 05 36 18 04 10 15 04 10 15 03 24 13 05 39 14 05 28 16 05 39 44 17 45 46
threat 00

months 57 72 81 58 77 78 58 77 78 53 70 77 59 74 75 53 79 57 55 73 79 59 78 79

Figure 5.11: Future results for medium projects

on the case study in question. So smaller is better. We notice four main effects in these tables.

The first effect is that the reductions are very similar across case studies of the same kind of

analysis. This doesn’t apply in all cases however. The exceptions included such cases where ASE

85

Small
(KLOC = 25 to 75)

projection (p- s- t-) (p+ s- t-) (p- s+ t-) (p- s- t+) (p+ s+ t-) (p+ s- t+) (p- s+ t+) (p+ s+ t+)
policies a s t a s t a s t a s t a s t a s t a s t a s t

acap = 4.5 • • • • •
acap = 5 • • • • • • • • • • • • • • • •
apex = 4 • • • • • •
apex = 4.5 • • • • • • • • • • • • • • • •

aa = 6 • • • • • • • • • • • • • •
cplx = 3 • • • • • • • • • • •
cplx = 3.5 • • • • • • • •
cplx = 4 • •

ett = 6 • • • • • • • • • • • •
flex = 4 •
flex = 4.5 • • •
flex = 5 • • • • • • • • • • • • • • • •

pcon = 2.5 • • • • •
pcon = 3 • • • • • • • • • • • • • • • •
peer = 6 • • • • • • • • • • •

pmat = 4.5 • • •
pmat = 5 • • • • • • • • • • • • • • •
prec = 4 • •
prec = 4.5 • • • • • • • • • • • • •
prec = 5 • • • • • • • •
pvol = 2 • •
pvol = 2.5 • • • • • • •
rely = 4.5 • •
rely = 5 • • • • • • • •
resl = 4 •
resl = 4.5 • • • • • • • •
resl = 5 • • • • • • • • • • • • • • • •
ruse = 2 • • • • • • • •
ruse = 2.5 • • • • • • • • • • • • • •
ruse = 3 •
sced = 1 • • • • •
sced = 1.5 • • • • • • • • • • • • • • •
sced = 2 • • • • • • • • • •
site = 4 •
site = 4.5 • • • • • • • • • • • • • • • •
stor = 3 • • • • • • • • • •
stor = 3.5 • •
stor = 4 • •

time = 3 • • • • • • •
time = 3.5 • • • •
tool = 4.5 • • • • • • • •
tool = 5 • • • • • • • • • • • • • • • •
models percentage of original value
effort 25 48 68 28 49 62 31 44 59 25 46 66 30 52 58 30 51 58 20 45 48 21 48 48

defects 04 36 16 05 44 17 07 26 17 07 36 28 06 48 43 06 45 16 11 40 64 14 42 39
threat 00

months 58 75 80 62 79 77 62 77 80 59 76 82 64 80 79 60 78 74 55 77 78 57 77 74

Figure 5.12: Future results for small projects

tools aren’t applied at all. These tend to have much lower reductions in defects compared to other

cases with these tools were being applied. However, the overall effect seems to be that overall the

reductions are similar for the same analysis types regardless of the projection or project size. This

86

is mainly due to the similarity in the policies that are followed, which is mentioned in the previous

section.

Secondly, effort reductions seem to be larger for strategic compared to tactical analysis. This

would suggest that strategic long term planning is more effective at reducing cost for future

projects. Note that our strategic analysis with STAR didn’t decisively recommend the use of

advanced ASE tools. So there seems to be an argument that ASE tools are necessary for cost

reduction. However this isn’t the whole picture.

We also observe that defect reductions are largest with tactical analysis. This is due to the

affinity of this kind of analysis to recommend ASE tools be used. ASE tools are mainly defect

reduction tools, so its only natural that the analysis that most recommends these tools achieves

higher defect reductions. The fact that its tactical analysis suggests that ASE tools are best used

during the development stages of a software product rather than during the planning stages.

The last effect that we observe is that full analysis achieves the best reductions by a large

margin. This applies for all the models and all the case studies, suggesting that if we could control

everything in a project, we should. This unfortunately isn’t really possible nor feasible. However

this can be interpreted as using both proper strategic and tactical planning when appropriate. So,

use strategic planning on a future project, apply the policies, then transition to tactical planning

and apply the associated policies. By doing this, a software project could achieve a similar effect

to controlling all, or most, of the variables in a software project achieving high reductions in effort,

defects, and months (schedule). Note that this type of analysis recommends used advanced ASE

tools most of the time, providing a strong business case for them.

Note that the threat model doesn’t seem to have much importance in our case studies in that

model never seem to register any tangible values in any of the experiments. We have seen this

before, where for less constrained case studies threat doesn’t really come into play (§4.2).

87

attribute bu
m

ps

up do
w

n

fla
t

ri
ck

ab
st

ai
n

majority trend
this one refers to investment in
automated analysis tools. Just Divided into subsystems. Mission-

aa: automated to clarify,greater investment 5 3 up critical: Up(5), else: level (3)
analysis means that you ”detect and

remove” more defects rather than
”gets you more” defects

ACAP - analyst capability, problem of
people leaving companies early, everyone
on Apollo retired. Though, that

acap: analyst 5 3 up may relate more to APEX. In some
capability ways, people’s capabilities are improving -

people are learning things in high school
now. Argument that capability goes up,
In some experience goes down.
Vote: up(5), flat(3)
APEX - applications experience.
Development platforms and missions
continue to change. Systems continue

apex: analyst 7 1 down to get more complex . This cannot
experience help but go down over time as NASA

engages in new unprecedented missions.
Vote: down(7), flat (1)

cplx: product 7 up CPLX - just about any kind of complexity.
complexity Advocates for up. Voted: Up (7), flat(1)

DATA - is ratio of num items in
database to loc. Do we need to change

data: database 4 3 1 anywhere scale over time? “growth and data
size per LOC volume matched by technology improvements.”

Advocacy for flat and bimodal.
Voted: flat (4), rick (3), abstain(1)
DOCU - documentation you are required

docu: required levels 6 2 flat to produce relative to what’s needed.
of documentation Voted: flat (6), abstain(2)

Some argument that as CPUs
not a cocomo factor but a get cheaper, we will see more

ett: execution-based factor in the coqualmo 4 1 3 anywhere use of CPU-intensive simulation
testing and tools defect removal model. -based methods.

Voted: Up(4), down(1), flat(3)
development flexibility. “lo” FLEX=5 things less flexible

flex: development means development process 8 up than they were, pushed
flexibility rigorously. “hi” means to a 3, Tom - flexibility

only general goals defined will decrease. Voted: up (8)
ltex:language and more experience = less 3 5 flat LTEX - language/tool experience.
tool experience development cost Vote: down (3), flat (5)
pcap: programmer 1 7 flat PCAP - programmer capability.
capability Vote: flat (7), up (1)
pcon: personnel continuity 6 2 down PCON - personnel continuity,
(% turnover per year) turnover. Vote: down (6), flat (2)

not a cocomo factor but a REVW - Code review. Another
peer: peer reviews factor in the coqualmo defect 7 1 up way to remove defects. If more

removal model. people are using them, trend
is up. Voted: Up(7), flat(1)

plex: platform 2 6 flat PLEX - platform experience.
experience Vote: flat(6), down(2)

Figure 5.13: Part 1 of the results of the panel discussions.

88

attribute bu
m

ps

up do
w

n

fla
t

ri
ck

ab
st

ai
n

majority trend
pmat: process maturity 7 1 up PMAT - upsies (7), flat(1)

PREC - going to remain fairly stable, might
go up in long run. increasing level of

have we built this kind of thing uniqueness for some systems, increasing levels
prec: precendentness before? (higher values means less 4 1 2 1 up/down of repeated simple components for others.

familiarity) Is there going to be a software crises? Maybe
next 20, probably not next 10. Most don’t
believe we will build extremely unprecedented
software, Tom disagrees. Another theory - all
are 6s or 2s. Voted: bumbs (4), up (1),
down(2), level(1).
PVOL - platform volatility. Higher

pvol: platform volatility 8 up volatility (more changes) = up. More
and more custom hardware, custom sensors,
etc .Vote: Up(8)
RELY - downsie = less concerned with
reliability, argument for flat (we’ve
launched all sorts of space missions,

rely: required 8 up we’ll continue to do same thing), argument
reliability for up (demands go up for more reliable

systems),. Bojan - things will be flat.
Is rely effort into chasing reliability?
RELY is actual system reliability.
Voted: Up (8)

resl: architectural 7 1 up RESL - upsies (7), abstain (1)
or risk analysis

RUSE - I’m investing money to make things
reusable. Flat limited to unprecedented-ness,
up based on pressure to build for reuse.

ruse: reuse is this product being developed the 1 2 2 2 1 anywhere Cost of building for reuse. Barry presses
with intent that it is a reusable for bumps. Some projects are so unique
component? that no once can reuse them. I have no idea

what’s going on here. If desire to do it is
high, cost will be high. Definition - putting
effort into reuse. Voted: bump(1), abstain(1),
down (2), up(2), flat (2)

lower values means developers
sced: dictated forced to deliver faster 7 1 down SCED - schedule pressure, low=fast.
development schedule than they would like Vote: down (7), flat(1)

SITE - how spread out people are. Physical
site: multi-site “lo” means some contact: phone, 7 1 down location % communication. More people
development mail; “hi” means multi-media working at home. Vote: down(7), flat(1)
stor: required % 7 1 up/down STOR - see above, Voted: bumps (7), abstain(1)
of available RAM

lower values means more difficult
team: team cohesion interactions (e.g. sub-contractors 8 flat TEAM - level (8)

working behind separate firewalls)
TIME - has been going down, used

time: % of CPU 6 1 1 up/down to be constrained all the time.
Resources fixed once something is
launched. Voted: bumps (6), up(1),
flat(1)

“lo” means just simple edit/debug TOOL - how good are tools? Ability
tool: use of cycles; “hi” means tools tightly 6 2 up to improve productivity. More use of
software tools integrated to the development cycle tools like stateflow and auto code

generation. up(6), flat (2)

Figure 5.14: Part 2 of the results of the panel discussions.

89

small medium large
8 8 8 Acap=5
8 8 8 Apex=4.5
8 8 8 Flex=5
8 8 8 Pcon=3
8 8 8 Pmat=4.5, 5
8 8 8 Prec=4.5, 5
8 8 8 Rely=5
8 8 8 Resl=5
8 8 8 Site=4.5
8 8 8 Time=3, 3.5, 4
8 8 8 Tool=5
8 8 7 Sced=1, 1.5, 2
6 7 7 Stor=3, 3.5, 4
8 8 5 Pvol=2, 2.5, 3
8 8 4 Ruse=2, 2.5, 3
8 7 4 Cplx=3, 3.5, 4
7 8 8 Aa=6
6 7 8 Ett=6
5 7 7 Peer=6

Figure 5.15: Future recommendations summary with ALL policy

small medium large
8 8 8 Acap=5
8 8 8 Apex=4.5
8 8 8 Pmat=4.5, 5
8 8 8 Prec=4.5, 5
8 8 8 Site=4.5
8 8 6 Pcon=3
0 3 3 Aa=6
0 2 3 Ett=6
1 1 3 Peer=6

Figure 5.16: Future recommendations summary with Strategic policy

small medium large
8 8 8 Flex=5
8 8 8 Resl=5
8 8 8 Ruse=2, 2.5, 3
8 8 8 Sced=1, 1.5, 2
8 7 8 Stor=3, 3.5, 4
8 8 8 Tool=5
8 8 7 Cplx=3, 3.5, 4
7 7 8 Aa=6
6 6 8 Ett=6
5 7 7 Peer=6

Figure 5.17: Future recommendations summary with Tactical policy

90

Chapter 6

S-cost and Drastic Control

In this chapter, we will discuss a scheme used by Boehm et al. [16] for conflict resolution in project

requirements. This is followed by study that investigates the effectiveness of this scheme compared

to just using default analysis within STAR. Note that this study was redone with SEESAW (subsub-

section 2.3.2) in a paper presented at ICSE’09: How to avoid drastic software process change. [64]

6.1 Conflict Analysis with S-Cost

Boehm et al. [16] describe a system called S-Cost. The purpose of this system to semi-automate

the process of finding conflicts in cost - quality requirements of software systems. This system

also works to facilitate the process of resolving those conflicts by presenting stakeholders in the

software project with several strategies for the purpose of finding a proper compromise for all par-

ties. In this section, we will present this system, describing briefly how it operates and explaining

the strategies that it presents to stakeholders.

91

6.1.1 The problem

Quality in software products was being attributed to service oriented customer satisfaction, which

caused some qualities to be neglected (e.g. maintainability) and placed too much emphasis on

usability. To remedy this, this was expanded to include the evaluation for not only the customer,

but also the all the other stakeholders in a software product. This allowed considering cost, main-

tainability, interoperability and other software qualities as parts of what describe software quality.

However, this also introduced the problem of coordinating all the stakeholders needs, causing cost-

quality conflicts to emerge. This is exasperated by the complex dependencies that software cost

has with the software quality attributes, as well as the large resolution space that is available to

find solutions to these cost-quality conflicts. S-Cost was introduced as a semi-automated system in

order to assist the stakeholders in visualizing and resolving conflicts by applying certain strategies

to different modules of the software product.

6.1.2 S-Cost

S-Cost combines two separate systems to provide its semi-automated risk resolution capabilities:

USC-CSE WinWin system and the Qarcc tool. WinWin is based on a spiral model that aims at

resolving conflicts between stakeholder needs, otherwise called as “win conditions”, and making

everyone a “winner”. This system is manually manipulated, making it hard on stakeholders in

larger products to identify the conflicts in their win conditions. Qarcc is a knowledge-based tool

that identifies conflicts in software quality requirements, by using predefined stakeholder/quality-

attribute relationships, and notifies stakeholders of these possible conflicts. Neither of these sys-

tems has the ability to get the effect of conflict resolution on development costs. S-Cost adds this

ability, combining both systems to be able to find win-win solutions to quality conflicts, all while

using COCOMO (COnstructive COst MOdel) to indicate cost estimates. This allows S-Cost to

help resolve cost-quality conflicts as well as quality conflicts between different stakeholders. S-

92

Cost is able to give suggestions (or strategies) for the stakeholder to apply to resolve cost conflicts,

while keeping keeping affected stakeholders of the implications of these resolutions. Visualization

and negotiation aids are provided as well by S-Cost.

6.1.3 The strategies

There are several strategies that S-Cost presents to the stakeholder, giving the stakeholder the op-

tion of choosing the degree to which to apply it to the different modules of the software product.

Each strategy influences a subset of the COCOMO (in this case COCOMO II) software cost at-

tributes, and each has its own pros and cons that are presented to the stakeholder. These strategies

are the following:

• Reduce/defer Functionality: KDSI, DATA - Reducing the functionality of the product will

reduce size, hence reducing cost and easing maintenance. This however reduces the abilities

of the product which influences customer satisfaction.

• Reduce/defer Quality: RELY, DOCU, TIME, CPLX - Reducing quality will drive costs and

development time down, but will increase maintenance costs especially for products that will

have longer life cycles.

Drastic change Possible undesirable impact
1 Improve personnel Firing and re-hiring personnel leading to wide-spread

union unrest.
2 Improve tools, techniques, or development

platform
Changing operating systems, IDEs, coding languages

3 Improve precedentness /
development flexibility

Changing the goals of the project and the development
method.

4 Increase architectural
analysis / risk resolution

Far more elaborate early life cycle analysis.

5 Relax schedule Delivering the system later.
6 Improve process maturity May be expensive in the short term.
7 Reduce functionality Delivering less than expected.
8 Improve the team Requires effort on team building.
9 Reduce quality Less user approval, smaller market.

Figure 6.1: Nine drastic changes from [10].

93

• Improve tools, techniques or platform: TIME, STOR, PVOL, TOOL, SITE - Improving

tools and the platform will cause training and platform costs to increase, but will improve

maintainability and will reduce software cost and schedule in the long run.

• Relax the delivery schedule constraint: SCED - Tightening the delivery schedule will al-

low development time and cost to decrease but may negatively influence product capabilities.

• Improve personnel capabilities: ACAP, PCAP, PCON, AEXP, PEXP, LTEX, KSLOC/PM -

Improving capabilities of analysts and programmers and transferring more experienced ones

to the project would reduce the cost of the product while improving its quality. This would

mean however that other products will lose skilled personnel, negatively influncing them,

and the cost per person will increase due to using more skilled personnel.

• Reuse software assets: ADSI, DM, CM, IM - Reusing software code will allow the cost of

the development to decrease, however the effect on the product’s quality depends solely on

the quality of the software being reused.

• Improve coordination via team building: TEAM - Team building allows for removing

interpersonal overhead, which drives down the schedule and the cost. This factor isn’t always

controllable however.

• Architecture and risk resolution: RESL - Reducing risk resolution will allow more re-

sources to be allocated for product development, reducing the development time and cost.

This will cause a need for additional risk management overhead however.

• Improve process maturity level: PMAT - Increasing this will help with reducing the time

and cost of resolving product bugs and hence improves quality. Overhead is introduced with

this however due to the need to implement the Software Engineering Institute’s Capability

Maturity Model.

94

• Improve precedentedness and development flexibility: PREC, FLEX - Having increased

familiarity with the product type and more flexible development would reduce costs. Such

factors are uncontrollable sometimes and depend on the development environment and his-

tory.

• Increase budget: Revised win condition - If Funds are available, this could allow the product

to be more competitive and may increase ROI.

6.2 Drastic vs. Conservative Control (Hoh In strategies)

Earlier we presented a paper by Boehm that suggested using strategies in order to impose control

over a project and resolve conflicts in project requirements. These strategies were presented earlier,

and are meant to override internal project parameters and policies. For this reason we have placed

these strategies under the guise of drastic change. In the software world, these drastic solutions

to conflicts within projects are suggested that would theoretically modify a project in the intended

manner. However these drastic solutions can have unintended effects , where a strategy like reduce

functionality might deliver the effect of reduce cost and time of development, but also put in the

risk of under delivering. This would not be helpful for the project as that might cause it to be

poorly received.

Conservative project changes are changes with in the project that abide by present project

parameters, which is the way that star operates by default. We wish to present the following

argument: Before performing drastic changes to a project, it is worthwhile to thoroughly explore

the available options within the current structure of a project. Through applying policies that avoid

drastic change, we wish to see whether we are able to achieve the same or better effects compared

to drastic changes, while at the same time attempting to avoid the negative side effects that drastic

changes inherently have.

The Figure 6.2 presents the various strategies presented by Boehm et al., and there implemen-

95

Drastic change Effects on Figure 3.1
1 Improve personnel acap = 5; pcap = 5; pcon = 5

apex = 5 ; plex = 5 ; ltex = 5
2 Improve tools, techniques, or development platform time = 3; stor = 3

pvol = 2; tool = 5
site = 6

3 Improve precedentness / development flexibility prec = 5; flex = 5
4 Increase architectural analysis / risk resolution resl = 5
5 Relax schedule sced = 5
6 Improve process maturity pmat = 5
7 Reduce

functionality
data = 2; kloc * 0.5

8 Improve the team team = 5
9 Reduce quality rely = 1 ; docu = 1

time = 3 ; cplx = 1

Figure 6.2: Implementing drastic changes.

Flight
Rank Change Effort

1 STAR r
1 Improve pmat r
1 Relax schedule r
2 Arch/risk resolution r
3 Reduce functionality r
4 Improve team r
5 Improve prec/flex r
6 Reduce quality r
7 Improve tool/tech/plat r
8 Improve pcap r

50%

Ground
Rank Change Effort

1 STAR r
1 Reduce functionality r
1 Improve pmat r
2 Relax schedule r
3 Reduce quality r
4 Arch/risk resolution r
5 Improve team r
6 Improve prec/flex r
7 Improve tool/tech/plat r
8 Improve pcap r

50%
OSP
Rank Change Effort

1 STAR r
1 Improve team r
2 Reduce functionality r
2 Arch/risk resolution r
3 Improve prec/flex r
3 Improve pmat r
4 Relax schedule r
5 Reduce quality r
6 Improve tool/tech/plat r
7 Improve pcap r

50%

OSP2
Rank Change Effort

1 STAR r
1 Arch/risk resolution r
2 Improve tool/tech/plat r
3 Relax schedule r
3 Improve team r
4 Reduce functionality r
4 Improve prec/flex r
5 Improve pmat r
6 Reduce quality r
7 Improve pcap r

50%

Figure 6.3: Drastic vs. Conservative change; EFFORT: total staff months (normalized 0..100%)
with default analysis.

tation within STAR. Note that the setting on the right hand side overrides any project settings that

conflict with them. All the numbers indicate ratings, with KSLOC being the only exception, where

the number is a ratio that is multiplied by the range that the project has in for the KSLOC attribute.

96

Flight
Rank Change Time

1 STAR r
2 Relax schedule r
2 Reduce functionality r
3 Improve pmat r
3 Arch/risk resolution r
4 Reduce quality r
4 Improve team r
5 Improve prec/flex r
6 Improve tool/tech/plat r
7 Improve pcap r

50%

Ground
Rank Change Time

1 STAR r
1 Reduce functionality r
1 Relax schedule r
1 Improve pmat r
2 Reduce quality r
2 Improve team r
2 Arch/risk resolution r
3 Improve tool/tech/plat r
3 Improve prec/flex r
4 Improve pcap r

50%
OSP
Rank Change Time

1 STAR r
2 Improve team r
3 Reduce functionality r
4 Arch/risk resolution r
5 Relax schedule r
5 Improve prec/flex r
6 Reduce quality r
6 Improve pmat r
7 Improve tool/tech/plat r
8 Improve pcap r

50%

OSP2
Rank Change Time

1 Reduce quality r
2 STAR r
3 Relax schedule r
3 Improve tool/tech/plat r
3 Arch/risk resolution r
4 Reduce functionality r
4 Improve team r
5 Improve pmat r
6 Improve prec/flex r
7 Improve pcap r

50%

Figure 6.4: Drastic vs. Conservative change; TIME: calendar months (normalized 0..100%).

Flight
Rank Change Defects

1 STAR r
2 Arch/risk resolution r
3 Reduce functionality r
4 Improve prec/flex r
5 Improve pmat r
5 Improve team r
5 Relax schedule r
6 Improve pcap r
6 Improve tool/tech/plat r
7 Reduce quality r

50%

Ground
Rank Change Defects

1 Reduce functionality r
2 Relax schedule r
3 Improve pmat r
4 Improve prec/flex r
5 Improve tool/tech/plat r
5 Improve team r
6 STAR r
6 Improve pcap r
7 Arch/risk resolution r
7 Reduce quality r

50%
OSP
Rank Change Defects

1 STAR r
2 Relax schedule r
2 Reduce functionality r
2 Improve tool/tech/plat r
3 Improve team r
4 Improve prec/flex r
4 Arch/risk resolution r
5 Improve pmat r
6 Improve pcap r
7 Reduce quality r

50%

OSP2
Rank Change Defects

1 Reduce functionality r
2 Improve team r
3 STAR r
3 Improve tool/tech/plat r
4 Arch/risk resolution r
5 Relax schedule r
6 Improve prec/flex r
6 Improve pmat r
7 Improve pcap r
8 Reduce quality r

50%

Figure 6.5: Drastic vs. Conservative change; Defects (normalized 0..100%).

97

As we did in the previous section, this section will also only concentrate on analysing the

results for three of the four software engineering models used within STAR. The experiments for

each scenario were run ten times, after which the data generated at the policy points was collected

and passed through the Mann-Whitney unit test [56], where each strategy is ranked. The total

number of runs of STAR in this case study is

strategies∗ pro jects∗10

This calculates to a total of 400 runs, since we used the NASA projects. Note that the above figures

are quartile charts that indicate the variations in the runs. Only the second and third quartile are

shown in order to reduce the clutter of the graphs that would’ve been caused by outliers. “STAR”

indicates conservative change, with none of the strategies being used. Also, the number on the

left of the quartile indicate the rank according to Mann-Whitney. Threats weren’t included in this

study due to results that had it zeroed out across the board, with occasional outliers which produced

messy, inconclusive results, a pattern seen several times throughout this thesis.

In terms of the results for effort, clearly avoiding any drastic change within the project is

the best choice, ranking first in all the tests. And while it did tie with other strategies for the

different projects, conservative change maintained its rank across the multiple projects, irrespective

of how constrained a project is. Another clear result is that improving programmer capability

(pcap) is definitely not the way to go to maintain costs, ranking last for every project. Other

notable observations include the reducing functionality does well until you hit the most constrained

projects and that improving the tools used and the platform does best in the most constrained

project. Note here however that, despite of the ranking, most of the alternative strategies are within

ballpark figures of each other, except for the lowest ranking strategies, making those the most

definitive result.

Moving on to development time, there seems to be a similar picture compared to the results

under effort. Improving pcap is still the worst thing you can do, and avoiding drastic change is

still a favorable policy to go by. At worst, conservative change manages to be second for the most

98

constrained project. On the other hand reducing functionality and relaxing the schedule both do

very well with the lightly constrained projects (flight and ground), and improving the tools and

platform used does best in the most constrained project. One very interesting definitive result

comes from reduce quality in OSP2, where this strategy wins out by a large margin, while it scored

mid-pack in all the other projects. This could be interpreted as saying the following: earlier in the

project, reducing the quality of the product doesn’t help with development time; however, as the

development of the product nears the end stages, if you need to rush the project out, reducing the

quality (which happens to reduce reliability and documentation) will help in getting the product

out the door. A word of caution here however: this short term payoff only comes at a cost in the

medium term. As can be seen in the OSP2 results for effort in Figure 6.3 and defects in Figure 6.5,

the side effect of rushing a product out is larger effort and much larger defect numbers.

Finally, when it comes to defects, we see a consistent overall result that reducing quality will

in fact increase defects. This is demonstrated by having reduce quality rank last in all the projects,

with an especially large margin in the more constrained project (OSP, OSP2). Here as well though,

conservative change does well. It scores lowest with ground; however, looking at the quartile

charts for ground, the difference between STAR and the higher ranked drastic change strategies

isn’t significant enough to declare a clear loss.

To conclude this section, we have and demonstrated that, overall, conservative change and

policies that abide by project limits are a better, more consistent choice for project managers. Even

though drastic change does seem to do better in some cases, the difference is either not significant

enough or the strategy itself has serious side effects on other aspects of the project.

99

Chapter 7

Better, Faster, Cheaper

In this chapter, we will present the concept of “better, faster, cheaper” (BFC) and its history, fol-

lowed by a study conducted on BFC.

7.1 History of BFC

“Faster, Better, Cheaper” or “Better, Faster, Cheaper” (BFC) was a philosophy in designing and

implementing projects that was pushed in NASA by Daniel Goldin, who served as the NASA

Administrator from April 1st , 1992 to November 17th, 2001. It was mainly pushed to reduce the

expenditure of NASA, and was in-line with the direction that the Clinton administration’s approach

of doing more for less. While starting out on the right foot with such successes as Pathfinder, later

failures caused a wealth of criticism of these policies. While BFC hasn’t been abandoned, its

application has since then evolved to rectify its implementation shortcomings.

7.1.1 The Start and Successes of BFC

The view of pre-Goldin BFC was that at one time in a project, only two of the aspects of BFC

could be achieved. This was expressed by the common phrase “Better, Faster, Cheaper: pick any

100

Figure 7.1: Better, Faster, Cheaper [77].

two”, illustrated in Figure 7.1. Goldin believed that it was in fact possible to have all three aspects,

and so initiated new policies within NASA based on his views.

The main approach to implementing BFC within NASA was to downsize projects and reduce

their cost and complexity, concentrating on producing missions in volume. Reducing funding nat-

urally meant that less verification and testing was possible within budget and schedule constraints.

The reasoning behind this however was to be able to produce a larger volume of unmanned mis-

sions, which would counteract the expected higher rate of mission failure. This would, optimally,

yield more successful missions as well as more scientific data produced by these projects. Another

focus in this policy was allowing teams to take acceptable risks in projects to allow for cost re-

duction, and possibly using new technology that could reduce cost while possibly providing more

capabilities. This was accompanied by the the new view that was being pushed at NASA by Goldin

that “it’s ok to fail” [75], which was rather misunderstood. This new policy was meant to eliminate

huge budget missions of the past, that upon possible failure would yield large losses. Project cost

used to routinely exceed the $1 billion mark, while the first BFC project, the Mars Pathfinder, was

101

completed for a fraction of the cost, netting at about $270 million [27].

Some within NASA, such as 30 year veteran Frank Hoban, supported these policies [27]. Some

viewed these new policies as a necessary break from traditional policies that were very risk averse.

The additional cost reduction, accompanied by the additional risk, was to allow for a path to cheap

and commercial space flight. Even given the reduced funding, the Mars Pathfinder mission, along

with other first generation BFC missions, were successes. This fueled enthusiasm to apply BFC

across all of NASA and further reduce spending per mission, as well as reduce NASA expenditure

by reducing the workforce by a third. BFC was extended to be applied on manned space missions

as well, where funding was also reduced. Coming into a space shuttle program that was starting to

age and in need of updates, the new policies imposed cuts in funding from 48% of the NASA bud-

get to 38% [50], further straining that program. Further more, a single prime contractor (Lockhead

Martin) was used for missions in another bid to reduce cost and managerial complexity [69, 80].

This produced opposition within NASA, where traditionally issues pertaining to the shuttle

were designated LOVC (Loss of Vehicle and Crew) and given priority over all other issues, in-

cluding cost. However the cost cuts and layoffs that ensued were too much for teams, and caused

a blow to morale. In addition there was a progressive loss of veteran scientists, engineers and

managers who had accepted offers for early retirement that were extended to them [50].

Despite this, additional projects were on the way in the form of the Mars Climate Orbiter

and the Mars Polar Lander. These two projects were more aggressive implementations of BFC,

especially when it came to the Faster-Cheaper part of those policies. Costs of the Orbiter and the

Lander were brought down to $125 million and $165 million respectively [77]. This was much

lower that the previous Pathfinder mission, which itself cost slightly less than $300 million. The

success of these missions would’ve furthered the BFC mantra within NASA and JPL, and would’ve

been seen as breaking new ground in terms of mission completion with the kind of staff and cost

reductions they had compared to previous missions, even the Pathfinder [38].

102

7.1.2 The Legacy of BFC

Given its early success in terms of mission delivery, BFC started being more aggressively applied to

missions in NASA. One product of this were the above mentioned Mars Climate Orbiter and Polar

Lander. Each cost about 40% less than the previous Pathfinder mission, which is extraordinary

given that Pathfinder had been touted as a money saver by NASA when compared to previous

missions like Viking, which cost about $935 million in 1974 Dollars (equivalent to $3.5 billion

in 1997 dollars). Both of these missions however failed. Using a single contractor had weakened

quality assurance and resulted in flaws that caused the loss of these two Mars missions. These flaws

had been software flaws that could have easily been rectified if they had been discovered on the

ground. One of these flaws was a failure to convert from imperial to metric units, causing the loss

of the Climate Orbiter [68]. The Mars Program Independent Assessment Team Report [80] found

that these missions were understaffed, underfunded by at least 30%, and too tightly scheduled.

Elsewhere, across the Atlantic in the UK, another mars mission to deliver a lander, designated

the Beagle 2, was under way. This mission way also developed cheaply, applying the same con-

cepts in design and implementation that NASA was at the time using. The lander however was

declared lost after not establishing contact after separation from the mars express vehicle [1].

One other failure that BFC was blamed for was the Columbia Shuttle disaster in 2003. This

was post-Goldin, at a point where NASA had realized the excessive cost cutting and staff reducing

policies needed to be changed. After that disaster, critics quickly pointed the finger to these mis-

sions being under funded due to BFC. There were many calls, especially politically, for throwing

BFC “in the waste basket” [25]. One report that particularly criticized BFC, and Goldin’s policies

in implementing it, is the International Federation of Professional and Technical Engineers’ (IF-

PTE) report on the Effectiveness of NASA’s Workforce & Contractor Policies [73], which stated

the following:

“Using FBC as a way to contract out services and move more of NASA’s resources into

103

the private sector, Goldin eliminated much of the civil service infrastructure that mon-

itored and held technical knowledge of the service and products contractors provided

and oversaw NASA’s safe and successful operation. Critics of FBC always doubted

NASA’s ability to fulfill FBC without sacrificing either the ‘faster’, the ‘better’, or the

‘cheaper’. Concerns became widespread after the highly publicized Mars missions

failed in 1999. Further concerns arose as NASA’s workforce reductions and increased

contractor workforce, jeopardized the safety of space shuttle operations. Enough ev-

idence existed in failed missions, close calls, and government reports that suggested

the trade offs of FBC were inexperienced and reduced workforce capability; increased

safety risks; and minor oversights that resulted in lost spacecraft.”

Despite all the criticism of these policies, it should be noted that BFC was successful/partially

successful in 136 of the total of 146 missions launched during the period that Goldin was admin-

istrator. This would be called an overall success if it hadn’t been for the largely publicized failure,

as it had been suggested that NASA could’ve used better PR [78]. Also, the major failures in mis-

sions attributed to the BFC policies seemed to be due to communication and managerial failures,

rather than the BFC policies directly. This can be seen as a result of how BFC was implemented,

where staff reductions, as well as the aforementioned loss in veteran engineers and managers to re-

tirement, causing experienced managerial staff to be stretched too thin given tight scheduling [80].

This forced projects to use inexperienced managers which caused management mix ups and human

error.

It seamed that BFC was more of a front for faster and cheaper, as the extreme cost cutting

and tight scheduling seemed to eat into the quality, i.e. the better, of the missions. This implies

that BFC was not the issue in itself, but rather its implementation. In support of this, Tony Spear,

a JPL veteran engineer from 1962 to 1998, testified [76] to the possible effectiveness of BFC,

and emphasized the importance of a cohesive and communicative team for it to work. He also

mentions a fixation that happened in NASA on cost, causing cost cuts that were too much for

104

2nd generation BFC projects. However, far from recommending throwing BFC out the window,

he recommended a more focused way of implementing it, concentrating on three aspects: people,

technology, and methods [75,76]. This would entail more staffing and building and retaining talent,

taking advantage of advancements in technology such as the Internet, and advancing methods used

in project development and verification. One of the recommended methods include peer review, as

well as also developing multi-mission technology. This would make the projects and the process

by which these projects are developed more mature. Spear elaborated on this in the NASA FBC

Task Final Report [75].

A more detailed time line of BFC and its woes within NASA can be seen online [69].

7.2 Analysis of BFC: Pick Any Two?

Having presented the history of BFC at NASA, our purpose behind this section is to attempt to

investigate the viability of achieving a project that has high reliability and quality, was cheap to

develop and was quick to get to market. The general consensus before the Goldin era at NASA

was that you had to have a compromise somewhere. Hence the common phrase ”Better, Faster,

Cheaper: pick any two”.

To apply study this, we needed to apply the different scenarios of BFC within STAR. These

include BFC, FC, BF and BC, where the latter three options are the “pick any two” variants. For

this study, BFC was interpreted as an indication of what models the weighting is on in Equation 3.2.

More specifically, it was interpreted as the following:

• BFC: maintain default weights in the fitness function: α = 1, β = 1, γ = 1, δ = 1 and

relyde f ect = 1.8.

• FC: Apply higher weight on the effort and development time aspects in the fitness function,

and eliminate all the others: α = 2, β = 0, γ = 0, δ = 2 and relyde f ect = 0.

105

Flight
Rank Change Effort

1 fc r
1 bf r
2 bfc r
3 bc r

50%

Ground
Rank Change Effort

1 fc r
2 bf r
3 bfc r
4 bc r

50%
OSP
Rank Change Effort

1 fc r
2 bfc r
3 bf r
4 bc r

50%

OSP2
Rank Change Effort

1 bc r
2 bfc r
3 bf r
4 fc r

50%

Figure 7.2: Better, Faster, Cheaper; EFFORT: total staff months (normalized 0..100%).

Flight
Rank Change Time

1 fc r
1 bf r
1 bfc r
2 bc r

50%

Ground
Rank Change Time

1 fc r
2 bf r
3 bfc r
3 bc r

50%
OSP
Rank Change Time

1 fc r
2 bf r
3 bfc r
4 bc r

50%

OSP2
Rank Change Time

1 fc r
2 bf r
2 bfc r
3 bc r

50%

Figure 7.3: Better, Faster, Cheaper; TIME: calendar months (normalized 0..100%).

• BF: Apply higher weight on the defects and development time aspects in the fitness function,

and eliminate all the others: α = 0, β = 2, γ = 0, δ = 2 and relyde f ect = 1.8.

• BC: Apply higher weight on the defects and effort aspects in the fitness function, and elimi-

nate all the others: α = 2, β = 2, γ = 0, δ = 0 and relyde f ect = 1.8.

For each of the NASA projects presented in §3.4, STAR was run ten times for each of the

variant weighting schemes, all while employing default analysis. The results from these runs were

post processed to produced the quartile charts presented in Figure 7.2, Figure 7.3, and Figure 7.4.

Note that these charts only show the middle two quartiles in an effort to keep the charts legible,

and in order to avoid reporting outliers. These quartiles have also been normalized to further

emphasize the differences between the different schemes. The rank field in those charts indicates

106

Flight
Rank Change Defects

1 bc r
2 bfc r
2 bf r
2 fc r

50%

Ground
Rank Change Defects

1 bc r
2 fc r
3 bf r
4 bfc r

50%
OSP
Rank Change Defects

1 bc r
2 bfc r
3 bf r
4 fc r

50%

OSP2
Rank Change Defects

1 bfc r
1 bc r
1 bf r
2 fc r

50%

Figure 7.4: Better, Faster, Cheaper; Defects (normalized 0..100%).

the rank given to the particular weighting scheme when statistically compared to the other schemes

using the Mann-Whitney unit test [56]. Threats weren’t included in this study due to results that

had it zeroed out accross the board, with occational outliers which produced messy, inconclusive

results, a pattern seen several times throughout this thesis.

Looking at Figure 7.2, the figure describing effort results, we observe that BFC seems to per-

form mid-pack compared to the rest of the weighting schemes, while FC ranks first in all but one

project (OSP2). For OSP2, BC ranks first among the weightings, with FC ranking last. Note that

in all the other projects, BC actually ranked last. However, those rankings can’t be considered a

clear loss for BC since the range of effort estimates produced by BC overlaps fairly well with the

estimates from the other weighting schemes. FC’s loss in OSP2 however is a more clear loss.

Moving on to Figure 7.3, the figure describing development time results, we can again see how

BFC performs mid-pack compared to the other schemes. This time around, FC wins across the

board, with BF trailing close behind, and BC rounding out the pack. The more decisive wins for

FC take place with the more constrained projects, OSP and OSP2, as with the more decisive losses

of BC.

Finally, in Figure 7.4, the figure describing defects results, we observe that BFC does very well

with OSP and OSP2, performing on par with BC and BF for these projects. On the other hand, FC

does very poorly for these projects, clearly driving defects up due to a lack of emphasis on defects.

107

The performance in the other two projects is closer, however note that BFC does slightly worse

than everything else with ground.

From the above observations, we present the following analysis relating to BFC:

1. BFC is a “jack of all trades, master of none”. It works well in most instances, and provides

a compromise solution in balancing out model estimates. This supports the view that you

can’t fully achieve BFC with out some compromises, and that you’re better off “picking any

two” aspects to concentrated if there is a focused end result is needed.

2. FC speeds projects, while having the side effect of drastically increasing defects for more

defined and constrained projects. This seems to suggest against rushing well defined and

constrained projects out the door, and concentrating on on keeping some “better” aspect in

consideration to avoid the defect spike, especially for mission critical projects.

3. Finally that BC, while driving down defects, also drives up development time, especially for

more constrained projects. This also applies for effort for all projects other than the most

constrained (OSP2)

So as a final conclusion to this section, this study seems to support “better, faster, cheaper: pick

any two”, providing an empirical study that opposes the BFC policies applied throughout NASA

in the 1990’s to the early 2000’s.

108

Chapter 8

Conclusions

Through the course of this work, we have presented a tool that uses AI search in order to produce

project recommendations and estimates. The two major conclusions that we are able to draw from

the empirical studies that preceeded are:

1. Lack of data, whether for present or for future projects, is not a show-stopper in terms of

our ability to explore possible policies to use. Rather, this can be exploited in order to pro-

duce recommendations that can reduce estimates substantially (see Figure 4.18, Figure 5.10,

Figure 5.11, and Figure 5.12).

2. With a such a system, methods used in software engineering and development (like those

presented in Chapter 6 and Chapter 7) can be evaluted and tested. Doing so, we found that

drastic change within a project is not advisable, and that optimizing for all models at once

will yeild some compromises.

As for the summary of the empirical results that were presented in the seperate chapters:

• Chapter 3: Within the space of Pro ject options that most reduce Estimation median and

variance, the predictions made by our process models are remarkably similar to those made

by conventional methods (see Figure 3.8 and Figure 3.7).

109

• Chapter 4: Estimation median values can be greatly reduced (see Figure 4.18). In com-

parisons with other effort estimation tools, the reduction can be quite dramatic. In the best

case our tools found Pro ject ranges that yields estimates that were 5% of estimates found by

other means. In addition, Estimation variance can be reduced by only varying the Pro ject

values and leaving the Model values free (see Figure 4.2 to Figure 4.16). Also, varying

a small amount of model values makes a big difference. Also, advanced Automated Soft-

ware Engineering tools are essential for software projects, and become more necessary as

projects mature and near the end of their development cycle. They are also necessary for

future projects (see §4.2). These tools are also only recommended to be applied at there

highest values.

• Chapter 5: Two case studies are presented. For the first JPL case study, several results

were observed. One result was that it confirmed our findings in Chapter 4 concerning the

importance of ASE tools. Another result was that the most constrained projects (ground

2000, flight 1970 and 1980) had the least reductions, while the most unconstrained project

(flight 1990) exhibited the largest reductions compared to the initial estimates of that project

template. This is a result that is also seen in Chapter 4, as well as presented in a workshop

paper by Menzies et. al [58], where it is observed that “if you fix everything, you have

nothing else to fix”.

• Chapter 6: The study here showed that conservative change and policies that abide by project

limits were a better, more consistent choice for project managers. Even though drastic

change did seem to do better in some cases, the difference was either not significant enough

or the strategy itself had serious side effects on other aspects of the project.

• Chapter 7: BFC is a jack of all trades, achieving reductions accross all the models with mod-

eration compared to the focused “pick any two” practices like FC for example for speeding

project delivery.

110

Finally, we comment on the external validity of these results. Compared to many other process

models1 this combination of effort/schedule/threat/defect models is relatively simple. As model

complexity grows, then the space of possible Estimates can grow exponentially and STAR’s con-

trolling effect may disappear. Therefore it is clear that we can not claim that, for all process models,

that Estimate variance can be controlled by just constraining Pro ject, not Model, variance.

Nevertheless, data collection for the purposes of model calibration remains as a expensive, te-

dious, and often incomplete process. Our results suggest that such data collection may be, for some

process models, an optional activity (caveat: provided that a process model exists that specifics the

general relationships between concepts in a domain). In this work, we managed to establish the

following strategy:

• finding the fewest number of variables that most effect model output;

• constrain them;

• check for stable conclusions in the constrained space.

If these results from STAR generalize to more complex models, then is should be possible to make

reasonably accurate predictions without local calibration data.

Note that if such stability is absent in more complex models, and those models are being used

in domains with data collection problems, then we would argue that that is a reason to abstain from

such complexity, and use COCOMO-style models instead.

8.1 Future work

This work has been used as a proof of concept for further work that is currently being undertaken

by several other graduate students at the WVU LCSEE dept. These include the following:

1See Software Process journal, issue on Software Process Simulation, vol. 7, No. 3-4, 2002.

111

• In this work, we use simulated annealing. In other work [64] williams explores another

stochastic search engine, SEESAW, to compare the recommendations of his version of STAR

to DELPHI recommendations by experts.

• Green [34] is using our design to assess the impact of value-based software engineering on

standard process control based on [46].

• Orrego [71] is using our design to assess the value of reuse within the context of reducing

effort, defects, schedule, and threats.

Aside from the above, other future work include deriving several other publications from this

work.

112

Appendix A

Obtaining and Using STAR

These instructions should support a LINUX and CYGWIN install of STAR 2.1. In the event of
technical difficulties, please contact the author.

bash -i
[! -d "$HOME/bin"] && mkdir $HOME/bin
export PATH="$PATH:$HOME/bin"
wget http://unbox.org/wisp/tags/STAR/2.1/STAR_2.1.zip
unzip STAR_2.1.zip
make # Requires gcc
cd ˜/STAR
cd eg # Accessing the folder with all the example scripts
STAR -h # Showing the STAR help file

To download and run the trunk version of STAR of the SVN repositories, do the following in
place of downloading off of the site directly.

svn checkout http://unbox.org/wisp/trunk/STAR/ # Requires Subversion to be installed
make

113

Appendix B

Source Code

B.1 main.cpp
i n c l u d e ” p r o j e c t . h ”
i n c l u d e ”minmax . h ”
i n c l u d e ”randomNum . h ”
i n c l u d e <i o s t r e a m>
u s i n g namespace s t d ;
i n c l u d e <c s t d l i b >
i n c l u d e <cmath>
i n c l u d e <c t ime>
i n c l u d e <iomanip>
i n c l u d e <c s t r i n g >
i n c l u d e <s s t r e a m>
i n c l u d e <f s t r e a m>
i n c l u d e <s t d l i b . h>

do ub l e e ne rg y (p r o j e c t) ;
do ub l e energyM (p r o j e c t) ;
do ub l e c a l c E n e r g y (p r o j e c t , double , double , double , d ou b l e) ;
do ub l e prob (double , double , d oub l e) ;
p r o j e c t n e i g h b o u r (p r o j e c t , do ub l e [] , i n t , boo l) ;
do ub l e temp (i n t , i n t) ;
vo id o u t S t a t s (p r o j e c t) ;
vo id p a r t i t i o n (d oub l e [] , i n t , i n t , i n t &, i n t &);
vo id q u i c k s o r t (d oub l e [] , i n t , i n t) ;
vo id s o r t (do ub l e [] , i n t) ;
vo id commandLine (i n t , c h a r ∗ [] , d ou b l e ∗ , do ub l e ∗ , i n t ∗ , boo l ∗ , boo l ∗ , boo l ∗ , boo l ∗ , boo l ∗ , boo l ∗ , p r o j e c t ∗ ,
boo l ∗ , boo l ∗ , boo l ∗ , boo l ∗ , boo l ∗ , i n t ∗ , s t r i n g ∗ , s t r i n g ∗ , s t r i n g ∗ , s t r i n g ∗) ;
i n t SA(d ou b l e [] , boo l [] , p r o j e c t ∗ , p r o j e c t ∗ , p r o j e c t ∗ , i n t , do ub l e ∗ , do ub l e ∗ , do ub l e ∗ , do ub l e ∗ , do ub l e ∗ ,
bool , bool , o f s t r e a m ∗ , o f s t r e a m ∗ , i n t , double , d oub l e [] [2 5] , boo l) ;
vo id t e n B i n B o r e (i f s t r e a m ∗ , o f s t r e a m ∗ , double , double , bool , double , i n t ∗ , i n t ∗ , i n t [] [2 5] , i n t [] [2 5] ,
i n t [] [1 5] , i n t [] [1 5] , i n t , p r o j e c t) ;
vo id s c o r e (i n t [] [2 5] , i n t [] [2 5] , d oub l e [] [2 5] , i n t [] [1 5] , i n t [] [1 5] , d ou b l e [] [1 5] , i n t , i n t) ;
vo id BackSelSim (i n t , p r o j e c t , p r o j e c t , boo l [] , d ou b l e [] [2 5] , d ou b l e [] [1 5] , o f s t r e a m ∗ , randomNum , bool ,
bool , s t r i n g , boo l) ;
vo id EBackSelSim (i n t , p r o j e c t , p r o j e c t , boo l [] , bool , d ou b l e [] [2 5] , d ou b l e [] [1 5] , o f s t r e a m ∗ , randomNum ,
bool , bool , s t r i n g , boo l) ;
s t r i n g i t o s (i n t) ;
s t r i n g d t o s (do ub l e) ;
do ub l e roundX (do ub l e) ;

/ /
/ / Model n o r m a l i z a t i o n g l o b a l s . They a r e m o d i f i e d a c c o r d i n g t o p r o j e c t f i l e s .
/ /
do ub l e cocomoMax = 0 . 0 ;
do ub l e cocomoMin = 100000000000000000000 .0 ;
do ub l e coqualmoMax = 0 . 0 ;
do ub l e coqualmoMin = 100000000000000000000 .0 ;
do ub l e t h r e a t M a x = 0 . 0 ;
do ub l e t h r e a t M i n = 100000000000000000000 .0 ;
do ub l e tdevMax = 0 . 0 ;
do ub l e tdevMin= 100000000000000000000 .0 ;
/ /
/ / U t i l i t y w e i g h t s v a r i a b l e s
/ /
do ub l e a l p h a = 1 . 0 ;
do ub l e b e t a = 1 . 0 ;

114

do ub l e gama = 1 . 0 ;
do ub l e d e l t a = 1 . 0 ;
do ub l e r e l y d e f e c t = 1 . 8 ; / / 1 . 8 ;
do ub l e c o o l F a c t o r = −10;

/ /
/ / Number o f s i m u l a t i o n s p e r b a c k s e l e c t s t e p
/ /
s t a t i c i n t simNum =1000;
/ /

/ /
/ / A r r ay s t o d e t e r m i n e s e a r c h s e t s f o r s t r a t e g i c and t a c t i c a l a n a l y s i s
/ /
boo l p o l i c y S e t [2 5] = {0} ;
/ /

i n t main (i n t a rgc , c h a r ∗ a rgv []) {

do ub l e Tota lTime , SATime ;
t i m e t s t a r t , end ;
s t a r t = c l o c k () ;

s r a n d ((u n s i g n e d) t ime (0)) ; / / S e t t i n g t h e seed f o r t h e random number g e n e r a t o r
c o u t . s e t f (i o s : : f i x e d , i o s : : f l o a t f i e l d) ;
c o u t . p r e c i s i o n (1 2) ;

/ /
/ / Block f o r d e c l a r i n g v a r i a b l e s
/ /
p r o j e c t x , s , sb , sn ;
do ub l e i n i t a t t s e t [x .ATTN] ;
boo l s e a r c h a t t s e t [x .ATTN] = {0} ;
do ub l e f i n a l a t t s e t [x .ATTN] ;
i n t a t tNumUndef ined =0;
do ub l e e , eb , en ;

do ub l e minE = 100000;
do ub l e maxE = 0 ;

minmax s t a t ;
randomNum rdm ;

do ub l e bo re = 0 . 1 ;
do ub l e emax = 0 . 0 0 0 0 0 0 1 ; / / min e ne r gy t o be r e a c h e d b e f o r e s t o p p i n g SA
i n t kmax = 10000 ; / / max number o f i t r a t i o n s f o r SA
i n t run = 0 ;

s t r i n g s c o r i n g (” ”) ;
s t r i n g p o l i c y V a l (” ”) ;
s t r i n g p r o j e c t V a l (” ”) ;
s t r i n g m u t a t i o n (” ”) ;
s t r i n g s t r a t V a l (” ”) ;
s t r i n g b f c Va l (” ”) ;

boo l w o r s t = f a l s e ;
boo l h e l p = f a l s e ;
boo l l o g = f a l s e ;
boo l f i l e = f a l s e ;
boo l s e t P o l i c y = f a l s e ;
boo l ERank = f a l s e ;
boo l OutRuns = f a l s e ;
boo l Extreme = f a l s e ;
boo l LCout = f a l s e ;
boo l LogBest = f a l s e ;
boo l png = f a l s e ;
/ /

/ / P a r s i n g command l i n e i n p u t
commandLine (a rgc , argv , &bore , &emax , &kmax , &wors t , &help , &log , &f i l e , &s e t P o l i c y , &ERank , &x ,
&OutRuns , &LCout , &Extreme , &LogBest , &png , &run , &p o l i c y V a l , &p r o j e c t V a l , &s t r a t V a l , &b fc Va l) ;

i f (b f c V a l . empty ()) b f c V a l = ” b f c ” ;
i f (s t r a t V a l . empty ()) s t r a t V a l = ” none ” ;

i f (Extreme) m u t a t i o n = ” ex t r eme ” ;
e l s e m u t a t i o n = ” normal ” ;

i f (ERank) s c o r i n g = ” e ne r gy ” ;
e l s e s c o r i n g = ” bo re ” ;

/ /
/ / For command l i n e o p t i o n s t h a t c a u s e t e r m i n a t i o n o f STAR
/ /
i f (h e l p) {

s t r i n g h e l p P a t h (g e t e n v (”HOME”)) ;
h e l p P a t h += ” / STAR / h e l p . t x t ” ;

115

i f s t r e a m helpCheck (h e l p P a t h . c s t r ()) ;

i f (! he lpCheck) {
c o u t << ” Unable t o open t h e h e l p f i l e . . . e x i t i n g . . . ” << e n d l ;
e x i t (1) ;

}

s t r i n g ou tHe lp (” c a t ” + h e l p P a t h + ” | l e s s ”) ;
sys tem (ou tHe lp . c s t r ()) ;
e x i t (1) ;

}

/ / i f no i n p u t f i l e s p e c i f i e d
i f (! f i l e) {

c o u t << ” P l e a s e s p e c i f y a p r o j e c t and t h e l o c a t i o n o f i t s f i l e s u s i n g −f ” << e n d l
<< ” R e f e r t o t h e h e l p by u s i n g −h o p t i o n ” << e n d l ;

e x i t (1) ;
}
/ /

/ /
/ / Copying o r i g i n a l p r o j e c t and s e t t i n g u n s e t a t t r i b u t e s and s e t t i n g t h e s e a r c h s e t
/ /
/ / Sav ing t h e i n i t i a l s e t t i n g s f o r t h e a t t r i b u t e s
f o r (i n t i =0 ; i<x .ATTN; i ++) {

i n i t a t t s e t [i] = x . a t t r i b u t e s [i] ;
i f (i n i t a t t s e t [i] != 0) s e a r c h a t t s e t [i] = f a l s e ;
e l s e s e a r c h a t t s e t [i] = t r u e ;

}

i f (s e t P o l i c y) {
f o r (i n t i =0 ; i <25; i ++) {

i f (s e a r c h a t t s e t [i] == t r u e) s e a r c h a t t s e t [i] = p o l i c y S e t [i] ;
}

}

e l s e {
c o u t << ” P l e a s e s e t t h e p o l i c y t o be used ” ;
e x i t (1) ;

}

s=x ; / / copy ing t h e p r o j e c t

/ / S e t t i n g t h e i n i t i a l a t t r i b u t e s .
f o r (i n t i =0 ; i <25; i ++) {

i f (s . a t t r i b u t e s [i]==0) {
s . s e t a t t n u m (i , rdm . randomGenera teDouble (s . a t t r a n g e N o r m [0] [i] , s . a t t r a n g e N o r m [1] [i])) ;
a t tNumUndef ined ++; / / d e t e r m i n n i n g number o f u n d e f i n e d a t t r i b u t e s

}
}

f o r (i n t i =25; i<x .ATTN; i ++) {
s . s e t a t t n u m (i , rdm . randomGenera teDouble (s . a t t r a n g e N o r m [0] [i] , s . a t t r a n g e N o r m [1] [i])) ;

}
/ /

/ /
/ / F i l e I /O Block
/ /

t i m e t rawt ime ;
t ime (&rawt ime) ;

c h a r ∗ c h a r t i m e = c t i m e (& rawt ime) ;
c h a r t i m e = s t r t o k (c h a r t i m e , ”\n ”) ;

c h a r ∗ t empt ime = s t r t o k (c h a r t i m e , ” : ”) ;

s t r i n g r u n t i m e (” ”) ;

w h i l e (tempt ime !=NULL) {
r u n t i m e = r u n t i m e + ” ” + tempt ime ;
tempt ime = s t r t o k (NULL, ” : ”) ;

}

s t r i n g r u n s p e c (” ”) ;

f o r (i n t i =1 ; i<a r g c ; i ++) {
r u n s p e c += a rgv [i] ;
r u n s p e c += ” ” ;

}

i n t f = r u n s p e c . f i n d f i r s t o f (”STAR ”) ;
i f (f != 0) r u n s p e c = ”STAR” + r u n s p e c ;

r u n s p e c = ” S T A R r e s u l t s / ” + r u n s p e c + r u n t i m e ;

116

s t r i n g htmp (g e t e n v (”HOME”)) ;
s t r i n g hmkdir (” ”) ;

hmkdir += ” mkdir −p ” + htmp + ” / STAR / ” + r u n s p e c ;
sys tem (hmkdir . c s t r ()) ;

s t r i n g h log (htmp + ” / STAR / ” + r u n s p e c + ” / STAR . csv ”) ;
s t r i n g h l o g b e s t (htmp + ” / STAR / ” + r u n s p e c + ” / STARbest . c sv ”) ;

o f s t r e a m o u t f i l e (h log . c s t r () , i o s : : o u t) ;
o u t f i l e . s e t f (i o s : : f i x e d , i o s : : f l o a t f i e l d) ;
o u t f i l e . p r e c i s i o n (1 2) ;

i f (! o u t f i l e) { c o u t << ” Unable t o open l o g f i l e . . . e x i t i n g . . . ” << e n d l ; e x i t (1) ; }

f o r (i n t i =0 ; i<x .ATTN; i ++) {
o u t f i l e << s . d i sp l ayAt tName (i) << ” , ” ;

}
o u t f i l e << ” Energy \n ” ;

o f s t r e a m o u t b e s t ;
o u t b e s t . s e t f (i o s : : f i x e d , i o s : : f l o a t f i e l d) ;
o u t b e s t . p r e c i s i o n (1 2) ;

i f (LogBest) {
o u t b e s t . c l o s e () ;
o u t b e s t . open (h l o g b e s t . c s t r () , i o s : : o u t) ;
i f (! o u t b e s t) { c o u t << ” Unable t o open l o g f i l e f o r b e s t . . . e x i t i n g . . . ” << e n d l ; e x i t (1) ; }

f o r (i n t i =0 ; i<x .ATTN; i ++) {
o u t b e s t << s . d i sp l ayAt tName (i) << ” , ” ;

}
o u t b e s t << ” Energy \n ” ;

}
e l s e {

o u t b e s t . c l o s e () ;
}
/ /

/ /
/ / Block f o r s e t t i n g and d i p l a y i n g min / max f o r t h e model f o r t h e p r o j e c t i n
/ / q u e s t i o n . These a r e used f o r n o r m a l i z a t i o n p u r p o s e s .
/ /

cocomoMax = s t a t . e f f o r t M a x (x) ;
cocomoMin = s t a t . e f f o r t M i n (x) ;
coqualmoMax = s t a t . defec tMax (x) ;
coqualmoMin = s t a t . d e f e c t M i n (x) ;
t h r e a t M a x = s t a t . thrMax (x) ;
t h r e a t M i n = s t a t . th rMin (x) ;
tdevMax = s t a t . monthsMax (x) ;
tdevMin = s t a t . monthsMin (x) ;

e = energyM (s) ;

/ / O u t p u t t i n g w e i g h t i n g a t t r i b u t e s
i f (l o g) {

c o u t << ” Alpha = ” << a l p h a << e n d l ;
c o u t << ” Beta = ” << b e t a << e n d l ;
c o u t << ”Gamma = ” << gama << e n d l ;
c o u t << ” D e l t a = ” << d e l t a << e n d l ;
c o u t << ” Rely−D e f e c t s = ” << r e l y d e f e c t << e n d l ;
c o u t << ” Coo l ing F a c t o r = ” << c o o l F a c t o r << e n d l ;

c o u t << ”Cocomo Min : ” << cocomoMin
<< ”\nCocomo Max : ” << cocomoMax
<< ”\ nCoqualmo Min : ” << coqualmoMin
<< ”\ nCoqualmo Max : ” << coqualmoMax
<< ”\ n T h r e a t Min : ” << t h r e a t M i n
<< ”\ n T h r e a t Max : ” << t h r e a t M a x
<< ”\ nTdev Min : ” << tdevMin
<< ”\ nTdev Max : ” << tdevMax ;

/ /

/ /
/ / F i n d i n g b e s t o r n e a r b e s t s o l u t i o n f o r p r o j e c t u s i n g s i m u l a t e d a n n e a l i n g .
/ /

c o u t << ”\ n I n i t i a l Energy : ” << e << e n d l ;
}

sb = s ;
eb = e ;

do ub l e d i s c r e t e A t t E S c o r e [1 2] [2 5] = {{0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0}} ;

117

/ / D i s c r e t e a t t en e rg y s c o r i n g

i f (l o g) c o u t << ” Energy t h r e s h o l d : ” << emax << ”\nMax i t e r a t i o n s : ” << kmax << ”\ n S i m u l a t i o n
i t e r a t i o n s : ” << simNum << e n d l ;

t i m e t S A s t a r t , SAend ;
S A s t a r t = c l o c k () ;

i n t recNum = SA(i n i t a t t s e t , s e a r c h a t t s e t , &s , &sb , &sn , a t tNumUndef ined , &e , &eb , &en , &minE , &maxE ,
log , Extreme , &o u t f i l e , &o u t b e s t , kmax , emax , d i s c r e t e A t t E S c o r e , LogBest) ;

SAend = c l o c k () ;
SATime = ((d ou b l e) (SAend − S A s t a r t) / CLOCKS PER SEC) ;

o u t f i l e . c l o s e () ;

f o r (i n t i =0 ; i<x .ATTN; i ++)
f i n a l a t t s e t [i] = sb . a t t r i b u t e s [i] ;

/ /
/ / c l a s s bo re and c o n t i n u o u s v a r 10 b i n s

i n t numBest = 0 ;
i n t numRest = 0 ;

/ / D i s c r e t e S c o r i n g
i n t d i s c r e t e A t t B e s t [1 2] [2 5] = {{0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0}} ;
i n t d i s c r e t e A t t R e s t [1 2] [2 5] = {{0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0}} ;
i n t c o n t A t t B e s t [1 0] [1 5] = {{0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0}} ;
i n t c o n t A t t R e s t [1 0] [1 5] = {{0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0}} ;

i f s t r e a m i n f i l e (h log . c s t r () , i o s : : i n) ;
s t r i n g descLog (htmp + ” / STAR / ” + r u n s p e c + ” / STAR−d i s c r e t e . c sv ”) ;
o u t f i l e . open (descLog . c s t r () , i o s : : o u t) ;

i f (! ERank) t e n B i n B o r e (& i n f i l e , &o u t f i l e , minE , maxE , wors t , bore , &numBest , &numRest ,
d i s c r e t e A t t B e s t , d i s c r e t e A t t R e s t , c o n t A t t B e s t , c o n t A t t R e s t , recNum , x) ;

o u t f i l e . c l o s e () ;

/ / end d i c r e t i z a t i o n

/ / s c o r i n g o f t h e a t t r i b u t e s
/ / D i s c r e t e S c o r i n g
do ub l e d i s c r e t e A t t S c o r e [1 2] [2 5] = {{0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0}} ;

do ub l e c o n t A t t S c o r e [1 0] [1 5] = {{0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0}} ;

i f (! ERank) s c o r e (d i s c r e t e A t t B e s t , d i s c r e t e A t t R e s t , d i s c r e t e A t t S c o r e , c o n t A t t B e s t , c o n t A t t R e s t ,
c o n t A t t S c o r e , numBest , numRest) ;
/ / end s c o r i n g

/ / S i m u l a t i o n s

s t r i n g simLog (htmp + ” / STAR / ” + r u n s p e c + ” / s im log . csv ”) ;
o u t f i l e . open (simLog . c s t r () , i o s : : o u t) ;

i f (! ERank) BackSelSim (at tNumUndef ined , sb , x , s e a r c h a t t s e t , d i s c r e t e A t t S c o r e , c o n t A t t S c o r e , &o u t f i l e ,
rdm , OutRuns , LCout , runspec , l o g) ;
e l s e EBackSelSim (at tNumUndef ined , sb , x , s e a r c h a t t s e t , wors t , d i s c r e t e A t t E S c o r e , c o n t A t t S c o r e ,

&o u t f i l e , rdm , OutRuns , LCout , runspec , l o g) ;
o u t f i l e . c l o s e () ;

end = c l o c k () ;

To ta lT ime = ((do ub l e) (end − s t a r t) / CLOCKS PER SEC) ;

s t r i n g f i n a l o u t (” cd ” + htmp + ” / STAR / ”) ;
s t r i n g graphPNG (” . / graphPNG ” + r u n s p e c) ;
s t r i n g graph (” . / g raph ” + r u n s p e c) ;
s t r i n g snum , minEnergy , SANum, TTime , STime , s run , s a l p h a , s b e t a , sgamma , s d e l t a , s r e l y d e f e c t ,
s c o o l F a c t o r , s l o g ;

snum = i t o s (simNum) ;
minEnergy = d t o s (minE) ;
SANum = i t o s (kmax) ;
TTime = d t o s (To ta lT ime) ;
STime = d t o s (SATime) ;
s r u n = i t o s (run) ;
s a l p h a = d t o s (a l p h a) ;
s b e t a = d t o s (b e t a) ;
sgamma = d t o s (gama) ;
s d e l t a = d t o s (d e l t a) ;
s r e l y d e f e c t = d t o s (r e l y d e f e c t) ;
s c o o l F a c t o r = d t o s (c o o l F a c t o r) ;
i f (l o g) s l o g = ” 1 ” ;
e l s e s l o g = ” 0 ” ;

118

s t r i n g p o l i c y (” gawk −v o u t =” + r u n s p e c + ” −v N=” + snum + ” −v minEnergy =” + minEnergy + ” −v
s c o r i n g =” + s c o r i n g + ” −v m u t a t i o n =” + m u t a t i o n + ” −v SANum=” + SANum + ” −v Tota lT ime =” + TTime + ”
−v SATime=” + STime + ” −v p o l i c y V a l =” + p o l i c y V a l + ” −v p r o j e c t V a l =” + p r o j e c t V a l + ” −v run =” +
s r u n + ” −v a l p h a =” + s a l p h a + ” −v b e t a =” + s b e t a + ” −v gamma=” + sgamma + ” −v d e l t a =” + s d e l t a + ”
−v r e l y d e f e c t =” + s r e l y d e f e c t + ” −v c o o l F a c t o r =” + s c o o l F a c t o r + ” −v s t r a t V a l =” + s t r a t V a l + ” −v
b fc Va l =” + b fc Va l + ” −v s l o g =” + s l o g + ” −f p o l i c y . awk ” + r u n s p e c + ” / s i m log . csv ”) ;

s t r i n g command (” ”) ;

command += f i n a l o u t ;
i f (png) command += ”\n ” + graphPNG ;
i f (l o g) command += ”\n ” + graph ;
command += ”\n ” + p o l i c y ;

i n t s y s = sys tem (command . c s t r ()) ;

r e t u r n 0 ;
}

do ub l e e ne rg y (p r o j e c t x) {
do ub l e E = (x . e f f o r t ()−cocomoMin) / (cocomoMax−cocomoMin) ;
do ub l e D = (x . d e f e c t s ()− coqualmoMin) / (coqualmoMax−coqualmoMin) ;
do ub l e T = (t h r e a t M a x == t h r e a t M i n) ? 0 : (x . t h r e a t ()− t h r e a t M i n) / (th rea tMax−t h r e a t M i n) ;
do ub l e M = (x . months ()− tdevMin) / (tdevMax−tdevMin) ;

do ub l e RD;

i f (r e l y d e f e c t != 0)
RD = pow (r e l y d e f e c t , (x . g e t a t t n u m (1 3) −3)) ;

e l s e
RD = 0 ;

do ub l e EA = E∗ a l p h a ;
do ub l e DBRD = D∗ (b e t a +RD) ;
do ub l e TG = T∗gama ;
do ub l e MD = M∗ d e l t a ;

do ub l e BRD = b e t a +RD;

do ub l e Energy = s q r t (pow (EA, 2)+pow (DBRD, 2)+pow (TG, 2)+pow (MD, 2)) / s q r t (pow (a lpha , 2)+pow (BRD,
2)+pow (gama , 2)+pow (d e l t a , 2)) ;
r e t u r n Energy ;

}

do ub l e energyM (p r o j e c t x) {
do ub l e E = (x . e f f o r t M u t a t e ()−cocomoMin) / (cocomoMax−cocomoMin) ;
do ub l e D = (x . d e f e c t s M u t a t e ()− coqualmoMin) / (coqualmoMax−coqualmoMin) ;
do ub l e T = (t h r e a t M a x == t h r e a t M i n) ? 0 : (x . t h r e a t M u t a t e ()− t h r e a t M i n) / (th rea tMax−t h r e a t M i n) ;
do ub l e M = (x . monthsMuta te ()− tdevMin) / (tdevMax−tdevMin) ;

do ub l e RD;

i f (r e l y d e f e c t != 0)
RD = pow (r e l y d e f e c t , (x . g e t a t t n u m (1 3) −3)) ;

e l s e
RD = 0 ;

do ub l e EA = E∗ a l p h a ;
do ub l e DBRD = D∗ (b e t a +RD) ;
do ub l e TG = T∗gama ;
do ub l e MD = M∗ d e l t a ;

do ub l e BRD = b e t a +RD;

do ub l e EnergyM = s q r t (pow (EA, 2)+pow (DBRD, 2)+pow (TG, 2)+pow (MD, 2)) / s q r t (pow (a lpha , 2)+pow (BRD,
2)+pow (gama , 2)+pow (d e l t a , 2)) ;
r e t u r n EnergyM ;

}

do ub l e c a l c E n e r g y (p r o j e c t x , d oub l e e f f , d oub l e def , d ou b l e t h r , d ou b l e mon) {
do ub l e E = (e f f−cocomoMin) / (cocomoMax−cocomoMin) ;
do ub l e D = (def−coqualmoMin) / (coqualmoMax−coqualmoMin) ;
do ub l e T = (t h r e a t M a x == t h r e a t M i n) ? 0 : (t h r−t h r e a t M i n) / (th rea tMax−t h r e a t M i n) ;
do ub l e M = (mon−tdevMin) / (tdevMax−tdevMin) ;

do ub l e RD;

i f (r e l y d e f e c t != 0)
RD = pow (r e l y d e f e c t , (x . g e t a t t n u m (1 3) −3)) ;

e l s e
RD = 0 ;

do ub l e EA = E∗ a l p h a ;
do ub l e DBRD = D∗ (b e t a +RD) ;
do ub l e TG = T∗gama ;
do ub l e MD = M∗ d e l t a ;

119

do ub l e BRD = b e t a +RD;

do ub l e EnergyCalc = s q r t (pow (EA, 2)+pow (DBRD, 2)+pow (TG, 2)+pow (MD, 2)) / s q r t (pow (a lpha , 2)+pow (BRD,
2)+pow (gama , 2)+pow (d e l t a , 2)) ;
r e t u r n EnergyCalc ;

}

do ub l e prob (do ub l e e , d oub l e en , d oub l e T) {
r e t u r n (d ou b l e) exp ((e−en) / T) ;

}

p r o j e c t n e i g h b o u r (p r o j e c t s , do ub l e i n i t a t t s e t [] , i n t numtochange , boo l Extreme) {

randomNum rdm ;
i n t numdone =0;
i n t ChangedAtt [5 0] = {0} ;
i n t a t t ;
do ub l e rndRange = rdm . randomN () ;

w h i l e (numdone<numtochange) {
boo l d o n e p r e v i o u s = t r u e ;
w h i l e (d o n e p r e v i o u s == t r u e) {

a t t =rdm . r a n d o m G e n e r a t e I n t (0 , 2 4) ;

ChangedAtt [numdone] = a t t ;
d o n e p r e v i o u s = f a l s e ;
f o r (i n t i =0 ; i<numdone ; i ++) {

i f (ChangedAtt [i] == a t t) {
d o n e p r e v i o u s = t r u e ;
b r e a k ;

}
}

}
i f (i n i t a t t s e t [a t t]==0) {

i f (Extreme) {
i f (rndRange < 0 . 0 5) {

s . s e t a t t n u m (a t t , s . a t t r a n g e N o r m [0] [a t t]) ;
}
i f (rndRange >= 0 . 0 5 && rndRange < 0 . 9 5) {

s . s e t a t t n u m (a t t , rdm . randomGenera teDouble (s . a t t r a n g e N o r m [0] [a t t] ,
s . a t t r a n g e N o r m [1] [a t t])) ;

}
i f (rndRange >= 0 . 9 5) {

s . s e t a t t n u m (a t t , s . a t t r a n g e N o r m [1] [a t t]) ;
}

}
e l s e

s . s e t a t t n u m (a t t , rdm . randomGenera teDouble (s . a t t r a n g e N o r m [0] [a t t] ,
s . a t t r a n g e N o r m [1] [a t t])) ;

numdone ++;
}

}

f o r (a t t =25; a t t<s .ATTN; a t t ++) {
s . s e t a t t n u m (a t t , rdm . randomGenera teDouble (s . a t t r a n g e N o r m [0] [a t t] , s . a t t r a n g e N o r m [1] [a t t])) ;

}
r e t u r n s ;

}

do ub l e temp (i n t k , i n t kmax) {
r e t u r n (d ou b l e) exp (c o o l F a c t o r ∗k / kmax) ;

}

vo id o u t S t a t s (p r o j e c t x) {
c o u t << ”\ nCocomoII : ” << x . e f f o r t () << e n d l

<< ” Coqualmo : ” << x . d e f e c t s () << e n d l
<< ” T h r e a t : ” << x . t h r e a t () << e n d l
<< ” Tdev : ” << x . months () << e n d l ;

}

vo id p a r t i t i o n (do ub l e a [] , i n t l e f t , i n t r i g h t , i n t& lp , i n t &rp) {
i n t i = l e f t + 1 ;
i n t j = l e f t + 1 ;
do ub l e x = a [l e f t] ;
w h i l e (j <= r i g h t) {

i f (a [j] < x) {
do ub l e temp = a [j] ;
a [j] = a [i] ;
a [i] = temp ;
i ++;

}
j ++;

}
a [l e f t] = a [i −1];

120

a [i −1] = x ;
l p = i − 2 ;
rp = i ;

}

vo id q u i c k s o r t (do ub l e a [] , i n t l e f t , i n t r i g h t) {
i f (l e f t < r i g h t) {

i n t lp , rp ;
p a r t i t i o n (a , l e f t , r i g h t , lp , rp) ;
q u i c k s o r t (a , l e f t , l p) ;
q u i c k s o r t (a , rp , r i g h t) ;

}
}

vo id s o r t (do ub l e a [] , i n t n) {
q u i c k s o r t (a , 0 , n−1);

}

vo id commandLine (i n t a rgc , c h a r ∗ a rgv [] , do ub l e ∗ bore , dou b l e ∗ emax , i n t ∗ kmax , boo l ∗ wors t , boo l ∗ he lp ,
boo l ∗ log , boo l ∗ f i l e , boo l ∗ s e t P o l i c y , boo l ∗ ERank , p r o j e c t ∗ x , boo l ∗ OutRuns , boo l ∗ LCout , boo l ∗
Extreme , boo l ∗ LogBest , boo l ∗ png , i n t ∗ run , s t r i n g ∗ p o l i c y V a l , s t r i n g ∗ p r o j e c t V a l , s t r i n g ∗
s t r a t V a l , s t r i n g ∗ b fc Va l) {

f o r (i n t i =1 ; i<a r g c ; i ++) {
s t r i n g o p t i o n (a rgv [i]) ;

i f (o p t i o n ==”−sim ” | | o p t i o n ==”−SIM ”) {
i ++;

simNum = a t o i (a rgv [i]) ;
}

i f (o p t i o n ==”−png ” | | o p t i o n ==”−PNG”) {
∗png = t r u e ;

}

i f (o p t i o n ==”− l b ” | | o p t i o n ==”−LB”) {
∗LogBest = t r u e ;

}

i f (o p t i o n ==”−ex ” | | o p t i o n ==”−EX”) {
∗Extreme = t r u e ;

}

i f (o p t i o n ==”− a l ” | | o p t i o n ==”−AL”) {
i ++;
a l p h a = (d ou b l e) a t o f (a rgv [i]) ;

}

i f (o p t i o n ==”−be ” | | o p t i o n ==”−BE”) {
i ++;
b e t a = (do ub l e) a t o f (a rgv [i]) ;

}

i f (o p t i o n ==”−ga ” | | o p t i o n ==”−GA”) {
i ++;
gama = (dou b l e) a t o f (a rgv [i]) ;

}

i f (o p t i o n ==”−de ” | | o p t i o n ==”−DE”) {
i ++;
d e l t a = (d ou b l e) a t o f (a rgv [i]) ;

}

i f (o p t i o n ==”− rd ” | | o p t i o n ==”−RD”) {
i ++;
r e l y d e f e c t = (d ou b l e) a t o f (a rgv [i]) ;

}

i f (o p t i o n ==”− c f ” | | o p t i o n ==”−CF ”) {
i ++;
c o o l F a c t o r = (do ub l e) a t o f (a rgv [i]) ;

}

i f (o p t i o n ==”− l c ” | | o p t i o n ==”−LC”) {
∗LCout = t r u e ;

}

i f (o p t i o n ==”−or ” | | o p t i o n ==”−OR”) {
∗OutRuns = t r u e ;

}

i f (o p t i o n ==”−n ” | | o p t i o n ==”−N”) {
∗w o r s t = t r u e ;

}

i f (o p t i o n ==”−h ” | | o p t i o n ==”−H”) {

121

∗ h e l p = t r u e ;
}

i f (o p t i o n ==”− l ” | | o p t i o n ==”−L ”) {
∗ l o g = t r u e ;

}

i f (o p t i o n ==”−b ” | | o p t i o n ==”−B”) {
i ++;
∗ bore = a t o f (a rgv [i]) ;

}

i f (o p t i o n ==”−e ” | | o p t i o n ==”−E ”) {
i ++;
∗emax = a t o f (a rgv [i]) ;

}

i f (o p t i o n ==”− e r ” | | o p t i o n ==”−ER”) {
∗ERank = t r u e ;

}

i f (o p t i o n ==”− run ” | | o p t i o n ==”−RUN”) {
i ++;
∗ run = a t o i (a rgv [i]) ;

}

i f (o p t i o n ==”−k ” | | o p t i o n ==”−K”) {
i ++;
∗kmax = a t o i (a rgv [i]) ;

}

i f (o p t i o n ==”−bf ” | | o p t i o n ==”−BF ”) {
a l p h a = 0 . 0 ;

b e t a = 2 . 0 ;
gama = 0 . 0 ;
d e l t a = 2 . 0 ;
r e l y d e f e c t = 1 . 8 ;
∗ b fc Va l = o p t i o n ;
bfcVal−>e r a s e (0 , 1) ;

}

i f (o p t i o n ==”− f c ” | | o p t i o n ==”−FC ”) {
a l p h a = 2 . 0 ;

b e t a = 0 . 0 ;
gama = 0 . 0 ;
d e l t a = 2 . 0 ;
r e l y d e f e c t = 0 . 0 ;
∗ b fc Va l = o p t i o n ;
bfcVal−>e r a s e (0 , 1) ;

}

i f (o p t i o n ==”−bc ” | | o p t i o n ==”−BC”) {
a l p h a = 2 . 0 ;

b e t a = 2 . 0 ;
gama = 0 . 0 ;
d e l t a = 0 . 0 ;
r e l y d e f e c t = 1 . 8 ;
∗ b fc Va l = o p t i o n ;
bfcVal−>e r a s e (0 , 1) ;

}

i f (o p t i o n ==”−p o l ” | | o p t i o n ==”−POL”) {
∗ s e t P o l i c y = t r u e ;
i ++;
s t r i n g i n P o l i c y (g e t e n v (”HOME”)) ;
i n P o l i c y += ” / STAR / p o l i c i e s / ” ;
i n P o l i c y += a rgv [i] ;
i n P o l i c y += ” . p o l i c y ” ;

∗ p o l i c y V a l = a rgv [i] ;

i f s t r e a m p o l i c y (i n P o l i c y . c s t r () , i o s : : i n) ;
i f (! p o l i c y) {

c o u t << ” Unable t o open p o l i c y f i l e ” << i n P o l i c y << ” . . . e x i t i n g . . . ” << e n d l ;
e x i t (1) ;

}

s t r i n g tmpAt t (” ”) ;

w h i l e (! p o l i c y . e o f ()) {
p o l i c y >> tmpAt t ;
boo l r i g h t = f a l s e ;
f o r (i n t f =0 ; f <25; f ++) {

s t r i n g t t a t t (x−>d i sp l ayAt tName (f)) ;
i f (tmpAtt == t t a t t) {

r i g h t = t r u e ;
p o l i c y S e t [f] = 1 ;

122

b r e a k ;
}

}
i f (! r i g h t) {

i f (tmpAtt . l e n g t h () != 0) c o u t << ” The a t t r i b u t e ” << tmpAt t << ” i n ” << i n P o l i c y <<
” i s n o t a v a l i d a t t r i b u t e ” << e n d l ;

}
}

}

i f (o p t i o n ==”− f ” | | o p t i o n ==”−F ”) {
∗ f i l e = t r u e ;
i ++;
s t r i n g i n P r o j e c t (g e t e n v (”HOME”)) ;
i n P r o j e c t += ” / STAR / STAR pro jec t s / ” ;
i n P r o j e c t += a rgv [i] ;

∗ p r o j e c t V a l = a rgv [i] ;

s t r i n g a t t v a l f n (i n P r o j e c t + ” . v a l u e s ”) ;
s t r i n g a t t r a n g e f n (i n P r o j e c t + ” . r a n g e s ”) ;

i f s t r e a m a t t v a l s (a t t v a l f n . c s t r () , i o s : : i n) ;
i f s t r e a m a t t r a n g e s (a t t r a n g e f n . c s t r () , i o s : : i n) ;

i f (! a t t v a l s) {
c o u t << ” Unable t o open v a l u e s f i l e f o r p r o j e c t ” << i n P r o j e c t << ” . . . e x i t i n g . . . ” << e n d l ;
e x i t (1) ;

}

i f (! a t t r a n g e s) {
c o u t << ” Unable t o open r a n g e s f i l e f o r p r o j e c t ” << i n P r o j e c t << ” . . . e x i t i n g . . . ” << e n d l ;
e x i t (1) ;

}

s t r i n g tmpAt t (” ”) ;

w h i l e (! a t t r a n g e s . e o f ()) {
a t t r a n g e s >> tmpAt t ;
boo l r i g h t = f a l s e ;
f o r (i n t f =0 ; f<x−>ATTN; f ++) {

s t r i n g t t a t t (x−>d i sp l ayAt tName (f)) ;
i f (tmpAtt == t t a t t) {

r i g h t = t r u e ;
a t t r a n g e s >> x−>a t t r a n g e N o r m [0] [f] >> x−>a t t r a n g e N o r m [1] [f] ;

}
}
i f (! r i g h t) {

do ub l e dump ;
a t t r a n g e s >> dump >> dump ;
i f (tmpAtt . l e n g t h () != 0) c o u t << ” The a t t r i b u t e ” << tmpAt t << ” i n ” << i n P r o j e c t <<
” . r a n g e s i s n o t a v a l i d a t t r i b u t e ” << e n d l ;

}
}

tmpAt t . c l e a r () ;

w h i l e (! a t t v a l s . e o f ()) {
a t t v a l s >> tmpAt t ;
boo l r i g h t = f a l s e ;
f o r (i n t f =0 ; f<x−>ATTN; f ++) {

s t r i n g t t a t t (x−>d i sp l ayAt tName (f)) ;
i f (tmpAtt == t t a t t) {

r i g h t = t r u e ;
do ub l e tmpva l ;
a t t v a l s >> tmpva l ;
i f (tmpva l ! = 0) x−>s e t a t t n u m (f , tmpva l) ;
x−>a t t r a n g e N o r m [0] [f] = x−>a t t r a n g e N o r m [1] [f] = tmpva l ;

}
}
i f (! r i g h t) {

do ub l e dump ;
a t t v a l s >> dump ;
i f (tmpAtt . l e n g t h () != 0) c o u t << ” The a t t r i b u t e ” << tmpAt t << ” i n ” << i n P r o j e c t <<
” . v a l u e s i s n o t a v a l i d a t t r i b u t e ” << e n d l ;

}
}

}

i f (o p t i o n ==”− s t ” | | o p t i o n ==”−ST ”) {
∗ f i l e = t r u e ;
i ++;
s t r i n g i n S t r a t e g y (g e t e n v (”HOME”)) ;
i n S t r a t e g y += ” / STAR / s t r a t e g i e s / ” ;
i n S t r a t e g y += a rgv [i] ;

∗ s t r a t V a l = a rgv [i] ;

123

s t r i n g a t t v a l f n (i n S t r a t e g y + ” . s t r g ”) ;

i f s t r e a m a t t v a l s (a t t v a l f n . c s t r () , i o s : : i n) ;

i f (! a t t v a l s) {
c o u t << ” Unable t o open d e f i n i t i o n f i l e f o r s t r a t e g y ” << i n S t r a t e g y << ” . . . e x i t i n g . . . ”

<< e n d l ;
e x i t (1) ;

}

s t r i n g tmpAt t (” ”) ;

w h i l e (! a t t v a l s . e o f ()) {
a t t v a l s >> tmpAt t ;
boo l r i g h t = f a l s e ;
f o r (i n t f =0 ; f<x−>ATTN; f ++) {

s t r i n g t t a t t (x−>d i sp l ayAt tName (f)) ;
i f (tmpAtt == t t a t t) {

r i g h t = t r u e ;
do ub l e tmpva l ;
a t t v a l s >> tmpva l ;
i f (tmpAtt ==” Ksloc ”) {

x−>a t t r a n g e N o r m [0] [f] = tmpva l ∗x−>a t t r a n g e N o r m [0] [f] ;
x−>a t t r a n g e N o r m [1] [f] = tmpva l ∗x−>a t t r a n g e N o r m [1] [f] ;

}
e l s e i f (tmpva l ! = 0) {

x−>s e t a t t n u m (f , tmpva l) ;
x−>a t t r a n g e N o r m [0] [f] = x−>a t t r a n g e N o r m [1] [f] = tmpva l ;

}
}

}
i f (! r i g h t) {

do ub l e dump ;
a t t v a l s >> dump ;
i f (tmpAtt . l e n g t h () != 0) c o u t << ” The a t t r i b u t e ” << tmpAt t << ” i n ” << i n S t r a t e g y

<< ” . s t r g i s n o t a v a l i d a t t r i b u t e ” << e n d l ;
}

}
}

}
}

i n t SA(d ou b l e i n i t a t t s e t [] , boo l s e a r c h a t t s e t [] , p r o j e c t ∗ s , p r o j e c t ∗ sb , p r o j e c t ∗ sn , i n t
a t tNumUndef ined , do ub l e ∗e , d ou b l e ∗eb , dou b l e ∗en , dou b l e ∗minE , do ub l e ∗maxE , boo l log , boo l
Extreme , o f s t r e a m ∗ o u t f i l e , o f s t r e a m ∗ o u t b e s t , i n t kmax , do ub l e emax , do ub l e d i s c r e t e A t t E S c o r e
[] [2 5] , boo l LogBest) {

randomNum rdm ;
i n t k = 0 ;
i n t b l a = 0 ;
do ub l e d i s c r e t e A t t N u m [1 2] [2 5] = {{0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0}} ;
∗e = energyM (∗ s) ;

∗ sb = ∗ s ;
∗ eb = ∗e ;

i n t bestNum = 0 ;

w h i l e (k < kmax && ∗e > emax) {
∗ sn = n e i g h b o u r (∗ s , i n i t a t t s e t , (i n t) c e i l ((d ou b l e) a t tNumUndef ined / 2) , Extreme) ;
∗ en = energyM (∗ sn) ;

f o r (i n t i =0 ; i <25; i ++) {
d i s c r e t e A t t E S c o r e [(i n t) (roundX (sn−>a t t r i b u t e s [i])∗2 −1)] [i]+=(∗ en∗(1− temp (k , kmax))) ;
d i s c r e t e A t t N u m [(i n t) (roundX (sn−>a t t r i b u t e s [i])∗2 −1)] [i]+=(1− temp (k , kmax)) ;

}

i f (∗ en < ∗ eb) {
∗ sb = ∗ sn ;
∗ eb = ∗ en ;
∗ s = ∗ sn ;
∗e = ∗ en ;

i f (∗ en < ∗minE)
∗minE = ∗ en ;

i f (∗ en > ∗maxE)
∗maxE = ∗ en ;

bestNum ++;
f o r (i n t i =0 ; i<s−>ATTN; i ++) {

∗ o u t f i l e << sn−>a t t r i b u t e s [i] << ” , ” ;
}
∗ o u t f i l e << ∗ en << ”\n ” ;

i f (LogBest) {
f o r (i n t i =0 ; i<s−>ATTN; i ++) {

∗ o u t b e s t << sn−>a t t r i b u t e s [i] << ” , ” ;

124

}
∗ o u t b e s t << ∗ en << ”\n ” ;

}

k ++;
}
e l s e i f (rdm . randomN () < prob (∗ e , ∗en , temp (k , kmax))) {

b l a ++;
∗ s = ∗ sn ;
∗e = ∗ en ;

i f (∗ en < ∗minE)
∗minE = ∗ en ;

i f (∗ en > ∗maxE)
∗maxE = ∗ en ;

bestNum ++;
f o r (i n t i =0 ; i<s−>ATTN; i ++) {

∗ o u t f i l e << sn−>a t t r i b u t e s [i] << ” , ” ;
}
∗ o u t f i l e << ∗ en << ”\n ” ;

k ++;
}
e l s e
{

bestNum ++;
f o r (i n t i =0 ; i<s−>ATTN; i ++) {

∗ o u t f i l e << sn−>a t t r i b u t e s [i] << ” , ” ;
}
∗ o u t f i l e << ∗ en << ”\n ” ;

k ++;
}

}

f o r (i n t i =0 ; i <12; i ++) {
f o r (i n t j =0 ; j <25; j ++) {

i f (d i s c r e t e A t t N u m [i] [j] ! = 0) d i s c r e t e A t t E S c o r e [i] [j] / = d i s c r e t e A t t N u m [i] [j] ;
}

}

i f (l o g) {
c o u t << ” Here i s t h e f i n a l o u t p u t f o r t h e u n s e t v a l u e s : ” << e n d l ;
f o r (i n t i =0 ; i <25; i ++) {

i f (s e a r c h a t t s e t [i]== t r u e) {
sb−>d i s p l a y A t t (i) ;

}
}
f o r (i n t i =25; i<s−>ATTN; i ++) {

sb−>d i s p l a y A t t (i) ;
}
c o u t << ” F i n a l Energy : ” << e ne rg y (∗ sb) << e n d l ;
c o u t << ”Max Energy : ” << ∗maxE << e n d l << ”Min Energy : ” << ∗minE << e n d l << ”Number o f
I t e r a t i o n s Execu ted : ” << k << e n d l ;
c o u t << ”Non−Opt imal Jumps : ” << b l a << e n d l ;

}

r e t u r n bestNum ;
}

vo id t e n B i n B o r e (i f s t r e a m ∗ i n f i l e , o f s t r e a m ∗ o u t f i l e , do ub l e minE , do ub l e maxE , boo l wors t , d oub l e bore ,
i n t ∗numBest , i n t ∗numRest , i n t d i s c r e t e A t t B e s t [] [2 5] , i n t d i s c r e t e A t t R e s t [] [2 5] , i n t

c o n t A t t B e s t [] [1 5] , i n t c o n t A t t R e s t [] [1 5] , i n t recNum , p r o j e c t x) {
c o n s t d ou b l e z e r o =0;
c o n s t d ou b l e one =1;

s t r i n g s b u f f (” ”) ;
c h a r c b u f f [5 0] ;

∗ i n f i l e >> s b u f f ;

do ub l e ∗ e n e r g i e s ;
e n e r g i e s = new d ou b l e [recNum] ;
do ub l e b o r d e r E n e r g y ;
do ub l e negBorderEnergy ;

i n t c o u n t =0 ;
w h i l e (! i n f i l e −>e o f ()) { / / Th i s loop i s f o r g e t t i n g t h e e n e r g i e s f o r e v a l u a t i o n u s i n g BORE

f o r (i n t i =0 ; i<x .ATTN; i ++) {
i n f i l e −>g e t l i n e (c b u f f , 45 , ’ , ’) ;
s b u f f . c l e a r () ;
s b u f f . append (c b u f f) ;

125

i f (s b u f f ==””) b r e a k ;
}

i n f i l e −>g e t l i n e (c b u f f , 4 5) ;
s b u f f . c l e a r () ;
s b u f f . append (c b u f f) ;
i f (s b u f f ==””) b r e a k ;

d oub l e d b u f f = a t o f (s b u f f . c s t r ()) ;
d b u f f = (dbuf f−minE) / (maxE−minE) ; / / N o r m a l i s i n g e ne rg y

e n e r g i e s [c o u n t] = d b u f f ;

c o u n t ++;
}

s o r t (e n e r g i e s , recNum) ;

i n t B e s t B o r d e r = (i n t) f l o o r (recNum∗ bore) ;
i n t NegBes tBorder = (i n t) recNum − (i n t) c e i l (recNum∗ bore) ;

b o r d e r E n e r g y = e n e r g i e s [B e s t B o r d e r] ;
negBorde rEnergy = e n e r g i e s [NegBes tBorder] ;

d e l e t e [] e n e r g i e s ;
e n e r g i e s = NULL;

i n f i l e −>c l e a r () ;
i n f i l e −>seekg (0 , i o s : : beg) ;

s b u f f . c l e a r () ;

/ / Copying t h e f i r s t l i n e t o t h e D i s c r e t e o u t p u t f i l e
∗ i n f i l e >> s b u f f ;
∗ o u t f i l e << s b u f f << ”\n ” ;

w h i l e (! i n f i l e −>e o f ()) { / / Th i s i s t h e d i s c r e t i z a t i o n and s c o r i n g loop

i n t A t t [x .ATTN] = {0} ;

f o r (i n t i =0 ; i <25; i ++) {
i n f i l e −>g e t l i n e (c b u f f , 45 , ’ , ’) ;
s b u f f . c l e a r () ;
s b u f f . append (c b u f f) ;
i f (s b u f f ==””) b r e a k ;

do ub l e d b u f f = a t o f (s b u f f . c s t r ()) ;
d b u f f = roundX (d b u f f) ;

∗ o u t f i l e << d b u f f << ” , ” ;
A t t [i] = (i n t) (d b u f f ∗ 2) ;

}

f o r (i n t i =25; i<x .ATTN; i ++) {
i n f i l e −>g e t l i n e (c b u f f , 45 , ’ , ’) ;
s b u f f . c l e a r () ;
s b u f f . append (c b u f f) ;
i f (s b u f f ==””) b r e a k ;

do ub l e d b u f f = a t o f (s b u f f . c s t r ()) ;
d b u f f = (dbuf f−x . a t t r a n g e N o r m [0] [i]) / (x . a t t r a n g e N o r m [1] [i]−x . a t t r a n g e N o r m [0] [i]) ;
d b u f f = c e i l (d b u f f ∗1 0) ;

∗ o u t f i l e << d b u f f << ” , ” ;
A t t [i] = (i n t) d b u f f ;

}

i n f i l e −>g e t l i n e (c b u f f , 4 5) ;
s b u f f . c l e a r () ;
s b u f f . append (c b u f f) ;
i f (s b u f f ==””) b r e a k ;

do ub l e d b u f f = a t o f (s b u f f . c s t r ()) ;
d b u f f = (dbuf f−minE) / (maxE−minE) ;

i f (w o r s t) {
i f (dbuf f>negBorde rEnergy) {

∗ o u t f i l e << ”1\n ” ;
∗numBest= (∗ numBest + 1) ;
f o r (i n t i =0 ; i <25; i ++) d i s c r e t e A t t B e s t [A t t [i]−1][i] + + ;
f o r (i n t i =25; i<x .ATTN; i ++) c o n t A t t B e s t [A t t [i]−1][i −25]++;

}
e l s e {

∗ o u t f i l e << ”0\n ” ;
∗numRest= (∗ numRest + 1) ;
f o r (i n t i =0 ; i <25; i ++) d i s c r e t e A t t R e s t [A t t [i]−1][i] + + ;
f o r (i n t i =25; i<x .ATTN; i ++) c o n t A t t R e s t [A t t [i]−1][i −25]++;

126

}
}

e l s e {
i f (dbuf f<b o r d e r E n e r g y) {

∗ o u t f i l e << one << ”\n ” ;
∗numBest= (∗ numBest + 1) ;
f o r (i n t i =0 ; i <25; i ++) d i s c r e t e A t t B e s t [A t t [i]−1][i] + + ;
f o r (i n t i =25; i<x .ATTN; i ++) c o n t A t t B e s t [A t t [i]−1][i −25]++;

}
e l s e {

∗ o u t f i l e << z e r o << ”\n ” ;
∗numRest= (∗ numRest + 1) ;
f o r (i n t i =0 ; i <25; i ++) d i s c r e t e A t t R e s t [A t t [i]−1][i] + + ;
f o r (i n t i =25; i<x .ATTN; i ++) c o n t A t t R e s t [A t t [i]−1][i −25]++;

}
}

}
}

vo id s c o r e (i n t d i s c r e t e A t t B e s t [] [2 5] , i n t d i s c r e t e A t t R e s t [] [2 5] , d ou b l e d i s c r e t e A t t S c o r e [] [2 5] , i n t
c o n t A t t B e s t [] [1 5] , i n t c o n t A t t R e s t [] [1 5] , do ub l e c o n t A t t S c o r e [] [1 5] , i n t numBest , i n t numRest) {

f o r (i n t i =0 ; i <25; i ++) {
f o r (i n t j =0 ; j <12; j ++) {

do ub l e LBest = ((d oub l e) d i s c r e t e A t t B e s t
[j] [i] / (do ub l e) numBest) ∗ ((do ub l e) numBest / (do ub l e) (numBest+numRest)) ;
do ub l e LRest = ((d oub l e) d i s c r e t e A t t R e s t
[j] [i] / (do ub l e) numRest) ∗ ((do ub l e) numRest / (do ub l e) (numBest+numRest)) ;
i f ((LBest+LRest)==0) d i s c r e t e A t t S c o r e [j] [i] = 0 ;
e l s e d i s c r e t e A t t S c o r e [j] [i] = pow (LBest , 2) / (LBest+LRest) ;

}
}

f o r (i n t i =0 ; i <15; i ++) {
f o r (i n t j =0 ; j <10; j ++) {

do ub l e LBest = ((d oub l e) c o n t A t t B e s t
[j] [i] / (do ub l e) numBest) ∗ ((do ub l e) numBest / (do ub l e) (numBest+numRest)) ;
do ub l e LRest = ((d oub l e) c o n t A t t R e s t
[j] [i] / (do ub l e) numRest) ∗ ((do ub l e) numRest / (do ub l e) (numBest+numRest)) ;
i f ((LBest+LRest)==0) c o n t A t t S c o r e [j] [i] = 0 ;
e l s e c o n t A t t S c o r e [j] [i] = pow (LBest , 2) / (LBest+LRest) ;

}
}

}

vo id BackSelSim (i n t a t tNumUndef ined , p r o j e c t sb , p r o j e c t x , boo l s e a r c h a t t s e t [] , d ou b l e d i s c r e t e A t t S c o r e
[] [2 5] , do ub l e c o n t A t t S c o r e [] [1 5] , o f s t r e a m ∗ o u t f i l e , randomNum rdm , boo l OutRuns , boo l LCout ,
s t r i n g runspec , boo l l o g) {

i n t t h r o w n A t t [1 2] [2 5] = {{0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0}} ;

i f (l o g) c o u t << ” A t t r i b u t e , va lue , s c o r e , sumE , sumE ˆ 2 , medE , spE , sumEf fo r t , s u m E f f o r t ˆ 2 , medEf fo r t , s p E f f o r t ,
sumDefects , sumDefec t s ˆ 2 , medDefects , s p D e f e c t s , sumThreat , sumThrea t ˆ 2 , medThreat , s p T h r e a t , sumMonths ,
sumMonths ˆ 2 , medMonths , spMonths\n ” ;

∗ o u t f i l e << ” A t t r i b u t e , va lue , s c o r e , sumE , sumE ˆ 2 , medE , spE , sumEf fo r t , s u m E f f o r t ˆ 2 , medEf fo r t , s p E f f o r t ,
sumDefects , sumDefec t s ˆ 2 , medDefects , s p D e f e c t s , sumThreat , sumThrea t ˆ 2 , medThreat , s p T h r e a t , sumMonths ,
sumMonths ˆ 2 , medMonths , spMonths\n ” ;

i n t numPol icy = 0 ;

f o r (i n t k =0; k<(a t tNumUndef ined ∗1 2) ; k ++) {

do ub l e minScore = 100000;
i n t minAt t ;
i n t minAt tVal ;

f o r (i n t i =0 ; i <25; i ++) {

f o r (i n t j =(i n t) (roundX (x . a t t r a n g e N o r m [0] [i]) ∗ 2) ; j <=(i n t) (roundX (x . a t t r a n g e N o r m [1] [i]) ∗ 2) ;
j ++) {

i f (s e a r c h a t t s e t [i] == t r u e && t h r o w n A t t [j −1][i] == 0 && d i s c r e t e A t t S c o r e [j −1][i]
< minScore && d i s c r e t e A t t S c o r e [j −1][i] != 0) {

minScore = d i s c r e t e A t t S c o r e [j −1][i] ;
minAt t = i ;
minAt tVal = j −1;

}
}

}

t h r o w n A t t [minAt tVal] [minAt t] ++;

i f (d i s c r e t e A t t S c o r e [minAt tVal] [minAt t] != 0 && t h r o w n A t t [minAt tVal] [minAt t] == 1) {

numPol icy ++;
o f s t r e a m t i m f i l e ;

127

t i m f i l e . s e t f (i o s : : f i x e d , i o s : : f l o a t f i e l d) ;
t i m f i l e . p r e c i s i o n (1 2) ;

i f (LCout) {
/ / Tim Out
/ /
c h a r c [1 0] ;
s p r i n t f (c , ”% i ” , numPol icy) ;
s t r i n g numc (c) ;

s t r i n g htmp (g e t e n v (”HOME”)) ;
s t r i n g timLog (htmp + ” / STAR / ” + r u n s p e c + ” / LCcomp” + numc) ;
t i m f i l e . open (t imLog . c s t r () , i o s : : app) ;
/ /

}

do ub l e avgE = 0 ;
do ub l e sdE = 0 ;
do ub l e medianE = 0 ;
do ub l e sp readE = 0 ;

do ub l e ∗ E ;
E = new do ub le [simNum] ;

do ub l e a v g E f f o r t = 0 ;
do ub l e s d E f f o r t = 0 ;
do ub l e m e d i a n E f f o r t = 0 ;
do ub l e s p r e a d E f f o r t = 0 ;

do ub l e ∗ E f f o r t ;
E f f o r t = new d ou b l e [simNum] ;

do ub l e a v g D e f e c t s = 0 ;
do ub l e s d D e f e c t s = 0 ;
do ub l e m e d i a n D e f e c t s = 0 ;
do ub l e s p r e a d D e f e c t s = 0 ;

do ub l e ∗ D e f e c t s ;
D e f e c t s = new d ou b le [simNum] ;

do ub l e a v g T h r e a t = 0 ;
do ub l e s d T h r e a t = 0 ;
do ub l e m e d i a n T h r e a t = 0 ;
do ub l e s p r e a d T h r e a t = 0 ;

do ub l e ∗ T h r e a t ;
T h r e a t = new d oub le [simNum] ;

do ub l e avgMonths = 0 ;
do ub l e sdMonths = 0 ;
do ub l e medianMonths = 0 ;
do ub l e sp readMonths = 0 ;

do ub l e ∗ Months ;
Months = new do ub l e [simNum] ;

f o r (i n t simn =0; simn<simNum ; simn ++) {

i f (LCout) {
/ / Tim o u t
/ /
i f (simn == 0) {

t i m f i l e << x . d i sp l ayAt tName (3) ;
f o r (i n t i =4 ; i <25; i ++)

t i m f i l e << ” , ” << x . d i sp l ayAt tName (i) ;
f o r (i n t i =37; i<x .ATTN; i ++)

t i m f i l e << ” , ” << x . d i sp l ayAt tName (i) ;
t i m f i l e << ” , E f f o r t \n ” ;

}
/ /

}

p r o j e c t sim = sb ; / / S t a r t i n g from t h e b e s t SA c a s e
f o r (i n t i =0 ; i <25; i ++) {

boo l a l lTh rown = t r u e ;
i n t numNotThrown = 0 ;
do ub l e notThrown [1 2] = {0} ;

f o r (i n t j =(i n t) (roundX (x . a t t r a n g e N o r m [0] [i]) ∗ 2) ;
j <=(i n t) (roundX (x . a t t r a n g e N o r m [1] [i]) ∗ 2) ; j ++) {

i f (t h r o w n A t t [j −1][i]==0) {
a l lTh rown = f a l s e ;
notThrown [numNotThrown] = (do ub l e) j / 2 ;
numNotThrown ++;

}
}

128

i f (a l lTh rown) sim . s e t a t t n u m (i , roundX (rdm . randomGenera teDouble (x . a t t r a n g e N o r m [0] [i] ,
x . a t t r a n g e N o r m [1] [i]))) ;

e l s e sim . s e t a t t n u m (i , notThrown [rdm . r a n d o m G e n e r a t e I n t (0 , numNotThrown −1)]) ;
}

f o r (i n t l =25; l<x .ATTN; l ++) {
sim . s e t a t t n u m (l , rdm . randomGenera teDouble (x . a t t r a n g e N o r m [0] [l] , x . a t t r a n g e N o r m [1] [l])) ;

}

do ub l e t m p E f f o r t = sim . e f f o r t M u t a t e () ;
do ub l e t m p D e f e c t s = sim . d e f e c t s M u t a t e () ;
do ub l e tmpThrea t = sim . t h r e a t M u t a t e () ;
do ub l e tmpMonths = sim . monthsMuta te () ;
do ub l e tmpE = c a l c E n e r g y (sim , t m p E f f o r t , tmpDefec t s , tmpThrea t , tmpMonths) ;

i f (LCout) {
/ / Tim Out
/ /
t i m f i l e << sim . g e t a t t n u m v a l e f f (1) ; / / g e t a t t n u m (1) ;
f o r (i n t i =2 ; i <23; i ++)

t i m f i l e << ” , ” << sim . g e t a t t n u m v a l e f f (i) ; / / g e t a t t n u m (i) ;
f o r (i n t i =37; i<x .ATTN; i ++)

t i m f i l e << ” , ” << sim . g e t a t t n u m (i) ;
t i m f i l e << ” , ” << sim . e f f o r t () << ”\n ” ;
/ /

}

avgE += tmpE ;
sdE += tmpE∗ tmpE ;
E [simn] = tmpE ;

a v g E f f o r t += t m p E f f o r t ;
s d E f f o r t += t m p E f f o r t ∗ t m p E f f o r t ;
E f f o r t [simn] = t m p E f f o r t ;

a v g D e f e c t s += t m p D e f e c t s ;
s d D e f e c t s += t m p D e f e c t s ∗ t m p D e f e c t s ;
D e f e c t s [simn] = t m p D e f e c t s ;

a v g T h r e a t += tmpThrea t ;
s d T h r e a t += tmpThrea t ∗ tmpThrea t ;
T h r e a t [simn] = tmpThrea t ;

avgMonths += tmpMonths ;
sdMonths += tmpMonths∗ tmpMonths ;
Months [simn] = tmpMonths ;

}

s o r t (E , simNum) ;
s o r t (E f f o r t , simNum) ;
s o r t (D e f e c t s , simNum) ;
s o r t (Th rea t , simNum) ;
s o r t (Months , simNum) ;

i f (OutRuns) {
c h a r c [1 0] ;
s p r i n t f (c , ”% i ” , k) ;
s t r i n g numc (c) ;

s t r i n g htmp (g e t e n v (”HOME”)) ;
s t r i n g runLog (htmp + ” / STAR / ” + r u n s p e c + ” / run ” + numc) ;
o f s t r e a m r u n f i l e (runLog . c s t r () , i o s : : o u t) ;
r u n f i l e . s e t f (i o s : : f i x e d , i o s : : f l o a t f i e l d) ;
r u n f i l e . p r e c i s i o n (1 2) ;

f o r (i n t i =0 ; i<simNum ; i ++) {
r u n f i l e << E [i] << ”\ t ” << E f f o r t [i] << ”\ t ” << D e f e c t s [i] << ”\ t ” << T h r e a t [i] <<
”\ t ” << Months [i] << ”\n ” ;

}
}

/ / avgE = avgE / simNum ;
/ / sdE = s q r t (f a b s ((sdE / simNum)−(avgE∗avgE))) ;

medianE = E [(i n t) (simNum / 2)] ;
sp readE = E [(i n t) (simNum∗3/4)]−E [(i n t) (simNum / 2)] ;

/ / a v g E f f o r t = a v g E f f o r t / simNum ;
/ / s d E f f o r t = s q r t (f a b s ((s d E f f o r t / simNum)−(a v g E f f o r t ∗ a v g E f f o r t))) ;

m e d i a n E f f o r t = E f f o r t [(i n t) (simNum / 2)] ;
s p r e a d E f f o r t = E f f o r t [(i n t) (simNum∗3/4)]− E f f o r t [(i n t) (simNum / 2)] ;

/ / a v g D e f e c t s = a v g D e f e c t s / simNum ;
/ / s d D e f e c t s = s q r t (f a b s ((s d D e f e c t s / simNum)−(a v g D e f e c t s ∗ a v g D e f e c t s))) ;

m e d i a n D e f e c t s = D e f e c t s [(i n t) (simNum / 2)] ;
s p r e a d D e f e c t s = D e f e c t s [(i n t) (simNum∗3/4)]− D e f e c t s [(i n t) (simNum / 2)] ;

129

/ / a v g T h r e a t = a v g T h r e a t / simNum ;
/ / s d T h r e a t = s q r t (f a b s ((s d T h r e a t / simNum)−(a v g T h r e a t ∗ a v g T h r e a t))) ;

m e d i a n T h r e a t = T h r e a t [(i n t) (simNum / 2)] ;
s p r e a d T h r e a t = T h r e a t [(i n t) (simNum∗3/4)]− T h r e a t [(i n t) (simNum / 2)] ;

/ / avgMonths = avgMonths / simNum ;
/ / sdMonths = s q r t (f a b s ((sdMonths / simNum)−(avgMonths∗ avgMonths))) ;

medianMonths = Months [(i n t) (simNum / 2)] ;
sp readMonths = Months [(i n t) (simNum∗3/4)]−Months [(i n t) (simNum / 2)] ;

/ / Ou tpu t o f s i m u l a t i o n r e s u l t s
i f (l o g) {

c o u t << x . d i sp l ayAt tName (minAt t) << ” , ”
<< (do ub l e) (minAt tVal + 1) / 2 << ” , ” << d i s c r e t e A t t S c o r e [minAt tVal] [minAt t] << ” , ”
<< avgE << ” , ” << sdE << ” , ” << medianE << ” , ” << sp readE << ” , ”
<< a v g E f f o r t << ” , ” << s d E f f o r t << ” , ” << m e d i a n E f f o r t << ” , ” << s p r e a d E f f o r t << ” , ”
<< a v g D e f e c t s << ” , ” << s d D e f e c t s << ” , ” << m e d i a n D e f e c t s << ” , ” << s p r e a d D e f e c t s <<
” , ” << a v g T h r e a t << ” , ” << s d T h r e a t << ” , ” << m e d i a n T h r e a t << ” , ” << s p r e a d T h r e a t <<
” , ” << avgMonths << ” , ” << sdMonths << ” , ” << medianMonths << ” , ” << sp readMonths <<
”\n ” ;

}
∗ o u t f i l e << x . d i sp l ayAt tName (minAt t) << ” , ”

<< (do ub l e) (minAt tVal + 1) / 2 << ” , ” << d i s c r e t e A t t S c o r e [minAt tVal] [minAt t] << ” , ”
<< avgE << ” , ” << sdE << ” , ” << medianE << ” , ” << sp readE << ” , ”
<< a v g E f f o r t << ” , ” << s d E f f o r t << ” , ” << m e d i a n E f f o r t << ” , ” << s p r e a d E f f o r t << ” , ”
<< a v g D e f e c t s << ” , ” << s d D e f e c t s << ” , ” << m e d i a n D e f e c t s << ” , ” << s p r e a d D e f e c t s << ” , ”
<< a v g T h r e a t << ” , ” << s d T h r e a t << ” , ” << m e d i a n T h r e a t << ” , ” << s p r e a d T h r e a t << ” , ”
<< avgMonths << ” , ” << sdMonths << ” , ” << medianMonths << ” , ” << sp readMonths << ”\n ” ;

d e l e t e [] E ;
E = NULL;

d e l e t e [] E f f o r t ;
E f f o r t = NULL;

d e l e t e [] D e f e c t s ;
D e f e c t s = NULL;

d e l e t e [] T h r e a t ;
T h r e a t = NULL;

d e l e t e [] Months ;
Months = NULL;

}
}

}

vo id EBackSelSim (i n t a t tNumUndef ined , p r o j e c t sb , p r o j e c t x , boo l s e a r c h a t t s e t [] , boo l wors t , do ub l e
d i s c r e t e A t t E S c o r e [] [2 5] , do ub l e c o n t A t t S c o r e [] [1 5] , o f s t r e a m ∗ o u t f i l e , randomNum rdm , boo l
OutRuns , boo l LCout , s t r i n g runspec , boo l l o g) {

i n t t h r o w n A t t [1 2] [2 5] = {{0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0} , {0}} ;

i f (l o g) {
c o u t << ” Energy Ranking : ” << e n d l ;
c o u t << ” A t t r i b u t e , va lue , s c o r e , sumE , sumE ˆ 2 , medE , spE , sumEf fo r t , s u m E f f o r t ˆ 2 , medEf fo r t , s p E f f o r t ,
sumDefects , sumDefec t s ˆ 2 , medDefects , s p D e f e c t s , sumThreat , sumThrea t ˆ 2 , medThreat , s p T h r e a t ,
sumMonths , sumMonths ˆ 2 , medMonths , spMonths\n ” ;

}

∗ o u t f i l e << ” A t t r i b u t e , va lue , s c o r e , sumE , sumE ˆ 2 , medE , spE , sumEf fo r t , s u m E f f o r t ˆ 2 , medEf fo r t , s p E f f o r t ,
sumDefects , sumDefec t s ˆ 2 , medDefects , s p D e f e c t s , sumThreat , sumThrea t ˆ 2 , medThreat , s p T h r e a t , sumMonths ,
sumMonths ˆ 2 , medMonths , spMonths\n ” ;

i n t numPol icy = 0 ;

f o r (i n t k =0; k<(a t tNumUndef ined ∗1 2) ; k ++) {

do ub l e minScore = −1;
i n t minAt t ;
i n t minAt tVal ;

i f (w o r s t) {
minScore = 100000000;

}

f o r (i n t i =0 ; i <25; i ++) {
f o r (i n t j =(i n t) roundX (x . a t t r a n g e N o r m [0] [i]) ∗ 2 ; j <=(i n t) roundX (x . a t t r a n g e N o r m [1] [i]) ∗ 2 ; j ++) {

i f (! w o r s t && s e a r c h a t t s e t [i] == t r u e && t h r o w n A t t [j −1][i] == 0 && d i s c r e t e A t t E S c o r e
[j −1][i] > minScore && d i s c r e t e A t t E S c o r e [j −1][i] != 0) {

minScore = d i s c r e t e A t t E S c o r e [j −1][i] ;
minAt t = i ;
minAt tVal = j −1;

}
e l s e i f (w o r s t && s e a r c h a t t s e t [i] == t r u e && t h r o w n A t t [j −1][i] == 0 && d i s c r e t e A t t E S c o r e
[j −1][i] < minScore && d i s c r e t e A t t E S c o r e [j −1][i] != 0) {

minScore = d i s c r e t e A t t E S c o r e [j −1][i] ;

130

minAt t = i ;
minAt tVal = j −1;

}
}

}

t h r o w n A t t [minAt tVal] [minAt t] ++;

i f (d i s c r e t e A t t E S c o r e [minAt tVal] [minAt t] != 0 && t h r o w n A t t [minAt tVal] [minAt t] == 1) {

numPol icy ++;
o f s t r e a m t i m f i l e ;
t i m f i l e . s e t f (i o s : : f i x e d , i o s : : f l o a t f i e l d) ;
t i m f i l e . p r e c i s i o n (1 2) ;

i f (LCout) {
/ / Tim Out
/ /
c h a r c [1 0] ;
s p r i n t f (c , ”% i ” , numPol icy) ;
s t r i n g numc (c) ;

s t r i n g htmp (g e t e n v (”HOME”)) ;
s t r i n g timLog (htmp + ” / STAR / ” + r u n s p e c + ” / LCcomp” + numc) ;
t i m f i l e . open (t imLog . c s t r () , i o s : : app) ;
/ /

}

do ub l e avgE = 0 ;
do ub l e sdE = 0 ;
do ub l e medianE = 0 ;
do ub l e sp readE = 0 ;

do ub l e ∗ E ;
E = new do ub le [simNum] ;

do ub l e a v g E f f o r t = 0 ;
do ub l e s d E f f o r t = 0 ;
do ub l e m e d i a n E f f o r t = 0 ;
do ub l e s p r e a d E f f o r t = 0 ;

do ub l e ∗ E f f o r t ;
E f f o r t = new d ou b l e [simNum] ;

do ub l e a v g D e f e c t s = 0 ;
do ub l e s d D e f e c t s = 0 ;
do ub l e m e d i a n D e f e c t s = 0 ;
do ub l e s p r e a d D e f e c t s = 0 ;

do ub l e ∗ D e f e c t s ;
D e f e c t s = new d ou b le [simNum] ;

do ub l e a v g T h r e a t = 0 ;
do ub l e s d T h r e a t = 0 ;
do ub l e m e d i a n T h r e a t = 0 ;
do ub l e s p r e a d T h r e a t = 0 ;

do ub l e ∗ T h r e a t ;
T h r e a t = new d oub le [simNum] ;

do ub l e avgMonths = 0 ;
do ub l e sdMonths = 0 ;
do ub l e medianMonths = 0 ;
do ub l e sp readMonths = 0 ;

do ub l e ∗ Months ;
Months = new do ub l e [simNum] ;

f o r (i n t simn =0; simn<simNum ; simn ++) {

i f (LCout) {
/ / Tim o u t
/ /
i f (simn == 0) {

t i m f i l e << x . d i sp l ayAt tName (3) ;
f o r (i n t i =4 ; i <25; i ++)

t i m f i l e << ” , ” << x . d i sp l ayAt tName (i) ;
f o r (i n t i =37; i<x .ATTN; i ++)

t i m f i l e << ” , ” << x . d i sp l ayAt tName (i) ;
t i m f i l e << ” , E f f o r t \n ” ;

}
/ /

}

p r o j e c t sim = sb ; / / S t a r t i n g from t h e b e s t SA c a s e
f o r (i n t i =0 ; i <25; i ++) {

boo l a l lTh rown = t r u e ;

131

i n t numNotThrown = 0 ;
do ub l e notThrown [1 2] = {0} ;

f o r (i n t j =(i n t) (roundX (x . a t t r a n g e N o r m [0] [i]) ∗ 2) ;
j <=(i n t) (roundX (x . a t t r a n g e N o r m [1] [i]) ∗ 2) ; j ++) {

i f (t h r o w n A t t [j −1][i]==0) {
a l lTh rown = f a l s e ;
notThrown [numNotThrown] = (do ub l e) j / 2 ;
numNotThrown ++;

}
}

i f (a l lTh rown) sim . s e t a t t n u m (i , roundX (rdm . randomGenera teDouble (x . a t t r a n g e N o r m [0] [i] ,
x . a t t r a n g e N o r m [1] [i]))) ;

e l s e sim . s e t a t t n u m (i , notThrown [rdm . r a n d o m G e n e r a t e I n t (0 , numNotThrown −1)]) ;
}

f o r (i n t l =25; l<x .ATTN; l ++) {
sim . s e t a t t n u m (l , rdm . randomGenera teDouble (x . a t t r a n g e N o r m [0] [l] , x . a t t r a n g e N o r m [1] [l])) ;

}

do ub l e t m p E f f o r t = sim . e f f o r t M u t a t e () ;
do ub l e t m p D e f e c t s = sim . d e f e c t s M u t a t e () ;
do ub l e tmpThrea t = sim . t h r e a t M u t a t e () ;
do ub l e tmpMonths = sim . monthsMuta te () ;

do ub l e tmpE = c a l c E n e r g y (sim , t m p E f f o r t , tmpDefec t s , tmpThrea t , tmpMonths) ;

i f (LCout) {
/ / Tim Out
/ /
t i m f i l e << sim . g e t a t t n u m v a l e f f (1) ; / / g e t a t t n u m (1) ;
f o r (i n t i =2 ; i <23; i ++)

t i m f i l e << ” , ” << sim . g e t a t t n u m v a l e f f (i) ; / / g e t a t t n u m (i) ;
f o r (i n t i =37; i<x .ATTN; i ++)

t i m f i l e << ” , ” << sim . g e t a t t n u m (i) ;
t i m f i l e << ” , ” << sim . e f f o r t () << ”\n ” ;
/ /

}

avgE += tmpE ;
sdE += tmpE∗ tmpE ;
E [simn] = tmpE ;

a v g E f f o r t += t m p E f f o r t ;
s d E f f o r t += t m p E f f o r t ∗ t m p E f f o r t ;
E f f o r t [simn] = t m p E f f o r t ;

a v g D e f e c t s += t m p D e f e c t s ;
s d D e f e c t s += t m p D e f e c t s ∗ t m p D e f e c t s ;
D e f e c t s [simn] = t m p D e f e c t s ;

a v g T h r e a t += tmpThrea t ;
s d T h r e a t += tmpThrea t ∗ tmpThrea t ;
T h r e a t [simn] = tmpThrea t ;

avgMonths += tmpMonths ;
sdMonths += tmpMonths∗ tmpMonths ;
Months [simn] = tmpMonths ;

}

s o r t (E , simNum) ;
s o r t (E f f o r t , simNum) ;
s o r t (D e f e c t s , simNum) ;
s o r t (Th rea t , simNum) ;
s o r t (Months , simNum) ;

i f (OutRuns) {
c h a r c [1 0] ;
s p r i n t f (c , ”% i ” , k) ;
s t r i n g numc (c) ;

s t r i n g htmp (g e t e n v (”HOME”)) ;
s t r i n g runLog (htmp + ” / STAR / ” + r u n s p e c + ” / run ” + numc) ;
o f s t r e a m r u n f i l e (runLog . c s t r () , i o s : : o u t) ;
r u n f i l e . s e t f (i o s : : f i x e d , i o s : : f l o a t f i e l d) ;
r u n f i l e . p r e c i s i o n (1 2) ;

f o r (i n t i =0 ; i<simNum ; i ++) {
r u n f i l e << E [i] << ”\ t ” << E f f o r t [i] << ”\ t ” << D e f e c t s [i] << ”\ t ” << T h r e a t [i] <<
”\ t ” << Months [i] << ”\n ” ;

}
}

medianE = E [(i n t) (simNum / 2)] ;
sp readE = E [(i n t) (simNum∗3/4)]−E [(i n t) (simNum / 2)] ;

132

m e d i a n E f f o r t = E f f o r t [(i n t) (simNum / 2)] ;
s p r e a d E f f o r t = E f f o r t [(i n t) (simNum∗3/4)]− E f f o r t [(i n t) (simNum / 2)] ;

m e d i a n D e f e c t s = D e f e c t s [(i n t) (simNum / 2)] ;
s p r e a d D e f e c t s = D e f e c t s [(i n t) (simNum∗3/4)]− D e f e c t s [(i n t) (simNum / 2)] ;

m e d i a n T h r e a t = T h r e a t [(i n t) (simNum / 2)] ;
s p r e a d T h r e a t = T h r e a t [(i n t) (simNum∗3/4)]− T h r e a t [(i n t) (simNum / 2)] ;

medianMonths = Months [(i n t) (simNum / 2)] ;
sp readMonths = Months [(i n t) (simNum∗3/4)]−Months [(i n t) (simNum / 2)] ;

/ / Ou tpu t o f s i m u l a t i o n r e s u l t s
i f (l o g) {

c o u t << x . d i sp l ayAt tName (minAt t) << ” , ”
<< (do ub l e) (minAt tVal + 1) / 2 << ” , ” << d i s c r e t e A t t E S c o r e [minAt tVal] [minAt t] << ” , ”
<< avgE << ” , ” << sdE << ” , ” << medianE << ” , ” << sp readE << ” , ”
<< a v g E f f o r t << ” , ” << s d E f f o r t << ” , ” << m e d i a n E f f o r t << ” , ” << s p r e a d E f f o r t << ” , ”
<< a v g D e f e c t s << ” , ” << s d D e f e c t s << ” , ” << m e d i a n D e f e c t s << ” , ” << s p r e a d D e f e c t s <<
” , ” << a v g T h r e a t << ” , ” << s d T h r e a t << ” , ” << m e d i a n T h r e a t << ” , ” << s p r e a d T h r e a t <<
” , ” << avgMonths << ” , ” << sdMonths << ” , ” << medianMonths << ” , ” << sp readMonths
<<”\n ” ;

}

∗ o u t f i l e << x . d i sp l ayAt tName (minAt t) << ” , ”
<< (do ub l e) (minAt tVal + 1) / 2 << ” , ” << d i s c r e t e A t t E S c o r e [minAt tVal] [minAt t] << ” , ”
<< avgE << ” , ” << sdE << ” , ” << medianE << ” , ” << sp readE << ” , ”
<< a v g E f f o r t << ” , ” << s d E f f o r t << ” , ” << m e d i a n E f f o r t << ” , ” << s p r e a d E f f o r t << ” , ”
<< a v g D e f e c t s << ” , ” << s d D e f e c t s << ” , ” << m e d i a n D e f e c t s << ” , ” << s p r e a d D e f e c t s << ” , ”
<< a v g T h r e a t << ” , ” << s d T h r e a t << ” , ” << m e d i a n T h r e a t << ” , ” << s p r e a d T h r e a t << ” , ”
<< avgMonths << ” , ” << sdMonths << ” , ” << medianMonths << ” , ” << sp readMonths <<”\n ” ;

d e l e t e [] E ;
E = NULL;

d e l e t e [] E f f o r t ;
E f f o r t = NULL;

d e l e t e [] D e f e c t s ;
D e f e c t s = NULL;

d e l e t e [] T h r e a t ;
T h r e a t = NULL;

d e l e t e [] Months ;
Months = NULL;

}
}

}

s t r i n g i t o s (i n t i) / / c o n v e r t i n t t o s t r i n g
{

s t r i n g s t r e a m s ;
s << i ;
r e t u r n s . s t r () ;

}

s t r i n g d t o s (dou b l e d) / / c o n v e r t do ub l e t o s t r i n g
{

s t r i n g s t r e a m s ;
s . s e t f (i o s : : f i x e d , i o s : : f l o a t f i e l d) ;
s . p r e c i s i o n (1 2) ;
s << d ;
r e t u r n s . s t r () ;

}

do ub l e roundX (do ub l e num)
{

d oub l e d e c i m a l = num − (i n t) num ;

i f (d e c i m a l < 0 . 2 5) num = (i n t) num ;
e l s e i f (d e c i m a l >= 0 . 2 5 && d e c i m a l < 0 . 7 5) num = (i n t) num + 0 . 5 ;
e l s e num = (i n t) num + 1 ;

r e t u r n num ;
}

B.2 project.cpp
i n c l u d e ” p r o j e c t . h ”

p r o j e c t : : p r o j e c t () {
i n i t i a l i z e () ;

133

}

p r o j e c t : : ˜ p r o j e c t () {
}
vo id p r o j e c t : : i n i t i a l i z e () {

/ / i n i t i a l i z a t i o n

/ /
/ / A t t r i b u t e and s l o p e r a n g e s . Th i s i s m o d i f i e d a c c o r d i n g t o p r o j e c t f i l e s
/ /

do ub l e at t rangeNormTemp [] = {1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 3 , 3 , 2 , 2 , 2 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,
1 , 1 , 0 . 0 0 0 , −0.183 , 0 . 0 8 , 0 . 0 0 , −0.208 , 0 . 1 0 0 , 0 . 0 0 , −0.190 , 0 . 1 1 0 , −1.560 , 0 . 0 7 3 , −0.178 , 2 . 0 0 ,

0 . 5 5 , 1 , 3 , 0 . 2 8 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 5 , 5 , 6 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 6 , 6 ,
0 . 1 1 2 , −0.035 , 0 . 1 4 , 0 . 1 4 , −0.048 , 0 . 1 5 6 , 0 . 1 4 , −0.053 , 0 . 1 7 6 , −1.014 , 0 . 2 1 0 , −0.078 , 1 1 . 0 ,

0 . 9 9 7 9 7 3 , 980 , 3 . 6 7 , 0 . 3 3 } ;

f o r (i n t i =0 ; i <2; i ++) {
f o r (i n t j =0 ; j<ATTN; j ++) {

a t t r a n g e N o r m [i] [j]= at t rangeNormTemp [ATTN∗ i + j] ;
}

}

pRSlope = 0 . 0 5 2 ;
nRSlope =−0.100;
d f r R S l o p e = 0 . 1 1 3 ;

pDSlope = 0 . 0 7 2 ;
nDSlope =−0.105;
d f rDSlope = 0 . 1 3 2 ;

pCSlope = 0 . 0 7 2 ;
nCSlope =−0.106;
d f r C S l o p e = 0 . 1 5 1 ;

SFSlope =−1.265;
posEMSlope = 0 . 1 4 0 ;
negEMSlope =−0.109;

A= 6 . 5 1 ;
B= 0 . 7 7 ;
C= 3 . 3 3 5 ;
D= 0 . 3 0 5 ;

k s l o c =100;

f o r (i n t i =0 ; i <25; i ++)
a t t r i b u t e s [i] = 0 ;

/ / d e f e c t remova l schemes
a u t o m a t e d a n a l y s i s =0 ;
p e e r r e v i e w s =0;
e x e c u t i o n t e s t i n g a n d t o o l s =0 ;

/ / s c a l e f a c t o r s
p r e c =0;
f l e x =0;
r e s l =0 ;
team =0;
pmat =0;

/ / e f f o r t m u l t i p l i e r s
t ime =0;
s t o r =0 ;
d a t a =0;
pvo l =0;
r u s e =0;
r e l y =0;
docu =0;
acap =0;
pcap =0;
pcon =0;
apex =0;
p l e x =0;
l t e x =0;
t o o l =0 ;
s ced =0;
c p l x =0;
s i t e =0;

pCoqualRSlope=pRSlope ;
nCoqualRSlope=nRSlope ;
d f rCoqua lRS lope = d f r R S l o p e ;

pCoqualDSlope=pDSlope ;
nCoqualDSlope=nDSlope ;
d f rCoqua lDSlope = df rDSlope ;

134

pCoqualCSlope=pCSlope ;
nCoqualCSlope=nCSlope ;
d f rCoqua lCS lope = d f r C S l o p e ;

SFCocomoSlope=SFSlope ;
posEMCocomoSlope=posEMSlope ;
negEMCocomoSlope=negEMSlope ;

}
/ / The r e g u l a t e d CocomoII model
do ub l e p r o j e c t : : SFCocomo (d oub l e r a t i n g) { r e t u r n (d ou b l e) (r a t i n g −6)∗SFCocomoSlope ;}
do ub l e p r o j e c t : : posEMCocomo (d oub l e r a t i n g) { r e t u r n (d ou b l e) (r a t i n g −3)∗posEMCocomoSlope + 1 ;}
do ub l e p r o j e c t : : negEMCocomo (d oub l e r a t i n g) { r e t u r n (d ou b l e) (r a t i n g −3)∗negEMCocomoSlope + 1 ;}

/ / cocomoII s t u f f
do ub l e p r o j e c t : : f p r e c () { r e t u r n SFCocomo (p r e c) ; }
do ub l e p r o j e c t : : f f l e x () { r e t u r n SFCocomo (f l e x) ; }
do ub l e p r o j e c t : : f r e s l () { r e t u r n SFCocomo (r e s l) ; }
do ub l e p r o j e c t : : f t eam () { r e t u r n SFCocomo (team) ; }
do ub l e p r o j e c t : : fpmat () { r e t u r n SFCocomo (pmat) ; }
do ub l e p r o j e c t : : f t i m e () { r e t u r n posEMCocomo (t ime) ; }
do ub l e p r o j e c t : : f s t o r () { r e t u r n posEMCocomo (s t o r) ; }
do ub l e p r o j e c t : : f d a t a () { r e t u r n posEMCocomo (d a t a) ; }
do ub l e p r o j e c t : : f p v o l () { r e t u r n posEMCocomo (pvo l) ; }
do ub l e p r o j e c t : : f r u s e () { r e t u r n posEMCocomo (r u s e) ; }
do ub l e p r o j e c t : : f r e l y () {

i n t re lyLB = r e l y + (a u t o m a t e d a n a l y s i s −3>0? a u t o m a t e d a n a l y s i s −3 : 0)
+ (e x e c u t i o n t e s t i n g a n d t o o l s −3>0? e x e c u t i o n t e s t i n g a n d t o o l s −3 : 0)
+ (p e e r r e v i e w s −3>0? p e e r r e v i e w s −3 : 0) ;
r e t u r n posEMCocomo(5> re lyLB ? re lyLB : 5) ; }

do ub l e p r o j e c t : : f c p l x () { r e t u r n posEMCocomo (c p l x) ; }
do ub l e p r o j e c t : : fdocu () { r e t u r n posEMCocomo (docu) ; }
do ub l e p r o j e c t : : f s c e d () { r e t u r n negEMCocomo (sced) ; }
do ub l e p r o j e c t : : f a c a p () { r e t u r n negEMCocomo (acap) ; }
do ub l e p r o j e c t : : f p c a p () { r e t u r n negEMCocomo (pcap) ; }
do ub l e p r o j e c t : : fpcon () { r e t u r n negEMCocomo (pcon) ; }
do ub l e p r o j e c t : : f a p e x () { r e t u r n negEMCocomo (apex) ; }
do ub l e p r o j e c t : : f l t e x () { r e t u r n negEMCocomo (l t e x) ; }
do ub l e p r o j e c t : : f t o o l () {

i n t too lLB = t o o l + (a u t o m a t e d a n a l y s i s −3>0? a u t o m a t e d a n a l y s i s −3 : 0)
+ (e x e c u t i o n t e s t i n g a n d t o o l s −3>0? e x e c u t i o n t e s t i n g a n d t o o l s −3 : 0) ;

r e t u r n negEMCocomo(5> too lLB ? toolLB : 5) ; }
do ub l e p r o j e c t : : f s i t e () { r e t u r n negEMCocomo (s i t e) ; }
do ub l e p r o j e c t : : f p l e x () { r e t u r n negEMCocomo (p l e x) ; }

do ub l e p r o j e c t : : g e t a t t n u m (i n t a t tnum) {
s w i t c h (a t tnum) {

c a s e 0 : r e t u r n a u t o m a t e d a n a l y s i s ; b r e a k ;
c a s e 1 : r e t u r n p e e r r e v i e w s ; b r e a k ;
c a s e 2 : r e t u r n e x e c u t i o n t e s t i n g a n d t o o l s ; b r e a k ;
c a s e 3 : r e t u r n p r e c ; b r e a k ;
c a s e 4 : r e t u r n f l e x ; b r e a k ;
c a s e 5 : r e t u r n r e s l ; b r e a k ;
c a s e 6 : r e t u r n team ; b r e a k ;
c a s e 7 : r e t u r n pmat ; b r e a k ;
c a s e 8 : r e t u r n t ime ; b r e a k ;
c a s e 9 : r e t u r n s t o r ; b r e a k ;
c a s e 1 0 : r e t u r n d a t a ; b r e a k ;
c a s e 1 1 : r e t u r n pvo l ; b r e a k ;
c a s e 1 2 : r e t u r n r u s e ; b r e a k ;
c a s e 1 3 : r e t u r n r e l y ; b r e a k ;
c a s e 1 4 : r e t u r n docu ; b r e a k ;
c a s e 1 5 : r e t u r n acap ; b r e a k ;
c a s e 1 6 : r e t u r n pcap ; b r e a k ;
c a s e 1 7 : r e t u r n pcon ; b r e a k ;
c a s e 1 8 : r e t u r n apex ; b r e a k ;
c a s e 1 9 : r e t u r n p l e x ; b r e a k ;
c a s e 2 0 : r e t u r n l t e x ; b r e a k ;
c a s e 2 1 : r e t u r n t o o l ; b r e a k ;
c a s e 2 2 : r e t u r n sced ; b r e a k ;
c a s e 2 3 : r e t u r n c p l x ; b r e a k ;
c a s e 2 4 : r e t u r n s i t e ; b r e a k ;
/ / S lopes , A, B and Ksloc
c a s e 2 5 : r e t u r n pCoqualRSlope ; b r e a k ;
c a s e 2 6 : r e t u r n nCoqualRSlope ; b r e a k ;
c a s e 2 7 : r e t u r n d f rCoqua lRS lope ; b r e a k ;
c a s e 2 8 : r e t u r n pCoqualDSlope ; b r e a k ;
c a s e 2 9 : r e t u r n nCoqualDSlope ; b r e a k ;
c a s e 3 0 : r e t u r n d f rCoqua lDSlope ; b r e a k ;
c a s e 3 1 : r e t u r n pCoqualCSlope ; b r e a k ;
c a s e 3 2 : r e t u r n nCoqualCSlope ; b r e a k ;
c a s e 3 3 : r e t u r n d f rCoqua lCS lope ; b r e a k ;
c a s e 3 4 : r e t u r n SFCocomoSlope ; b r e a k ;
c a s e 3 5 : r e t u r n posEMCocomoSlope ; b r e a k ;
c a s e 3 6 : r e t u r n negEMCocomoSlope ; b r e a k ;
c a s e 3 7 : r e t u r n A; b r e a k ;
c a s e 3 8 : r e t u r n B ; b r e a k ;

135

c a s e 3 9 : r e t u r n k s l o c ; b r e a k ;
c a s e 4 0 : r e t u r n C ; b r e a k ;
c a s e 4 1 : r e t u r n D; b r e a k ;
d e f a u l t : r e t u r n 0 . 0 ; b r e a k ;

}
}

do ub l e p r o j e c t : : g e t a t t n u m v a l e f f (i n t a t tnum) {
s w i t c h (a t tnum) {

c a s e 1 : r e t u r n f p r e c () ; b r e a k ;
c a s e 2 : r e t u r n f f l e x () ; b r e a k ;
c a s e 3 : r e t u r n f r e s l () ; b r e a k ;
c a s e 4 : r e t u r n f t eam () ; b r e a k ;
c a s e 5 : r e t u r n fpmat () ; b r e a k ;
c a s e 6 : r e t u r n f t i m e () ; b r e a k ;
c a s e 7 : r e t u r n f s t o r () ; b r e a k ;
c a s e 8 : r e t u r n f d a t a () ; b r e a k ;
c a s e 9 : r e t u r n f p v o l () ; b r e a k ;
c a s e 1 0 : r e t u r n f r u s e () ; b r e a k ;
c a s e 1 1 : r e t u r n f r e l y () ; b r e a k ;
c a s e 1 2 : r e t u r n fdocu () ; b r e a k ;
c a s e 1 3 : r e t u r n f a c a p () ; b r e a k ;
c a s e 1 4 : r e t u r n f p c a p () ; b r e a k ;
c a s e 1 5 : r e t u r n fpcon () ; b r e a k ;
c a s e 1 6 : r e t u r n f a p e x () ; b r e a k ;
c a s e 1 7 : r e t u r n f p l e x () ; b r e a k ;
c a s e 1 8 : r e t u r n f l t e x () ; b r e a k ;
c a s e 1 9 : r e t u r n f t o o l () ; b r e a k ;
c a s e 2 0 : r e t u r n f s c e d () ; b r e a k ;
c a s e 2 1 : r e t u r n f c p l x () ; b r e a k ;
c a s e 2 2 : r e t u r n f s i t e () ; b r e a k ;
d e f a u l t : r e t u r n 0 . 0 ; b r e a k ;

}
}

do ub l e p r o j e c t : : g e t a t t n u m v a l d e f R (i n t a t tnum) {
s w i t c h (a t tnum) {

c a s e 0 : r e t u r n a u t o m a t e d a n a l y s i s R () ; b r e a k ;
c a s e 1 : r e t u r n p e e r r e v i e w s R () ; b r e a k ;
c a s e 2 : r e t u r n e x e c u t i o n t e s t i n g a n d t o o l s R () ; b r e a k ;
c a s e 3 : r e t u r n precR () ; b r e a k ;
c a s e 4 : r e t u r n f l e x R () ; b r e a k ;
c a s e 5 : r e t u r n r e s l R () ; b r e a k ;
c a s e 6 : r e t u r n teamR () ; b r e a k ;
c a s e 7 : r e t u r n pmatR () ; b r e a k ;
c a s e 8 : r e t u r n timeR () ; b r e a k ;
c a s e 9 : r e t u r n s t o r R () ; b r e a k ;
c a s e 1 0 : r e t u r n da taR () ; b r e a k ;
c a s e 1 1 : r e t u r n pvolR () ; b r e a k ;
c a s e 1 2 : r e t u r n ruseR () ; b r e a k ;
c a s e 1 3 : r e t u r n r e l y R () ; b r e a k ;
c a s e 1 4 : r e t u r n docuR () ; b r e a k ;
c a s e 1 5 : r e t u r n acapR () ; b r e a k ;
c a s e 1 6 : r e t u r n pcapR () ; b r e a k ;
c a s e 1 7 : r e t u r n pconR () ; b r e a k ;
c a s e 1 8 : r e t u r n apexR () ; b r e a k ;
c a s e 1 9 : r e t u r n plexR () ; b r e a k ;
c a s e 2 0 : r e t u r n l t e x R () ; b r e a k ;
c a s e 2 1 : r e t u r n t o o l R () ; b r e a k ;
c a s e 2 2 : r e t u r n scedR () ; b r e a k ;
c a s e 2 3 : r e t u r n cplxR () ; b r e a k ;
c a s e 2 4 : r e t u r n s i t e R () ; b r e a k ;
d e f a u l t : r e t u r n 0 . 0 ; b r e a k ;

}
}

do ub l e p r o j e c t : : g e t a t t n u m v a l d e f D (i n t a t tnum) {
s w i t c h (a t tnum) {

c a s e 0 : r e t u r n a u t o m a t e d a n a l y s i s D () ; b r e a k ;
c a s e 1 : r e t u r n p e e r r e v i e w s D () ; b r e a k ;
c a s e 2 : r e t u r n e x e c u t i o n t e s t i n g a n d t o o l s D () ; b r e a k ;
c a s e 3 : r e t u r n precD () ; b r e a k ;
c a s e 4 : r e t u r n f l exD () ; b r e a k ;
c a s e 5 : r e t u r n r e s l D () ; b r e a k ;
c a s e 6 : r e t u r n teamD () ; b r e a k ;
c a s e 7 : r e t u r n pmatD () ; b r e a k ;
c a s e 8 : r e t u r n timeD () ; b r e a k ;
c a s e 9 : r e t u r n s t o r D () ; b r e a k ;
c a s e 1 0 : r e t u r n dataD () ; b r e a k ;
c a s e 1 1 : r e t u r n pvolD () ; b r e a k ;
c a s e 1 2 : r e t u r n ruseD () ; b r e a k ;
c a s e 1 3 : r e t u r n re lyD () ; b r e a k ;
c a s e 1 4 : r e t u r n docuD () ; b r e a k ;
c a s e 1 5 : r e t u r n acapD () ; b r e a k ;
c a s e 1 6 : r e t u r n pcapD () ; b r e a k ;
c a s e 1 7 : r e t u r n pconD () ; b r e a k ;
c a s e 1 8 : r e t u r n apexD () ; b r e a k ;

136

c a s e 1 9 : r e t u r n plexD () ; b r e a k ;
c a s e 2 0 : r e t u r n l t e x D () ; b r e a k ;
c a s e 2 1 : r e t u r n too lD () ; b r e a k ;
c a s e 2 2 : r e t u r n scedD () ; b r e a k ;
c a s e 2 3 : r e t u r n cplxD () ; b r e a k ;
c a s e 2 4 : r e t u r n s i t e D () ; b r e a k ;
d e f a u l t : r e t u r n 0 . 0 ; b r e a k ;

}
}

do ub l e p r o j e c t : : g e t a t t n u m v a l d e f C (i n t a t tnum) {
s w i t c h (a t tnum) {

c a s e 0 : r e t u r n a u t o m a t e d a n a l y s i s C () ; b r e a k ;
c a s e 1 : r e t u r n p e e r r e v i e w s C () ; b r e a k ;
c a s e 2 : r e t u r n e x e c u t i o n t e s t i n g a n d t o o l s C () ; b r e a k ;
c a s e 3 : r e t u r n precC () ; b r e a k ;
c a s e 4 : r e t u r n f l e x C () ; b r e a k ;
c a s e 5 : r e t u r n r e s l C () ; b r e a k ;
c a s e 6 : r e t u r n teamC () ; b r e a k ;
c a s e 7 : r e t u r n pmatC () ; b r e a k ;
c a s e 8 : r e t u r n timeC () ; b r e a k ;
c a s e 9 : r e t u r n s t o r C () ; b r e a k ;
c a s e 1 0 : r e t u r n da taC () ; b r e a k ;
c a s e 1 1 : r e t u r n pvolC () ; b r e a k ;
c a s e 1 2 : r e t u r n ruseC () ; b r e a k ;
c a s e 1 3 : r e t u r n r e l y C () ; b r e a k ;
c a s e 1 4 : r e t u r n docuC () ; b r e a k ;
c a s e 1 5 : r e t u r n acapC () ; b r e a k ;
c a s e 1 6 : r e t u r n pcapC () ; b r e a k ;
c a s e 1 7 : r e t u r n pconC () ; b r e a k ;
c a s e 1 8 : r e t u r n apexC () ; b r e a k ;
c a s e 1 9 : r e t u r n plexC () ; b r e a k ;
c a s e 2 0 : r e t u r n l t e x C () ; b r e a k ;
c a s e 2 1 : r e t u r n t o o l C () ; b r e a k ;
c a s e 2 2 : r e t u r n scedC () ; b r e a k ;
c a s e 2 3 : r e t u r n cplxC () ; b r e a k ;
c a s e 2 4 : r e t u r n s i t e C () ; b r e a k ;
d e f a u l t : r e t u r n 0 . 0 ; b r e a k ;

}
}

vo id p r o j e c t : : s e t a t t n u m (i n t a t tnum , d oub l e r a t i n g) {
s w i t c h (a t tnum) {

c a s e 0 : s a u t o m a t e d a n a l y s i s (r a t i n g) ; b r e a k ;
c a s e 1 : s p e e r r e v i e w s (r a t i n g) ; b r e a k ;
c a s e 2 : s e x e c u t i o n t e s t i n g a n d t o o l s (r a t i n g) ; b r e a k ;
c a s e 3 : s p r e c (r a t i n g) ; b r e a k ;
c a s e 4 : s f l e x (r a t i n g) ; b r e a k ;
c a s e 5 : s r e s l (r a t i n g) ; b r e a k ;
c a s e 6 : s team (r a t i n g) ; b r e a k ;
c a s e 7 : spmat (r a t i n g) ; b r e a k ;
c a s e 8 : s t i m e (r a t i n g) ; b r e a k ;
c a s e 9 : s s t o r (r a t i n g) ; b r e a k ;
c a s e 1 0 : s d a t a (r a t i n g) ; b r e a k ;
c a s e 1 1 : s p v o l (r a t i n g) ; b r e a k ;
c a s e 1 2 : s r u s e (r a t i n g) ; b r e a k ;
c a s e 1 3 : s r e l y (r a t i n g) ; b r e a k ;
c a s e 1 4 : sdocu (r a t i n g) ; b r e a k ;
c a s e 1 5 : s a c a p (r a t i n g) ; b r e a k ;
c a s e 1 6 : spcap (r a t i n g) ; b r e a k ;
c a s e 1 7 : spcon (r a t i n g) ; b r e a k ;
c a s e 1 8 : sapex (r a t i n g) ; b r e a k ;
c a s e 1 9 : s p l e x (r a t i n g) ; b r e a k ;
c a s e 2 0 : s l t e x (r a t i n g) ; b r e a k ;
c a s e 2 1 : s t o o l (r a t i n g) ; b r e a k ;
c a s e 2 2 : s s c e d (r a t i n g) ; b r e a k ;
c a s e 2 3 : s c p l x (r a t i n g) ; b r e a k ;
c a s e 2 4 : s s i t e (r a t i n g) ; b r e a k ;
/ / S lopes , A, B and Ksloc
c a s e 2 5 : spCoqualRSlope (r a t i n g) ; b r e a k ;
c a s e 2 6 : snCoqualRSlope (r a t i n g) ; b r e a k ;
c a s e 2 7 : s d f r C o q u a l R S l o p e (r a t i n g) ; b r e a k ;
c a s e 2 8 : spCoqualDSlope (r a t i n g) ; b r e a k ;
c a s e 2 9 : snCoqualDSlope (r a t i n g) ; b r e a k ;
c a s e 3 0 : s d f r C o q u a l D S l o p e (r a t i n g) ; b r e a k ;
c a s e 3 1 : spCoqualCSlope (r a t i n g) ; b r e a k ;
c a s e 3 2 : snCoqualCSlope (r a t i n g) ; b r e a k ;
c a s e 3 3 : s d f r C o q u a l C S l o p e (r a t i n g) ; b r e a k ;
c a s e 3 4 : sSFCocomoSlope (r a t i n g) ; b r e a k ;
c a s e 3 5 : sposEMCocomoSlope (r a t i n g) ; b r e a k ;
c a s e 3 6 : snegEMCocomoSlope (r a t i n g) ; b r e a k ;
c a s e 3 7 : sA (r a t i n g) ; b r e a k ;
c a s e 3 8 : sB (r a t i n g) ; b r e a k ;
c a s e 3 9 : sKs lo c (r a t i n g) ; b r e a k ;
c a s e 4 0 : sC (r a t i n g) ; b r e a k ;
c a s e 4 1 : sD (r a t i n g) ; b r e a k ;

}

137

}

do ub l e p r o j e c t : : s e t a t t (d oub l e r a t i n g , d oub l e min , d ou b l e max) {
i f (r a t i n g > max) r e t u r n max ;
e l s e i f (r a t i n g < min) r e t u r n min ;
e l s e r e t u r n r a t i n g ;

}

vo id p r o j e c t : : s p r e c (d oub l e r a t i n g) {
do ub l e min =1; d oub l e max =6;
a t t r i b u t e s [3] = p r e c = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s f l e x (d oub l e r a t i n g) {

do ub l e min =1; d oub l e max =6;
a t t r i b u t e s [4] = f l e x = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s r e s l (d oub l e r a t i n g) {

do ub l e min =1; d oub l e max =6;
a t t r i b u t e s [5] = r e s l = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s team (d oub l e r a t i n g) {

do ub l e min =1; d oub l e max =6;
a t t r i b u t e s [6] = team= s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : spmat (d oub l e r a t i n g) {

do ub l e min =1; d oub l e max =6;
a t t r i b u t e s [7] = pmat= s e t a t t (r a t i n g , min , max) ;

}

vo id p r o j e c t : : s t i m e (d oub l e r a t i n g) {
do ub l e min =3; d oub l e max =6;
a t t r i b u t e s [8] = t ime = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s s t o r (d oub l e r a t i n g) {

do ub l e min =3; d oub l e max =6;
a t t r i b u t e s [9] = s t o r = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s d a t a (d oub l e r a t i n g) {

do ub l e min =2; d oub l e max =5;
a t t r i b u t e s [1 0] = d a t a = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s p v o l (d oub l e r a t i n g) {

do ub l e min =2; d oub l e max =5;
a t t r i b u t e s [1 1] = pvo l = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s r u s e (d oub l e r a t i n g) {

do ub l e min =2; d oub l e max =6;
a t t r i b u t e s [1 2] = r u s e = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s r e l y (d oub l e r a t i n g) {

do ub l e min =1; d oub l e max =5;
a t t r i b u t e s [1 3] = r e l y = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s s c e d (d oub l e r a t i n g) {

do ub l e min =1; d oub l e max =5;
a t t r i b u t e s [2 2] = sced = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s c p l x (d oub l e r a t i n g) {

do ub l e min =1; d oub l e max =6;
a t t r i b u t e s [2 3] = c p l x = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : sdocu (d oub l e r a t i n g) {

do ub l e min =1; d oub l e max =5;
a t t r i b u t e s [1 4] = docu= s e t a t t (r a t i n g , min , max) ;

}

vo id p r o j e c t : : s a c a p (d oub l e r a t i n g) {
do ub l e min =1; d oub l e max =5;
a t t r i b u t e s [1 5] = acap = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : spcap (d oub l e r a t i n g) {

do ub l e min =1; d oub l e max =5;
a t t r i b u t e s [1 6] = pcap= s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : spcon (d oub l e r a t i n g) {

do ub l e min =1; d oub l e max =5;
a t t r i b u t e s [1 7] = pcon= s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s apex (d oub l e r a t i n g) {

do ub l e min =1; d oub l e max =5;
a t t r i b u t e s [1 8] = apex= s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s l t e x (d oub l e r a t i n g) {

do ub l e min =1; d oub l e max =5;
a t t r i b u t e s [2 0] = l t e x = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s t o o l (d oub l e r a t i n g) {

138

do ub l e min =1; d oub l e max =5;
a t t r i b u t e s [2 1] = t o o l = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s s i t e (d oub l e r a t i n g) {

do ub l e min =1; d oub l e max =6;
a t t r i b u t e s [2 4] = s i t e = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s p l e x (d oub l e r a t i n g) {

do ub l e min =1; d oub l e max =5;
a t t r i b u t e s [1 9] = p l e x = s e t a t t (r a t i n g , min , max) ;

}

vo id p r o j e c t : : s a u t o m a t e d a n a l y s i s (do ub l e r a t i n g) {
do ub l e min =1; d oub l e max =6;
a t t r i b u t e s [0] = a u t o m a t e d a n a l y s i s = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s p e e r r e v i e w s (dou b l e r a t i n g) {

do ub l e min =1; d oub l e max =6;
a t t r i b u t e s [1] = p e e r r e v i e w s = s e t a t t (r a t i n g , min , max) ;

}
vo id p r o j e c t : : s e x e c u t i o n t e s t i n g a n d t o o l s (d ou b l e r a t i n g) {

do ub l e min =1; d oub l e max =6;
a t t r i b u t e s [2] = e x e c u t i o n t e s t i n g a n d t o o l s = s e t a t t (r a t i n g , min , max) ;

}

vo id p r o j e c t : : spCoqualRSlope (d oub l e v a l) { a t t r i b u t e s [2 5] = pCoqualRSlope= v a l ;}
vo id p r o j e c t : : snCoqualRSlope (d oub l e v a l) { a t t r i b u t e s [2 6] = nCoqualRSlope= v a l ;}
vo id p r o j e c t : : s d f r C o q u a l R S l o p e (d oub l e v a l) { a t t r i b u t e s [2 7] = d f rCoqua lRS lope = v a l ;}

vo id p r o j e c t : : spCoqualDSlope (d oub l e v a l) { a t t r i b u t e s [2 8] = pCoqualDSlope= v a l ;}
vo id p r o j e c t : : snCoqualDSlope (d oub l e v a l) { a t t r i b u t e s [2 9] = nCoqualDSlope= v a l ;}
vo id p r o j e c t : : s d f r C o q u a l D S l o p e (d oub l e v a l) { a t t r i b u t e s [3 0] = df rCoqua lDSlope = v a l ;}

vo id p r o j e c t : : spCoqualCSlope (d oub l e v a l) { a t t r i b u t e s [3 1] = pCoqualCSlope= v a l ;}
vo id p r o j e c t : : snCoqualCSlope (d oub l e v a l) { a t t r i b u t e s [3 2] = nCoqualCSlope= v a l ;}
vo id p r o j e c t : : s d f r C o q u a l C S l o p e (d oub l e v a l) { a t t r i b u t e s [3 3] = d f rCoqua lCS lope = v a l ;}

vo id p r o j e c t : : sSFCocomoSlope (d oub l e v a l) { a t t r i b u t e s [3 4] = SFCocomoSlope= v a l ;}
vo id p r o j e c t : : sposEMCocomoSlope (d oub l e v a l) { a t t r i b u t e s [3 5] = posEMCocomoSlope= v a l ;}
vo id p r o j e c t : : snegEMCocomoSlope (d oub l e v a l) { a t t r i b u t e s [3 6] = negEMCocomoSlope= v a l ;}

vo id p r o j e c t : : sA (d oub l e v a l) {
i f (v a l = = 0 . 0) {

randomNum rdm ;
a t t r i b u t e s [3 7] =A= ((B−(1.075− rdm . randomGenera teDouble (0 . 0 , 0 . 1))) / (− 0 . 0 3 8 5 1 3 5)) ;
i f (A<a t t r a n g e N o r m [0] [3 7]) a t t r i b u t e s [3 7] =A= a t t r a n g e N o r m [0] [3 7] ;
i f (A>a t t r a n g e N o r m [1] [3 7]) a t t r i b u t e s [3 7] =A= a t t r a n g e N o r m [1] [3 7] ;

}
e l s e {

a t t r i b u t e s [3 7] =A= v a l ; sB (0 . 0) ;
}

}
vo id p r o j e c t : : sB (d oub l e v a l) {

i f (v a l = = 0 . 0) {
randomNum rdm ;
a t t r i b u t e s [3 8] =B=(−0.0385135∗A+(1.075− rdm . randomGenera teDouble (0 . 0 , 0 . 1))) ;
i f (B<a t t r a n g e N o r m [0] [3 8]) a t t r i b u t e s [3 8] =B= a t t r a n g e N o r m [0] [3 8] ;
i f (B>a t t r a n g e N o r m [1] [3 8]) a t t r i b u t e s [3 8] =B= a t t r a n g e N o r m [1] [3 8] ;

}
e l s e {

a t t r i b u t e s [3 8] =B= v a l ; sA (0 . 0) ;
}

}

vo id p r o j e c t : : s Ks l oc (d oub l e v a l) { a t t r i b u t e s [3 9] = k s l o c = v a l ;}

vo id p r o j e c t : : sC (d oub l e v a l) { a t t r i b u t e s [4 0] =C= v a l ;}

vo id p r o j e c t : : sD (d oub l e v a l) { a t t r i b u t e s [4 1] =D= v a l ;}

s t r i n g p r o j e c t : : d i sp l ayAt tName (i n t a t tnum) {
s w i t c h (a t tnum) {

c a s e 0 : r e t u r n ” a u t o m a t e d a n a l y s i s ” ; b r e a k ;
c a s e 1 : r e t u r n ” p e e r r e v i e w s ” ; b r e a k ;
c a s e 2 : r e t u r n ” e x e c u t i o n t e s t i n g a n d t o o l s ” ; b r e a k ;
c a s e 3 : r e t u r n ” p r e c ” ; b r e a k ;
c a s e 4 : r e t u r n ” f l e x ” ; b r e a k ;
c a s e 5 : r e t u r n ” r e s l ” ; b r e a k ;
c a s e 6 : r e t u r n ” team ” ; b r e a k ;
c a s e 7 : r e t u r n ” pmat ” ; b r e a k ;
c a s e 8 : r e t u r n ” t ime ” ; b r e a k ;
c a s e 9 : r e t u r n ” s t o r ” ; b r e a k ;
c a s e 1 0 : r e t u r n ” d a t a ” ; b r e a k ;
c a s e 1 1 : r e t u r n ” pvo l ” ; b r e a k ;
c a s e 1 2 : r e t u r n ” r u s e ” ; b r e a k ;
c a s e 1 3 : r e t u r n ” r e l y ” ; b r e a k ;
c a s e 1 4 : r e t u r n ” docu ” ; b r e a k ;

139

c a s e 1 5 : r e t u r n ” acap ” ; b r e a k ;
c a s e 1 6 : r e t u r n ” pcap ” ; b r e a k ;
c a s e 1 7 : r e t u r n ” pcon ” ; b r e a k ;
c a s e 1 8 : r e t u r n ” apex ” ; b r e a k ;
c a s e 1 9 : r e t u r n ” p l e x ” ; b r e a k ;
c a s e 2 0 : r e t u r n ” l t e x ” ; b r e a k ;
c a s e 2 1 : r e t u r n ” t o o l ” ; b r e a k ;
c a s e 2 2 : r e t u r n ” sced ” ; b r e a k ;
c a s e 2 3 : r e t u r n ” c p l x ” ; b r e a k ;
c a s e 2 4 : r e t u r n ” s i t e ” ; b r e a k ;
/ / S lopes , A, B and Ksloc
c a s e 2 5 : r e t u r n ” pCoqualRSlope ” ; b r e a k ;
c a s e 2 6 : r e t u r n ” nCoqualRSlope ” ; b r e a k ;
c a s e 2 7 : r e t u r n ” d f rCoqua lRS lope ” ; b r e a k ;
c a s e 2 8 : r e t u r n ” pCoqualDSlope ” ; b r e a k ;
c a s e 2 9 : r e t u r n ” nCoqualDSlope ” ; b r e a k ;
c a s e 3 0 : r e t u r n ” d f rCoqua lDSlope ” ; b r e a k ;
c a s e 3 1 : r e t u r n ” pCoqualCSlope ” ; b r e a k ;
c a s e 3 2 : r e t u r n ” nCoqualCSlope ” ; b r e a k ;
c a s e 3 3 : r e t u r n ” d f rCoqua lCS lope ” ; b r e a k ;
c a s e 3 4 : r e t u r n ” SFCocomoSlope ” ; b r e a k ;
c a s e 3 5 : r e t u r n ” posEMCocomoSlope ” ; b r e a k ;
c a s e 3 6 : r e t u r n ” negEMCocomoSlope ” ; b r e a k ;
c a s e 3 7 : r e t u r n ”A” ; b r e a k ;
c a s e 3 8 : r e t u r n ”B ” ; b r e a k ;
c a s e 3 9 : r e t u r n ” Ksloc ” ; b r e a k ;
c a s e 4 0 : r e t u r n ”C ” ; b r e a k ;
c a s e 4 1 : r e t u r n ”D” ; b r e a k ;
d e f a u l t : r e t u r n ” ” ; b r e a k ;

}
}

vo id p r o j e c t : : d i s p l a y A t t (i n t a t tnum) {
s w i t c h (a t tnum) {

c a s e 0 : d i s p a u t o m a t e d a n a l y s i s () ; b r e a k ;
c a s e 1 : d i s p p e e r r e v i e w s () ; b r e a k ;
c a s e 2 : d i s p e x e c u t i o n t e s t i n g a n d t o o l s () ; b r e a k ;
c a s e 3 : d i s p p r e c () ; b r e a k ;
c a s e 4 : d i s p f l e x () ; b r e a k ;
c a s e 5 : d i s p r e s l () ; b r e a k ;
c a s e 6 : d i s p t e a m () ; b r e a k ;
c a s e 7 : d i s p p ma t () ; b r e a k ;
c a s e 8 : d i s p t i m e () ; b r e a k ;
c a s e 9 : d i s p s t o r () ; b r e a k ;
c a s e 1 0 : d i s p d a t a () ; b r e a k ;
c a s e 1 1 : d i s p p v o l () ; b r e a k ;
c a s e 1 2 : d i s p r u s e () ; b r e a k ;
c a s e 1 3 : d i s p r e l y () ; b r e a k ;
c a s e 1 4 : d i s p d o c u () ; b r e a k ;
c a s e 1 5 : d i s p a c a p () ; b r e a k ;
c a s e 1 6 : d i s p p c a p () ; b r e a k ;
c a s e 1 7 : d i s p p c o n () ; b r e a k ;
c a s e 1 8 : d i s p a p e x () ; b r e a k ;
c a s e 1 9 : d i s p p l e x () ; b r e a k ;
c a s e 2 0 : d i s p l t e x () ; b r e a k ;
c a s e 2 1 : d i s p t o o l () ; b r e a k ;
c a s e 2 2 : d i s p s c e d () ; b r e a k ;
c a s e 2 3 : d i s p c p l x () ; b r e a k ;
c a s e 2 4 : d i s p s i t e () ; b r e a k ;
/ / S lopes , A, B and Ksloc
c a s e 2 5 : d i sppCoqua lRS lope () ; b r e a k ;
c a s e 2 6 : d i spnCoqua lRS lope () ; b r e a k ;
c a s e 2 7 : d i s p d f r C o q u a l R S l o p e () ; b r e a k ;
c a s e 2 8 : d i sppCoqua lDSlope () ; b r e a k ;
c a s e 2 9 : d i spnCoqua lDSlope () ; b r e a k ;
c a s e 3 0 : d i s p d f r C o q u a l D S l o p e () ; b r e a k ;
c a s e 3 1 : d i sppCoqua lCS lope () ; b r e a k ;
c a s e 3 2 : d i spnCoqua lCS lope () ; b r e a k ;
c a s e 3 3 : d i s p d f r C o q u a l C S l o p e () ; b r e a k ;
c a s e 3 4 : dispSFCocomoSlope () ; b r e a k ;
c a s e 3 5 : dispposEMCocomoSlope () ; b r e a k ;
c a s e 3 6 : dispnegEMCocomoSlope () ; b r e a k ;
c a s e 3 7 : dispA () ; b r e a k ;
c a s e 3 8 : d ispB () ; b r e a k ;
c a s e 3 9 : d i s p K s l o c () ; b r e a k ;
c a s e 4 0 : d ispC () ; b r e a k ;
c a s e 4 1 : dispD () ; b r e a k ;

}
}

vo id p r o j e c t : : d i s p p r e c () { c o u t << ” p r e c : ” << p r e c << e n d l ;}
vo id p r o j e c t : : d i s p f l e x () { c o u t << ” f l e x : ” << f l e x << e n d l ;}
vo id p r o j e c t : : d i s p r e s l () { c o u t << ” r e s l : ” << r e s l << e n d l ;}
vo id p r o j e c t : : d i s p t e a m () { c o u t << ” team : ” << team << e n d l ;}
vo id p r o j e c t : : d i s p p m a t () { c o u t << ” pmat : ” << pmat << e n d l ;}

vo id p r o j e c t : : d i s p t i m e () { c o u t << ” t ime : ” << t ime << e n d l ;}

140

vo id p r o j e c t : : d i s p s t o r () { c o u t << ” s t o r : ” << s t o r << e n d l ;}
vo id p r o j e c t : : d i s p d a t a () { c o u t << ” d a t a : ” << d a t a << e n d l ;}
vo id p r o j e c t : : d i s p p v o l () { c o u t << ” pvo l : ” << pvo l << e n d l ;}
vo id p r o j e c t : : d i s p r u s e () { c o u t << ” r u s e : ” << r u s e << e n d l ;}
vo id p r o j e c t : : d i s p r e l y () { c o u t << ” r e l y : ” << r e l y << e n d l ;}
vo id p r o j e c t : : d i s p d o c u () { c o u t << ” docu : ” << docu << e n d l ;}
vo id p r o j e c t : : d i s p a c a p () { c o u t << ” acap : ” << acap << e n d l ;}
vo id p r o j e c t : : d i s p p c a p () { c o u t << ” pcap : ” << pcap << e n d l ;}
vo id p r o j e c t : : d i s p p c o n () { c o u t << ” pcon : ” << pcon << e n d l ;}
vo id p r o j e c t : : d i s p a p e x () { c o u t << ” apex : ” << apex << e n d l ;}
vo id p r o j e c t : : d i s p l t e x () { c o u t << ” l t e x : ” << l t e x << e n d l ;}
vo id p r o j e c t : : d i s p t o o l () { c o u t << ” t o o l : ” << t o o l << e n d l ;}
vo id p r o j e c t : : d i s p s c e d () { c o u t << ” sced : ” << s ced << e n d l ;}
vo id p r o j e c t : : d i s p c p l x () { c o u t << ” c p l x : ” << c p l x << e n d l ;}
vo id p r o j e c t : : d i s p s i t e () { c o u t << ” s i t e : ” << s i t e << e n d l ;}
vo id p r o j e c t : : d i s p p l e x () { c o u t << ” p l e x : ” << p l e x << e n d l ;}

vo id p r o j e c t : : d i s p a u t o m a t e d a n a l y s i s () { c o u t << ” a u t o m a t e d a n a l y s i s : ” << a u t o m a t e d a n a l y s i s << e n d l ;}
vo id p r o j e c t : : d i s p p e e r r e v i e w s () { c o u t << ” p e e r r e v i e w s : ” << p e e r r e v i e w s << e n d l ;}
vo id p r o j e c t : : d i s p e x e c u t i o n t e s t i n g a n d t o o l s () { c o u t << ” e x e c u t i o n t e s t i n g a n d t o o l s : ”

<< e x e c u t i o n t e s t i n g a n d t o o l s << e n d l ;}

vo id p r o j e c t : : d i sppCoqua lRSlope () { c o u t << ” pCoqualRSlope : ” << pCoqualRSlope << e n d l ;}
vo id p r o j e c t : : d i spnCoqua lRSlope () { c o u t << ” nCoqualRSlope : ” << nCoqualRSlope << e n d l ;}
vo id p r o j e c t : : d i s p d f r C o q u a l R S l o p e () { c o u t << ” d f rCoqua lRS lope : ” << d f rCoqua lRS lope << e n d l ;}
vo id p r o j e c t : : d i sppCoqua lDSlope () { c o u t << ” pCoqualDSlope : ” << pCoqualDSlope << e n d l ;}
vo id p r o j e c t : : d i spnCoqua lDSlope () { c o u t << ” nCoqualDSlope : ” << nCoqualDSlope << e n d l ;}
vo id p r o j e c t : : d i s p d f r C o q u a l D S l o p e () { c o u t << ” d f rCoqua lDSlope : ” << df rCoqua lDSlope << e n d l ;}
vo id p r o j e c t : : d i sppCoqua lCSlope () { c o u t << ” pCoqualCSlope : ” << pCoqualCSlope << e n d l ;}
vo id p r o j e c t : : d i spnCoqua lCSlope () { c o u t << ” nCoqualCSlope : ” << nCoqualCSlope << e n d l ;}
vo id p r o j e c t : : d i s p d f r C o q u a l C S l o p e () { c o u t << ” d f rCoqua lCS lope : ” << d f rCoqua lCS lope << e n d l ;}
vo id p r o j e c t : : dispSFCocomoSlope () { c o u t << ” SFCocomoSlope : ” << SFCocomoSlope << e n d l ;}
vo id p r o j e c t : : dispposEMCocomoSlope () { c o u t << ” posEMCocomoSlope : ” << posEMCocomoSlope << e n d l ;}
vo id p r o j e c t : : dispnegEMCocomoSlope () { c o u t << ” negEMCocomoSlope : ” << negEMCocomoSlope << e n d l ;}
vo id p r o j e c t : : d ispA () { c o u t << ”A: ” << A << e n d l ;}
vo id p r o j e c t : : d i spB () { c o u t << ”B : ” << B << e n d l ;}
vo id p r o j e c t : : d i s p K s l o c () { c o u t << ” k s l o c : ” << k s l o c << e n d l ;}
vo id p r o j e c t : : d i spC () { c o u t << ”C : ” << C << e n d l ;}
vo id p r o j e c t : : d ispD () { c o u t << ”D: ” << D << e n d l ;}

do ub l e p r o j e c t : : e f f o r t () {
r e t u r n A∗ (pow (k s l o c , (B+ 0 . 0 1∗ (f p r e c () + f f l e x () + f r e s l () + f t eam () + fpmat ()))))

∗ (f t i m e () ∗ f s t o r () ∗ f d a t a () ∗ f p v o l () ∗ f r u s e () ∗ f r e l y () ∗ fdocu () ∗ f a c a p () ∗ f p c a p () ∗
fpcon () ∗ f a p e x () ∗ f p l e x () ∗ f l t e x () ∗ f t o o l () ∗ f s c e d () ∗ f c p l x () ∗ f s i t e ()) ;

}

/ / Time t o d e v e l o p Model
/ /
do ub l e p r o j e c t : : pmNs () {

r e t u r n (A∗pow (k s l o c , (B+ 0 . 0 1∗ (f p r e c () + f f l e x () + f r e s l () + f t eam () + fpmat ())))
∗ (f t i m e () ∗ f s t o r () ∗ f d a t a () ∗ f p v o l () ∗ f r u s e () ∗ f r e l y () ∗ fdocu () ∗ f a c a p () ∗ f p c a p () ∗
fpcon () ∗ f a p e x () ∗ f p l e x () ∗ f l t e x () ∗ f t o o l () ∗ f c p l x () ∗ f s i t e ())) ;

}

do ub l e p r o j e c t : : s c e d p e r c e n t () {
s w i t c h ((i n t) round (sced)) {

c a s e 1 : r e t u r n (7 5) ;
c a s e 2 : r e t u r n (8 5) ;
c a s e 3 : r e t u r n (1 0 0) ;
c a s e 4 : r e t u r n (1 3 0) ;
c a s e 5 : r e t u r n (1 6 0) ;

}
}

do ub l e p r o j e c t : : months () {
r e t u r n ((C∗pow (pmNs () , (D+ 0 . 2 ∗ (0 . 0 1 ∗ (f p r e c () + f f l e x () + f r e s l () + f t eam () + fpmat ()))))) ∗ (s c e d p e r c e n t () / 1 0 0)) ;

}

/ / T h r e a t model
/ / T h r e a t model t a b l e s
do ub l e p r o j e c t : : t 1 [5] [5] = {{0 , 0 , 0 , 1 , 2} ,

{0 , 0 , 0 , 0 , 1}} ;
do ub l e p r o j e c t : : t 2 [5] [6] = {{0 , 0 , 0 , 1 , 2 , 4} ,

{0 , 0 , 0 , 0 , 1 , 2} ,
{0 , 0 , 0 , 0 , 0 , 1}} ;

do ub l e p r o j e c t : : t 3 [5] [5] = {{2 , 1} ,
{1}} ;

do ub l e p r o j e c t : : t 4 [5] [5] = {{4 , 2 , 1} ,
{2 , 1} ,
{1}} ;

do ub l e p r o j e c t : : t 5 [5] [5] = {{0} ,
{0} ,
{1} ,
{2 , 1} ,

141

{4 , 2 , 1}} ;
do ub l e p r o j e c t : : t 6 [6] [5] = {{0} ,

{0} ,
{0} ,
{1} ,
{2 , 1} ,
{4 , 2 , 1}} ;

do ub l e p r o j e c t : : t 7 [5] [5] = {{0} ,
{0} ,
{0} ,
{1} ,
{2 , 1}} ;

do ub l e p r o j e c t : : t 8 [6] [5] = {{0} ,
{0} ,
{0} ,
{0} ,
{1} ,
{2 , 1}} ;

do ub l e p r o j e c t : : t h r e a t () {
do ub l e TH = (do ub l e) (s c h e d t h r e a t () + p r o d t h r e a t () + p e r s t h r e a t () + p r o c t h r e a t ()
+ p l a t t h r e a t () + r e u s e t h r e a t ()) / 3 . 7 3 ;

i f (TH < 2 . 5) TH = 0.0000000000000001 ;
r e t u r n TH;

}

do ub l e p r o j e c t : : s c h e d t h r e a t () {
r e t u r n (t 1 [(i n t) round (sced −1)] [(i n t) round (r e l y −1)]∗ f s c e d () ∗ f r e l y () + t 2 [(i n t) round (sced −1)]
[(i n t) round (t ime −1)]∗ f s c e d () ∗ f t i m e () + t 1 [(i n t) round (sced −1)] [(i n t) round (pvol −1)]∗ f s c e d () ∗ f p v o l () +
t 3 [(i n t) round (sced −1)] [(i n t) round (t o o l −1)]∗ f s c e d () ∗ f t o o l () + t 4 [(i n t) round (sced −1)] [(i n t) round (acap −1)]
∗ f s c e d () ∗ f a c a p () + t 4 [(i n t) round (sced −1)] [(i n t) round (apex −1)]∗ f s c e d () ∗ f a p e x () + t 4 [(i n t) round (sced −1)]
[(i n t) round (pcap −1)]∗ f s c e d () ∗ f p c a p () + t 4 [(i n t) round (sced −1)] [(i n t) round (p lex −1)]∗ f s c e d () ∗ f p l e x () +
t 3 [(i n t) round (sced −1)] [(i n t) round (l t e x −1)]∗ f s c e d () ∗ f l t e x () + t 3 [(i n t) round (sced −1)] [(i n t) round (pmat−1)]
∗ f s c e d () ∗ fpmat ()) ;

}

do ub l e p r o j e c t : : p r o d t h r e a t () {
r e t u r n (t 5 [(i n t) round (r e l y −1)] [(i n t) round (acap −1)]∗ f r e l y () ∗ f a c a p () + t 5 [(i n t) round (r e l y −1)]
[(i n t) round (pcap −1)]∗ f r e l y () ∗ f p c a p () + t 6 [(i n t) round (cp lx −1)] [(i n t) round (acap −1)]∗ f c p l x () ∗ f a c a p () +
t 6 [(i n t) round (cp lx −1)] [(i n t) round (pcap −1)]∗ f c p l x () ∗ f p c a p () + t 6 [(i n t) round (cp lx −1)] [(i n t) round (t o o l −1)]
∗ f c p l x () ∗ f t o o l () + t 5 [(i n t) round (r e l y −1)] [(i n t) round (pmat−1)]∗ f r e l y () ∗ fpmat () + t 2 [(i n t) round (sced −1)]
[(i n t) round (cp lx −1)]∗ f s c e d () ∗ f c p l x () + t 1 [(i n t) round (sced −1)] [(i n t) round (r e l y −1)]∗ f s c e d () ∗ f r e l y () +
t 2 [(i n t) round (sced −1)] [(i n t) round (t ime −1)]∗ f s c e d () ∗ f t i m e () + t 6 [(i n t) round (ruse −1)] [(i n t) round (apex −1)]
∗ f r u s e () ∗ f a p e x () + t 6 [(i n t) round (ruse −1)] [(i n t) round (l t e x −1)])∗ f r u s e () ∗ f l t e x () ;

}

do ub l e p r o j e c t : : p e r s t h r e a t () {
r e t u r n (t 3 [(i n t) round (pmat −1)] [(i n t) round (acap −1)]∗ fpmat () ∗ f a c a p () + t 6 [(i n t) round (s t o r −1)]
[(i n t) round (acap −1)]∗ f s t o r () ∗ f a c a p () + t 6 [(i n t) round (t ime −1)] [(i n t) round (acap −1)]∗ f t i m e () ∗ f a c a p () +
t 3 [(i n t) round (t o o l −1)] [(i n t) round (acap −1)]∗ f t o o l () ∗ f a c a p () + t 3 [(i n t) round (t o o l −1)] [(i n t) round (pcap −1)]
∗ f t o o l () ∗ f p c a p () + t 6 [(i n t) round (ruse −1)] [(i n t) round (apex −1)]∗ f r u s e () ∗ f a p e x () + t 6 [(i n t) round (ruse −1)]
[(i n t) round (l t e x −1)]∗ f r u s e () ∗ f l t e x () + t 3 [(i n t) round (pmat −1)] [(i n t) round (pcap −1)]∗ fpmat () ∗ f p c a p () +
t 6 [(i n t) round (s t o r −1)] [(i n t) round (pcap −1)]∗ f s t o r () ∗ f p c a p () + t 6 [(i n t) round (t ime −1)] [(i n t) round (pcap −1)]
∗ f t i m e () ∗ f p c a p () + t 4 [(i n t) round (l t e x −1)] [(i n t) round (pcap −1)]∗ f l t e x () ∗ f p c a p () + t 7 [(i n t) round (pvol −1)]
[(i n t) round (p lex −1)]∗ f p v o l () ∗ f p l e x () + t 4 [(i n t) round (sced −1)] [(i n t) round (acap −1)]∗ f s c e d () ∗ f a c a p () +
t 4 [(i n t) round (sced −1)] [(i n t) round (apex −1)]∗ f s c e d () ∗ f a p e x () + t 4 [(i n t) round (sced −1)] [(i n t) round (pcap −1)]
∗ f s c e d () ∗ f p c a p () + t 4 [(i n t) round (sced −1)] [(i n t) round (p lex −1)]∗ f s c e d () ∗ f p l e x () + t 3 [(i n t) round (sced −1)]
[(i n t) round (l t e x −1)]∗ f s c e d () ∗ f l t e x () + t 5 [(i n t) round (r e l y −1)] [(i n t) round (acap −1)]∗ f r e l y () ∗ f a c a p () +
t 5 [(i n t) round (r e l y −1)] [(i n t) round (pcap −1)]∗ f r e l y () ∗ f p c a p () + t 6 [(i n t) round (cp lx −1)] [(i n t) round (acap −1)]
∗ f c p l x () ∗ f a c a p () + t 6 [(i n t) round (cp lx −1)] [(i n t) round (pcap −1)]∗ f c p l x () ∗ f p c a p () + t 3 [(i n t) round (team −1)]
[(i n t) round (apex −1)]∗ f t eam () ∗ f a p e x ()) ;

}

do ub l e p r o j e c t : : p r o c t h r e a t () {
r e t u r n (t 3 [(i n t) round (t o o l −1)] [(i n t) round (pmat−1)]∗ f t o o l () ∗ fpmat () + t 8 [(i n t) round (t ime −1)]
[(i n t) round (t o o l −1)]∗ f t i m e () ∗ f t o o l () + t 3 [(i n t) round (t o o l −1)] [(i n t) round (pmat−1)]∗ f t o o l () ∗ fpmat () +
t 3 [(i n t) round (team −1)] [(i n t) round (apex −1)]∗ f t eam () ∗ f a p e x () + t 3 [(i n t) round (team −1)] [(i n t) round (sced −1)]
∗ f t eam () ∗ f s c e d () + t 3 [(i n t) round (team −1)] [(i n t) round (s i t e −1)]∗ f t eam () ∗ f s i t e () + t 3 [(i n t) round (sced −1)]
[(i n t) round (t o o l −1)]∗ f s c e d () ∗ f t o o l () + t 3 [(i n t) round (sced −1)] [(i n t) round (pmat−1)]∗ f s c e d () ∗ fpmat () +
t 6 [(i n t) round (cp lx −1)] [(i n t) round (t o o l −1)]∗ f c p l x () ∗ f t o o l () + t 3 [(i n t) round (pmat −1)] [(i n t) round (acap −1)]
∗ fpmat () ∗ f a c a p () + t 3 [(i n t) round (t o o l −1)] [(i n t) round (acap −1)]∗ f t o o l () ∗ f a c a p () + t 3 [(i n t) round (t o o l −1)]
[(i n t) round (pcap −1)]∗ f t o o l () ∗ f p c a p () + t 3 [(i n t) round (pmat −1)] [(i n t) round (pcap −1)]∗ fpmat () ∗ f p c a p ()) ;

}

do ub l e p r o j e c t : : p l a t t h r e a t () {
r e t u r n (t 2 [(i n t) round (sced −1)] [(i n t) round (t ime −1)]∗ f s c e d () ∗ f t i m e () + t 1 [(i n t) round (sced −1)]
[(i n t) round (pvol −1)]∗ f s c e d () ∗ f p v o l () + t 6 [(i n t) round (s t o r −1)] [(i n t) round (acap −1)]∗ f s t o r () ∗ f a c a p () +
t 6 [(i n t) round (t ime −1)] [(i n t) round (acap −1)]∗ f t i m e () ∗ f a c a p () + t 6 [(i n t) round (s t o r −1)] [(i n t) round (pcap −1)]
∗ f s t o r () ∗ f p c a p () + t 7 [(i n t) round (pvol −1)] [(i n t) round (p lex −1)]∗ f p v o l () ∗ f p l e x () + t 8 [(i n t) round (t ime −1)]
[(i n t) round (t o o l −1)]∗ f t i m e () ∗ f t o o l ()) ;

}

do ub l e p r o j e c t : : r e u s e t h r e a t () {
r e t u r n (t 6 [(i n t) round (ruse −1)] [(i n t) round (apex −1)]∗ f r u s e () ∗ f a p e x () + t 6 [(i n t) round (ruse −1)]
[(i n t) round (l t e x −1)]∗ f r u s e () ∗ f l t e x ()) ;

}

142

do ub l e p r o j e c t : : posCoqualR (d oub l e r a t i n g) { r e t u r n (d ou b l e) (r a t i n g −3)∗ pCoqualRSlope + 1 ;}
do ub l e p r o j e c t : : negCoqualR (d oub l e r a t i n g) { r e t u r n (d ou b l e) (r a t i n g −3)∗ nCoqualRSlope + 1 ;}
do ub l e p r o j e c t : : d f rCoqua lR (d oub l e r a t i n g) { r e t u r n (d ou b l e) (r a t i n g −1)∗ d f rCoqua lRS lope ;}

do ub l e p r o j e c t : : posCoqualD (d oub l e r a t i n g) { r e t u r n (d ou b l e) (r a t i n g −3)∗ pCoqualDSlope + 1 ;}
do ub l e p r o j e c t : : negCoqualD (d oub l e r a t i n g) { r e t u r n (d ou b l e) (r a t i n g −3)∗ nCoqualDSlope + 1 ;}
do ub l e p r o j e c t : : d f rCoqualD (d oub l e r a t i n g) { r e t u r n (d ou b l e) (r a t i n g −1)∗ df rCoqua lDSlope ;}

do ub l e p r o j e c t : : posCoqualC (d oub l e r a t i n g) { r e t u r n (d ou b l e) (r a t i n g −3)∗ pCoqualCSlope + 1 ;}
do ub l e p r o j e c t : : negCoqualC (d oub l e r a t i n g) { r e t u r n (d ou b l e) (r a t i n g −3)∗ nCoqualCSlope + 1 ;}
do ub l e p r o j e c t : : d f rCoqua lC (d oub l e r a t i n g) { r e t u r n (d ou b l e) (r a t i n g −1)∗ d f rCoqua lCS lope ;}

do ub l e p r o j e c t : : f l e x R () { r e t u r n 1 . 0 ; }
do ub l e p r o j e c t : : pcapR () { r e t u r n 1 . 0 ; }

do ub l e p r o j e c t : : ruseR () { r e t u r n posCoqualR (r u s e) ; }
do ub l e p r o j e c t : : cplxR () { r e t u r n posCoqualR (c p l x) ; }
do ub l e p r o j e c t : : t imeR () { r e t u r n posCoqualR (t ime) ; }
do ub l e p r o j e c t : : s t o r R () { r e t u r n posCoqualR (s t o r) ; }
do ub l e p r o j e c t : : pvolR () { r e t u r n posCoqualR (pvo l) ; }
do ub l e p r o j e c t : : da taR () { r e t u r n posCoqualR (d a t a) ; }

do ub l e p r o j e c t : : acapR () { r e t u r n negCoqualR (acap) ; }
do ub l e p r o j e c t : : pconR () { r e t u r n negCoqualR (pcon) ; }
do ub l e p r o j e c t : : apexR () { r e t u r n negCoqualR (apex) ; }
do ub l e p r o j e c t : : p lexR () { r e t u r n negCoqualR (p l e x) ; }
do ub l e p r o j e c t : : l t e x R () { r e t u r n negCoqualR (l t e x) ; }
do ub l e p r o j e c t : : t o o l R () { r e t u r n negCoqualR (t o o l) ; }
do ub l e p r o j e c t : : s i t e R () { r e t u r n negCoqualR (s i t e) ; }
do ub l e p r o j e c t : : scedR () { r e t u r n negCoqualR (sced) ; }
do ub l e p r o j e c t : : r e l y R () { r e t u r n negCoqualR (r e l y) ; }
do ub l e p r o j e c t : : docuR () { r e t u r n negCoqualR (docu) ; }
do ub l e p r o j e c t : : r e s l R () { r e t u r n negCoqualR (r e s l) ; }
do ub l e p r o j e c t : : teamR () { r e t u r n negCoqualR (team) ; }
do ub l e p r o j e c t : : pmatR () { r e t u r n negCoqualR (pmat) ; }
do ub l e p r o j e c t : : precR () { r e t u r n negCoqualR (p r e c) ; }

do ub l e p r o j e c t : : f l exD () { r e t u r n 1 . 0 ; }

do ub l e p r o j e c t : : ruseD () { r e t u r n posCoqualD (r u s e) ; }
do ub l e p r o j e c t : : cplxD () { r e t u r n posCoqualD (c p l x) ; }
do ub l e p r o j e c t : : timeD () { r e t u r n posCoqualD (t ime) ; }
do ub l e p r o j e c t : : s t o r D () { r e t u r n posCoqualD (s t o r) ; }
do ub l e p r o j e c t : : pvolD () { r e t u r n posCoqualD (pvo l) ; }
do ub l e p r o j e c t : : dataD () { r e t u r n posCoqualD (d a t a) ; }

do ub l e p r o j e c t : : acapD () { r e t u r n negCoqualD (acap) ; }
do ub l e p r o j e c t : : pconD () { r e t u r n negCoqualD (pcon) ; }
do ub l e p r o j e c t : : apexD () { r e t u r n negCoqualD (apex) ; }
do ub l e p r o j e c t : : plexD () { r e t u r n negCoqualD (p l e x) ; }
do ub l e p r o j e c t : : l t e x D () { r e t u r n negCoqualD (l t e x) ; }
do ub l e p r o j e c t : : t oo lD () { r e t u r n negCoqualD (t o o l) ; }
do ub l e p r o j e c t : : s i t e D () { r e t u r n negCoqualD (s i t e) ; }
do ub l e p r o j e c t : : scedD () { r e t u r n negCoqualD (sced) ; }
do ub l e p r o j e c t : : r e lyD () { r e t u r n negCoqualD (r e l y) ; }
do ub l e p r o j e c t : : docuD () { r e t u r n negCoqualD (docu) ; }
do ub l e p r o j e c t : : r e s l D () { r e t u r n negCoqualD (r e s l) ; }
do ub l e p r o j e c t : : teamD () { r e t u r n negCoqualD (team) ; }
do ub l e p r o j e c t : : pmatD () { r e t u r n negCoqualD (pmat) ; }
do ub l e p r o j e c t : : precD () { r e t u r n negCoqualD (p r e c) ; }
do ub l e p r o j e c t : : pcapD () { r e t u r n negCoqualD (pcap) ; }

do ub l e p r o j e c t : : f l e x C () { r e t u r n 1 . 0 ; }

do ub l e p r o j e c t : : ruseC () { r e t u r n posCoqualC (r u s e) ; }
do ub l e p r o j e c t : : cplxC () { r e t u r n posCoqualC (c p l x) ; }
do ub l e p r o j e c t : : t imeC () { r e t u r n posCoqualC (t ime) ; }
do ub l e p r o j e c t : : s t o r C () { r e t u r n posCoqualC (s t o r) ; }
do ub l e p r o j e c t : : pvolC () { r e t u r n posCoqualC (pvo l) ; }
do ub l e p r o j e c t : : da taC () { r e t u r n posCoqualC (d a t a) ; }

do ub l e p r o j e c t : : acapC () { r e t u r n negCoqualC (acap) ; }
do ub l e p r o j e c t : : pconC () { r e t u r n negCoqualC (pcon) ; }
do ub l e p r o j e c t : : apexC () { r e t u r n negCoqualC (apex) ; }
do ub l e p r o j e c t : : p lexC () { r e t u r n negCoqualC (p l e x) ; }
do ub l e p r o j e c t : : l t e x C () { r e t u r n negCoqualC (l t e x) ; }
do ub l e p r o j e c t : : t o o l C () { r e t u r n negCoqualC (t o o l) ; }
do ub l e p r o j e c t : : s i t e C () { r e t u r n negCoqualC (s i t e) ; }
do ub l e p r o j e c t : : scedC () { r e t u r n negCoqualC (sced) ; }
do ub l e p r o j e c t : : r e l y C () { r e t u r n negCoqualC (r e l y) ; }
do ub l e p r o j e c t : : docuC () { r e t u r n negCoqualC (docu) ; }
do ub l e p r o j e c t : : r e s l C () { r e t u r n negCoqualC (r e s l) ; }
do ub l e p r o j e c t : : teamC () { r e t u r n negCoqualC (team) ; }
do ub l e p r o j e c t : : pmatC () { r e t u r n negCoqualC (pmat) ; }

143

do ub l e p r o j e c t : : precC () { r e t u r n negCoqualC (p r e c) ; }
do ub l e p r o j e c t : : pcapC () { r e t u r n negCoqualC (pcap) ; }

do ub l e p r o j e c t : : a u t o m a t e d a n a l y s i s R () {
/ / s w i t c h (a u t o m a t e d a n a l y s i s) {
/ / c a s e 1 : r e t u r n 0 . 0 ; b r e a k ;
/ / c a s e 2 : r e t u r n 0 . 0 ; b r e a k ;
/ / c a s e 3 : r e t u r n 0 . 1 ; b r e a k ;
/ / c a s e 4 : r e t u r n 0 . 2 7 ; b r e a k ;
/ / c a s e 5 : r e t u r n 0 . 3 4 ; b r e a k ;
/ / c a s e 6 : r e t u r n 0 . 4 ; b r e a k ;
/ / d e f a u l t : s t d : : c o u t << ” a u t o m a t e d a n a l y s i s o u t o f r a n g e \n ” ; r e t u r n 0 . 0 ; b r e a k ;
/ / }

r e t u r n df rCoqua lR (a u t o m a t e d a n a l y s i s) ;
}
do ub l e p r o j e c t : : p e e r r e v i e w s R () {
/ / s w i t c h (p e e r r e v i e w s) {
/ / c a s e 1 : r e t u r n 0 . 0 ; b r e a k ;
/ / c a s e 2 : r e t u r n 0 . 2 5 ; b r e a k ;
/ / c a s e 3 : r e t u r n 0 . 4 ; b r e a k ;
/ / c a s e 4 : r e t u r n 0 . 5 ; b r e a k ;
/ / c a s e 5 : r e t u r n 0 . 5 8 ; b r e a k ;
/ / c a s e 6 : r e t u r n 0 . 7 ; b r e a k ;
/ / d e f a u l t : s t d : : c o u t << ” p e e r r e v i e w s o u t o f r a n g e \n ” ; r e t u r n 0 . 0 ; b r e a k ;
/ / }

r e t u r n df rCoqua lR (p e e r r e v i e w s) ;
}
do ub l e p r o j e c t : : e x e c u t i o n t e s t i n g a n d t o o l s R () {

r e t u r n df rCoqua lR (e x e c u t i o n t e s t i n g a n d t o o l s) ;
}

do ub l e p r o j e c t : : a u t o m a t e d a n a l y s i s D () {
r e t u r n df rCoqualD (a u t o m a t e d a n a l y s i s) ;

}
do ub l e p r o j e c t : : p e e r r e v i e w s D () {

r e t u r n df rCoqualD (p e e r r e v i e w s) ;
}
do ub l e p r o j e c t : : e x e c u t i o n t e s t i n g a n d t o o l s D () {

r e t u r n df rCoqualD (e x e c u t i o n t e s t i n g a n d t o o l s) ;
}

do ub l e p r o j e c t : : a u t o m a t e d a n a l y s i s C () {
r e t u r n df rCoqua lC (a u t o m a t e d a n a l y s i s) ;

}
do ub l e p r o j e c t : : p e e r r e v i e w s C () {

r e t u r n df rCoqua lC (p e e r r e v i e w s) ;
}
do ub l e p r o j e c t : : e x e c u t i o n t e s t i n g a n d t o o l s C () {

r e t u r n df rCoqua lC (e x e c u t i o n t e s t i n g a n d t o o l s) ;
}

do ub l e p r o j e c t : : d e f e c t s I n t r o R () {
r e t u r n f l e x R () ∗ pcapR () ∗ ruseR () ∗ cplxR () ∗ t imeR () ∗ s t o r R () ∗ pvolR () ∗ dataR ()

∗ acapR () ∗ pconR () ∗ apexR () ∗ plexR () ∗ l t e x R () ∗ t o o l R () ∗ s i t e R () ∗ scedR () ∗ r e l y R ()
∗docuR () ∗ r e s l R () ∗ teamR () ∗ pmatR () ∗ precR () ;

}
do ub l e p r o j e c t : : d e f e c t s I n t r o D () {

r e t u r n f l exD () ∗ pcapD () ∗ ruseD () ∗ cplxD () ∗ timeD () ∗ s t o r D () ∗ pvolD () ∗ dataD ()
∗acapD () ∗ pconD () ∗ apexD () ∗ plexD () ∗ l t e x D () ∗ t oo lD () ∗ s i t e D () ∗ scedD () ∗ r e lyD ()
∗docuD () ∗ r e s l D () ∗ teamD () ∗ pmatD () ∗ precD () ;

}
do ub l e p r o j e c t : : d e f e c t s I n t r o C () {

r e t u r n f l e x C () ∗ pcapC () ∗ ruseC () ∗ cplxC () ∗ t imeC () ∗ s t o r C () ∗ pvolC () ∗ dataC ()
∗ acapC () ∗ pconC () ∗ apexC () ∗ plexC () ∗ l t e x C () ∗ t o o l C () ∗ s i t e C () ∗ scedC () ∗ r e l y C ()
∗docuC () ∗ r e s l C () ∗ teamC () ∗ pmatC () ∗ precC () ;

}

do ub l e p r o j e c t : : defectsRemR () {
r e t u r n (1− a u t o m a t e d a n a l y s i s R ())∗ (1 − p e e r r e v i e w s R ())∗ (1 − e x e c u t i o n t e s t i n g a n d t o o l s R ()) ;

}

do ub l e p r o j e c t : : defectsRemD () {
r e t u r n (1− a u t o m a t e d a n a l y s i s D ())∗ (1 − p e e r r e v i e w s D ())∗ (1 − e x e c u t i o n t e s t i n g a n d t o o l s D ()) ;

}

do ub l e p r o j e c t : : defectsRemC () {
r e t u r n (1− a u t o m a t e d a n a l y s i s C ())∗ (1 − p e e r r e v i e w s C ())∗ (1 − e x e c u t i o n t e s t i n g a n d t o o l s C ()) ;

}

do ub l e p r o j e c t : : d e f e c t s () {
r e t u r n k s l o c ∗ (10∗ d e f e c t s I n t r o R () ∗ defectsRemR ()

+20∗ d e f e c t s I n t r o D () ∗ defectsRemD ()
+30∗ d e f e c t s I n t r o C () ∗ defectsRemC ()) ;

}

144

do ub l e p r o j e c t : : t h r e a t M u t a t e () {
randomNum rdm ;
do ub l e RNum;

do ub l e tmp1 [5] [5] ;
do ub l e tmp2 [5] [6] ;
do ub l e tmp3 [5] [5] ;
do ub l e tmp4 [5] [5] ;
do ub l e tmp5 [5] [5] ;
do ub l e tmp6 [6] [5] ;
do ub l e tmp7 [5] [5] ;
do ub l e tmp8 [6] [5] ;

boo l mu ta t e [8] = { f a l s e , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e } ;

f o r (i n t i =0 ; i <8; i ++) {
RNum = rdm . randomGenera teDouble (0 , 1 . 5) ;
i f (RNum > 0 . 5) {

mu ta t e [i]= t r u e ;
}

}

i f (m u ta t e [0]) {
RNum = rdm . randomGenera teDouble (0 . 5 , 1 . 5) ;
f o r (i n t i =0 ; i <5; i ++) {

f o r (i n t j =0 ; j <5; j ++) {
tmp1 [i] [j]= t 1 [i] [j] ;
t 1 [i] [j]∗=RNum;

}
}

}

i f (m u ta t e [1]) {
RNum = rdm . randomGenera teDouble (0 . 5 , 1 . 5) ;
f o r (i n t i =0 ; i <5; i ++) {

f o r (i n t j =0 ; j <6; j ++) {
tmp2 [i] [j]= t 2 [i] [j] ;
t 2 [i] [j]∗=RNum;

}
}

}

i f (m u ta t e [2]) {
RNum = rdm . randomGenera teDouble (0 . 5 , 1 . 5) ;
f o r (i n t i =0 ; i <5; i ++) {

f o r (i n t j =0 ; j <5; j ++) {
tmp3 [i] [j]= t 3 [i] [j] ;
t 3 [i] [j]∗=RNum;

}
}

}

i f (m u ta t e [3]) {
RNum = rdm . randomGenera teDouble (0 . 5 , 1 . 5) ;
f o r (i n t i =0 ; i <5; i ++) {

f o r (i n t j =0 ; j <5; j ++) {
tmp4 [i] [j]= t 4 [i] [j] ;
t 4 [i] [j]∗=RNum;

}
}

}

i f (m u ta t e [4]) {
RNum = rdm . randomGenera teDouble (0 . 5 , 1 . 5) ;
f o r (i n t i =0 ; i <5; i ++) {

f o r (i n t j =0 ; j <5; j ++) {
tmp5 [i] [j]= t 5 [i] [j] ;
t 5 [i] [j]∗=RNum;

}
}

}

i f (m u ta t e [5]) {
RNum = rdm . randomGenera teDouble (0 . 5 , 1 . 5) ;
f o r (i n t i =0 ; i <6; i ++) {

f o r (i n t j =0 ; j <5; j ++) {
tmp6 [i] [j]= t 6 [i] [j] ;
t 6 [i] [j]∗=RNum;

}
}

}

i f (m u ta t e [6]) {
RNum = rdm . randomGenera teDouble (0 . 5 , 1 . 5) ;
f o r (i n t i =0 ; i <5; i ++) {

f o r (i n t j =0 ; j <5; j ++) {

145

tmp7 [i] [j]= t 7 [i] [j] ;
t 7 [i] [j]∗=RNum;

}
}

}

i f (m u ta t e [7]) {
RNum = rdm . randomGenera teDouble (0 . 5 , 1 . 5) ;
f o r (i n t i =0 ; i <6; i ++) {

f o r (i n t j =0 ; j <5; j ++) {
tmp8 [i] [j]= t 8 [i] [j] ;
t 8 [i] [j]∗=RNum;

}
}

}

do ub l e TH = t h r e a t () ;

i f (m u ta t e [0]) {
f o r (i n t i =0 ; i <5; i ++) {

f o r (i n t j =0 ; j <5; j ++) {
t 1 [i] [j]= tmp1 [i] [j] ;

}
}

}

i f (m u ta t e [1]) {
f o r (i n t i =0 ; i <5; i ++) {

f o r (i n t j =0 ; j <6; j ++) {
t 2 [i] [j]= tmp2 [i] [j] ;

}
}

}

i f (m u ta t e [2]) {
f o r (i n t i =0 ; i <5; i ++) {

f o r (i n t j =0 ; j <5; j ++) {
t 3 [i] [j]= tmp3 [i] [j] ;

}
}

}

i f (m u ta t e [3]) {
f o r (i n t i =0 ; i <5; i ++) {

f o r (i n t j =0 ; j <5; j ++) {
t 4 [i] [j]= tmp4 [i] [j] ;

}
}

}

i f (m u ta t e [4]) {
f o r (i n t i =0 ; i <5; i ++) {

f o r (i n t j =0 ; j <5; j ++) {
t 5 [i] [j]= tmp5 [i] [j] ;

}
}

}

i f (m u ta t e [5]) {
f o r (i n t i =0 ; i <6; i ++) {

f o r (i n t j =0 ; j <5; j ++) {
t 6 [i] [j]= tmp6 [i] [j] ;

}
}

}

i f (m u ta t e [6]) {
f o r (i n t i =0 ; i <5; i ++) {

f o r (i n t j =0 ; j <5; j ++) {
t 7 [i] [j]= tmp7 [i] [j] ;

}
}

}

i f (m u ta t e [7]) {
f o r (i n t i =0 ; i <6; i ++) {

f o r (i n t j =0 ; j <5; j ++) {
t 8 [i] [j]= tmp8 [i] [j] ;

}
}

}

r e t u r n TH;
}

146

do ub l e p r o j e c t : : e f f o r t M u t a t e () {

p r o j e c t s = ∗ t h i s ;

do ub l e AttV [2 2] = {0} ;

randomNum rdm ;

f o r (i n t i =0 ; i <22; i ++) {
f o r (i n t l =34; l <37; l ++) {

s . s e t a t t n u m (l , rdm . randomGenera teDouble (s . a t t r a n g e N o r m [0] [l] , s . a t t r a n g e N o r m [1] [l])) ;
}

AttV [i] = s . g e t a t t n u m v a l e f f (i + 1) ;
}

do ub l e SF = 0 ;

f o r (i n t i =0 ; i <5; i ++) {
SF += AttV [i] ;

}

do ub l e EM = 1 ;

f o r (i n t i =5 ; i <22; i ++) {
EM ∗= AttV [i] ;

}

do ub l e e f f = 0 ;
e f f = s .A∗ (pow (s . k s l o c , (s . B+ (0 . 0 1∗SF)))) ∗EM;

r e t u r n e f f ;
}

do ub l e p r o j e c t : : d e f e c t s M u t a t e () {
p r o j e c t s= ∗ t h i s ;

do ub l e AttVR [2 5] = {0} ;
do ub l e AttVD [2 5] = {0} ;
do ub l e AttVC [2 5] = {0} ;

randomNum rdm ;

f o r (i n t i =0 ; i <25; i ++) {
f o r (i n t l =25; l <28; l ++) {

s . s e t a t t n u m (l , rdm . randomGenera teDouble (s . a t t r a n g e N o r m [0] [l] , s . a t t r a n g e N o r m [1] [l])) ;
}

AttVR [i] = s . g e t a t t n u m v a l d e f R (i) ;
}

f o r (i n t i =0 ; i <25; i ++) {
f o r (i n t l =28; l <31; l ++) {

s . s e t a t t n u m (l , rdm . randomGenera teDouble (s . a t t r a n g e N o r m [0] [l] , s . a t t r a n g e N o r m [1] [l])) ;
}

AttVD [i] = s . g e t a t t n u m v a l d e f D (i) ;
}

f o r (i n t i =0 ; i <25; i ++) {
f o r (i n t l =31; l <34; l ++) {

s . s e t a t t n u m (l , rdm . randomGenera teDouble (s . a t t r a n g e N o r m [0] [l] , s . a t t r a n g e N o r m [1] [l])) ;
}

AttVC [i] = s . g e t a t t n u m v a l d e f C (i) ;
}

do ub l e d e f e c t s I n t r o R = 1 ;

f o r (i n t i =3 ; i <25; i ++) {
d e f e c t s I n t r o R ∗= AttVR [i] ;

}

do ub l e d e f e c t s I n t r o D = 1 ;

f o r (i n t i =3 ; i <25; i ++) {
d e f e c t s I n t r o D ∗= AttVD [i] ;

}

do ub l e d e f e c t s I n t r o C = 1 ;

f o r (i n t i =3 ; i <25; i ++) {
d e f e c t s I n t r o C ∗= AttVC [i] ;

}

do ub l e defectsRemR = 1 ;

147

f o r (i n t i =0 ; i <3; i ++) {
defectsRemR ∗= (1−AttVR [i]) ;

}

do ub l e defectsRemD = 1 ;

f o r (i n t i =0 ; i <3; i ++) {
defectsRemD ∗= (1−AttVD [i]) ;

}

do ub l e defectsRemC = 1 ;

f o r (i n t i =0 ; i <3; i ++) {
defectsRemC ∗= (1−AttVC [i]) ;

}

do ub l e d e f = 0 ;
d e f = s . k s l o c ∗ ((1 0∗ d e f e c t s I n t r o R ∗ defectsRemR)+ (20∗ d e f e c t s I n t r o D ∗defectsRemD) +

(30∗ d e f e c t s I n t r o C ∗ defectsRemC)) ;

r e t u r n d e f ;
}

do ub l e p r o j e c t : : monthsMuta te () {
p r o j e c t s= ∗ t h i s ;

do ub l e AttV [2 2] = {0} ;

randomNum rdm ;

f o r (i n t i =0 ; i <22; i ++) {
i f (i ! = 1 9) { / / e x c l u d i n g sced

f o r (i n t l =34; l <37; l ++) {
s . s e t a t t n u m (l , rdm . randomGenera teDouble (s . a t t r a n g e N o r m [0] [l] , s . a t t r a n g e N o r m [1] [l])) ;

}

AttV [i] = s . g e t a t t n u m v a l e f f (i + 1) ;
}

}

do ub l e SF = 0 ;

f o r (i n t i =0 ; i <5; i ++) {
SF += AttV [i] ;

}

do ub l e EMnS = 1 ;

f o r (i n t i =5 ; i <22; i ++) {
i f (i ! = 1 9) EMnS ∗= AttV [i] ; / / remove sced

}

do ub l e pmNs = s .A∗ (pow (s . k s l o c , (s . B+ (0 . 0 1∗SF)))) ∗EMnS ;

do ub l e mon = 0 ;
mon = (s . C∗ (pow (pmNs , (s .D+ 0 . 2∗ (0 . 0 1∗ SF)))) ∗ (s . s c e d p e r c e n t () / 1 0 0)) ;

r e t u r n mon ;
}

B.3 minmax.cpp
i n c l u d e ”minmax . h ”
i n c l u d e <f s t r e a m>

minmax : : minmax () {
}

minmax : : ˜ minmax () {
}

do ub l e minmax : : e f f o r t M a x (p r o j e c t x) {

p r o j e c t s=x ;

do ub l e maxEff =0;

f o r (i n t i =0 ; i<x .ATTN; i ++) {
i f (s . a t t r i b u t e s [i]==0) {

i f ((i >=8 && i <=14) | | i ==23 | | i ==35 | | (i >=37 && i <=39))
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [1] [i]) ;

e l s e
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [0] [i]) ;

}

148

}

s . B = s . a t t r a n g e N o r m [1] [3 8] ;

maxEff = s . e f f o r t () ;

r e t u r n maxEff + 0 .0000000000000001 ;
}

do ub l e minmax : : e f f o r t M i n (p r o j e c t x) {

p r o j e c t s=x ;

do ub l e minEff =0;

f o r (i n t i =0 ; i<x .ATTN; i ++) {
i f (s . a t t r i b u t e s [i]==0) {

i f ((i >=8 && i <=14) | | i ==23 | | i ==34 | | i ==36 | | (i >=37 && i <=39))
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [0] [i]) ;

e l s e
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [1] [i]) ;

}
}

s . B = s . a t t r a n g e N o r m [0] [3 8] ;

minEff = s . e f f o r t () ;

r e t u r n minEff ;
}

/ /
/ / min max f u n c t i o n s f o r monthsmodel
/ /

do ub l e minmax : : monthsMax (p r o j e c t x) {

p r o j e c t s=x ;

do ub l e maxMonths =0;

f o r (i n t i =0 ; i<x .ATTN; i ++) {
i f (s . a t t r i b u t e s [i]==0) {

i f ((i >=8 && i <=14) | | i ==23 | | i ==35 | | (i >=37 && i <=41))
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [1] [i]) ;

e l s e
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [0] [i]) ;

}
}

s . B = s . a t t r a n g e N o r m [1] [3 8] ;

maxMonths = s . months () ;

r e t u r n maxMonths + 0 .0000000000000001 ;
}

do ub l e minmax : : monthsMin (p r o j e c t x) {

p r o j e c t s=x ;

do ub l e minMonths =0;

f o r (i n t i =0 ; i<x .ATTN; i ++) {
i f (s . a t t r i b u t e s [i]==0) {

i f ((i >=8 && i <=14) | | i ==23 | | i ==34 | | i ==36 | | (i >=37 && i <=41))
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [0] [i]) ;

e l s e
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [1] [i]) ;

}
}

s . B = s . a t t r a n g e N o r m [0] [3 8] ;

minMonths = s . months () ;

r e t u r n minMonths ;
}

do ub l e minmax : : defec tMax (p r o j e c t x) {

p r o j e c t s=x ;

149

do ub l e maxDef =0;

f o r (i n t i =0 ; i<x .ATTN; i ++) {
i f (s . a t t r i b u t e s [i]==0) {

i f ((i >=8 && i <=12) | | i ==23 | | i ==25 | | i ==27 | | i ==28 | | i ==30 | | i ==31 | | i ==33 | | i ==39)
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [1] [i]) ;

e l s e
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [0] [i]) ;

}
}

maxDef = s . d e f e c t s () ;

r e t u r n maxDef + 0 .0000000000000001 ;
}

do ub l e minmax : : d e f e c t M i n (p r o j e c t x) {

p r o j e c t s=x ;

do ub l e minDef =0;

f o r (i n t i =0 ; i<x .ATTN; i ++) {
i f (s . a t t r i b u t e s [i]==0) {

i f ((i >=8 && i <=12) | | i ==23 | | i ==26 | | i ==29 | | i ==32 | | i ==39)
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [0] [i]) ;

e l s e
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [1] [i]) ;

}
}

minDef = s . d e f e c t s () ;

r e t u r n minDef ;
}

do ub l e minmax : : thrMax (p r o j e c t x) {

p r o j e c t s=x ;

f o r (i n t i =0 ; i <5; i ++) {
f o r (i n t j =0 ; j <5; j ++) {

s . t 1 [i] [j] ∗= 1 . 5 ;
s . t 3 [i] [j] ∗= 1 . 5 ;
s . t 4 [i] [j] ∗= 1 . 5 ;
s . t 5 [i] [j] ∗= 1 . 5 ;
s . t 7 [i] [j] ∗= 1 . 5 ;

}
}

f o r (i n t i =0 ; i <5; i ++) {
f o r (i n t j =0 ; j <6; j ++) {

s . t 2 [i] [j] ∗= 1 . 5 ;
}

}

f o r (i n t i =0 ; i <6; i ++) {
f o r (i n t j =0 ; j <5; j ++) {

s . t 6 [i] [j] ∗= 1 . 5 ;
s . t 8 [i] [j] ∗= 1 . 5 ;

}
}

f o r (i n t i =0 ; i<x .ATTN; i ++) {
i f (s . a t t r i b u t e s [i]==0) {

i f ((i >=8 && i <=14) | | i ==23 | | i ==35)
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [1] [i]) ;

e l s e
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [0] [i]) ;

}
}

/ / do ub l e t e s t 1 = s . s c h e d t h r e a t () ;
/ / do ub l e t e s t 2 = s . p r o d t h r e a t () ;
/ / do ub l e t e s t 3 = s . p e r s t h r e a t () ;
/ / do ub l e t e s t 4 = s . p r o c t h r e a t () ;
/ / do ub l e t e s t 5 = s . p l a t t h r e a t () ;
/ / do ub l e t e s t 6 = s . r e u s e t h r e a t () ;

do ub l e TH = s . t h r e a t () ;

r e t u r n TH;
}

do ub l e minmax : : th rMin (p r o j e c t x) {

p r o j e c t s=x ;

150

f o r (i n t i =0 ; i <5; i ++) {
f o r (i n t j =0 ; j <5; j ++) {

s . t 1 [i] [j] ∗= 0 . 5 ;
s . t 3 [i] [j] ∗= 0 . 5 ;
s . t 4 [i] [j] ∗= 0 . 5 ;
s . t 5 [i] [j] ∗= 0 . 5 ;
s . t 7 [i] [j] ∗= 0 . 5 ;

}
}

f o r (i n t i =0 ; i <5; i ++) {
f o r (i n t j =0 ; j <6; j ++) {

s . t 2 [i] [j] ∗= 0 . 5 ;
}

}

f o r (i n t i =0 ; i <6; i ++) {
f o r (i n t j =0 ; j <5; j ++) {

s . t 6 [i] [j] ∗= 0 . 5 ;
s . t 8 [i] [j] ∗= 0 . 5 ;

}
}

f o r (i n t i =0 ; i<x .ATTN; i ++) {
i f (s . a t t r i b u t e s [i]==0) {

i f ((i >=8 && i <=14) | | i ==23 | | i ==34 | | i ==36)
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [0] [i]) ;

e l s e
s . s e t a t t n u m (i , s . a t t r a n g e N o r m [1] [i]) ;

}
}

do ub l e TH = s . t h r e a t () ;

r e t u r n TH;

}

B.4 policy.awk
BEGIN {

C[9 5] = 1 . 9 6 ;
C[9 9] = 2 . 5 8 ;
FS = ” , ” ;
OFMT = ”%.10 f ” ;
CONVFMT = ”%.10 f ” ;
f i l e = ” s imlo g . csv ” ;
min =1000000000000;
m i nP o i n t =0 ;
o u t ;
N;
minEnergy ;
s c o r i n g ;
SANum;
Tota lT ime ;
SATime ;
p o l i c y V a l ;
p r o j e c t V a l ;
run ;
a l p h a ;
b e t a ;
gamma ;
d e l t a ;
r e l y d e f e c t ;
c o o l F a c t o r ;
s t r a t V a l ;
b f c Va l ;
s l o g ;
simNum =0;
g e t l i n e ;
S [simNum] = 0 ;
S2 [simNum] = 0 ;

}

{
p o l i c i e s [simNum] = $1 ” = ” $2 ;
a t t r i b u t e N a m e [simNum] = $1 ;

i f ($6<min) {min = $6 ; m in P o i n t =simNum ;}

policyMedE [simNum] = $6 ;
po l i cySpE [simNum] = $7 ;
po l i cyMedEf f [simNum] = $10 ;

151

p o l i c y S p E f f [simNum] = $11 ;
pol icyMedDef [simNum] = $14 ;
p o l i c y S p D e f [simNum] = $15 ;
policyMedTh [simNum] = $18 ;
po l i cySpTh [simNum] = $19 ;
policyMedMon [simNum] = $22 ;
policySpMon [simNum] = $23 ;

simNum++;

S [simNum]= $4 ;
S2 [simNum]= $5 ;

}
END {

f o r (i = m i n Po i n t ; i<simNum−1; i ++) {
f o r (j = m i n Po i n t ; j<simNum−1; j ++) {

p o l E v a l [i , j] = compare (9 5 , S [i] , S [j] , S2 [i] , S2 [j] ,N,N) ;
}

}

f o r (j = m i n Po i n t ; j<simNum−1; j ++) {
i f (p o l E v a l [minPoin t , j] == ”=” | | p o l E v a l [minPoin t , j] == ”<”) mi n P o in t = j ;

}

numPol = 0 ;

i f (s l o g ==1) p r i n t ”\nNumber o f t o t a l p o l i c i e s i s ” simNum ”\n ” ;
o u t p u t = ”Number o f t o t a l p o l i c i e s i s ” simNum ”\n\n ” ;

F i r s tMedE = 0 ;
F i r s t S p E = 0 ;
F i r s t M e d E f f o r t = 0 ;
F i r s t S p E f f o r t = 0 ;
F i r s t M e d D e f e c t s = 0 ;
F i r s t S p D e f e c t s = 0 ;
F i r s t M e d T h r e a t = 0 ;
F i r s t S p T h r e a t = 0 ;
F i rs tMedMonths = 0 ;
F i r s t S p M o n t h s = 0 ;

MinMedE = 0 ;
MinSpE = 0 ;
MinMedEffor t = 0 ;
MinSpEf fo r t = 0 ;
MinMedDefects = 0 ;
MinSpDefec ts = 0 ;
MinMedThreat = 0 ;
MinSpThreat = 0 ;
MinMedMonths = 0 ;
MinSpMonths = 0 ;

f o r (i =simNum−1; i>=m in P o i n t ; i−−) {
i f (i ==simNum−1) {

Firs tMedE = policyMedE [i] ;
F i r s t S p E = po l i cySpE [i] ;
F i r s t M e d E f f o r t = po l i cyMedEf f [i] ;
F i r s t S p E f f o r t = p o l i c y S p E f f [i] ;
F i r s t M e d D e f e c t s = pol icyMedDef [i] ;
F i r s t S p D e f e c t s = p o l i c y S p D e f [i] ;
F i r s t M e d T h r e a t = policyMedTh [i] ;
F i r s t S p T h r e a t = po l i cySpTh [i] ;
F i r s tMedMonths = policyMedMon [i] ;
F i r s t S p M o n t h s = policySpMon [i] ;

}

i f (s l o g ==1) p r i n t p o l i c i e s [i] ;
o u t p u t = o u t p u t p o l i c i e s [i] ”\n ” ;
numPol ++;

a t t s [a t t r i b u t e N a m e [i]] + + ;

i f (i == m i n P o i n t) {
MinMedE = policyMedE [i] ;
MinSpE = po l i cySpE [i] ;
MinMedEffor t = po l i cyMedEf f [i] ;
MinSpEf fo r t = p o l i c y S p E f f [i] ;
MinMedDefects = pol icyMedDef [i] ;
MinSpDefec ts = p o l i c y S p D e f [i] ;
MinMedThreat = policyMedTh [i] ;
MinSpThreat = po l i cySpTh [i] ;
MinMedMonths = policyMedMon [i] ;
MinSpMonths = policySpMon [i] ;

a t tNumber =0;

f o r (a i n a t t s) {

152

a t tNumber ++;
}

i f (s l o g ==1){
p r i n t ”\nNumber o f recommended p o l i c i e s i s ” numPol ;
p r i n t ”\nNumber o f d i s t i n c t a t t r i b u t e s i s ” a t tNumber ;
p r i n t ”\ n R e s u l t s o f a p p l y i n g above p o l i c i e s : ” ;
p r i n t ”\ t E n e r g y :\ n\ t \ tmed ian : ” policyMedE [i] ”\n\ t \ t s p r e a d : ” po l i cySpE [i] ;
p r i n t ”\ t E f f o r t :\ n\ t \ tmed ian : ” po l i cyMedEf f [i] ”\n\ t \ t s p r e a d : ” p o l i c y S p E f f [i] ;
p r i n t ”\ t D e f e c t s :\ n\ t \ tmed ian : ” pol icyMedDef [i] ”\n\ t \ t s p r e a d : ” p o l i c y S p D e f [i] ;
p r i n t ”\ t T h r e a t :\ n\ t \ tmed ian : ” policyMedTh [i] ”\n\ t \ t s p r e a d : ” po l i cySpTh [i] ;
p r i n t ”\ tMonths :\ n\ t \ tmed ian : ” policyMedMon [i] ”\n\ t \ t s p r e a d : ” policySpMon [i] ;
}

o u t p u t = o u t p u t ”\nNumber o f recommended p o l i c i e s i s ” numPol ”\n ” ;
o u t p u t = o u t p u t ”\nNumber o f d i s t i n c t a t t r i b u t e s i s ” a t tNumber ”\n ” ;
o u t p u t = o u t p u t ”\ n R e s u l t s o f a p p l y i n g above p o l i c i e s : ” ;
o u t p u t = o u t p u t ”\n\ t E n e r g y :\ n\ t \ tmed ian : ” policyMedE [i] ”\n\ t \ t s p r e a d : ”

po l i cySpE [i] ;
o u t p u t = o u t p u t ”\n\ t E f f o r t :\ n\ t \ tmed ian : ” po l i cyMedEf f [i] ”\n\ t \ t s p r e a d : ”

p o l i c y S p E f f [i] ;
o u t p u t = o u t p u t ”\n\ t D e f e c t s :\ n\ t \ tmed ian : ” pol icyMedDef [i] ”\n\ t \ t s p r e a d : ”

p o l i c y S p D e f [i] ;
o u t p u t = o u t p u t ”\n\ t T h r e a t :\ n\ t \ tmed ian : ” policyMedTh [i] ”\n\ t \ t s p r e a d : ”

po l i cySpTh [i] ;
o u t p u t = o u t p u t ”\n\ tMonths :\ n\ t \ tmed ian : ” policyMedMon [i] ”\n\ t \ t s p r e a d : ”

policySpMon [i] ;

b r e a k ;
}

}
o u t l o g = o u t ” / p o l i c y . t x t ” ;
p r i n t o u t p u t > o u t l o g ;

o u t d a t a = o u t ” / d a t a ” ;
p r i n t p r o j e c t V a l ” , ” p o l i c y V a l ” , ” s c o r i n g ” , ” m u t a t i o n ” , ” a l p h a ” , ” b e t a ” , ” gamma ” , ” d e l t a ” , ”\

r e l y d e f e c t ” , ” c o o l F a c t o r ” , ” run ” , ” N ” , ” SANum ” , ” SATime ” , ” To ta lT ime ” , ” minEnergy \
” , ” numPol ” , ” a t tNumber ” , ” Fi r s tMedE ” , ” F i r s t S p E ” , ” F i r s t M e d E f f o r t ” , ” F i r s t S p E f f o r t \
” , ” F i r s t M e d D e f e c t s ” , ” F i r s t S p D e f e c t s ” , ” F i r s t M e d T h r e a t ” , ” F i r s t S p T h r e a t ” , ” \
Firs tMedMonths ” , ” F i r s t S p M o n t h s ” , ” MinMedE ” , ” MinSpE ” , ” MinMedEffor t ” , ” MinSpEf fo r t \
” , ” MinMedDefects ” , ” MinSpDefec ts ” , ” MinMedThreat ” , ” MinSpThreat ” , ” MinMedMonths ” , ” \
MinSpMonths ” , ” s t r a t V a l ” , ” b f cV a l > o u t d a t a ;

}

f u n c t i o n compare (conf , b e f o r e s , a f t e r s , b e f o r e s 2 , a f t e r s 2 , b e f o r e n , a f t e r n) {
i f (same (conf , b e f o r e s , a f t e r s , b e f o r e s 2 , a f t e r s 2 , b e f o r e n , a f t e r n))

r e t u r n ” = ” ;
i f (b e f o r e s / b e f o r e n > a f t e r s / a f t e r n)

r e t u r n ”<”;
e l s e

r e t u r n ”>”;
}

f u n c t i o n same (conf , b e f o r e s , a f t e r s , b e f o r e s 2 , a f t e r s 2 , b e f o r e n , a f t e r n , \
ssa , ssb , pooled , sxaxb , t , t c r t i c a l) {

s s a = b e f o r e s 2 −(b e f o r e s ˆ 2 / b e f o r e n) ;
s s b = a f t e r s 2 −(a f t e r s ˆ2 / a f t e r n) ;
po o l ed = (s s a + s s b) / (b e f o r e n + a f t e r n − 2) ;
sxaxb = s q r t (p oo l e d ∗ (1 / b e f o r e n + 1 / a f t e r n)) ;

t = (a f t e r s / a f t e r n − b e f o r e s / b e f o r e n) / sxaxb ;
t = (t < 0 ? −1∗ t : t)
t c r i t i c a l = 2 . 1 0 1 ; #C[con f]

r e t u r n t c r i t i c a l > t ;
}

153

Bibliography

[1] Beagle 2 mission profile. http://solarsystem.nasa.gov/missions/profile.cfm?
MCode=Beagle_02.

[2] J. Aguilar-Ruiz, I. Ramos, J.C. Riquelme, and M. Toro. An evolutionary approach to estimat-
ing software development projects. Information and Software Technology, 43(14):875–882,
December 2001.

[3] G. Antoniol, M. Di Penta, and M. Harman. Search-based techniques applied to optimiza-
tion of project planning for a massive maintenance project. Software Maintenance, 2005.
ICSM’05. Proceedings of the 21st IEEE International Conference on, pages 240–249, Sept.
2005.

[4] Giuliano Antoniol, Massimiliano Di Penta, and Mark Harman. A robust search-based ap-
proach to project management in the presence of abandonment, rework, error and uncertainty.
Software Metrics, IEEE International Symposium on, 0:172–183, 2004.

[5] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley. The next release problem. Informa-
tion and Software Technology, 43(14):883 – 890, 2001.

[6] Dan Baker. A hybrid approach to expert and model-based effort estimation. Master’s thesis,
Lane Department of Computer Science and Electrical Engineering, West Virginia University,
2007. Available from https://eidr.wvu.edu/etd/documentdata.eTD?documentid=
5443.

[7] J. Bansiya and C.G. Davis. A hierarchical model for object-oriented design quality assess-
ment. IEEE Transactions on Software Engineering, 28(1):4–17, 2002.

[8] Andr E Baresel, Daimlerchrysler Ag, Mark Harman, David Binkley, and Bogdan Korel. Evo-
lutionary testing in the presence of loop-assigned flags: A testability transformation approach.
In In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA
2004, pages 43–52. ACM, 2004.

[9] S.B. Bay and M.J. Pazzani. Detecting change in categorical data: Mining contrast sets. In
Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining,
1999. Available from http://www.ics.uci.edu/˜pazzani/Publications/stucco.pdf.

154

[10] B.Boehm and H.In. Conflict analysis and negotiation aids for cost-quality requirements.
Software Quality Professional, 1(2):38–50, March 1999.

[11] B. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[12] B. Boehm. Safe and simple software cost analysis. IEEE Software, pages 14–17, Septem-
ber/October 2000. Available from http://www.computer.org/certification/beta/
Boehm_Safe.pdf.

[13] B. Boehm, C. Abts, and S. Chulani. Software development cost estimation approaches - a
survey. Annals of Software Engineering, 10:177–205, 2000.

[14] B. Boehm and P. Papaccio. Understanding and controlling software costs. IEEE Trans. on
Software Engineering, 14(10):1462–1477, October 1988.

[15] Barry Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K. Clark, Bert Steece,
A. Winsor Brown, Sunita Chulani, and Chris Abts. Software Cost Estimation with Cocomo
II. Prentice Hall, 2000.

[16] Barry Boehm and Hoh In. Conflict analysis and negotiation aids for cost-
quality requirements, 1999. http://sunset.usc.edu/publications/TECHRPTS/1999/
usccse1999-530/usccse1999-530.pdf.

[17] Salah Bouktif, Houari Sahraoui, and Giuliano Antoniol. Simulated annealing for improving
software quality prediction. In GECCO ’06: Proceedings of the 8th annual conference on
Genetic and evolutionary computation, pages 1893–1900, New York, NY, USA, 2006. ACM.

[18] Lionel C. Briand, Yvan Labiche, and Marwa Shousha. Stress testing real-time systems with
genetic algorithms. In GECCO ’05: Proceedings of the 2005 conference on Genetic and
evolutionary computation, pages 1021–1028, New York, NY, USA, 2005. ACM.

[19] Zhihoa Chen, Tim Menzies, and Dan Port. Feature subset selection can improve software
cost estimation. In PROMISE’05, 2005. Available from http://menzies.us/pdf/05/
fsscocomo.pdf.

[20] S. Chulani, B. Boehm, and B. Steece. Bayesian analysis of empirical software engineering
cost models. IEEE Transaction on Software Engineerining, 25(4), July/August 1999.

[21] J. Clark, J. J. Dolado, M. Harman, R. M. Hierons, B. Jones, M. Lumkin, B. Mitchell, S. Man-
coridis, K. Rees, M. Roper, and M. Shepperd. Reformulating software engineering as a
search problem. IEE Proceedings on Software, 150(3):161–175, 2003. Available from
http://www.brunel.ac.uk/˜csstrmh/papers/sbse.ps.

[22] R. Clark. Faster treatment learning, Computer Science, Portland State University. Master’s
thesis, 2005.

155

[23] Myra Cohen, Shiu Beng Kooi, and Witawas Srisa-an. Clustering the heap in multi-threaded
applications for improved garbage collection. In GECCO ’06: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, pages 1901–1908, New York, NY,
USA, 2006. ACM.

[24] S. L. Cornford, M. S. Feather, J.R. Dunphy, J. Salcedo, and T. Menzies. Optimizing spacecraft
design optimization engine development: Progress and plans. In Proceedings of the IEEE
Aerospace Conference, Big Sky, Montana, 2003. Available from http://menzies.us/pdf/
03aero.pdf.

[25] Keith Cowig. Nasa responds to the columbia accident report: Farewell to faster - better -
cheaper, September 2003. http://www.spaceref.com/news/viewnews.html?id=864.

[26] J. Crawford and A. Baker. Experimental results on the application of satisfiability algorithms
to scheduling problems. In AAAI ’94, 1994.

[27] Leonard David. Nasa report: Too many failures with faster, better, cheaper,
March 2000. http://www.space.com/businesstechnology/business/spear_report_
000313.html.

[28] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on, 6(2):182–197, Apr
2002.

[29] Tom DeMarco and Timothy Lister. Peopleware: productive projects and teams. Dorset House
Publishing Co., Inc., New York, NY, USA, 1987.

[30] Sunita Devnani-Chulani. Bayesian Analysis of Software Cost and Quality Mod-
els. PhD thesis, 1999. Available on-line at http://citeseer.ist.psu.edu/
devnani-chulani99bayesian.html.

[31] Pedro Domingos and Michael J. Pazzani. On the optimality of the simple bayesian classifier
under zero-one loss. Machine Learning, 29(2-3):103–130, 1997.

[32] M.S. Feather and T. Menzies. Converging on the optimal attainment of requirements. In IEEE
Joint Conference On Requirements Engineering ICRE’02 and RE’02, 9-13th September, Uni-
versity of Essen, Germany, 2002. Available from http://menzies.us/pdf/02re02.pdf.

[33] Fred Glover and M. Laguna. Tabu search. In C. Reeves, editor, Modern Heuristic Techniques
for Combinatorial Problems, Oxford, England, 1993. Blackwell Scientific Publishing.

[34] Phillip Green. Impact of value-based software engineering on software process control. Mas-
ter’s thesis, WVU LCSEE dept., 2009.

[35] Omid Jalali Martin Feather Gregory Gay, Tim Menzies and James Kiper. Real-time opti-
mization of requirements models. 2008. to be published.

156

[36] Donald Gross and Carl M. Harris. Fundamentals of queueing theory (2nd ed.). John Wiley
& Sons, Inc., New York, NY, USA, 1985.

[37] M.A. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class
data mining. IEEE Transactions On Knowledge And Data Engineering, 15(6):1437– 1447,
2003. Available from http://www.cs.waikato.ac.nz/˜mhall/HallHolmesTKDE.pdf.

[38] Mary hardin. Mars climate orbiter nearing sept. 23 arrival, September 1999. JPL Universe,
Vol. 29, No. 19.

[39] M. Harman and B.F. Jones. Search-based software engineering. Journal of Information and
Software Technology, 43:833–839, December 2001.

[40] Mark Harman. The current state and future of search based software engineering. pages
342–357, 2007.

[41] Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener, Harmen Sthamer, Andr? Baresel,
and Marc Roper. Testability transformation. IEEE Transactions on Software Engineering,
30(1):3–16, 2004.

[42] K. Havelund and T. Pressburger. Model checking java programs using java pathfinder. In-
ternational Journal on Software Tools for Technology Transfer, 2(4), April 2000. Available
from http://ase.arc.nasa.gov/visser/jpf/jpf1.ps.gz.

[43] John H. Holland. Adaptation in natural and artificial systems. MIT Press, Cambridge, MA,
USA, 1992.

[44] G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, May 1997.

[45] Y. Hu. Treatment learning, 2002. Masters thesis, Unviersity of British Columbia, Department
of Electrical and Computer Engineering. In preperation.

[46] J. Huang and C. Ling. Using auc and accuracy in evaluating learning algorithms. IEEE
Transactions on Knowledge and Data Engineering, 17(3), March 2005.

[47] Harmen Sthamer Joachim Wegener, Andre Baresel. Evolutionary test environment for auto-
matic structural testing. Information and Software Technology, 43(14):841–854, 2001.

[48] H. Kautz, B. Selman, and Y. Jiang. A general stochastic approach to solving problems with
hard and soft constraints. In D. Gu, J. Du, and P. Pardalos, editors, The Satisfiability Problem:
Theory and Applications, New York, NY, pages 573–586, 1997. Available on-line at http:
//citeseer.ist.psu.edu/168907.html.

[49] C.F. Kemerer. An empirical validation of software cost estimation models. Communications
of the ACM, 30(5):416–429, May 1987.

157

[50] Sugarloaf Key. Columbia, the legacy of ”better, faster, cheaper”?, July 2003.
http://www.space-travel.com/reports/Columbia__The_Legacy_Of_Better_
_Faster__Cheaper.html.

[51] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

[52] Colin Kirsopp, Martin J. Shepperd, and John Hart. Search heuristics, case-based reasoning
and software project effort prediction. In GECCO ’02: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1367–1374, San Francisco, CA, USA, 2002.
Morgan Kaufmann Publishers Inc.

[53] Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial Intelli-
gence, 97(1-2):273–324, 1997.

[54] J. Li and G. Ruhe. Decision support analysis for software effort estimation by analogy. In
Proceedings, PROMISE’07 workshop on Repeatable Experiments in Software Engineering,
2007.

[55] R. Madachy. Knowledge-based risk assessment and cost estimation. In Proceedings Ninth
Knowledge-Based Software Engineering Conference, pages 172 –178, 1994.

[56] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables
is stochastically larger than the other. Ann. Math. Statist., 18(1):50–60, 1947. Avail-
able on-line at http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=
Display&handle=euclid.aoms/1177730491.

[57] T. Menzies, D.Owen, and J. Richardson. The strangest thing about software. IEEE Computer,
2007. http://menzies.us/pdf/07strange.pdf.

[58] T. Menzies, O. Elrawas, D. Baker, J. Hihn, and K. Lum. On the value of stochastic abduction
(if you fix everything, you lose fixes for everything else). In International Workshop on Living
with Uncertainty (an ASE’07 co-located event), 2007. Available from http://menzies.us/
pdf/07fix.pdf.

[59] T. Menzies, O. Elrawas, B. Barry, R. Madachy, J. Hihn, D. Baker, and K. Lum. Accurate esti-
mates without calibration. In International Conference on Software Process, 2008. Available
from http://menzies.us/pdf/08icsp.pdf.

[60] T. Menzies, O. Elrawas, J. Hihn, M. Feathear, B. Boehm, and R. Madachy. The business
case for automated software engineerng. In ASE ’07: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, pages 303–312,
New York, NY, USA, 2007. ACM.

[61] T. Menzies and Y. Hu. Data mining for very busy people. In IEEE Computer, November
2003. Available from http://menzies.us/pdf/03tar2.pdf.

158

[62] T. Menzies and J. Richardson. Xomo: Understanding development options for autonomy. In
COCOMO forum, 2005, 2005. Available from http://menzies.us/pdf/05xomo_cocomo_
forum.pdf. For more details, see also the longer technical report http://menzies.us/pdf/
05xomo101.pdf.

[63] Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum. Selecting best practices for effort
estimation. IEEE Transactions on Software Engineering, November 2006. Available from
http://menzies.us/pdf/06coseekmo.pdf.

[64] Tim Menzies, Steve Williams, Oussama ElRawas, Barry Boehm, and Jairus Hihn. How to
avoid drastic software process change (using stochastic stability). In International Conference
on Software Engineering, 2009. to be published in ICSE’09.

[65] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation of
state calculations by fast computing machines. J. Chem. Phys, 21:1087–1092, 1953.

[66] Brian S. Mitchell and Spiros Mancoridis. On the automatic modularization of software sys-
tems using the bunch tool. IEEE Transactions on Software Engineering, 32(3):193–208,
2006.

[67] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
(reprinted 1997,2000).

[68] NASA. Mars climate orbiter mishap investigation board phase i report. November 1999.

[69] Timeline of Faster Better Cheaper NASA watch. Faster - better - cheaper under fire.
http://www.nasawatch.com/fbc.html.

[70] Mark O’Keeffe and Mel O’Cinneide. Search-based software maintenance. Software Mainte-
nance and Reengineering, European Conference on, 0:249–260, 2006.

[71] Andres Orrego. The value of reuse in software process control. suggested paper for ICSP’09.

[72] H. Pohlheim. Genetic and evolutionary algorithm toolbox for use with matlab.

[73] INTERNATIONAL FEDERATION OF PROFESSIONAL and AFL-CIO TECHNICAL EN-
GINEERS. Ifpte report on the effectiveness of nasa’s workforce & contractor policies, March
2003. http://www.spaceref.com/news/viewsr.html?pid=10275.

[74] Donald J. Reifer, Reifer Consultants, Barry W. Boehm, and Sunita Chulani. The rosetta stone:
Making cocomo 81 estimates work with cocomo ii. 1999.

[75] Tony Spear. Nasa fbc task final report, March 2000.
mars.jpl.nasa.gov/msp98/misc/fbctask.pdf.

[76] Tony Spear. Testimony on nasa fbc task before the subcommittee on science, technology, and
space, March 2000. www.nasawatch.com/congress/2000/03.22.00.spear.pdf.

159

[77] Don Tuite. Better, faster, cheaperpick any two: That old mantra used to be a touchstone for
development. but does it still ring true?, March 2007. http://electronicdesign.com/
Articles/Index.cfm?AD=1&ArticleID=14997.

[78] Michael Turner. Faster, cheaper, and more ... metric?, August 2003.
http://www.spacedaily.com/news/oped-03zz.html.

[79] R. Williams, C.P. Gomes, and B. Selman. Backdoors to typical case complexity. In Proceed-
ings of IJCAI 2003, 2003. http://www.cs.cornell.edu/gomes/FILES/backdoors.pdf.

[80] T. Young, J. Arnold, T. Brackey, M. Carr, D. Dwoyer, R. Fogleman, R. Jacobson, H. Kot-
tler, P. Lyman, and J. Maguire. Mars program independent assessment team report. NASA
STI/Recon Technical Report N, pages 32462–+, March 2000.

[81] H. Zhang and X. Zhang. Comments on ’data mining static code attributes to learn defect
predictors’. IEEE Transactions on Software Engineering, September 2007.

160

