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Abstract—A major hurdle still faced by data mining practi-
tioners involves translating complex theories into actionable
items for managers. As theories and methodology becomes
more complex, business users must place more faith in the
theory assumptions rather than their own intuition. To combat
this we present an extremely simple effort reduction recom-
mendation system called “W” that maintains no underlying
parametric model and produces simple, concise theories com-
plete with explanations. “W” does this by extending the effort
estimation of case-based reasoning with the explanation power
of contrast sets. From these contrast sets we build new queries
that constrain the original effort estimates, demonstrating a
reduction in both the median effort and variance of historically-
relevant projects.
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I. INTRODUCTION

”Don’t tell me where I am, tell me where to go.”
-A very busy user

A machine learner’s purpose in life is to generate theories.
However, all theories must eventually be read by humans.
Therefore, we should consider what kinds of theories people
like to read.

If the reader is a busy person they might not need or
even be able to use the nuance of a complex theory. Rather,
a busy person might instead just want to know what will
bring the most benefit from the least effort and nothing more.
It follows that machine learning for busy people should
not strive for elaborate theories or increasing the expressive
power of the theory’s language. Rather, a better goal might
be to find the smallest theory with the most impact.

Previous work explored minimal controllers in the context
of AI search over monte-carlo analysis of software process
models using STAR [1]. A concern with that line of research
is that the more elaborate our tech, the harder it is to validate
the conclusion. In particular, reproducability is hard when
it takes 2-6 months to rebuild experimental rig discussed
in the previo us paper. Is there a simpler way to generate
simple most-effective controllers for a software project?
Another problem was the conclusions were dependent on
the parametric model used. For example, our previous work
was based on the USC COCOMO tools. The tools were built
from mostly southern-caifornia DoD aerospace contractors

and it is a valid criticism of those models that the external
validity of those models is an open question.

Therefore, in order to simplify the reproducibility of our
work and remove our dependency of possibly inappropriate
models, this paper reports an experiment in learning con-
trollers using case-based reasoning. We report a remarkably
simple CBR algorithm dubbed “W” that achieves all our
goals. “W” generates recommendations that reduce both the
median effort and the variance on the effort. The recom-
mendations are very small in the case-studies shown here,
they’re usually one change to a project with widely varying
recommendations between projects.

II. BACKGROUND

A. Modeling vs. Case-Based Reasoning by Analogy

Much work has been put forth in developing parametric
models for estimation software effort. Popular models such
as USC COCOMO [2] take the reductionist approach of
reducing any arbitrary software project to a handful of
descriptive parameters. Each parameter consists of a range
of values from 1 to 6 representing ranges from very low
to extremely high, respectively, mapped to regression values
expressing how each attribute affects effort. The result of
which can be used to model software effort using this
formula:

effort = a ∗KSLOCb+0.01∗
∑5

i=1
SFi ∗ (

17∏
j=1

EMj) (1)

B. The Case for CBR

Where KSLOC represents thousands of lines of code,
SF represents exponential scale factor attributes, and EM
represents linear effort multipliers. While these parameters
were derived from historical NASA projects and have shown
their utility, an effort estimator must rely that these pa-
rameters are reflective of any given arbitrary project. As
time progresses, one can speculate that the relevance of the
underlying model will remain applicable to future cases.
Also, such models often require careful domain-specific
tuning, as is the case of the a and b linear and exponential
tuning values in 1. For the original NASA dataset [3], these
values can range anywhere from:

(2.2 ≤ a ≤ 9.18) ∧ (0.88 ≤ b ≤ 1.09) (2)



Because these tunings are arbitrary, one can see how
merely the tuning parameter a can quadruple the effort
estimation depending on its value. Given this uncertainty
and reliance on establishing a general case for all software
projects, another method, case-based reasoning, establishes
an alternative methodology for effort estimation.

The general form of case-based reasoning differs from
parametric model-based learning in that there is no attempt
to reduce complex phenomena to a general-case parametric
model. Rather, historical data is Retrieved, Reused, Revised,
and Retained [4] (the ”4 REs”) as a means of adapting the
past to reason about the future.

The intuition of CBR comes from cognitive models of
human behavior. That is, as humans we tend to base our
decisions not on complex reductive analysis, but on an
instantaneous survey of past experiences. In other words,
we don’t think, we remember. For example one not need
consider the actuarial ramifications of a kitchen grease fire,
our past experiences tells us without hesitance: Fire hot, fire
bad. While the power of simulating and modeling the world
has allowed for our success as a species, our abilities fall
apart without historical knowledge of the world.

However, for this paper we are more interested in a subset
of the CBR domain, effort estimation by analogy.

Analogy effort estimation centers around historical project
data frozen in time, referred to as cases, to reason about
new project instances. The core assumption being that given
some measurement of relevancy between cases and incoming
project instances, we can generate a query q over the
historical space that selects for the kth nearest neighbors , or
knn, most relevant to a project instance. Because the cases
are analogous to the project instance being considered, CBR
methodology states we can reason about the project instance
by examining the analogous cases.

It is important to note, unlike established models CBR
does carry the requirement of obtaining relevant and accurate
historial data that represents the problem space. While this
can limit the deployable situations for CBR, when this
data is available CBR offers an intrinsic justification of it’s
estimations that are less obvious with a parametric approach.
One need only examine the analogous cases for evidence
supporting a particular estimation.

Finally, an added benefit of reasoning from historical data
grants CBR distinct advantages over parametric models as
the learner is only exposed to conditions that happen in
practice, rather than reason about all possible theoretical pos-
sibilities. This is useful when presented with data containing
outlier behavior that might not map to a linear regression as
easily. As long as the data collection requirements are met,
CBR can be applied to any consistent and representative
means of describing a software project.

For these reasons outlined above we include CBR by
analogy as the foundation of our learning controller, “W,”
as a starting point in generating useful, actionable, simple

theories.

C. From Estimation to Planning

Upon a thorough review of CBR literature, there exists
little work beyond estimation. Famous CBR systems such
as Shepperd’s ANGEL [5] and more recent work such as
Keung’s Analogy-X [6] focus their efforts on quantifying
what is relevant in effort estimation, but remain limited in
the scope of simply estimating. While means of deciding
what cases are relevant is a fundamental problem of CBR, it
is worth persuing other possible applications of this unique
methodology. For instance, no where does there exist any
planning in CBR literature.

Our focus of this paper and “W” is not to explore the
effort estimation power of learning by analogy. Rather, we
seek to broaden the scope of CBR to include generating
theories for effort reduction. To do this, we must devise a
way to exploit the knowledge gained from the attributes of
the relevant neighborhood of projects, rather than merely
their historical effort.

Conceptually, if we query the historical space for a set of
relevant cases, we should recommend project changes that
cause our project instance to be more similar to historical
cases with the most favorable outcome. In the case of effort
reduction, a good recommendation would drive our project
away from attributes associated with worse effort outcomes
and towards projects with better effort outcomes. When
tested against unseen cases, a project with the previously
recommended attribute constraints should demonstrate a re-
duction in both the effort and variance seen in its neighbors.
From these test cases we can build successive queries, q∗i ,
that incrementally apply these attribute constraints until we
can no longer accurately predict a reduction on effort:

query∗i = query + ∪ici (3)

Each attribute constraint ci can then be added to the query
qi in descending order of recommendation score.

III. DECIDING WITH “W”

“W” is our implementation of a effort reduction planning
system using the fundamentals of CBR. “W” consists of
three main steps:

• Defining a Project Instance
• Deciding what attributes are relevant to improving the

project
• Evaluating the effectiveness of improvements on test

cases

“W” decides based on two core assumptions: Similar
projects have similar efforts, and the the attributes that drive
effort reduction will occur more frequently in the best cases
than the worst.



“W” Project File Example
@project
@attribute ?rely 3 4 5
@attribute tool 2
@attribute cplx 4 5 6
@attribute ?time 4 5 6

Figure 1. Example project file for “W”

“W” Historical Cases
@relation NASA93
@attribute rely 1 2 3 4 5
@attribute data 2 3 4 5
@attribute cplx 1 2 3 4 5 6
@attribute time 3 4 5 6
@attribute stor 3 4 5 6
@attribute virt 2 3 4 5
@attribute turn 2 3 4 5
@attribute acap 1 2 3 4 5
@attribute aexp 1 2 3 4 5
@attribute pcap 1 2 3 4 5
@attribute vexp 1 2 3 4
@attribute lexp 1 2 3 4
@attribute modp 1 2 3 4 5
@attribute tool 1 2 3 4 5
@attribute sced 1 2 3 4 5
@attribute ksloc 8.4 10.8 24 25.2 31.2
36 72 117.6 360
@data
4 2 4 3 3 2 2 3 3 3 3 4 4 3 2 24.6 117.6
4 2 4 3 3 2 2 3 3 3 3 4 4 3 2 7.7 31.2
4 2 4 3 3 2 2 3 3 3 3 4 4 3 2 8.2 36
4 2 4 3 3 2 2 3 3 3 3 4 4 3 2 9.7 25.2
4 2 4 3 3 2 2 3 3 3 3 4 4 3 2 2.2 8.4
4 2 4 3 3 2 2 3 3 3 3 4 4 3 2 3.5 10.8
4 2 4 3 3 2 2 3 3 3 3 4 4 3 2 66.6 352.8
3 2 4 3 3 2 2 4 5 5 3 4 3 3 3 20 72
3 2 4 3 3 2 2 4 5 4 3 4 3 3 3 6 24
3 2 4 3 3 2 2 4 5 5 3 4 3 3 3 100 360

Figure 2. Example datafile for “W” consisting of a sample of NASA93
data

A. Defining Projects in “W”

Before a we can define a potential, “W” must define its
historical cases. Figure 2 demonstrates a small example
of how any arbitrary historical data is defined for use by
“W.” The first line declares the name of the dataset, fol-
lowed by all attribute (column) names and possible values.
Because of this enumeration, currently “W” only supports
discretized datasets. After the @data sigil, historical cases
are defined numerically assuming the same column order as
the attributes defined above.

The main interface between a user and “W” consists of
it’s project descriptions. A simple example file is given in
figure 1. When a project lead or manager wishes to know
what can be done to improve the effort of a future project,
“W” should only make recommendations that fall within
actionable, feasible changes. For example, the historical
projects in figure 3 define the COCOMO attribute ranges
and hard values that constrain the potential recommendations
for the project. In the case of OSP, it is outside the bounds
of reality to attempt to change the precedenedness (prec) of
a project if the project has no precedent.

To define an attribute range as controllable, the “?” char-
acter denotes this mutability. For example, in the example

Figure 3. Real-world project description from a NASA Orbital Space
Plane

project in figure 1 the reliability of this project can be set
anywhere from three to five, but for managerial reasons tool
use is locked at two. If an attribute is defined but lacks a
“?,” when generating samples for the knn calculations these
attribute ranges will be used but not recommened.

B. Finding Relevant Cases

Once a project is defined, “W” by default generates fifty
random projects consistent with the attribute constraints
defined. This stoicastic sampling solves the problem of
finding the nearest neighbors within a range. Using figure 4
as a simplified example, you can see how the attribute ranges
defined in the project files allow for a ”zone” of potential
projects to exist. In the diagram the x dimension represents
a continuum of schedule pressure attributes while the y
dimension represents a range of managerial experience. For
any case, a specific value for both of this attributes exists,
as represented by the arrows. Samples generated will always
fall within the bounds of the dotted ”controllable zone.”

From these samples, the k nearest neighbors are deter-
mined by calculating the minimum n-dimensional euclidean
distance between any case c and generated sample s:
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Figure 4. A simplified example of historical cases (arrows) and their
relation to the defined project instance ranges (dotted box)

dist(c, s) =
√

(c1 − s1)2 + (c2 − s2)2 + . . . + (cn − sn)2
(4)

From these distances, the kth smallest distances are cho-
sen as relevant examples. In the case of “W” by default the
20 nearest neighbors are chosen. These 20 nearest neighbors
reprsent our query q of the historical space.

procedure FINDKNN(Samples,Cases)
for all sample in samples do

for all case in cases do
dist = euclidianDist(sample, case)
dist = normalize(dist)
if distance[case] && distance[case] ¡ dist then

distance[case] = dist
end if

end for
end for
relevant = topK(distance)

end procedure

C. Contrasting The Neighborhood

Now that relevant case examples to our project instance
have been chosen, we can consider what causes similar
projects to present varying effort measurements. One method
presented by Menzies and Hu [7] involves building a
contrast set between attributes, separating cases into best and
rest then measuring which attributes occur more freqently
in best than rest, where the ”best” consists of the top k1
neighbors. By default “W” considers the top five of twenty
cases to be considered ”best” and the other fifteen the ”rest.”

From this dichotomy, “W” implements two such mea-
surement tools for scoring attributes most likely to occur in
best but not rest, Nomograms and the B-squared measure.
Both allow for determining which attributes show the largest
correlation with lower effort.

1) B-squared: A simple strategy to score more favorably
towards attributes that occur most often in the best case is to
square the number of times. Taking this heuristic one step
further, given an attribute x, we can penalize x’s occurance
in the ”rest” by dividing the sum of the frequency counts in
best and rest [1], the ensuring rare attributes are weighted
appropriately:

like =
freq(x|best)2

freq(x|best) + freq(x|rest)
(5)

From this measure we need only sort each attribute by
it’s like score to prioritize our recommendations.

Figure 5. Nomogram modeling survival odds on the HMS Titanic [8]

2) Nomograms: Nomograms use the simple Naive
Bayesian rule to determine whether a given attribute will
belong to the instance of the ”best” neighbors. By taking
the log of the odds ratio of an attribute appearing in
best compared to rest, we are given an individual score
for that attribute. That score allows us to determine what
the probability of a particular attribute or combination of
attributes occuring in best or rest. By taking the log, these
scores have the unique property of obeying the property of
addition.

In figure III-C2 the nomograms for survival rates of the
RMS Titanic passengers are presented. Each bar represents
a different attribute of a passenger, and the labelled marks
along that bar represent the attribute values. By adding up
the numeric values seen above each attribute value, you
can determine how strongly each attribute value predicts
for an ourcome of survival. After adding these ”points”
together, you can calculate the Bayesean probability of
survival by converting ”Total Points” to P(yes). As shown in
figure III-C2, when considering no other attributes a child
has a survival chance of slightly above 50%.

For “W,” nomograms represent another means to rank
attributes with the future potential to combine attribute
scores for ranking paired attributes.
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Figure 6. Overview of “W”

D. Generating Plans for Effort Reduction

Now that we’ve determined what attribute values are
important in the query q for reducing effort, we can apply
these attributes to an unseen testing set of data to determine
whether we’ve managed to reduce the effort estimation.
To do this, we take q and build successive queries on
test, incrementally constraining qi with the highest scoring
attribute/value from either the Nomograms or B-squared test.

query∗i = query + ∪ici (6)

Each query will reduce the size of the testing set until
As all positively-scoring attribute constraints are applied

to q∗i , depending on the available cases a decision must be
made when to stop constraining the theory. While additional
treatments may further reduce median effort and variance,
additional constraints reduce the size of each query, reducing
the historical support for the theory.

Currently, there is future work to be done on developing
an automatic stopping rule for early termination of applying
treatments. Figure 7 demonstrates an example run of “W.”
Currently, careful human analysis is recommended to obtain
the best treatment from “W” as one can bias a theory
towards real world actionable cost or potentially greater

median effort and variance reductions. In the example run
from the NASA93 dataset, applying the first constraint,
stor = 5, results in a median reduction of effort from 360
to 170, a reduction of over half. However, this constraint
maintains a query with the same maximum effort value
as the origial q. The application of the next constraint,
time = 5, may require additional resources, but the addition
of this constraint historically precludes the case with an
effort of 4560.

IV. RESULTS AND ANALYSIS

An experiment was conducted with “W” across a va-
riety of historical Software Engineering datasets from the
PROMISE dataset repository. While the datasets use CO-
COMO’s Lines of Code (KSLOC) and Function Points for
quantifying project complexity, any representative discrete
model can be used. The datasets used were:
• NASA: effort prediction data representing 93 different

NASA projects collected in the 80s and 90s. (CO-
COMO)

• Desharnais: University of Montreal software costs
(Function Points)

• ISBSG: StandAlone and Client/Server software costs
(Function Points)
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Figure 8. Median effort and median spread reduction across multiple
datasets.

Theories Generated by the NASA93 Dataset
Project Dataset
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data=3
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sced=1
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aexp=5
sced=3
sced=3

Figure 9. Example theories generated for NASA projects, demonstrating
preliminary evidence for very small, local treatments.

• Maxwell: Finish banking data [9]
For each dataset “W” generated 50 synthetic examples,

took the 20 kth nearest neighbors, and ranked the ”best”
of these neighbors as being in the 5 lowest effort rankings.
“W” trained it’s theories on 67% of each dataset and applied
learned treatments to the other 33%. Nomograms were used
as a means of ranking treatments.

As shown in figure 8, the upper-right quadrant of the
chart consist of projects where “W” generated theories that
reduced both the median effort and th ”spread” betweeen
the 25% and 75% quartiles. On average we show a 29%
reduction in median effort along with a 54% reduction in
spread.

While we have consistent improvements across all
datasets, outliers in the Desharnais dataset present some
problems. This can possibly be attributed to only having syn-
thetic project descriptions rather than real-world representa-
tions. For the NASA datasets using USC COCOMO we see
larger improvements with the majority of projects demon-
strating improvements in both effort and spread reduction.
Also, when a decision from “W” negatively impacts either
effort or spread reduction, only one of these performance

metrics is significantly impacted. There exist no decisions
that significantly increase both the spread and effort of our
results.

Finally, figure 9 contrasts the different treatments gen-
erated within the same dataset. Three interesting patterns
emerge. First, the theories we generate are extremely small.
For all projects in the NASA93 only a single treatment
brings us the largest reduction. Second, each theory is vastly
different. Using the USC COCOMO attributes no consistent
pattern emerges in our recommendations, despite consistent
effort reduction. Finally, the majority of theories generated
include values in the middle of the possible ranges.

V. FUTURE WORK

An inherit problem with case-based reasoning involves
collecting enough data for a significant representation. We
are always collecting data, and for “W” there will always
be a need for larger, more relevant datasets. Also, there
exist multiple schools of thought as to whether lines of
code or function points offer a better measure of software
complexity. With a greater varity of datasets we may be able
to offer a better comparison of these metrics.

The theories generated in figure 9 present an interest-
ing case in explanation stability. Although we consistently
reduced median effort and spread, the treatments that did
so show no correlation in their ability to do so. Such a
result points to a potential lack of generality in software
engineering, or a deeper pattern in “W”’s internal decision
mechanisms. Given the stance of CBR as a sort of counter-
point to the search for a general theory of software cost, the
potential for a strong statement on a lack of generality may
bolster the position of CBR research.

Also, given the power of contrast sets to extract relevent
attributes, future work exists using “W” as a feature subset
selector. Nomograms have proven to be a reliable bayesian
means of ranking features, as shown in our effort reductions.
Using this knowledge to weight the euclidean distance
measure may prove a valueable tool in more accurately
defining relevance of historical cases.

VI. DISCUSSION

With “W” we’ve demonstrated how contrast sets can
be used to extend case-based reasoning by analogy into
the treatment realm. Even with the simplicity of euclidian
nearest-neighbors for measuring case relevancy we achieve
significant and consistent software effort reduction(figure 8).
We’ve demonstrated that even small, local theories may offer
meaningful improvement for the business user (figure 9).

While an automatic stopping procedure is useful, business
users may appreciate the ability for a human expert to sit
in-the-loop with “W” and shape treatment options. This flex-
ibility allows a user to easily and quickly decide themselves
what theory works best for their situation, and immediately
judge the effects of such a theory with historical backing.



These theories are small, easy to understand, and useful for
the busy reader. Compared to complex decision trees or rule
learners “W” offers a refreshing simplicity with real results.
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Figure 7. An example run of “W”

Figure 10. Description of COCOMO Scale Factors and Effort Multipliers


