;;;;compiled under: ;;;;slime 1:20070927-3 ;;;;SBCL 1:1.0.11.0-1 ;;;;Peter Santiago, June 2nd, 2008 ;;;;Program note: the input data array is assumed to be AxB, where each row represents the B dimensions of one point and there are A points (load "fastmap-kmeans-ancillary.lisp") (defun fastmap (k datamatrix &optional (distancematrix (set-distance-matrix datamatrix)) (x (make-array (list (array-dimension datamatrix 0) k) :initial-element nil)) (pa (make-array (list 2 k) :initial-element nil)) (cnum -1)) ;k is the desired number of dimensions, datamatrix if the data; all the rest are optional and generally computed by fastmap for subsequent passes "fastmap: does important things; generally awesome." (let ((templist 0) ;for storing the output of choose-distance-objects (dprimematrix 0) ;for storing the reduced distancematrix (o.a 0) ;stores object a (o.b 0) ;stores object b (x.i 0)) ;stores the calculated value of x.i (a bit extraneous, but I think it helps with readability) ;;1 base case conditional (if (<= k 0) (return-from fastmap x)) ;returns the new coordinates of objects (setf cnum (+ cnum 1)) ;This is here because that's how faloutsos and lin organized their algorithm ;;2 choose pivot objects (setf templist (choose-distance-objects distancematrix)) (setf o.a (first templist)) (setf o.b (second templist)) ;;3 record the ids of the pivot objects (setf (aref pa 0 cnum) o.a) (setf (aref pa 1 cnum) o.b) ;;4 distance something (if (= (aref distancematrix o.a o.b) 0) (dotimes (i (array-dimension x 0)) (setf (aref x i cnum) 0))) ;;5 project the objects on the line(o.a,o.b) (dotimes (i (array-dimension datamatrix 0)) (setf x.i (/ (- (+ (expt (aref distancematrix o.a i) 2) (expt (aref distancematrix o.a o.b) 2)) (expt (aref distancematrix o.b i) 2)) (* 2 (aref distancematrix o.a o.b)))) (setf (aref x i cnum) x.i)) ;;6 consider the projections of the objects on a hyper-plaine perpendicular to the line (o.a,o.b); find new distance function (setf dprimematrix (reduce-dist distancematrix x cnum)) (fastmap (- k 1) datamatrix dprimematrix x pa cnum))) ;end fastmap (deftest test-fastmap() "Note:the values are entirely different depending on which point is picked to be a and which is b" (check (let ((x (fastmap 1 (make-array '(4 2) :initial-contents '((0 0) (5 3) (10 24) (60 70)))))) ;;fastmap chooses o.a to be 3, and o.b to be 0 (and (between 92 (aref x 0 0) 93) (between 86 (aref x 1 0) 87) (between 67 (aref x 2 0) 68) (between 0 (aref x 3 0) 0)))))